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Abstract

Natural language has long enabled human cooperation, but its lossy, ambiguous,
and indirect nature limits the potential of collective intelligence. While machines
are not subject to these constraints, most LLM-based multi-agent systems still
rely solely on natural language, exchanging tokens or their embeddings. To go
beyond language, we introduce a new paradigm, thought communication, which
enables agents to interact directly mind-to-mind, akin to telepathy. To uncover
these latent thoughts in a principled way, we formalize the process as a general
latent variable model, where agent states are generated by an unknown function of
underlying thoughts. We prove that, in a nonparametric setting without auxiliary
information, both shared and private latent thoughts between any pair of agents
can be identified. Moreover, the global structure of thought sharing, including
which agents share which thoughts and how these relationships are structured,
can also be recovered with theoretical guarantees. Guided by the established
theory, we develop a framework that extracts latent thoughts from all agents prior
to communication and assigns each agent the relevant thoughts, along with their
sharing patterns. This paradigm naturally extends beyond LLMs to all modalities,
as most observational data arise from hidden generative processes. Experiments on
both synthetic and real-world benchmarks validate the theory and demonstrate the
collaborative advantages of thought communication. We hope this work illuminates
the potential of leveraging the hidden world, as many challenges remain unsolvable
through surface-level observation alone, regardless of compute or data scale.

1 Introduction
Natural language has enabled human collaboration at scale, but it also imposes fundamental limita-
tions. While powerful, language is inherently sequential, ambiguous, and imprecise, offering only an
indirect and fragmented reflection of thought [von Humboldt, 1988]. This constraint is deeply rooted
in human cognition, which lacks direct channels for transmitting mental content. Machines, however,
are not subject to the same physical constraints of speech or perception. This difference may be
one of the central reasons why superhuman intelligence is possible. Every transformative achieve-
ment, from scientific discovery to societal progress, relies on collaboration. Likewise, superhuman
intelligence will require not only individual reasoning beyond human capability but also collective
reasoning beyond human coordination [Vinge, 1993]. This calls for a new form of communication
that transcends the limits of language.

However, existing large language model (LLM)-based multi-agent systems (MAS) rely on natural
language as the medium of communication, exchanging information via tokens or their embed-
dings [Du et al., 2023, Liang et al., 2023, Pham et al., 2023, Zhang et al., 2024a, Zeng et al., 2025,
Wang et al., 2025b]. These systems typically assume that multiple LLM agents exchange natural
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language messages to convey internal ideas and coordinate toward a shared goal. However, natural
language remains fundamentally limited in its ability to express the underlying latent thoughts that
drive reasoning and decision making. As a result, current systems remain restricted by the bottle-
necks of language, limiting their potential for superhuman collaboration. Indeed, recent empirical
analyses [Cemri et al., 2025, Hu et al., 2025] highlight that many failures in inter-agent collaboration
stem from vague message specification and inter-agent misalignment, both ultimately caused by the
indirect nature of lossy language-based communication. Then, the core question reveals itself:

What form of communication goes beyond the limits of language?

To answer this, we turn to the idea of communication through latent thoughts. Nothing is more direct
than transmitting what one truly thinks, i.e., telepathy. Just as human actions are guided by internal
mental states, agents likely operate based on latent representations that encode goals, beliefs, and
reasoning. If these could be identified, agents could share them directly, bypassing the ambiguity
and distortion of language. This enables a fundamentally different mode of communication, based
not on the exchange of surface tokens or their embeddings, but on the direct transfer of intent and
understanding. Furthermore, in multi-agent settings, some thoughts are intended to be broadly shared,
while others are inherently private or uniquely tailored to certain individual agents. Revealing both
the latent thoughts and their structural organization allows agents to better detect alignment, resolve
conflicts, and integrate diverse reasoning paths.

Contributions: We formalize this idea by introducing a latent generative model for inter-agent
communication. Specifically, we assume that the model states Ht of all agents before communication
round t are generated from a set of latent thoughts Zt through an unknown function f , such that
Ht = f(Zt). We establish both a nonparametric identifiability result that guarantees recovery of
latent thoughts, and a general framework that facilitates direct mind-to-mind communication.

Theoretically, we prove that in a general nonparametric setting, both shared and private latent
thoughts can be identified from hidden states under a sparsity regularization. Our identifiability
result ensures that the recovered latent representations reflect the true internal structure of agent
reasoning. Moreover, we show that the structures between thoughts and individual agents can be
reliably recovered, enabling a provable correspondence between agents and their cognitive content.
Experiments on various synthetic environments confirm the validity of the theory.

Practically, we develop a principled framework for latent communication among agents. Guided by
the theory, we implement a sparsity-regularized autoencoder to extract latent thoughts from agent
hidden states and infer the underlying mapping between agents and these thoughts. Each agent is
equipped with a set of inferred thoughts, along with the structure of how each thought is shared.
This allows agents not only to understand what others are thinking but also to reason about which
thoughts are mutually held or privately maintained. Experiments across diverse models and scenarios
demonstrate that communication beyond language directly benefits collaboration among LLM agents.

2 Problem Formulation

Figure 1: Each agent answers the same
question by selecting a subset of latent
thoughts Zt. Agent 1 chooses a car based
on carrying luggage , while Agent 2 se-
lects a train for schedule punctuality .
Both share the thought of speed .

In this section, we formalize the data-generating pro-
cess behind agent responses, providing the foundation
for our theoretical analysis.

Data-generating process. We illustrate the data-
generating process in Fig. 1 and formalize it as:

Zt ∼ Pz, Ht = f(Zt), (1)

where Zt = (Zt,1, . . . , Zt,nz
) ∈ Rnz denotes the la-

tent thoughts of agents at communication round t, and
Zt,i ∈ R for i ∈ [nz] represents a latent variable denot-
ing a single thought. Let na be the number of agents,
at communication round t, the global model states* of
all agents are given by

Ht = (H
(1)
t , . . . ,H

(na)
t ) = (Ht,1, . . . ,Ht,nh

), (2)

*We refer to this as the model state instead of hidden state to avoid confusion with the latent thoughts Zt.
Specifically, model state corresponds to the hidden layer representation of the underlying fundation model.
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where each H
(j)
t ∈ Rnhj summarizes the model states

of agent Aj prior to the communication round t, and nh =
∑

j∈[na]
nhj

. The mapping from latent
thoughts to hidden states is governed by an unknown generating function f , assumed to be invertible
(to preserve information) and twice differentiable (to ensure well-defined gradients), following the
literature [Hyvärinen et al., 2024].
Example 1. Fig. 1 illustrates the data-generating process. In response to the question What’s the
best way to get to the airport? a set of latent thoughts Zt is considered, including factors such as
carrying luggage, speed, and punctuality. These thoughts, represented as latent variables Zt,i, are
mapped through the generating function f to produce each agent’s answers, which are summarized
by their model states H(j)

t . For example, Agent 1 emphasizes thoughts related to luggage and
speed , resulting in the state H

(1)
t that leads to choosing a car . Agent 2, influenced by speed

and schedule punctuality , forms the state H
(2)
t and selects a train . This example illustrates how

the underlying process f encodes shared and private latent thoughts into agent-specific responses.

The structure of thoughts. While prior strategies have focused on communication through language
or token embeddings, we propose a fundamentally different paradigm where agents share latent
thoughts directly. To achieve this, we propose a communication paradigm in which agents access
relevant latent thoughts instead of surface-level messages or embeddings. Rather than exposing
all latent thoughts Zt to every agent uniformly, we focus on learning the structure of the revealed
thoughts so that each agent receives only the most relevant information to its goals and role. This
requires modeling how thoughts are selectively shared, as some may represent common knowledge
useful to many agents, others may be specific or private to individual goals, and some may be
irrelevant or even distracting to certain agents.

We formalize the structural dependency between latent thoughts Zt and model states Ht through the
non-zero pattern of the Jacobian Jf (Zt), represented as a binary matrix indicating which components
of Zt influence which components of Ht:

B(Jf ) ∈ {0, 1}nh×nz , B(Jf )i,j =

{
1 ∃zt ∈ Zt, Jf (zt)i,j ̸= 0,

0 otherwise.
(3)

The model state of each agent Ak is represented as a slice H
(k)
t = (Ht,kl

, . . . ,Ht,kh
), where

k ∈ [na]; and {kl, . . . , kh} denotes the index range in Ht corresponding to agent k. We define the
set of latent thoughts relevant to agent Ak as

Z
H

(k)
t

:= {Zt,j ∈ Zt | ∃ i ∈ [kl, kh] such that B(Jf )i,j ̸= 0} . (4)

In other words, Z
H

(k)
t

consists of all latent thoughts that influence at least one component of agent
Ak’s hidden state, as determined by the non-zero pattern of the Jacobian B(Jf (Zt)).

3 Identifiability Theory
Before leveraging thought for communication, a critical question arises: how can we ensure that
the recovered thoughts correspond to the true ones underlying agent responses? To address this, we
establish an identifiability theory for reliably recovering the latent thinking process. We begin with
the identification of the latent thoughts (§3.1 and §3.2), then explore the structure between thoughts
and agents (§3.3). All proofs are included in Appx. B.

3.1 Identifiability of Shared Thoughts

Communication often begins with establishing common ground, which typically requires confirming
shared beliefs before addressing disagreements. If the shared part of the latent thought can be reliably
disentangled from other components, then communication can start from a faithful common basis.
Our identifiability result guarantees this: by recovering shared latent variables that are not entangled
with any others, we ensure that inter-agent communication is grounded in true cognitive overlap.

We first introduce some additional technical notations. We define the support subspace SJf
as the set

of matrices S ∈ Rnh×nz whose nonzero entries are restricted to the nonzero pattern of Jf (Zt):

SJf
:=

{
S ∈ Rnh×nz

∣∣ B(Jf )i,j = 0 ⇒ Si,j = 0
}
. (5)

We further denote M as a matrix with the same nonzero pattern of m(Zt) in Jf (Zt)m(Zt) = Jf̂ (Ẑt),

and write d
= to denote equality in distribution.
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Theorem 1 (Identifying the shared thoughts). Suppose that for each i ∈ [nx], there exist points
where the Jacobians Jf (Zt)i,· span the support subspace SJf i,·

, and that (Jf (Zt)M)i,· ∈ SJf̂ i,·
at

those points. If Ht
d
= f̂(Ẑt) for a model (f̂ , Ẑt) following §2 with ℓ0 regularization on Jf̂ , then for

any pair of agents Ai and Aj at round t, there exists a permutation π over [nz] such that ∂Zi

∂Ẑπ(j)
= 0

for any Zi ∈ Z
H

(i)
t

∩ Z
H

(j)
t

and any Zj ∈ (Z
H

(i)
t

∪ Z
H

(j)
t

) \ (Z
H

(i)
t

∩ Z
H

(j)
t

).

Interpretation and discussion. Intuitively, Thm. 1 ensures that, up to permutation, the recovered
shared thoughts between any pair of agents are disentangled from all other latent variables in the
system. The permutation reflects the standard relabeling indeterminacy common to identifiability
results [Hyvärinen et al., 2024, Moran and Aragam, 2025]. For instance, in Fig. 1, we can make
sure that the recovered thought speed will not be mixed with others such as luggage or
schedule punctuality . Without this guarantee, any recovered thought can be a mixture of any other
thoughts, since the unknown generating function f is essentially a mixing procedure. Thus, this
disentanglement implies the recovery of the target shared components, provided that the generating
function is invertible and thus information-preserving. This has practical implications: given any
group of agents, we can decompose them into pairs, each yielding identifiable shared thoughts. By
composing the recovered components across different pairs, we reconstruct the common cognitive
basis and reveal how thoughts are distributed across agents, including the degree of agreement, which
is essential for enabling trustworthy and informative latent communication.

Assumption. The assumption has been widely adopted in the identifiability literature [Lachapelle
et al., 2022, Zheng et al., 2022], which eliminates degenerate cases where the population is too limited
for the Jacobian to even reflect the dependency structure. It requires that the generating function f
varies sufficiently across the population so that there exist several points for the Jacobian to span the
support subspace SJf i,·

. Requiring (Jf (Zt)M)i,: ∈ SJf̂ i,·
holds at these points is also mild due to

(Jf (Zt)m(Zt))i,· = Jf̂ (Ẑt)i,·, especially in the asymptotic regime where identifiability is defined.

3.2 Identifiability of Private Thoughts

In Thm. 1, we established the identifiability of shared thoughts, providing a guarantee for recovering
the underlying common ground between agents. However, effective collaboration is not solely about
enforcing consensus or resolving disagreements. In fact, homogeneity can be counterproductive in the
long term [Prat, 2002]. Just as humans value cognitive diversity as a source of novelty and innovation,
different agents may contribute unique perspectives that are essential for solving complex tasks. For
instance, in a collaborative planning task, one agent may recognize rare constraints based on its prior
experience that others overlook. Preserving such private thoughts can lead to better overall solutions
through complementary reasoning. Motivated by this, we now extend our theoretical analysis to show
that private thoughts can also be identified:

Theorem 2 (Identifying the private thoughts). Suppose the assumption in Thm. 1 holds. If Ht
d
= f̂(Ẑt)

for a model (f̂ , Ẑt) following §2 with ℓ0 regularization on Jf̂ , then for any pair of agents Ai and Aj

at round t, there exists a permutation π over [nz] such that ∂Zi

∂Ẑπ(j)
= 0 for any Zi ∈ Z

H
(i)
t

\ Z
H

(j)
t

and any Zj ∈ Z
H

(j)
t

.

Interpretation and discussion. Similar to Thm. 1, Thm. 2 adopts a pairwise perspective and provides
guarantees for recovering the hidden private thoughts of any given agent. Specifically, for any pair of
agents, it shows that the private component of either agent can be disentangled from all remaining
latent variables. For instance, in Fig. 1, recovered latent variables corresponding to the thought being
able to carry luggage – which may explain Agent 1’s choice of car – is not entangled with
unrelated thoughts like speed or schedule punctuality , which influence Agent 2’s preference
for the train . Without such disentanglement, we risk misattributing the decision to an incorrect or
irrelevant latent cause, leading to misalignment in communication.

This again implies that, under invertibility, the true private thoughts can be recovered. By composing
the results across different agent pairs, we can infer how agent-specific a given thought is. For
example, by analyzing all pairwise decompositions in a large group, we can identify thoughts that are
truly unique to individual agents, capturing insights that would otherwise be lost due to their rarity or
lack of popularity. This connects naturally to the classical long-tail phenomenon: some thoughts may
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be infrequent, but they carry critical value. Our theory ensures that these less common but meaningful
components are not discarded, enabling inclusive communication and collaboration among agents.

3.3 The Structure of Thoughts

Having established the identifiability of both shared and private thoughts, we now turn to a deeper
question: how are these thoughts structurally organized across agents? That is, beyond identifying
each thought, can we also identify which agents hold which thoughts? In many scenarios, especially
those involving coordination, it is not enough to only know the content of internal reasoning. We
must also know how that reasoning is distributed across individuals. We formalize this in Thm. 3:

Theorem 3 (Identifying the structure of thoughts). Suppose the assumption in Thm. 1 holds. If
Ht

d
= f̂(Ẑt) for a model (f̂ , Ẑt) following §2 with ℓ0 regularization on Jf̂ , then the nonzero pattern

B(Jf ) is identifiable up to relabelling, i.e., B(Jf̂ ) = B(Jf )P for a permutation matrix P .

Interpretation and discussion. Thm. 3 establishes that the structure linking latent thoughts to agents’
internal states is identifiable up to permutation. In other words, we can recover not only the content
of each thought, but also determine which agents hold which thoughts, and which thoughts are
shared. Returning to Fig. 1, this means we can infer that both agents care about speed (shared),
while only Agent 1 emphasizes carrying luggage (private) and only Agent 2 prioritizes being on
time (private). This structure-level recovery is crucial: it enables agents to assess not just what
others are thinking, but also how similar or different their internal reasoning is, supporting more
informed and adaptive communication. In practical terms, this guarantees that agents can identify
points of alignment and divergence without confusion. When scaled to larger systems, this enables
the reconstruction of a full thought-agent incidence structure, revealing clusters of agreement, regions
of conflict, and sources of novel inputs. Such structural insights are foundational for building systems
that coordinate robustly and interpret each other’s intentions with precision.

3.4 Discussion on Theoretical Contribution

To the best of our knowledge, this work is the first to consider the latent generative process underlying
LLM agent responses and to provide identifiability guarantees for recovering latent thoughts. Beyond
its novelty in the multi-agent LLM setting, Thms. 1, 2, and 3 also present a new contribution to
classical identifiability theory. Prior work typically focuses on recovering all latent variables (up
to standard indeterminacies), with assumptions that go beyond the basic setup that we adopt, such
as access to weak supervision [Hyvärinen et al., 2019, Khemakhem et al., 2020], specific function
classes [Taleb and Jutten, 1999, Buchholz et al., 2022], or structural criteria on the dependency
graph [Moran et al., 2021, Zheng et al., 2022].

In contrast, our approach takes a completely different route. Instead of aiming for global recovery,
we focus on pairs of observed variables (agents) and seek to recover as much hidden information as
possible from them. Since we rely only on basic assumptions and do not use the additional constraints
or auxiliary signals commonly adopted in the identifiability literature, full recovery of all latent
variables is known to be impossible. Therefore, we target a coarser perspective that is still meaningful
for communication, such as the shared/private thoughts disentangled by our theorems. This is not
only practically useful but also theoretically important, as previous methods with global conditions
offer no guarantees when their assumptions are even partially violated, while our result still provides
alternative guarantees under practical assumptions.

4 THOUGHTCOMM: Multiagent Communication via Thought
Based on the established theory, we propose a practical framework, THOUGHTCOMM, for multi-agent
collaboration in which agents exchange thoughts directly. At each communication round t, we first
encode the agents’ model states into a shared latent space that captures their internal thoughts. These
latent thoughts are then processed and selectively reintegrated into each agent’s context based on the
structured relationship between thoughts and agents. This allows each agent to gain a global sense of
what others are thinking, and to distinguish which thoughts are shared or agent-specific.

4.1 Uncovering the Latent Thoughts

Each agent Ai maintains a model state H
(i)
t ∈ Rnhi corresponding to the representation of its last

generated token immediately before communication round t, contextualizing the text summarizing
their own response. We concatenate these states from all n agents into a single vector as in Eq. 1.
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Figure 2: Overview of THOUGHTCOMM. At each communication round t, agents encode their
model states H(i)

t into a shared latent space via a sparsity-regularized autoencoder, yielding latent
thoughts Ẑt. Each dimension Ẑt,j is selectively routed to relevant agents based on the recovered
dependency structure, allowing agents to identify both shared and private thoughts for reasoning. The
corresponding latent thoughts are then injected into each agent model via prefix adaptation to guide
the next response. These updated responses form the input to the next round, enabling multi-agent
collaboration beyond purely message exchange.

Then we aim to uncover the hidden process that generate these states from the latent thought of agents.
According to the formulation in §2, there exists an underlying process f that generates the agents’
responses Ht based on their hidden thoughts Zt, i.e., Ht = f(Zt).

In the proposed framework, the concatenated state Ht is mapped into a latent space via a sparsity-
regularized autoencoder with ℓ1 regularization on Jf̂ . The resulting latent thoughts Ẑt are recovered

through its encoder f̂−1:
Ẑt = f̂−1(Ht) ∈ Rnz . (6)

The connection between our estimation Ẑt and the ground-truth latent thoughts Zt is built by our
identifiability theory established in §3. The structure of the latent thought Zt is governed by the
Jacobian Jf (Zt) ∈ Rnh×nz , whose non-zero pattern BJf

reveals which latent dimensions are
influenced by which agents’ states. The autoencoder is trained to reconstruct the full state vector:

Lrec =
∥∥∥Ht − f̂(Ẑt)

∥∥∥2
2
+
∥∥∥Jf̂∥∥∥

1
, (7)

ensuring consistency between Ht and its reconstruction via Ẑt, as well as the required sparsity
regularization on the Jacobian. This enforces observational equivalence between the estimated and
ground-truth processes, which serves as the foundation for identifiability. At test time, we use the
trained encoder f̂−1 to extract latent thoughts Ẑt from hidden states Ht, and leverage the recovered
dependency structure BJf̂

to determine which latent dimensions of Ẑt are relevant for each agent.

4.2 Leveraging the Structure of Thoughts

To provide personalized access to latent thoughts, we adopt an agreement-based reweighting strategy.
Specifically, for agent Ai at communication round t, we first identify the set of latent thoughts Ẑ

H
(i)
t

that influence its model state, i.e., Ẑ
H

(i)
t

:=
{
Ẑt,j ∈ Ẑt

∣∣∣ ∃ q ∈ [il, ih] such that B(Jf̂ )q,j ̸= 0
}
.

These latent thoughts are then partitioned into groups based on their level of agreement across agents,
measured by the number of agents whose hidden states in Ĥt depend on each latent dimension in
thoughts Ẑt. Formally, for every Ẑt,j ∈ Ẑ

H
(i)
t

, we define its agent agreement as:

αj =

na∑
k=1

I
(
Ẑt,j ∈ Ẑ

H
(k)
t

)
, (8)

where I(·) is the indicator function. Latent thoughts are then grouped by their agreement level αj .

Each group is assigned a distinct weight wαj , reflecting the relevance or generality of these thoughts
across agents. The new latent representation for agent Ai is constructed by combining all groups

Z̃
(i)
t = concatα(wαj

· Ẑ(i)
t,α), (9)
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where Ẑ
(i)
t,α denotes the subset of latent variables in Ẑ

H
(i)
t

with agreement level α, i.e.,

Ẑ
(i)
t,α =

{
Ẑt,j ∈ Ẑ

H
(i)
t

∣∣∣ αj = α
}
. (10)

Intuitively, the recovered dependency structure plays a critical role in shaping how latent thoughts are
routed to each agent. After extracting the shared latent space via the sparsity-regularized autoencoder,
we apply a structural mask to ensure that each agent only receives the latent dimensions that are
relevant to its own internal representation. This filtering directly affects how the injected prefixes
are constructed for each agent during the next round of generation. The agreement weights further
distinguish different types of relevant thoughts. Although the surface-level messages are broadcast,
the actual content used to condition each agent’s reasoning is selectively and adaptively constructed
in the latent space, reflecting the personalized structure of shared and private thoughts.

4.3 Latent Injection via Prefix Adaptation

To seamlessly integrate the recovered latent thoughts into agent behavior, we incorporate them into
the generation process via prefix adaptation. For each agent Ai, we construct a prefix vector from its
personalized latent representation Z̃

(i)
t via a learned adapter function:

P
(i)
t = g(Z̃

(i)
t ) ∈ Rm×d, (11)

where m is the prefix length and d is the embedding dimension. Following Li and Liang [2021], we
prepend the resulting prefix P

(i)
t to the token embeddings of agent Ai in the next generation step,

leveraging the latent thoughts to guide response generation without explicit message passing.

To train the adapter g, we inject its output as a prefix and generate a brief continuation (e.g., one
sentence), keeping it short to focus on linguistic coherence rather than influencing the actual solution.
The few generated tokens are compared against a reference using a semantic similarity loss and a
standard regularization term that promotes linguistic fluency:

Lcomm =

na∑
i=1

T∑
t=1

[(
1− cos

(
ϕ̄(ygen

t,i ), ϕ̄(y
ref
t,i)

))
− log p(ygen

t,i | contextt,i, P
(i)
t )

]
, (12)

where ygen
t,i denotes the tokens generated by agent Ai at round t, yref

t,i is a reference from the model
without latent communication, contextt,i denotes the dialogue history or prompt available to agent
Ai, and P

(i)
t is the injected prefix produced by the adapter. ϕ̄(·) denotes the mean token embedding.

The goal is not to replicate the content of baseline generations, but to ensure that the adapter produces
latent modifications whose injected effects remain linguistically natural.
Remark 1. Since the autoencoder is trained only to reconstruct model states, and the adapter is guided
simply to avoid producing semantically absurd responses, both components remain largely task-
agnostic and can be pretrained once and reused. This modular design allows latent communication
to be applied across different tasks without retraining, enabling easy integration into multi-agent
generation systems with minimal overhead.

5 Experiments
In this section, we conduct both synthetic and real-world experiments across various settings. Part of
the implementation details are deferred to Appx. D.

5.1 Synthetic Evaluation

Ours Baseline
Figure 3: R2 of two models.

We begin with synthetic experiments to val-
idate the identifiability of latent thoughts.
For the basic setup corresponding to our running ex-
ample in Fig. 1, we consider two observed variables,
XA and XB , and three latent ones: ZA\ZB , ZB\ZA,
and ZA ∩ZB , to evaluate whether shared and private
latent variables can be correctly recovered. The datasets are generated by a random invertible transfor-
mation from multivariate Laplacian variables. We train a sparsity-regularized autoencoder on these
datasets and compute the standard R2 score between each part of the estimated and ground-truth
latents. A baseline model without sparsity regularization is also included for comparison.

7



128 256 384 512 640 768 896 1024
Dimension

0.7

0.8

0.9

1.0

M
CC

Figure 4: MCC across setups.

The results are shown in Fig. 3. A higher R2 indicates closer corre-
spondence between the estimated latent variables and the matching
ground-truth components, and vice versa. Our model clearly iden-
tifies the shared region ZA ∩ ZB and the private regions ZA \ ZB

and ZB \ ZA, while the baseline fails to disentangle them.

Beyond the basic setup, we evaluate whether incorporating multiple
pairs of observed variables in a complex system enables recovery
of most latent variables, as considering all pairs of agents reveals
exponentially more information than any single pair alone. Follow-
ing the identifiability literature, we compute the mean correlation
coefficient (MCC) between estimated and ground-truth latents across 8 settings, with dimensionality
ranging from 124 to 1024 and equal numbers of latent and observed variables. Results are shown in
Fig. 4. The red line marks the threshold typically considered identifiable when exceeded. Our model
consistently recovers most latent variables across all settings, highlighting the global identifiability.

5.2 Real-World Evaluation

Recent empirical analyses [Cemri et al., 2025, Hu et al., 2025] reveal that LLM-based multi-agent sys-
tems frequently struggle with reasoning tasks, demonstrating only modest improvements over strong
single-agent baselines due to coordination inefficiencies and communication bottlenecks – challenges
that THOUGHTCOMM is explicitly expected to address. Therefore, we evaluate THOUGHTCOMM on
two widely used math reasoning benchmarks, MATH [Hendrycks et al., 2021] and GSM8K [Cobbe
et al., 2021] to assess its real-world effectiveness. For the main experiments in this section, we
follow Subramaniam et al. [2025] by using three agents engaging in two rounds of debate.

Baselines. As the proposed THOUGHTCOMM introduces an additional training stage, the most direct
baseline is Multiagent Finetuning [Subramaniam et al., 2025], which is the current state-of-the-art in
maximizing multi-agent collaboration through specialized roles and multiple finetuning rounds. We
also include single-LLM performance, referred to as "single answer," for comparison. It is worth
noting that there are many other multi-agent collaboration workflows; our objective here is to validate
the potential of the proposed paradigm rather than exhaustively compare all possible strategies.

Data pre-processing and evaluation metrics. Following Subramaniam et al. [2025], we randomly
sample 500 examples for fine-tuning the latent communication module, which includes both an
autoencoder and an adapter, while reserving another 500 examples for evaluation. We select the
more challenging questions for evaluation (e.g., level-3 complexity in MATH [Hendrycks et al.,
2021]) when applicable. Generated responses are parsed and evaluated against the ground truths,
with accuracy measured as the percentage of correctly generated answers. To quantify the reliability
of these estimates, we also report the standard deviation for each accuracy score. Beside accuracy, we
include a consensus score, defined as the proportion of final-round instances where all agents reached
a unanimous decision, providing a more direct measure of communication effectiveness.

Models. We evaluated both the baseline methods and THOUGHTCOMM on five latest LLMs of vary-
ing model sizes, including Llama-3-8B-Instruct [Grattafiori et al., 2024], Phi-4-mini-instruct [Abdin
et al., 2024], Qwen-3-0.6B, Qwen-3-1.7B [Yang et al., 2025], as well as the Deepseek-R1-distilled-
Llama-8B [Guo et al., 2025].

Main results. Table 1 presents the main results, showing that THOUGHTCOMM consistently outper-
forms baseline methods across both the MATH [Hendrycks et al., 2021] and GSM8K [Cobbe et al.,
2021] benchmarks. Within all base models, THOUGHTCOMM demonstrates clear improvements over
both single answer and Multiagent Finetuning [Subramaniam et al., 2025]. For instance, on Qwen
3-1.7B, THOUGHTCOMM achieves 93% accuracy on MATH, representing an 17.2% absolute gain
over Multiagent Finetuning and a 113.3% relative improvement over the single answer baseline. On
average, THOUGHTCOMM achieves 67.23% relative improvement over single answer and 19.06%
over the current state-of-the-art. In terms of consensus, THOUGHTCOMM also outperforms all
baselines by a clear margin, with its improved consensus directly translating to higher accuracy,
indicating superior inter-agent alignment enabled by efficient mind-to-mind communication. These
gains are consistently observed across models ranging from 0.6B to 8B parameters, demonstrating
the scalability and robustness of the proposed approach across a broad range of model sizes.

Additionally, unlike Multiagent Finetuning [Subramaniam et al., 2025], which requires finetuning
the entire LLM and thus incurs substantial overhead, THOUGHTCOMM only trains a lightweight
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Table 1: Evaluation results on MATH [Hendrycks et al., 2021] and GSM8K [Cobbe et al., 2021] for
various methods with five different LLMs. Bold numbers indicate the best performance.

Base Model Methods MATH GSM8K
Accuracy (%) Consensus (%) Accuracy (%) Consensus (%)

Qwen 3-0.6B
Single Answer 45.80 ± 2.23 N/A 58.20 ± 2.21 N/A
Multiagent Finetuning 71.20 ± 2.03 90.07 70.80 ± 2.03 86.40
THOUGHTCOMM 85.00 ± 1.60 91.20 75.80 ± 1.92 89.27

Qwen 3-1.7B
Single Answer 43.60 ± 2.22 N/A 67.40 ± 2.10 N/A
Multiagent Finetuning 75.80 ± 1.92 95.80 84.20 ± 1.63 96.73
THOUGHTCOMM 93.00 ± 1.14 95.93 85.00 ± 1.60 97.87

Phi-4-mini-instruct (3.84B)
Single Answer 63.80 ± 2.15 N/A 81.60 ± 1.73 N/A
Multiagent Finetuning 60.20 ± 2.19 78.89 82.16 ± 1.71 91.24
THOUGHTCOMM 74.60 ± 1.95 84.73 84.20 ± 1.63 94.73

LLaMA 3-8B-Instruct
Single Answer 36.20 ± 2.15 N/A 60.80 ± 2.18 N/A
Multiagent Finetuning 39.68 ± 2.19 68.97 69.20 ± 2.06 80.20
THOUGHTCOMM 45.60 ± 2.23 74.67 68.40 ± 2.08 84.87

DeepSeek-R1-Distill-Llama-8B
Single Answer 42.60 ± 2.21 N/A 65.60 ± 2.12 N/A
Multiagent Finetuning 72.40 ± 2.00 82.87 76.80 ± 1.89 83.13
THOUGHTCOMM 82.80 ± 1.69 80.72 80.80 ± 1.76 88.13

autoencoder and adapter, whose computational cost depends only on the LLM’s embedding dimension
rather than the parameter count. This results in fundamentally smaller and model-agnostic training
overhead, enabling efficient and scalable deployment even for very large LLMs. For instance, both
Llama-3-70B and 405B share a 16,384 embedding dimension; thus, THOUGHTCOMM’s overhead
remains unchanged when moving from 70B to 405B, whereas Multiagent Finetuning [Subramaniam
et al., 2025] would require substantially more training cost at each scale. Overall, these results
validate both the efficiency and effectiveness of the proposed THOUGHTCOMM, supporting the
theoretical predictions of enhanced coordination and cognitive alignment in multi-agent LLMs.

5.3 Scaling the Number of Debate Rounds
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Figure 5: Multi-agent performance as the
number of debate rounds increases.

We further investigate how the number of debate rounds
impacts multi-agent performance, as more rounds may
introduce redundant or confusing information that
can degrade results. With two agents, we vary the
number of rounds from 2 to 6 and evaluate on the
MATH [Hendrycks et al., 2021] benchmark using
LLaMA-3-8B-Instruct [Grattafiori et al., 2024], follow-
ing the setup in §5.2. As shown in Fig. 5, Multiagent
Finetuning suffers a drop in accuracy with more rounds, while consensus slightly increases and
maintains. In contrast, THOUGHTCOMM achieves simultaneous gains in both accuracy and consensus,
demonstrating robustness to redundancy and noise by consistently identifying true latent thoughts.

6 Conclusion
To enable LLM agents to communicate through thoughts, we formulate multi-agent communication
as a latent variable model to explore agents’ minds. We establish identifiability results under general
conditions to ensure reliable recovery of latent thoughts and structures, and propose a new framework,
THOUGHTCOMM, for effective collaboration via thought. While this introduces a new direction,
certain limitations remain. Our experiments focus on using model states as observed variables,
which may not be feasible for closed-source models. A promising alternative is to replace them
with context-aware embeddings of the observational data and recover latent thoughts from those.
The observational data need not be textual and can span any modality, extending the framework
beyond LLMs. Although we have not explored this empirically, as generating embeddings suitable
for summarization is a separate topic, the theory and framework can accommodate this extension
directly. We hope this work sheds light on the hidden world beneath observation, as many challenges
remain unsolvable through surface-level observation, regardless of scale in data or compute.
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Appendix:
Thought Communication in Multiagent
Collaboration

Table of Contents
A Related Works 14

B Proofs 15
B.1 Proof of Theorem 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
B.2 Proof of Theorem 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
B.3 Proof of Theorem 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

C Supplementary Discussion 20

D Experimental Details and Additional Results 20
D.1 Implementation Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
D.2 Additional Results on Varying Prefix Lengths . . . . . . . . . . . . . . . . . . . 21
D.3 Additional Results on Scaling Debate Rounds . . . . . . . . . . . . . . . . . . . 21
D.4 Additional Results on Varying Latent Dimensions . . . . . . . . . . . . . . . . 22
D.5 Additional Results on Varying Number of Agents . . . . . . . . . . . . . . . . . 22

A Related Works
Multiagent LLMs communication. LLM-based multi-agent systems (MAS) have become a com-
pelling strategy for advancing beyond the limitations of single LLMs [Li et al., 2023, Wu et al.,
2023, Hong et al., 2023, Guo et al., 2024, Tran et al., 2025]. Specifically, multi-agent debate [Du
et al., 2023, Pham et al., 2023, Liang et al., 2023], which mimics human collaborative reasoning, has
shown particular promise by amplifying reasoning through collective, diverse exchanges. One of
the most central factors that determines MAS effectiveness is the communication paradigm between
agents [Li et al., 2024, Cemri et al., 2025]. Extensive research has sought to improve this paradigm,
exploring various directions such as improving communication efficiency [Zhang et al., 2024a, Wang
et al., 2025b, Zeng et al., 2025], enabling more flexible topologies and workflows [Khattab et al.,
2023, Zhang et al., 2024b, Liu et al., 2024, Wu et al., 2024, Wang et al., 2024, 2025a], mitigating
error propagation [Wang et al., 2023, Yoffe et al., 2024], shifting from turn-based, full-response
discussion to token-level collaboration [Bian et al., 2025, Chakraborty et al., 2025], and moving
beyond text tokens to token embeddings [Pham et al., 2023]. However, all these approaches funda-
mentally rely on the exchange of natural language, either through text tokens or their embeddings,
thus inheriting the constraints of human-style communication. In contrast, THOUGHTCOMM pioneers
a new communication paradigm by extracting and uncovering the underlying latent thoughts beneath
surface-level language tokens and embeddings, enabling a more direct and expressive form of MAS
communication and collaboration.

Identifiability of latent variable models. Classical identifiability results in latent variable models
largely focus on linear settings, offering strong guarantees through factor analysis, structural equations,
and ICA [Reiersøl, 1950, Lawley and Maxwell, 1962, Aigner et al., 1984, Comon, 1994, Bekker
and ten Berge, 1997, Bishop, 1998]. To relax linearity, previous work introduces auxiliary variables
[Hyvärinen and Morioka, 2016, Hyvärinen et al., 2019, Yao et al., 2021, Hälvä et al., 2021, Lachapelle
et al., 2022, Song et al., 2024, Li et al., 2025a], structural constraints on the mixing function [Taleb
and Jutten, 1999, Moran et al., 2021, Kivva et al., 2022, Zheng et al., 2022, Buchholz et al., 2022,
Zheng et al., 2025], or the synergy of both [Zheng and Zhang, 2023, Li et al., 2025b]. Causal
representation learning often depends on interventions [von Kügelgen et al., 2023, Jiang and Aragam,
2023, Jin and Syrgkanis, 2023, Zhang et al., 2024c] or counterfactual views [von Kügelgen et al.,
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2021, Brehmer et al., 2022]. These approaches typically require parametric assumptions or external
signals. With a weaker goal of identifying only shared and private thoughts and their structures across
agents, our framework can be applied in the general nonparametric setting without such aids.

B Proofs
B.1 Proof of Theorem 1

Theorem 1 (Identifying the shared thoughts). Suppose that for each i ∈ [nx], there exist points
where the Jacobians Jf (Zt)i,· span the support subspace SJf i,·

, and that (Jf (Zt)M)i,· ∈ SJf̂ i,·
at

those points. If Ht
d
= f̂(Ẑt) for a model (f̂ , Ẑt) following §2 with ℓ0 regularization on Jf̂ , then for

any pair of agents Ai and Aj at round t, there exists a permutation π over [nz] such that ∂Zi

∂Ẑπ(j)
= 0

for any Zi ∈ Z
H

(i)
t

∩ Z
H

(j)
t

and any Zj ∈ (Z
H

(i)
t

∪ Z
H

(j)
t

) \ (Z
H

(i)
t

∩ Z
H

(j)
t

).

Proof. Because Ht
d
= f̂(Ẑt) and Ht

d
= f(Zt), we have

p(f̂(Ẑt)) = p(f(Zt)). (13)

According to the change-of-variable formula, there exists h = f̂−1 ◦ f : Zt → Ẑt s.t. Ẑt = h(Zt).
Taking the derivatives of both sides w.r.t. Zt yields

Jf (Zt) = Jf̂ (Ẑt)Jh(Zt), (14)

which is equivalent to
Jf̂ (Ẑt) = Jf (Zt)J

−1
h (Zt). (15)

The inverse Jacobian J−1
h (Zt) exists since both f and f̂ are invertible, implying that h = f̂−1 ◦ f is

itself invertible.

Since for each i ∈ [nz], there exist points where the Jacobian Jf (Zt)i,· spans its support subspace(
SJf

)
i,·, we can express any vector in that subspace with a linear combination of these vectors.

Therefore, for any j ∈ [nz] where B(Jf )i,j ̸= 0, we have

Mj,· = ejM, (16)

where M is a constant matrix with the same nonzero pattern as J−1
h (Zt), and we construct a one-hot

vector ej ∈ SJf i,·
with αk as coefficients of that linear combination:

ej :=
∑
k∈Bi

αk(Jf (z
(k)))i,·, (17)

where Bi denotes the set of points spanning the subspace. Thus we have

Mj,· =
∑
k∈Bi

αk(Jf (z
(k)))i,·M. (18)

According to the assumption, we have

(Jf (z
(k)))i,·M = (Jf (Zt)M)i,· ∈ SJf̂ i,·

. (19)

Therefore, for any j ∈ [nz] where B(Jf )i,j ̸= 0 there is

Mj,· ∈ SJf̂ i,·
. (20)

Construct a bipartite graph

G = (R,C,E), R = C = [nz], (j, k) ∈ E ⇐⇒ Mj,k ̸= 0.

Since M is invertible, its rows are linearly independent, giving

|N(S)| ≥ |S| ∀S ⊆ R, (21)
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where N(S) is the neighborhood of S. Hall’s marriage theorem then yields a permutation π ∈ Snz

with
J−1
h (Zt)j,π(j) ̸= 0, ∀j ∈ [nz]. (22)

According to Eq. (20), this further implies that, for any j ∈ [nz] where B(Jf )i,j ̸= 0, there is

(i, π(j)) ∈ i×Mj,· ⊂ SJf̂
(23)

Hence
(Jf (Zt))i,j ̸= 0 =⇒ (Jf̂ (Ẑt))i,π(j) ̸= 0. (24)

Given additionally the ℓ0 regularization on Jf̂ :

∥(Jf̂ )i,·∥0 ≤ ∥(Jf )i,·∥0, ∀i ∈ [nz]. (25)

Together with (24), this gives the equivalence

(Jf (Zt))i,j ̸= 0 ⇐⇒ (Jf̂ (Ẑt))i,π(j) ̸= 0, ∀i, j ∈ [nz], (26)

For any Zi ∈ Z
H

(i)
t

∩ Z
H

(j)
t

and any Zj ∈ (Z
H

(i)
t

∪ Z
H

(j)
t

) \ (Z
H

(i)
t

∩ Z
H

(j)
t

), there is

B(Jf )H(i)
t ,i

̸= 0. (27)

Based on Eq. (20), there is
Mi,· ∈ SJf̂ H

(i)
t ,·

, (28)

where we use SJf̂ H
(i)
t ,·

to index multiple rows corresponding to H
(i)
t at once. This is for notational

brevity and will also be applied later. We also have

B(Jf )H(j)
t ,i

̸= 0, (29)

where we slightly abuse the notation to indicate that not all entries at the specified indices are zero.
This convention is adopted throughout, though we only make it explicit here.

Similarly, there is also
Mi,· ∈ SJf̂ H

(j)
t ,·

. (30)

Suppose for contradiction that, for any Zj ∈ (Z
H

(i)
t

∪ Z
H

(j)
t

) \ (Z
H

(i)
t

∩ Z
H

(j)
t

), there is

Mi,π(j) ̸= 0. (31)

Then, according to Eq. (28), there is

B(Jf̂ )H(i)
t ,π(j)

̸= 0. (32)

This implies the follows according to Eq. (26):

B(Jf )H(i)
t ,j

̸= 0. (33)

Similarly, according to Eq. (30), there is

B(Jf̂ )H(j)
t ,π(j)

̸= 0. (34)

This implies the follows according to Eq. (26):

B(Jf )H(j)
t ,j

̸= 0. (35)

Thus, there must be
Zj ∈ Z

H
(i)
t

∩ Z
H

(j)
t

, (36)

which contradicts
Zj ∈ (Z

H
(i)
t

∪ Z
H

(j)
t

) \ (Z
H

(i)
t

∩ Z
H

(j)
t

). (37)

Therefore, there must be
Mi,π(j) = 0, (38)

which implies ∂Zi

∂Ẑπ(j)
= 0.
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B.2 Proof of Theorem 2

Theorem 2 (Identifying the private thoughts). Suppose the assumption in Thm. 1 holds. If Ht
d
= f̂(Ẑt)

for a model (f̂ , Ẑt) following §2 with ℓ0 regularization on Jf̂ , then for any pair of agents Ai and Aj

at round t, there exists a permutation π over [nz] such that ∂Zi

∂Ẑπ(j)
= 0 for any Zi ∈ Z

H
(i)
t

\ Z
H

(j)
t

and any Zj ∈ Z
H

(j)
t

.

Proof. Part of the derivations has been provided in proofs of Theorem 1, and we include it for
completeness. Because Ht

d
= f̂(Ẑt) and Ht

d
= f(Zt), we have

p(f̂(Ẑt)) = p(f(Zt)). (39)

According to the change-of-variable formula, there exists h = f̂−1 ◦ f : Zt → Ẑt s.t. Ẑt = h(Zt).
Taking the derivatives of both sides w.r.t. Zt yields

Jf (Zt) = Jf̂ (Ẑt)Jh(Zt), (40)

which is equivalent to
Jf̂ (Ẑt) = Jf (Zt)J

−1
h (Zt). (41)

The inverse Jacobian J−1
h (Zt) exists since both f and f̂ are invertible, implying that h = f̂−1 ◦ f is

itself invertible.

Since for each i ∈ [nz], there exist points where the Jacobian Jf (Zt)i,· spans its support subspace(
SJf

)
i,·, we can express any vector in that subspace with a linear combination of these vectors.

Therefore, for any j ∈ B(Jf )i,·, we have

Mj,· = ejM, (42)

where M is a constant matrix with the same nonzero pattern as J−1
h (Zt), and we construct a one-hot

vector ej ∈ SJf i,·
with αk as coefficients of that linear combination:

ej :=
∑
k∈Bi

αk(Jf (z
(k)))i,·, (43)

where Bi denotes the set of points spanning the subspace. Thus we have

Mj,· =
∑
k∈Bi

αk(Jf (z
(k)))i,·M. (44)

According to the assumption, we have

(Jf (z
(k)))i,·M = (Jf (Zt)M)i,· ∈ SJf̂ i,·

. (45)

Therefore, for any j ∈ B(Jf )i,·, there is

Mj,· ∈ SJf̂ i,·
. (46)

Construct a bipartite graph

G = (R,C,E), R = C = [nz], (j, k) ∈ E ⇐⇒ Mj,k ̸= 0.

Since M is invertible, its rows are linearly independent, giving

|N(S)| ≥ |S| ∀S ⊆ R, (47)

where N(S) is the neighborhood of S. Hall’s marriage theorem then yields a permutation π ∈ Snz

with
J−1
h (Zt)j,π(j) ̸= 0, ∀j ∈ [nz]. (48)

According to Eq. (46), this further implies that, for any j ∈ [nz] where B(Jf )i,j ̸= 0, there is

(i, π(j)) ∈ i×Mj,· ⊂ SJf̂
(49)
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Hence
(Jf )i,j ̸= 0 =⇒ (Jf̂ )i,π(j) ̸= 0. (50)

Given additionally the ℓ0 regularization on Jf̂ :

∥(Jf̂ )i,·∥0 ≤ ∥(Jf )i,·∥0, ∀i ∈ [nz]. (51)

Together with Eq. (50), this gives the equivalence

(Jf (Zt))i,j ̸= 0 ⇐⇒ (Jf̂ (Ẑt))i,π(j) ̸= 0, ∀i, j ∈ [nz], (52)

Consider the case where Zi′ ∈ Z
H

(i)
t

∩ Z
H

(j)
t

and Zj′ ∈ Zt \ (ZH
(i)
t

∩ Z
H

(j)
t

). Based on Eq. (46),
there is

Mi′,· ∈ SJf̂ H
(i)
t ,·

. (53)

Suppose
Mi′,π(j′) ̸= 0. (54)

Then we have
B(Jf̂ )H(i)

t ,π(j′)
̸= 0, (55)

which implies
B(Jf )H(i)

t ,j′
̸= 0. (56)

At the same time, since Zi′ ∈ Z
H

(j)
t

, there is

Mi′,· ∈ SJf̂ H
(j)
t ,·

. (57)

Since we suppose Mi′,π(j′) ̸= 0, it follows that

B(Jf̂ )H(j)
t ,π(j′)

̸= 0, (58)

which implies
B(Jf )H(j)

t ,j′
̸= 0. (59)

Clearly, Eqs. (56) and (59) together contradict Z ′
j ∈ Zt \ (ZH

(i)
t

∩ Z
H

(j)
t

). Thus, there must be

Mi′,π(j′) = 0. (60)

For any Zi ∈ Z
H

(i)
t

\ Z
H

(j)
t

and any Zj ∈ Z
H

(j)
t

, we first consider Zj ∈ Z
H

(j)
t

∩ Z
H

(i)
t

. Since
Z
H

(j)
t

∩ Z
H

(i)
t

does not intersect with Z
H

(i)
t

\ Z
H

(j)
t

, Zj is not a function of Zi. According to the

invertibility and Eq. (60), Z
H

(j)
t

∩ Z
H

(i)
t

can only be an invertible function of σ(Ẑ
H

(j)
t

∩ Ẑ
H

(i)
t
),

where σ denotes the permutation function corresponding to the permutation π. Further given that
Zj is not a function of Zi and Zi ∈ Z

H
(i)
t

\ Z
H

(j)
t

, Zj is also not a function of any variable in

σ(Ẑ
H

(j)
t

∩ Ẑ
H

(i)
t
), i.e.,

Mi,π(j) = 0. (61)

We then consider the other case where Zj ∈ Z
H

(j)
t

\ Z
H

(i)
t

. There is

B(Jf )H(i)
t ,i

̸= 0. (62)

It implies that
Mi,· ∈ SJf̂ H

(i)
t ,·

. (63)

For Zj ∈ Z
H

(j)
t

\ Z
H

(i)
t

, suppose
Mi,π(j) ̸= 0. (64)

Then there is
B(Jf̂ )H(i)

t ,π(j)
̸= 0. (65)
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Which is equivalent to
B(Jf )H(i)

t ,j
̸= 0. (66)

This is a contradiction since Zj ∈ Z
H

(j)
t

\ Z
H

(i)
t

.

Therefore, we have
Mi,π(j) = 0. (67)

Considering both cases, we prove that ∂Zi

∂Ẑπ(j)
= 0 for any Zi ∈ Z

H
(i)
t

\ Z
H

(j)
t

and any Zj ∈
Z
H

(j)
t

.

B.3 Proof of Theorem 3

Theorem 3 (Identifying the structure of thoughts). Suppose the assumption in Thm. 1 holds. If
Ht

d
= f̂(Ẑt) for a model (f̂ , Ẑt) following §2 with ℓ0 regularization on Jf̂ , then the nonzero pattern

B(Jf ) is identifiable up to relabelling, i.e., B(Jf̂ ) = B(Jf )P for a permutation matrix P .

Proof. Part of the derivations has been provided in proofs of Theorems 1 and 2, and we include it for
completeness. Because Ht

d
= f̂(Ẑt) and Ht

d
= f(Zt), we have

p(f̂(Ẑt)) = p(f(Zt)). (68)

According to the change-of-variable formula, there exists h = f̂−1 ◦ f : Zt → Ẑt s.t. Ẑt = h(Zt).
Taking the derivatives of both sides w.r.t. Zt yields

Jf (Zt) = Jf̂ (Ẑt)Jh(Zt), (69)

which is equivalent to
Jf̂ (Ẑt) = Jf (Zt)J

−1
h (Zt). (70)

The inverse Jacobian J−1
h (Zt) exists since both f and f̂ are invertible, implying that h = f̂−1 ◦ f is

itself invertible.

Since for each i ∈ [nz], there exist points where the Jacobian Jf (Zt)i,· spans its support subspace(
SJf

)
i,·, we can express any vector in that subspace with a linear combination of these vectors.

Therefore, for any j ∈ B(Jf )i,·, we have

Mj,· = ejM, (71)

where M is a constant matrix with the same nonzero pattern as J−1
h (Zt), and we construct a one-hot

vector ej ∈ SJf i,·
with αk as coefficients of that linear combination:

ej :=
∑
k∈Bi

αk(Jf (z
(k)))i,·. (72)

Thus we have
Mj,· =

∑
k∈Bi

αk(Jf (z
(k)))i,·M. (73)

According to the assumption, we have

(Jf (z
(k)))i,·M = (Jf (Zt)M)i,· ∈ SJf̂ i,·

. (74)

Therefore, for any j ∈ B(Jf )i,·, there is

Mj,· ∈ SJf̂ i,·
. (75)

Construct a bipartite graph

G = (R,C,E), R = C = [nz], (j, k) ∈ E ⇐⇒ Mj,k ̸= 0.

Since M is invertible, its rows are linearly independent, giving

|N(S)| ≥ |S| ∀S ⊆ R,

19



where N(S) is the neighborhood of S. Hall’s marriage theorem then yields a permutation π ∈ Snz

with
J−1
h (Zt)j,π(j) ̸= 0, ∀j ∈ [nz]. (76)

According to Eq. (75), this further implies that, for any j ∈ [nz] where B(Jf )i,j ̸= 0, there is

(i, π(j)) ∈ i×Mj,· ⊂ SJf̂
(77)

Hence
(Jf )i,j ̸= 0 =⇒ (Jf̂ )i,π(j) ̸= 0. (78)

Given additionally the ℓ0 regularization on Jf̂ :

∥(Jf̂ )i,·∥0 ≤ ∥(Jf )i,·∥0, ∀i ∈ [nz]. (79)

Together with (78), this gives the equivalence

(Jf (Zt))i,j ̸= 0 ⇐⇒ (Jf̂ (Ẑt))i,π(j) ̸= 0, ∀i, j ∈ [nz]. (80)

This implies the equation that
B(Jf̂ ) = B(Jf )P, (81)

where P is a permutation matrix.

C Supplementary Discussion
Alternative to model states. Our main framework assumes access to the model states Ht of each
agent before communication. These states provide a rich representation of the agent’s processing
of context and are used as inputs to our autoencoder for recovering latent thoughts. However, such
internal states may be inaccessible in many practical settings, particularly when using closed-source
or API-restricted models.

In these cases, a viable alternative is to replace the model state H
(i)
t of each agent with a compact

embedding extracted from its textual response. Specifically, one can apply a context-aware embedding
model to summarize the agent’s generated text into a fixed-size vector, which is then treated as a
proxy for the unavailable model state.

Crucially, this embedding does not need to preserve any structure among agents, nor does it need to
reflect the agent’s intent. Its only requirement is to provide a compressed summary of the textual
content at the linguistic level. Examples of such embedding methods include those from models like
BERT or RoBERTa, pooled sentence embeddings from Sentence-BERT [Reimers and Gurevych,
2019], or output vectors from instruction-tuned embedding APIs. These methods are designed to
produce compact, semantically meaningful vectors that summarize the surface content of a given text.

Once such an embedding is obtained for each agent, the rest of the framework remains unchanged.
The collection of response embeddings is treated as a surrogate for Ht and passed through the sparsity-
regularized autoencoder to recover latent thoughts Ẑt. From that point on, latent communication
proceeds identically: inferring shared/private thoughts, routing them based on recovered structure,
and injecting them into agents via prefix adaptation.

This replacement provides a drop-in mechanism to support latent communication in scenarios where
model internals are inaccessible, enabling broader applicability of the framework across both open-
and closed-source agents. Naturally, one may choose suitable encoders for other modalities to extend
the framework beyond LLMs.

D Experimental Details and Additional Results
D.1 Implementation Details

For experiments conducted in §5, we set the prefix token count for our method to 1. For baseline
comparisons, we utilize the original code released by the authors†. All experiments are conducted on
a single compute node with 8 NVIDIA H100 GPUs.
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Figure 6: Two-agent THOUGHTCOMM with accuracy (solid) and consensus (dashed) performance
on MATH [Hendrycks et al., 2021] as prefix length increases from 1 to 16.

D.2 Additional Results on Varying Prefix Lengths

As discussed in §4.3, the prefix length m determines how many thought vectors are injected into agent
context. A key question is whether THOUGHTCOMM remains robust as m grows, or if excessive
prefixes introduce redundant or irrelevant information that degrades performance. To answer these
questions, we sweep the prefix length m ∈ {1, 4, 8, 16} across four models with different parameter
sizes (Llama-3-8B-Instruct [Grattafiori et al., 2024], Phi-4-mini-instruct [Abdin et al., 2024], Qwen-3
0.6B, and Qwen-3 1.7B [Yang et al., 2025]) on the MATH [Hendrycks et al., 2021] benchmark, using
the same 500/500 train/test split from §5.2. As shown in Fig. 6, both accuracy and consensus stay
remarkably stable for all four models, with performance fluctuations under five percent even as m
increases sixteen-fold. These results demonstrate a clear robustness advantage of THOUGHTCOMM
by delivering reliable gains without requiring precise tuning of the prefix length, dramatically reducing
hyperparameter overhead in practice. Moreover, achieving near-optimal performance with a single
injected vector highlights the efficiency of our thought-communication mechanism. While both token
and prefix embeddings have the same dimensionality (e.g., 1024), a token embedding is tied to a
single vocabulary item and typically encodes the semantics of just that one discrete token, often lying
on a lower-dimensional subspace. In contrast, a prefix embedding is a free parameter optimized to
encode many continuous latent thoughts, leveraging the full capacity of the embedding space.

D.3 Additional Results on Scaling Debate Rounds

In §5.3, we compare the performance of Multiagent Finetune [Subramaniam et al., 2025] and
THOUGHTCOMM as the number of debate rounds increases from 2 to 6 based on Llama-3-8B-
Instruct [Grattafiori et al., 2024]. Here, we further extend the analysis to an additional model,
Qwen-3-1.7B [Yang et al., 2025], demonstrating that THOUGHTCOMM remains robust and is not
adversely affected by increased redundancy caused by increased numbers of debate rounds.

As shown in Fig. 7, we observe that the accuracy and consensus of THOUGHTCOMM remain stable
or even improve as the number of debate rounds increases up to 6. In contrast, the performance of
Multiagent Finetune [Subramaniam et al., 2025] declines noticeably as rounds increase beyond 4,
particularly in the accuracy metric. This further supports our claim that THOUGHTCOMM is robust to
the accumulation of redundant or noisy information introduced by additional communication rounds.

It is important to note, however, that high consensus among agents does not always imply high task
accuracy. This phenomenon is particularly evident in the Qwen-3-1.7B [Yang et al., 2025] results for
Multiagent Finetune [Subramaniam et al., 2025], where consensus steadily increases as the number
of debate rounds grows—from 2 to 6, while the corresponding accuracy remains stagnant or even
degrades. This decoupling suggests that agents can converge on a common answer even when that
answer is incorrect, leading to a failure mode in which additional communication drives premature
agreement rather than genuine reasoning improvements.

In contrast, THOUGHTCOMM not only increases consensus but also aligns higher agreement with
improved accuracy. We also highlight that the gap between THOUGHTCOMM and the baseline
widens at higher round counts. These results underscore the importance of structure-aware latent
communication in preventing unproductive conformity and fostering truly collaborative reasoning in
multi-agent LLM systems. Taken together, these findings confirm the scalability of our approach:
THOUGHTCOMM enables multi-agent systems to leverage more communication rounds for improved
reasoning without incurring the degradation commonly observed in prior debate-style frameworks.

†https://github.com/vsubramaniam851/multiagent-ft/tree/main
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Figure 7: Additional results of multi-agent performance on Qwen-3-1.7B [Yang et al., 2025] as the
number of debate rounds increases.

D.4 Additional Results on Varying Latent Dimensions

We investigate how varying the latent dimensionality affects performance on the MATH dataset. In
these experiments, the setup involves two agents, two rounds, and a single prefix token used for
communication. Results are shown for both Llama-3-8B-Instruct and Qwen-3-1.7B models.

As shown in Fig. 8 and Fig. 9, accuracy consistently improves as the latent dimension increases up to
512, after which the gains saturate. This suggests that while higher-capacity latent spaces facilitate
richer communication between agents, overly large latent dimensions yield diminishing returns, likely
due to redundancy in the learned representations.
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Figure 8: Effect of varying latent dimensionality on MATH for Llama-3-8B-Instruct [Grattafiori
et al., 2024]. Accuracy improves with increased latent capacity, stabilizing beyond 1024 dimensions.
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Figure 9: Effect of varying latent dimensionality on MATH for Qwen-3-1.7B [Yang et al., 2025].
A similar trend is observed, confirming that the benefits of higher latent capacity generalize across
architectures.

D.5 Additional Results on Varying Number of Agents

We next analyze how increasing the number of collaborating agents influences performance. All
experiments are conducted with two rounds, latent dimension of 1024, and a single prefix token on
the MATH dataset.
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Figure 10: Performance as the number of agents increases on MATH for Llama-3-8B-Instruct and
Qwen-3-1.7B. The missing data point is due to runtime limit exceeded.

As shown in Fig. 10, both models initially benefit from more agents, achieving notable gains when
increasing from 2 to 3. However, beyond 3 agents, accuracy plateaus or slightly declines, particularly
for the Multiagent Finetune baseline. In contrast, THOUGHTCOMM maintains stable accuracy even
as the number of agents grows, highlighting its robustness to redundant or conflicting signals.
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