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Abstract

Natural language has long enabled human cooperation, but its lossy, ambiguous,1

and indirect nature limits the potential of collective intelligence. While machines2

are not subject to these constraints, most LLM-based multi-agent systems still3

rely solely on natural language, exchanging tokens or their embeddings. To go4

beyond language, we introduce a new paradigm, thought communication, which5

enables agents to interact directly mind-to-mind, akin to telepathy. To uncover6

these latent thoughts in a principled way, we formalize the process as a general7

latent variable model, where agent states are generated by an unknown function of8

underlying thoughts. We prove that, in a nonparametric setting without auxiliary9

information, both shared and private latent thoughts between any pair of agents10

can be identified. Moreover, the global structure of thought sharing, including11

which agents share which thoughts and how these relationships are structured,12

can also be recovered with theoretical guarantees. Guided by the established13

theory, we develop a framework that extracts latent thoughts from all agents prior14

to communication and assigns each agent the relevant thoughts, along with their15

sharing patterns. This paradigm naturally extends beyond LLMs to all modalities,16

as most observational data arise from hidden generative processes. Experiments on17

both synthetic and real-world benchmarks validate the theory and demonstrate the18

collaborative advantages of thought communication. We hope this work illuminates19

the potential of leveraging the hidden world, as many challenges remain unsolvable20

through surface-level observation alone, regardless of compute or data scale.21

1 Introduction22

Natural language has enabled human collaboration at scale, but it also imposes fundamental limita-23

tions. While powerful, language is inherently sequential, ambiguous, and imprecise, offering only an24

indirect and fragmented reflection of thought [von Humboldt, 1988]. This constraint is deeply rooted25

in human cognition, which lacks direct channels for transmitting mental content. Machines, however,26

are not subject to the same physical constraints of speech or perception. This difference may be27

one of the central reasons why superhuman intelligence is possible. Every transformative achieve-28

ment, from scientific discovery to societal progress, relies on collaboration. Likewise, superhuman29

intelligence will require not only individual reasoning beyond human capability but also collective30

reasoning beyond human coordination [Vinge, 1993]. This calls for a new form of communication31

that transcends the limits of language.32

However, existing large language model (LLM)-based multi-agent systems (MAS) rely on natural33

language as the medium of communication, exchanging information via tokens or their embed-34

dings [Du et al., 2023, Liang et al., 2023, Pham et al., 2023, Zhang et al., 2024a, Zeng et al., 2025,35

Wang et al., 2025b]. These systems typically assume that multiple LLM agents exchange natural36

language messages to convey internal ideas and coordinate toward a shared goal. However, natural37

language remains fundamentally limited in its ability to express the underlying latent thoughts that38

drive reasoning and decision making. As a result, current systems remain restricted by the bottle-39
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necks of language, limiting their potential for superhuman collaboration. Indeed, recent empirical40

analyses [Cemri et al., 2025, Hu et al., 2025] highlight that many failures in inter-agent collaboration41

stem from vague message specification and inter-agent misalignment, both ultimately caused by the42

indirect nature of lossy language-based communication. Then, the core question reveals itself:43

What form of communication goes beyond the limits of language?44

To answer this, we turn to the idea of communication through latent thoughts. Nothing is more direct45

than transmitting what one truly thinks, i.e., telepathy. Just as human actions are guided by internal46

mental states, agents likely operate based on latent representations that encode goals, beliefs, and47

reasoning. If these could be identified, agents could share them directly, bypassing the ambiguity48

and distortion of language. This enables a fundamentally different mode of communication, based49

not on the exchange of surface tokens or their embeddings, but on the direct transfer of intent and50

understanding. Furthermore, in multi-agent settings, some thoughts are intended to be broadly shared,51

while others are inherently private or uniquely tailored to certain individual agents. Revealing both52

the latent thoughts and their structural organization allows agents to better detect alignment, resolve53

conflicts, and integrate diverse reasoning paths.54

Contributions: We formalize this idea by introducing a latent generative model for inter-agent55

communication. Specifically, we assume that the model states Ht of all agents before communication56

round t are generated from a set of latent thoughts Zt through an unknown function f , such that57

Ht = f(Zt). We establish both a nonparametric identifiability result that guarantees recovery of58

latent thoughts, and a general framework that facilitates direct mind-to-mind communication.59

Theoretically, we prove that in a general nonparametric setting, both shared and private latent60

thoughts can be identified from hidden states under a sparsity regularization. Our identifiability61

result ensures that the recovered latent representations reflect the true internal structure of agent62

reasoning. Moreover, we show that the structures between thoughts and individual agents can be63

reliably recovered, enabling a provable correspondence between agents and their cognitive content.64

Experiments on various synthetic environments confirm the validity of the theory.65

Practically, we develop a principled framework for latent communication among agents. Guided by66

the theory, we implement a sparsity-regularized autoencoder to extract latent thoughts from agent67

hidden states and infer the underlying mapping between agents and these thoughts. Each agent is68

equipped with a set of inferred thoughts, along with the structure of how each thought is shared.69

This allows agents not only to understand what others are thinking but also to reason about which70

thoughts are mutually held or privately maintained. Experiments across diverse models and scenarios71

demonstrate that communication beyond language directly benefits collaboration among LLM agents.72

2 Problem Formulation73

Figure 1: Each agent answers the same
question by selecting a subset of latent
thoughts Zt. Agent 1 chooses a car based
on carrying luggage , while Agent 2 se-
lects a train for schedule punctuality .
Both share the thought of speed .

In this section, we formalize the data-generating pro-74

cess behind agent responses, providing the foundation75

for our theoretical analysis.76

Data-generating process. We illustrate the data-77

generating process in Fig. 1 and formalize it as:78

Zt ∼ Pz, Ht = f(Zt), (1)

where Zt = (Zt,1, . . . , Zt,nz ) ∈ Rnz denotes the la-79

tent thoughts of agents at communication round t, and80

Zt,i ∈ R for i ∈ [nz] represents a latent variable denot-81

ing a single thought. Let na be the number of agents,82

at communication round t, the global model states1 of83

all agents are given by84

Ht = (H
(1)
t , . . . ,H

(na)
t ) = (Ht,1, . . . ,Ht,nh

), (2)

where each H
(j)
t ∈ Rnhj summarizes the model states85

of agent Aj prior to the communication round t, and nh =
∑

j∈[na]
nhj

. The mapping from latent86

1We refer to this as the model state instead of hidden state to avoid confusion with the latent thoughts Zt.
Specifically, model state corresponds to the hidden layer representation of the underlying fundation model.
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thoughts to hidden states is governed by an unknown generating function f , assumed to be invertible87

(to preserve information) and twice differentiable (to ensure well-defined gradients), following the88

literature [Hyvärinen et al., 2024].89

Example 1. Fig. 1 illustrates the data-generating process. In response to the question What’s the90

best way to get to the airport? a set of latent thoughts Zt is considered, including factors such as91

carrying luggage, speed, and punctuality. These thoughts, represented as latent variables Zt,i, are92

mapped through the generating function f to produce each agent’s answers, which are summarized93

by their model states H(j)
t . For example, Agent 1 emphasizes thoughts related to luggage and94

speed , resulting in the state H
(1)
t that leads to choosing a car . Agent 2, influenced by speed95

and schedule punctuality , forms the state H
(2)
t and selects a train . This example illustrates how96

the underlying process f encodes shared and private latent thoughts into agent-specific responses.97

The structure of thoughts. While prior strategies have focused on communication through language98

or token embeddings, we propose a fundamentally different paradigm where agents share latent99

thoughts directly. To achieve this, we propose a communication paradigm in which agents access100

relevant latent thoughts instead of surface-level messages or embeddings. Rather than exposing101

all latent thoughts Zt to every agent uniformly, we focus on learning the structure of the revealed102

thoughts so that each agent receives only the most relevant information to its goals and role. This103

requires modeling how thoughts are selectively shared, as some may represent common knowledge104

useful to many agents, others may be specific or private to individual goals, and some may be105

irrelevant or even distracting to certain agents.106

We formalize the structural dependency between latent thoughts Zt and model states Ht through the107

non-zero pattern of the Jacobian Jf (Zt), represented as a binary matrix indicating which components108

of Zt influence which components of Ht:109

B(Jf ) ∈ {0, 1}nh×nz , B(Jf )i,j =

{
1 ∃zt ∈ Zt, Jf (zt)i,j ̸= 0,

0 otherwise.
(3)

The model state of each agent Ak is represented as a slice H
(k)
t = (Ht,kl

, . . . ,Ht,kh
), where110

k ∈ [na]; and {kl, . . . , kh} denotes the index range in Ht corresponding to agent k. We define the111

set of latent thoughts relevant to agent Ak as112

Z
H

(k)
t

:= {Zt,j ∈ Zt | ∃ i ∈ [kl, kh] such that B(Jf )i,j ̸= 0} . (4)

In other words, Z
H

(k)
t

consists of all latent thoughts that influence at least one component of agent113

Ak’s hidden state, as determined by the non-zero pattern of the Jacobian B(Jf (Zt)).114

3 Identifiability Theory115

Before leveraging thought for communication, a critical question arises: how can we ensure that116

the recovered thoughts correspond to the true ones underlying agent responses? To address this, we117

establish an identifiability theory for reliably recovering the latent thinking process. We begin with118

the identification of the latent thoughts (§3.1 and §3.2), then explore the structure between thoughts119

and agents (§3.3). All proofs are included in Appx. B.120

3.1 Identifiability of Shared Thoughts121

Communication often begins with establishing common ground, which typically requires confirming122

shared beliefs before addressing disagreements. If the shared part of the latent thought can be reliably123

disentangled from other components, then communication can start from a faithful common basis.124

Our identifiability result guarantees this: by recovering shared latent variables that are not entangled125

with any others, we ensure that inter-agent communication is grounded in true cognitive overlap.126

We first introduce some additional technical notations. We define the support subspace SJf
as the set127

of matrices S ∈ Rnh×nz whose nonzero entries are restricted to the nonzero pattern of Jf (Zt):128

SJf
:=

{
S ∈ Rnh×nz

∣∣ B(Jf )i,j = 0 ⇒ Si,j = 0
}
. (5)

We further denote M as a matrix with the same nonzero pattern of m(Zt) in Jf (Zt)m(Zt) = Jf̂ (Ẑt),129

and write d
= to denote equality in distribution.130
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Theorem 1 (Identifying the shared thoughts). Suppose that for each i ∈ [nx], there exist points131

where the Jacobians Jf (Zt)i,· span the support subspace SJf i,·
, and that (Jf (Zt)M)i,· ∈ SJf̂ i,·

at132

those points. If Ht
d
= f̂(Ẑt) for a model (f̂ , Ẑt) following §2 with ℓ0 regularization on Jf̂ , then for133

any pair of agents Ai and Aj at round t, there exists a permutation π over [nz] such that ∂Zi

∂Ẑπ(j)
= 0134

for any Zi ∈ Z
H

(i)
t

∩ Z
H

(j)
t

and any Zj ∈ (Z
H

(i)
t

∪ Z
H

(j)
t

) \ (Z
H

(i)
t

∩ Z
H

(j)
t

).135

Interpretation and discussion. Intuitively, Thm. 1 ensures that, up to permutation, the recovered136

shared thoughts between any pair of agents are disentangled from all other latent variables in the137

system. The permutation reflects the standard relabeling indeterminacy common to identifiability138

results [Hyvärinen et al., 2024, Moran and Aragam, 2025]. For instance, in Fig. 1, we can make139

sure that the recovered thought speed will not be mixed with others such as luggage or140

schedule punctuality . Without this guarantee, any recovered thought can be a mixture of any other141

thoughts, since the unknown generating function f is essentially a mixing procedure. Thus, this142

disentanglement implies the recovery of the target shared components, provided that the generating143

function is invertible and thus information-preserving. This has practical implications: given any144

group of agents, we can decompose them into pairs, each yielding identifiable shared thoughts. By145

composing the recovered components across different pairs, we reconstruct the common cognitive146

basis and reveal how thoughts are distributed across agents, including the degree of agreement, which147

is essential for enabling trustworthy and informative latent communication.148

Assumption. The assumption has been widely adopted in the identifiability literature [Lachapelle149

et al., 2022, Zheng et al., 2022], which eliminates degenerate cases where the population is too limited150

for the Jacobian to even reflect the dependency structure. It requires that the generating function f151

varies sufficiently across the population so that there exist several points for the Jacobian to span the152

support subspace SJf i,·
. Requiring (Jf (Zt)M)i,: ∈ SJf̂ i,·

holds at these points is also mild due to153

(Jf (Zt)m(Zt))i,· = Jf̂ (Ẑt)i,·, especially in the asymptotic regime where identifiability is defined.154

3.2 Identifiability of Private Thoughts155

In Thm. 1, we established the identifiability of shared thoughts, providing a guarantee for recovering156

the underlying common ground between agents. However, effective collaboration is not solely about157

enforcing consensus or resolving disagreements. In fact, homogeneity can be counterproductive in the158

long term [Prat, 2002]. Just as humans value cognitive diversity as a source of novelty and innovation,159

different agents may contribute unique perspectives that are essential for solving complex tasks. For160

instance, in a collaborative planning task, one agent may recognize rare constraints based on its prior161

experience that others overlook. Preserving such private thoughts can lead to better overall solutions162

through complementary reasoning. Motivated by this, we now extend our theoretical analysis to show163

that private thoughts can also be identified:164

Theorem 2 (Identifying the private thoughts). Suppose the assumption in Thm. 1 holds. If Ht
d
= f̂(Ẑt)165

for a model (f̂ , Ẑt) following §2 with ℓ0 regularization on Jf̂ , then for any pair of agents Ai and Aj166

at round t, there exists a permutation π over [nz] such that ∂Zi

∂Ẑπ(j)
= 0 for any Zi ∈ Z

H
(i)
t

\ Z
H

(j)
t

167

and any Zj ∈ Z
H

(j)
t

.168

Interpretation and discussion. Similar to Thm. 1, Thm. 2 adopts a pairwise perspective and provides169

guarantees for recovering the hidden private thoughts of any given agent. Specifically, for any pair of170

agents, it shows that the private component of either agent can be disentangled from all remaining171

latent variables. For instance, in Fig. 1, recovered latent variables corresponding to the thought being172

able to carry luggage – which may explain Agent 1’s choice of car – is not entangled with173

unrelated thoughts like speed or schedule punctuality , which influence Agent 2’s preference174

for the train . Without such disentanglement, we risk misattributing the decision to an incorrect or175

irrelevant latent cause, leading to misalignment in communication.176

This again implies that, under invertibility, the true private thoughts can be recovered. By composing177

the results across different agent pairs, we can infer how agent-specific a given thought is. For178

example, by analyzing all pairwise decompositions in a large group, we can identify thoughts that are179

truly unique to individual agents, capturing insights that would otherwise be lost due to their rarity or180

lack of popularity. This connects naturally to the classical long-tail phenomenon: some thoughts may181
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be infrequent, but they carry critical value. Our theory ensures that these less common but meaningful182

components are not discarded, enabling inclusive communication and collaboration among agents.183

3.3 The Structure of Thoughts184

Having established the identifiability of both shared and private thoughts, we now turn to a deeper185

question: how are these thoughts structurally organized across agents? That is, beyond identifying186

each thought, can we also identify which agents hold which thoughts? In many scenarios, especially187

those involving coordination, it is not enough to only know the content of internal reasoning. We188

must also know how that reasoning is distributed across individuals. We formalize this in Thm. 3:189

Theorem 3 (Identifying the structure of thoughts). Suppose the assumption in Thm. 1 holds. If190

Ht
d
= f̂(Ẑt) for a model (f̂ , Ẑt) following §2 with ℓ0 regularization on Jf̂ , then the nonzero pattern191

B(Jf ) is identifiable up to relabelling, i.e., B(Jf̂ ) = B(Jf )P for a permutation matrix P .192

Interpretation and discussion. Thm. 3 establishes that the structure linking latent thoughts to agents’193

internal states is identifiable up to permutation. In other words, we can recover not only the content194

of each thought, but also determine which agents hold which thoughts, and which thoughts are195

shared. Returning to Fig. 1, this means we can infer that both agents care about speed (shared),196

while only Agent 1 emphasizes carrying luggage (private) and only Agent 2 prioritizes being on197

time (private). This structure-level recovery is crucial: it enables agents to assess not just what198

others are thinking, but also how similar or different their internal reasoning is, supporting more199

informed and adaptive communication. In practical terms, this guarantees that agents can identify200

points of alignment and divergence without confusion. When scaled to larger systems, this enables201

the reconstruction of a full thought-agent incidence structure, revealing clusters of agreement, regions202

of conflict, and sources of novel inputs. Such structural insights are foundational for building systems203

that coordinate robustly and interpret each other’s intentions with precision.204

3.4 Discussion on Theoretical Contribution205

To the best of our knowledge, this work is the first to consider the latent generative process underlying206

LLM agent responses and to provide identifiability guarantees for recovering latent thoughts. Beyond207

its novelty in the multi-agent LLM setting, Thms. 1, 2, and 3 also present a new contribution to208

classical identifiability theory. Prior work typically focuses on recovering all latent variables (up209

to standard indeterminacies), with assumptions that go beyond the basic setup that we adopt, such210

as access to weak supervision [Hyvärinen et al., 2019, Khemakhem et al., 2020], specific function211

classes [Taleb and Jutten, 1999, Buchholz et al., 2022], or structural criteria on the dependency212

graph [Moran et al., 2021, Zheng et al., 2022].213

In contrast, our approach takes a completely different route. Instead of aiming for global recovery,214

we focus on pairs of observed variables (agents) and seek to recover as much hidden information as215

possible from them. Since we rely only on basic assumptions and do not use the additional constraints216

or auxiliary signals commonly adopted in the identifiability literature, full recovery of all latent217

variables is known to be impossible. Therefore, we target a coarser perspective that is still meaningful218

for communication, such as the shared/private thoughts disentangled by our theorems. This is not219

only practically useful but also theoretically important, as previous methods with global conditions220

offer no guarantees when their assumptions are even partially violated, while our result still provides221

alternative guarantees under practical assumptions.222

4 THOUGHTCOMM: Multiagent Communication via Thought223

Based on the established theory, we propose a practical framework, THOUGHTCOMM, for multi-agent224

collaboration in which agents exchange thoughts directly. At each communication round t, we first225

encode the agents’ model states into a shared latent space that captures their internal thoughts. These226

latent thoughts are then processed and selectively reintegrated into each agent’s context based on the227

structured relationship between thoughts and agents. This allows each agent to gain a global sense of228

what others are thinking, and to distinguish which thoughts are shared or agent-specific.229

4.1 Uncovering the Latent Thoughts230

Each agent Ai maintains a model state H
(i)
t ∈ Rnhi corresponding to the representation of its last231

generated token immediately before communication round t, contextualizing the text summarizing232

their own response. We concatenate these states from all n agents into a single vector as in Eq. 1.233
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Figure 2: Overview of THOUGHTCOMM. At each communication round t, agents encode their
model states H(i)

t into a shared latent space via a sparsity-regularized autoencoder, yielding latent
thoughts Ẑt. Each dimension Ẑt,j is selectively routed to relevant agents based on the recovered
dependency structure, allowing agents to identify both shared and private thoughts for reasoning. The
corresponding latent thoughts are then injected into each agent model via prefix adaptation to guide
the next response. These updated responses form the input to the next round, enabling multi-agent
collaboration beyond purely message exchange.

Then we aim to uncover the hidden process that generate these states from the latent thought of agents.234

According to the formulation in §2, there exists an underlying process f that generates the agents’235

responses Ht based on their hidden thoughts Zt, i.e., Ht = f(Zt).236

In the proposed framework, the concatenated state Ht is mapped into a latent space via a sparsity-237

regularized autoencoder with ℓ1 regularization on Jf̂ . The resulting latent thoughts Ẑt are recovered238

through its encoder f̂−1:239

Ẑt = f̂−1(Ht) ∈ Rnz . (6)
The connection between our estimation Ẑt and the ground-truth latent thoughts Zt is built by our240

identifiability theory established in §3. The structure of the latent thought Zt is governed by the241

Jacobian Jf (Zt) ∈ Rnh×nz , whose non-zero pattern BJf
reveals which latent dimensions are242

influenced by which agents’ states. The autoencoder is trained to reconstruct the full state vector:243

Lrec =
∥∥∥Ht − f̂(Ẑt)

∥∥∥2
2
+
∥∥∥Jf̂∥∥∥

1
, (7)

ensuring consistency between Ht and its reconstruction via Ẑt, as well as the required sparsity244

regularization on the Jacobian. This enforces observational equivalence between the estimated and245

ground-truth processes, which serves as the foundation for identifiability. At test time, we use the246

trained encoder f̂−1 to extract latent thoughts Ẑt from hidden states Ht, and leverage the recovered247

dependency structure BJf̂
to determine which latent dimensions of Ẑt are relevant for each agent.248

4.2 Leveraging the Structure of Thoughts249

To provide personalized access to latent thoughts, we adopt an agreement-based reweighting strategy.250

Specifically, for agent Ai at communication round t, we first identify the set of latent thoughts Ẑ
H

(i)
t

251

that influence its model state, i.e., Ẑ
H

(i)
t

:=
{
Ẑt,j ∈ Ẑt

∣∣∣ ∃ q ∈ [il, ih] such that B(Jf̂ )q,j ̸= 0
}
.252

These latent thoughts are then partitioned into groups based on their level of agreement across agents,253

measured by the number of agents whose hidden states in Ĥt depend on each latent dimension in254

thoughts Ẑt. Formally, for every Ẑt,j ∈ Ẑ
H

(i)
t

, we define its agent agreement as:255

αj =

na∑
k=1

I
(
Ẑt,j ∈ Ẑ

H
(k)
t

)
, (8)

where I(·) is the indicator function. Latent thoughts are then grouped by their agreement level αj .256

Each group is assigned a distinct weight wαj , reflecting the relevance or generality of these thoughts257

across agents. The new latent representation for agent Ai is constructed by combining all groups258

Z̃
(i)
t = concatα(wαj

· Ẑ(i)
t,α), (9)
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where Ẑ
(i)
t,α denotes the subset of latent variables in Ẑ

H
(i)
t

with agreement level α, i.e.,259

Ẑ
(i)
t,α =

{
Ẑt,j ∈ Ẑ

H
(i)
t

∣∣∣ αj = α
}
. (10)

Intuitively, the recovered dependency structure plays a critical role in shaping how latent thoughts are260

routed to each agent. After extracting the shared latent space via the sparsity-regularized autoencoder,261

we apply a structural mask to ensure that each agent only receives the latent dimensions that are262

relevant to its own internal representation. This filtering directly affects how the injected prefixes263

are constructed for each agent during the next round of generation. The agreement weights further264

distinguish different types of relevant thoughts. Although the surface-level messages are broadcast,265

the actual content used to condition each agent’s reasoning is selectively and adaptively constructed266

in the latent space, reflecting the personalized structure of shared and private thoughts.267

4.3 Latent Injection via Prefix Adaptation268

To seamlessly integrate the recovered latent thoughts into agent behavior, we incorporate them into269

the generation process via prefix adaptation. For each agent Ai, we construct a prefix vector from its270

personalized latent representation Z̃
(i)
t via a learned adapter function:271

P
(i)
t = g(Z̃

(i)
t ) ∈ Rm×d, (11)

where m is the prefix length and d is the embedding dimension. Following Li and Liang [2021], we272

prepend the resulting prefix P
(i)
t to the token embeddings of agent Ai in the next generation step,273

leveraging the latent thoughts to guide response generation without explicit message passing.274

To train the adapter g, we inject its output as a prefix and generate a brief continuation (e.g., one275

sentence), keeping it short to focus on linguistic coherence rather than influencing the actual solution.276

The few generated tokens are compared against a reference using a semantic similarity loss and a277

standard regularization term that promotes linguistic fluency:278

Lcomm =

na∑
i=1

T∑
t=1

[(
1− cos

(
ϕ̄(ygen

t,i ), ϕ̄(y
ref
t,i)

))
− log p(ygen

t,i | contextt,i, P
(i)
t )

]
, (12)

where ygen
t,i denotes the tokens generated by agent Ai at round t, yref

t,i is a reference from the model279

without latent communication, contextt,i denotes the dialogue history or prompt available to agent280

Ai, and P
(i)
t is the injected prefix produced by the adapter. ϕ̄(·) denotes the mean token embedding.281

The goal is not to replicate the content of baseline generations, but to ensure that the adapter produces282

latent modifications whose injected effects remain linguistically natural.283

Remark 1. Since the autoencoder is trained only to reconstruct model states, and the adapter is guided284

simply to avoid producing semantically absurd responses, both components remain largely task-285

agnostic and can be pretrained once and reused. This modular design allows latent communication286

to be applied across different tasks without retraining, enabling easy integration into multi-agent287

generation systems with minimal overhead.288

5 Experiments289

In this section, we conduct both synthetic and real-world experiments across various settings. Part of290

the implementation details are deferred to Appx. D.291

5.1 Synthetic Evaluation292

Ours Baseline
Figure 3: R2 of two models.

We begin with synthetic experiments to val-293

idate the identifiability of latent thoughts.294

For the basic setup corresponding to our running ex-295

ample in Fig. 1, we consider two observed variables,296

XA and XB , and three latent ones: ZA\ZB , ZB\ZA,297

and ZA ∩ZB , to evaluate whether shared and private298

latent variables can be correctly recovered. The datasets are generated by a random invertible transfor-299

mation from multivariate Laplacian variables. We train a sparsity-regularized autoencoder on these300

datasets and compute the standard R2 score between each part of the estimated and ground-truth301

latents. A baseline model without sparsity regularization is also included for comparison.302
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Figure 4: MCC across setups.

The results are shown in Fig. 3. A higher R2 indicates closer corre-303

spondence between the estimated latent variables and the matching304

ground-truth components, and vice versa. Our model clearly iden-305

tifies the shared region ZA ∩ ZB and the private regions ZA \ ZB306

and ZB \ ZA, while the baseline fails to disentangle them.307

Beyond the basic setup, we evaluate whether incorporating multiple308

pairs of observed variables in a complex system enables recovery309

of most latent variables, as considering all pairs of agents reveals310

exponentially more information than any single pair alone. Follow-311

ing the identifiability literature, we compute the mean correlation312

coefficient (MCC) between estimated and ground-truth latents across 8 settings, with dimensionality313

ranging from 124 to 1024 and equal numbers of latent and observed variables. Results are shown in314

Fig. 4. The red line marks the threshold typically considered identifiable when exceeded. Our model315

consistently recovers most latent variables across all settings, highlighting the global identifiability.316

5.2 Real-World Evaluation317

Recent empirical analyses [Cemri et al., 2025, Hu et al., 2025] reveal that LLM-based multi-agent sys-318

tems frequently struggle with reasoning tasks, demonstrating only modest improvements over strong319

single-agent baselines due to coordination inefficiencies and communication bottlenecks – challenges320

that THOUGHTCOMM is explicitly expected to address. Therefore, we evaluate THOUGHTCOMM on321

two widely used math reasoning benchmarks, MATH [Hendrycks et al., 2021] and GSM8K [Cobbe322

et al., 2021] to assess its real-world effectiveness. For the main experiments in this section, we323

follow Subramaniam et al. [2025] by using three agents engaging in two rounds of debate.324

Baselines. As the proposed THOUGHTCOMM introduces an additional training stage, the most direct325

baseline is Multiagent Finetuning [Subramaniam et al., 2025], which is the current state-of-the-art in326

maximizing multi-agent collaboration through specialized roles and multiple finetuning rounds. We327

also include single-LLM performance, referred to as "single answer," for comparison. It is worth328

noting that there are many other multi-agent collaboration workflows; our objective here is to validate329

the potential of the proposed paradigm rather than exhaustively compare all possible strategies.330

Data pre-processing and evaluation metrics. Following Subramaniam et al. [2025], we randomly331

sample 500 examples for fine-tuning the latent communication module, which includes both an332

autoencoder and an adapter, while reserving another 500 examples for evaluation. We select the333

more challenging questions for evaluation (e.g., level-3 complexity in MATH [Hendrycks et al.,334

2021]) when applicable. Generated responses are parsed and evaluated against the ground truths,335

with accuracy measured as the percentage of correctly generated answers. To quantify the reliability336

of these estimates, we also report the standard deviation for each accuracy score. Beside accuracy, we337

include a consensus score, defined as the proportion of final-round instances where all agents reached338

a unanimous decision, providing a more direct measure of communication effectiveness.339

Models. We evaluated both the baseline methods and THOUGHTCOMM on five latest LLMs of vary-340

ing model sizes, including Llama-3-8B-Instruct [Grattafiori et al., 2024], Phi-4-mini-instruct [Abdin341

et al., 2024], Qwen-3-0.6B, Qwen-3-1.7B [Yang et al., 2025], as well as the Deepseek-R1-distilled-342

Llama-8B [Guo et al., 2025].343

Main results. Table 1 presents the main results, showing that THOUGHTCOMM consistently outper-344

forms baseline methods across both the MATH [Hendrycks et al., 2021] and GSM8K [Cobbe et al.,345

2021] benchmarks. Within all base models, THOUGHTCOMM demonstrates clear improvements over346

both single answer and Multiagent Finetuning [Subramaniam et al., 2025]. For instance, on Qwen347

3-1.7B, THOUGHTCOMM achieves 93% accuracy on MATH, representing an 17.2% absolute gain348

over Multiagent Finetuning and a 113.3% relative improvement over the single answer baseline. On349

average, THOUGHTCOMM achieves 67.23% relative improvement over single answer and 19.06%350

over the current state-of-the-art. In terms of consensus, THOUGHTCOMM also outperforms all351

baselines by a clear margin, with its improved consensus directly translating to higher accuracy,352

indicating superior inter-agent alignment enabled by efficient mind-to-mind communication. These353

gains are consistently observed across models ranging from 0.6B to 8B parameters, demonstrating354

the scalability and robustness of the proposed approach across a broad range of model sizes.355

Additionally, unlike Multiagent Finetuning [Subramaniam et al., 2025], which requires finetuning356

the entire LLM and thus incurs substantial overhead, THOUGHTCOMM only trains a lightweight357
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Table 1: Evaluation results on MATH [Hendrycks et al., 2021] and GSM8K [Cobbe et al., 2021] for
various methods with five different LLMs. Bold numbers indicate the best performance.

Base Model Methods MATH GSM8K
Accuracy (%) Consensus (%) Accuracy (%) Consensus (%)

Qwen 3-0.6B
Single Answer 45.80 ± 2.23 N/A 58.20 ± 2.21 N/A
Multiagent Finetuning 71.20 ± 2.03 90.07 70.80 ± 2.03 86.40
THOUGHTCOMM 85.00 ± 1.60 91.20 75.80 ± 1.92 89.27

Qwen 3-1.7B
Single Answer 43.60 ± 2.22 N/A 67.40 ± 2.10 N/A
Multiagent Finetuning 75.80 ± 1.92 95.80 84.20 ± 1.63 96.73
THOUGHTCOMM 93.00 ± 1.14 95.93 85.00 ± 1.60 97.87

Phi-4-mini-instruct (3.84B)
Single Answer 63.80 ± 2.15 N/A 81.60 ± 1.73 N/A
Multiagent Finetuning 60.20 ± 2.19 78.89 82.16 ± 1.71 91.24
THOUGHTCOMM 74.60 ± 1.95 84.73 84.20 ± 1.63 94.73

LLaMA 3-8B-Instruct
Single Answer 36.20 ± 2.15 N/A 60.80 ± 2.18 N/A
Multiagent Finetuning 39.68 ± 2.19 68.97 69.20 ± 2.06 80.20
THOUGHTCOMM 45.60 ± 2.23 74.67 68.40 ± 2.08 84.87

DeepSeek-R1-Distill-Llama-8B
Single Answer 42.60 ± 2.21 N/A 65.60 ± 2.12 N/A
Multiagent Finetuning 72.40 ± 2.00 82.87 76.80 ± 1.89 83.13
THOUGHTCOMM 82.80 ± 1.69 80.72 80.80 ± 1.76 88.13

autoencoder and adapter, whose computational cost depends only on the LLM’s embedding dimension358

rather than the parameter count. This results in fundamentally smaller and model-agnostic training359

overhead, enabling efficient and scalable deployment even for very large LLMs. For instance, both360

Llama-3-70B and 405B share a 16,384 embedding dimension; thus, THOUGHTCOMM’s overhead361

remains unchanged when moving from 70B to 405B, whereas Multiagent Finetuning [Subramaniam362

et al., 2025] would require substantially more training cost at each scale. Overall, these results363

validate both the efficiency and effectiveness of the proposed THOUGHTCOMM, supporting the364

theoretical predictions of enhanced coordination and cognitive alignment in multi-agent LLMs.365

5.3 Scaling the Number of Debate Rounds366
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Figure 5: Multi-agent performance as the
number of debate rounds increases.

We further investigate how the number of debate rounds367

impacts multi-agent performance, as more rounds may368

introduce redundant or confusing information that369

can degrade results. With two agents, we vary the370

number of rounds from 2 to 6 and evaluate on the371

MATH [Hendrycks et al., 2021] benchmark using372

LLaMA-3-8B-Instruct [Grattafiori et al., 2024], follow-373

ing the setup in §5.2. As shown in Fig. 5, Multiagent374

Finetuning suffers a drop in accuracy with more rounds, while consensus slightly increases and375

maintains. In contrast, THOUGHTCOMM achieves simultaneous gains in both accuracy and consensus,376

demonstrating robustness to redundancy and noise by consistently identifying true latent thoughts.377

6 Conclusion378

To enable LLM agents to communicate through thoughts, we formulate multi-agent communication379

as a latent variable model to explore agents’ minds. We establish identifiability results under general380

conditions to ensure reliable recovery of latent thoughts and structures, and propose a new framework,381

THOUGHTCOMM, for effective collaboration via thought. While this introduces a new direction,382

certain limitations remain. Our experiments focus on using model states as observed variables,383

which may not be feasible for closed-source models. A promising alternative is to replace them384

with context-aware embeddings of the observational data and recover latent thoughts from those.385

The observational data need not be textual and can span any modality, extending the framework386

beyond LLMs. Although we have not explored this empirically, as generating embeddings suitable387

for summarization is a separate topic, the theory and framework can accommodate this extension388

directly. We hope this work sheds light on the hidden world beneath observation, as many challenges389

remain unsolvable through surface-level observation, regardless of scale in data or compute.390
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A Related Works591

Multiagent LLMs communication. LLM-based multi-agent systems (MAS) have become a com-592

pelling strategy for advancing beyond the limitations of single LLMs [Li et al., 2023, Wu et al.,593

2023, Hong et al., 2023, Guo et al., 2024, Tran et al., 2025]. Specifically, multi-agent debate [Du594

et al., 2023, Pham et al., 2023, Liang et al., 2023], which mimics human collaborative reasoning, has595

shown particular promise by amplifying reasoning through collective, diverse exchanges. One of596

the most central factors that determines MAS effectiveness is the communication paradigm between597

agents [Li et al., 2024, Cemri et al., 2025]. Extensive research has sought to improve this paradigm,598

exploring various directions such as improving communication efficiency [Zhang et al., 2024a, Wang599

et al., 2025b, Zeng et al., 2025], enabling more flexible topologies and workflows [Khattab et al.,600

2023, Zhang et al., 2024b, Liu et al., 2024, Wu et al., 2024, Wang et al., 2024, 2025a], mitigating601

error propagation [Wang et al., 2023, Yoffe et al., 2024], shifting from turn-based, full-response602

discussion to token-level collaboration [Bian et al., 2025, Chakraborty et al., 2025], and moving603

beyond text tokens to token embeddings [Pham et al., 2023]. However, all these approaches funda-604

mentally rely on the exchange of natural language, either through text tokens or their embeddings,605

thus inheriting the constraints of human-style communication. In contrast, THOUGHTCOMM pioneers606

a new communication paradigm by extracting and uncovering the underlying latent thoughts beneath607

surface-level language tokens and embeddings, enabling a more direct and expressive form of MAS608

communication and collaboration.609

Identifiability of latent variable models. Classical identifiability results in latent variable models610

largely focus on linear settings, offering strong guarantees through factor analysis, structural equations,611

and ICA [Reiersøl, 1950, Lawley and Maxwell, 1962, Aigner et al., 1984, Comon, 1994, Bekker612

and ten Berge, 1997, Bishop, 1998]. To relax linearity, previous work introduces auxiliary variables613

[Hyvärinen and Morioka, 2016, Hyvärinen et al., 2019, Yao et al., 2021, Hälvä et al., 2021, Lachapelle614

et al., 2022, Song et al., 2024, Li et al., 2025a], structural constraints on the mixing function [Taleb615

and Jutten, 1999, Moran et al., 2021, Kivva et al., 2022, Zheng et al., 2022, Buchholz et al., 2022,616

Zheng et al., 2025], or the synergy of both [Zheng and Zhang, 2023, Li et al., 2025b]. Causal617

representation learning often depends on interventions [von Kügelgen et al., 2023, Jiang and Aragam,618

2023, Jin and Syrgkanis, 2023, Zhang et al., 2024c] or counterfactual views [von Kügelgen et al.,619
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2021, Brehmer et al., 2022]. These approaches typically require parametric assumptions or external620

signals. With a weaker goal of identifying only shared and private thoughts and their structures across621

agents, our framework can be applied in the general nonparametric setting without such aids.622

B Proofs623

B.1 Proof of Theorem 1624

Theorem 1 (Identifying the shared thoughts). Suppose that for each i ∈ [nx], there exist points625

where the Jacobians Jf (Zt)i,· span the support subspace SJf i,·
, and that (Jf (Zt)M)i,· ∈ SJf̂ i,·

at626

those points. If Ht
d
= f̂(Ẑt) for a model (f̂ , Ẑt) following §2 with ℓ0 regularization on Jf̂ , then for627

any pair of agents Ai and Aj at round t, there exists a permutation π over [nz] such that ∂Zi

∂Ẑπ(j)
= 0628

for any Zi ∈ Z
H

(i)
t

∩ Z
H

(j)
t

and any Zj ∈ (Z
H

(i)
t

∪ Z
H

(j)
t

) \ (Z
H

(i)
t

∩ Z
H

(j)
t

).629

Proof. Because Ht
d
= f̂(Ẑt) and Ht

d
= f(Zt), we have630

p(f̂(Ẑt)) = p(f(Zt)). (13)

According to the change-of-variable formula, there exists h = f̂−1 ◦ f : Zt → Ẑt s.t. Ẑt = h(Zt).631

Taking the derivatives of both sides w.r.t. Zt yields632

Jf (Zt) = Jf̂ (Ẑt)Jh(Zt), (14)

which is equivalent to633

Jf̂ (Ẑt) = Jf (Zt)J
−1
h (Zt). (15)

The inverse Jacobian J−1
h (Zt) exists since both f and f̂ are invertible, implying that h = f̂−1 ◦ f is634

itself invertible.635

Since for each i ∈ [nz], there exist points where the Jacobian Jf (Zt)i,· spans its support subspace636 (
SJf

)
i,·, we can express any vector in that subspace with a linear combination of these vectors.637

Therefore, for any j ∈ [nz] where B(Jf )i,j ̸= 0, we have638

Mj,· = ejM, (16)

where M is a constant matrix with the same nonzero pattern as J−1
h (Zt), and we construct a one-hot639

vector ej ∈ SJf i,·
with αk as coefficients of that linear combination:640

ej :=
∑
k∈Bi

αk(Jf (z
(k)))i,·, (17)

where Bi denotes the set of points spanning the subspace. Thus we have641

Mj,· =
∑
k∈Bi

αk(Jf (z
(k)))i,·M. (18)

According to the assumption, we have642

(Jf (z
(k)))i,·M = (Jf (Zt)M)i,· ∈ SJf̂ i,·

. (19)

Therefore, for any j ∈ [nz] where B(Jf )i,j ̸= 0 there is643

Mj,· ∈ SJf̂ i,·
. (20)

Construct a bipartite graph644

G = (R,C,E), R = C = [nz], (j, k) ∈ E ⇐⇒ Mj,k ̸= 0.

Since M is invertible, its rows are linearly independent, giving645

|N(S)| ≥ |S| ∀S ⊆ R, (21)
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where N(S) is the neighborhood of S. Hall’s marriage theorem then yields a permutation π ∈ Snz646

with647

J−1
h (Zt)j,π(j) ̸= 0, ∀j ∈ [nz]. (22)

According to Eq. (20), this further implies that, for any j ∈ [nz] where B(Jf )i,j ̸= 0, there is648

(i, π(j)) ∈ i×Mj,· ⊂ SJf̂
(23)

Hence649

(Jf (Zt))i,j ̸= 0 =⇒ (Jf̂ (Ẑt))i,π(j) ̸= 0. (24)

Given additionally the ℓ0 regularization on Jf̂ :650

∥(Jf̂ )i,·∥0 ≤ ∥(Jf )i,·∥0, ∀i ∈ [nz]. (25)

Together with (24), this gives the equivalence651

(Jf (Zt))i,j ̸= 0 ⇐⇒ (Jf̂ (Ẑt))i,π(j) ̸= 0, ∀i, j ∈ [nz], (26)

For any Zi ∈ Z
H

(i)
t

∩ Z
H

(j)
t

and any Zj ∈ (Z
H

(i)
t

∪ Z
H

(j)
t

) \ (Z
H

(i)
t

∩ Z
H

(j)
t

), there is652

B(Jf )H(i)
t ,i

̸= 0. (27)

Based on Eq. (20), there is653

Mi,· ∈ SJf̂ H
(i)
t ,·

, (28)

where we use SJf̂ H
(i)
t ,·

to index multiple rows corresponding to H
(i)
t at once. This is for notational654

brevity and will also be applied later. We also have655

B(Jf )H(j)
t ,i

̸= 0, (29)

where we slightly abuse the notation to indicate that not all entries at the specified indices are zero.656

This convention is adopted throughout, though we only make it explicit here.657

Similarly, there is also658

Mi,· ∈ SJf̂ H
(j)
t ,·

. (30)

Suppose for contradiction that, for any Zj ∈ (Z
H

(i)
t

∪ Z
H

(j)
t

) \ (Z
H

(i)
t

∩ Z
H

(j)
t

), there is659

Mi,π(j) ̸= 0. (31)

Then, according to Eq. (28), there is660

B(Jf̂ )H(i)
t ,π(j)

̸= 0. (32)

This implies the follows according to Eq. (26):661

B(Jf )H(i)
t ,j

̸= 0. (33)

Similarly, according to Eq. (30), there is662

B(Jf̂ )H(j)
t ,π(j)

̸= 0. (34)

This implies the follows according to Eq. (26):663

B(Jf )H(j)
t ,j

̸= 0. (35)

Thus, there must be664

Zj ∈ Z
H

(i)
t

∩ Z
H

(j)
t

, (36)

which contradicts665

Zj ∈ (Z
H

(i)
t

∪ Z
H

(j)
t

) \ (Z
H

(i)
t

∩ Z
H

(j)
t

). (37)

Therefore, there must be666

Mi,π(j) = 0, (38)

which implies ∂Zi

∂Ẑπ(j)
= 0.667
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B.2 Proof of Theorem 2668

Theorem 2 (Identifying the private thoughts). Suppose the assumption in Thm. 1 holds. If Ht
d
= f̂(Ẑt)669

for a model (f̂ , Ẑt) following §2 with ℓ0 regularization on Jf̂ , then for any pair of agents Ai and Aj670

at round t, there exists a permutation π over [nz] such that ∂Zi

∂Ẑπ(j)
= 0 for any Zi ∈ Z

H
(i)
t

\ Z
H

(j)
t

671

and any Zj ∈ Z
H

(j)
t

.672

Proof. Part of the derivations has been provided in proofs of Theorem 1, and we include it for673

completeness. Because Ht
d
= f̂(Ẑt) and Ht

d
= f(Zt), we have674

p(f̂(Ẑt)) = p(f(Zt)). (39)

According to the change-of-variable formula, there exists h = f̂−1 ◦ f : Zt → Ẑt s.t. Ẑt = h(Zt).675

Taking the derivatives of both sides w.r.t. Zt yields676

Jf (Zt) = Jf̂ (Ẑt)Jh(Zt), (40)

which is equivalent to677

Jf̂ (Ẑt) = Jf (Zt)J
−1
h (Zt). (41)

The inverse Jacobian J−1
h (Zt) exists since both f and f̂ are invertible, implying that h = f̂−1 ◦ f is678

itself invertible.679

Since for each i ∈ [nz], there exist points where the Jacobian Jf (Zt)i,· spans its support subspace680 (
SJf

)
i,·, we can express any vector in that subspace with a linear combination of these vectors.681

Therefore, for any j ∈ B(Jf )i,·, we have682

Mj,· = ejM, (42)

where M is a constant matrix with the same nonzero pattern as J−1
h (Zt), and we construct a one-hot683

vector ej ∈ SJf i,·
with αk as coefficients of that linear combination:684

ej :=
∑
k∈Bi

αk(Jf (z
(k)))i,·, (43)

where Bi denotes the set of points spanning the subspace. Thus we have685

Mj,· =
∑
k∈Bi

αk(Jf (z
(k)))i,·M. (44)

According to the assumption, we have686

(Jf (z
(k)))i,·M = (Jf (Zt)M)i,· ∈ SJf̂ i,·

. (45)

Therefore, for any j ∈ B(Jf )i,·, there is687

Mj,· ∈ SJf̂ i,·
. (46)

Construct a bipartite graph688

G = (R,C,E), R = C = [nz], (j, k) ∈ E ⇐⇒ Mj,k ̸= 0.

Since M is invertible, its rows are linearly independent, giving689

|N(S)| ≥ |S| ∀S ⊆ R, (47)

where N(S) is the neighborhood of S. Hall’s marriage theorem then yields a permutation π ∈ Snz
690

with691

J−1
h (Zt)j,π(j) ̸= 0, ∀j ∈ [nz]. (48)

According to Eq. (46), this further implies that, for any j ∈ [nz] where B(Jf )i,j ̸= 0, there is692

(i, π(j)) ∈ i×Mj,· ⊂ SJf̂
(49)
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Hence693

(Jf )i,j ̸= 0 =⇒ (Jf̂ )i,π(j) ̸= 0. (50)

Given additionally the ℓ0 regularization on Jf̂ :694

∥(Jf̂ )i,·∥0 ≤ ∥(Jf )i,·∥0, ∀i ∈ [nz]. (51)

Together with Eq. (50), this gives the equivalence695

(Jf (Zt))i,j ̸= 0 ⇐⇒ (Jf̂ (Ẑt))i,π(j) ̸= 0, ∀i, j ∈ [nz], (52)

Consider the case where Zi′ ∈ Z
H

(i)
t

∩ Z
H

(j)
t

and Zj′ ∈ Zt \ (ZH
(i)
t

∩ Z
H

(j)
t

). Based on Eq. (46),696

there is697

Mi′,· ∈ SJf̂ H
(i)
t ,·

. (53)

Suppose698

Mi′,π(j′) ̸= 0. (54)

Then we have699

B(Jf̂ )H(i)
t ,π(j′)

̸= 0, (55)

which implies700

B(Jf )H(i)
t ,j′

̸= 0. (56)

At the same time, since Zi′ ∈ Z
H

(j)
t

, there is701

Mi′,· ∈ SJf̂ H
(j)
t ,·

. (57)

Since we suppose Mi′,π(j′) ̸= 0, it follows that702

B(Jf̂ )H(j)
t ,π(j′)

̸= 0, (58)

which implies703

B(Jf )H(j)
t ,j′

̸= 0. (59)

Clearly, Eqs. (56) and (59) together contradict Z ′
j ∈ Zt \ (ZH

(i)
t

∩ Z
H

(j)
t

). Thus, there must be704

Mi′,π(j′) = 0. (60)

For any Zi ∈ Z
H

(i)
t

\ Z
H

(j)
t

and any Zj ∈ Z
H

(j)
t

, we first consider Zj ∈ Z
H

(j)
t

∩ Z
H

(i)
t

. Since705

Z
H

(j)
t

∩ Z
H

(i)
t

does not intersect with Z
H

(i)
t

\ Z
H

(j)
t

, Zj is not a function of Zi. According to the706

invertibility and Eq. (60), Z
H

(j)
t

∩ Z
H

(i)
t

can only be an invertible function of σ(Ẑ
H

(j)
t

∩ Ẑ
H

(i)
t
),707

where σ denotes the permutation function corresponding to the permutation π. Further given that708

Zj is not a function of Zi and Zi ∈ Z
H

(i)
t

\ Z
H

(j)
t

, Zj is also not a function of any variable in709

σ(Ẑ
H

(j)
t

∩ Ẑ
H

(i)
t
), i.e.,710

Mi,π(j) = 0. (61)

We then consider the other case where Zj ∈ Z
H

(j)
t

\ Z
H

(i)
t

. There is711

B(Jf )H(i)
t ,i

̸= 0. (62)

It implies that712

Mi,· ∈ SJf̂ H
(i)
t ,·

. (63)

For Zj ∈ Z
H

(j)
t

\ Z
H

(i)
t

, suppose713

Mi,π(j) ̸= 0. (64)

Then there is714

B(Jf̂ )H(i)
t ,π(j)

̸= 0. (65)
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Which is equivalent to715

B(Jf )H(i)
t ,j

̸= 0. (66)

This is a contradiction since Zj ∈ Z
H

(j)
t

\ Z
H

(i)
t

.716

Therefore, we have717

Mi,π(j) = 0. (67)

Considering both cases, we prove that ∂Zi

∂Ẑπ(j)
= 0 for any Zi ∈ Z

H
(i)
t

\ Z
H

(j)
t

and any Zj ∈718

Z
H

(j)
t

.719

B.3 Proof of Theorem 3720

Theorem 3 (Identifying the structure of thoughts). Suppose the assumption in Thm. 1 holds. If721

Ht
d
= f̂(Ẑt) for a model (f̂ , Ẑt) following §2 with ℓ0 regularization on Jf̂ , then the nonzero pattern722

B(Jf ) is identifiable up to relabelling, i.e., B(Jf̂ ) = B(Jf )P for a permutation matrix P .723

Proof. Part of the derivations has been provided in proofs of Theorems 1 and 2, and we include it for724

completeness. Because Ht
d
= f̂(Ẑt) and Ht

d
= f(Zt), we have725

p(f̂(Ẑt)) = p(f(Zt)). (68)

According to the change-of-variable formula, there exists h = f̂−1 ◦ f : Zt → Ẑt s.t. Ẑt = h(Zt).726

Taking the derivatives of both sides w.r.t. Zt yields727

Jf (Zt) = Jf̂ (Ẑt)Jh(Zt), (69)

which is equivalent to728

Jf̂ (Ẑt) = Jf (Zt)J
−1
h (Zt). (70)

The inverse Jacobian J−1
h (Zt) exists since both f and f̂ are invertible, implying that h = f̂−1 ◦ f is729

itself invertible.730

Since for each i ∈ [nz], there exist points where the Jacobian Jf (Zt)i,· spans its support subspace731 (
SJf

)
i,·, we can express any vector in that subspace with a linear combination of these vectors.732

Therefore, for any j ∈ B(Jf )i,·, we have733

Mj,· = ejM, (71)

where M is a constant matrix with the same nonzero pattern as J−1
h (Zt), and we construct a one-hot734

vector ej ∈ SJf i,·
with αk as coefficients of that linear combination:735

ej :=
∑
k∈Bi

αk(Jf (z
(k)))i,·. (72)

Thus we have736

Mj,· =
∑
k∈Bi

αk(Jf (z
(k)))i,·M. (73)

According to the assumption, we have737

(Jf (z
(k)))i,·M = (Jf (Zt)M)i,· ∈ SJf̂ i,·

. (74)

Therefore, for any j ∈ B(Jf )i,·, there is738

Mj,· ∈ SJf̂ i,·
. (75)

Construct a bipartite graph739

G = (R,C,E), R = C = [nz], (j, k) ∈ E ⇐⇒ Mj,k ̸= 0.

Since M is invertible, its rows are linearly independent, giving740

|N(S)| ≥ |S| ∀S ⊆ R,
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where N(S) is the neighborhood of S. Hall’s marriage theorem then yields a permutation π ∈ Snz741

with742

J−1
h (Zt)j,π(j) ̸= 0, ∀j ∈ [nz]. (76)

According to Eq. (75), this further implies that, for any j ∈ [nz] where B(Jf )i,j ̸= 0, there is743

(i, π(j)) ∈ i×Mj,· ⊂ SJf̂
(77)

Hence744

(Jf )i,j ̸= 0 =⇒ (Jf̂ )i,π(j) ̸= 0. (78)

Given additionally the ℓ0 regularization on Jf̂ :745

∥(Jf̂ )i,·∥0 ≤ ∥(Jf )i,·∥0, ∀i ∈ [nz]. (79)

Together with (78), this gives the equivalence746

(Jf (Zt))i,j ̸= 0 ⇐⇒ (Jf̂ (Ẑt))i,π(j) ̸= 0, ∀i, j ∈ [nz]. (80)

This implies the equation that747

B(Jf̂ ) = B(Jf )P, (81)

where P is a permutation matrix.748

C Supplementary Discussion749

Alternative to model states. Our main framework assumes access to the model states Ht of each750

agent before communication. These states provide a rich representation of the agent’s processing751

of context and are used as inputs to our autoencoder for recovering latent thoughts. However, such752

internal states may be inaccessible in many practical settings, particularly when using closed-source753

or API-restricted models.754

In these cases, a viable alternative is to replace the model state H
(i)
t of each agent with a compact755

embedding extracted from its textual response. Specifically, one can apply a context-aware embedding756

model to summarize the agent’s generated text into a fixed-size vector, which is then treated as a757

proxy for the unavailable model state.758

Crucially, this embedding does not need to preserve any structure among agents, nor does it need to759

reflect the agent’s intent. Its only requirement is to provide a compressed summary of the textual760

content at the linguistic level. Examples of such embedding methods include those from models like761

BERT or RoBERTa, pooled sentence embeddings from Sentence-BERT [Reimers and Gurevych,762

2019], or output vectors from instruction-tuned embedding APIs. These methods are designed to763

produce compact, semantically meaningful vectors that summarize the surface content of a given text.764

Once such an embedding is obtained for each agent, the rest of the framework remains unchanged.765

The collection of response embeddings is treated as a surrogate for Ht and passed through the sparsity-766

regularized autoencoder to recover latent thoughts Ẑt. From that point on, latent communication767

proceeds identically: inferring shared/private thoughts, routing them based on recovered structure,768

and injecting them into agents via prefix adaptation.769

This replacement provides a drop-in mechanism to support latent communication in scenarios where770

model internals are inaccessible, enabling broader applicability of the framework across both open-771

and closed-source agents. Naturally, one may choose suitable encoders for other modalities to extend772

the framework beyond LLMs.773

D Experimental Details and Additional Results774

D.1 Implementation Details775

For experiments conducted in §5, we set the prefix token count for our method to 1. For baseline776

comparisons, we utilize the original code released by the authors2. All experiments are conducted on777

a single compute node with 8 NVIDIA H100 GPUs.778
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Figure 6: Two-agent THOUGHTCOMM with accuracy (solid) and consensus (dashed) performance
on MATH [Hendrycks et al., 2021] as prefix length increases from 1 to 16.

D.2 Additional Results on Varying Prefix Lengths779

As discussed in §4.3, the prefix length m determines how many thought vectors are injected into agent780

context. A key question is whether THOUGHTCOMM remains robust as m grows, or if excessive781

prefixes introduce redundant or irrelevant information that degrades performance. To answer these782

questions, we sweep the prefix length m ∈ {1, 4, 8, 16} across four models with different parameter783

sizes (Llama-3-8B-Instruct [Grattafiori et al., 2024], Phi-4-mini-instruct [Abdin et al., 2024], Qwen-3784

0.6B, and Qwen-3 1.7B [Yang et al., 2025]) on the MATH [Hendrycks et al., 2021] benchmark, using785

the same 500/500 train/test split from §5.2. As shown in Fig. 6, both accuracy and consensus stay786

remarkably stable for all four models, with performance fluctuations under five percent even as m787

increases sixteen-fold. These results demonstrate a clear robustness advantage of THOUGHTCOMM788

by delivering reliable gains without requiring precise tuning of the prefix length, dramatically reducing789

hyperparameter overhead in practice. Moreover, achieving near-optimal performance with a single790

injected vector highlights the efficiency of our thought-communication mechanism. While both token791

and prefix embeddings have the same dimensionality (e.g., 1024), a token embedding is tied to a792

single vocabulary item and typically encodes the semantics of just that one discrete token, often lying793

on a lower-dimensional subspace. In contrast, a prefix embedding is a free parameter optimized to794

encode many continuous latent thoughts, leveraging the full capacity of the embedding space.795

D.3 Additional Results on Scaling Debate Rounds796

In §5.3, we compare the performance of Multiagent Finetune [Subramaniam et al., 2025] and797

THOUGHTCOMM as the number of debate rounds increases from 2 to 6 based on Llama-3-8B-798

Instruct [Grattafiori et al., 2024]. Here, we further extend the analysis to an additional model,799

Qwen-3-1.7B [Yang et al., 2025], demonstrating that THOUGHTCOMM remains robust and is not800

adversely affected by increased redundancy caused by increased numbers of debate rounds.801

As shown in Fig. 7, we observe that the accuracy and consensus of THOUGHTCOMM remain stable802

or even improve as the number of debate rounds increases up to 6. In contrast, the performance of803

Multiagent Finetune [Subramaniam et al., 2025] declines noticeably as rounds increase beyond 4,804

particularly in the accuracy metric. This further supports our claim that THOUGHTCOMM is robust to805

the accumulation of redundant or noisy information introduced by additional communication rounds.806

It is important to note, however, that high consensus among agents does not always imply high task807

accuracy. This phenomenon is particularly evident in the Qwen-3-1.7B [Yang et al., 2025] results for808

Multiagent Finetune [Subramaniam et al., 2025], where consensus steadily increases as the number809

of debate rounds grows—from 2 to 6, while the corresponding accuracy remains stagnant or even810

degrades. This decoupling suggests that agents can converge on a common answer even when that811

answer is incorrect, leading to a failure mode in which additional communication drives premature812

agreement rather than genuine reasoning improvements.813

In contrast, THOUGHTCOMM not only increases consensus but also aligns higher agreement with814

improved accuracy. We also highlight that the gap between THOUGHTCOMM and the baseline815

widens at higher round counts. These results underscore the importance of structure-aware latent816

communication in preventing unproductive conformity and fostering truly collaborative reasoning in817

multi-agent LLM systems. Taken together, these findings confirm the scalability of our approach:818

THOUGHTCOMM enables multi-agent systems to leverage more communication rounds for improved819

reasoning without incurring the degradation commonly observed in prior debate-style frameworks.820

2https://github.com/vsubramaniam851/multiagent-ft/tree/main
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Figure 7: Additional results of multi-agent performance on Qwen-3-1.7B [Yang et al., 2025] as the
number of debate rounds increases.

D.4 Additional Results on Varying Latent Dimensions821

We investigate how varying the latent dimensionality affects performance on the MATH dataset. In822

these experiments, the setup involves two agents, two rounds, and a single prefix token used for823

communication. Results are shown for both Llama-3-8B-Instruct and Qwen-3-1.7B models.824

As shown in Fig. 8 and Fig. 9, accuracy consistently improves as the latent dimension increases up to825

512, after which the gains saturate. This suggests that while higher-capacity latent spaces facilitate826

richer communication between agents, overly large latent dimensions yield diminishing returns, likely827

due to redundancy in the learned representations.828
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Figure 8: Effect of varying latent dimensionality on MATH for Llama-3-8B-Instruct [Grattafiori
et al., 2024]. Accuracy improves with increased latent capacity, stabilizing beyond 1024 dimensions.
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Figure 9: Effect of varying latent dimensionality on MATH for Qwen-3-1.7B [Yang et al., 2025].
A similar trend is observed, confirming that the benefits of higher latent capacity generalize across
architectures.

D.5 Additional Results on Varying Number of Agents829

We next analyze how increasing the number of collaborating agents influences performance. All830

experiments are conducted with two rounds, latent dimension of 1024, and a single prefix token on831

the MATH dataset.832
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Figure 10: Performance as the number of agents increases on MATH for Llama-3-8B-Instruct and
Qwen-3-1.7B. The missing data point is due to runtime limit exceeded.

As shown in Fig. 10, both models initially benefit from more agents, achieving notable gains when833

increasing from 2 to 3. However, beyond 3 agents, accuracy plateaus or slightly declines, particularly834

for the Multiagent Finetune baseline. In contrast, THOUGHTCOMM maintains stable accuracy even835

as the number of agents grows, highlighting its robustness to redundant or conflicting signals.836
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