
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

NBSP: A NEURON-LEVEL FRAMEWORK FOR
BALANCING STABILITY AND PLASTICITY IN DEEP RL

Anonymous authors
Paper under double-blind review

ABSTRACT

In contrast to the human ability to continuously acquire knowledge, agents struggle
with the stability-plasticity dilemma in deep reinforcement learning (DRL), which
refers to the trade-off between retaining existing skills (stability) and learning new
knowledge (plasticity). Current methods focus on balancing these two aspects
at the network level, lacking sufficient differentiation and fine-grained control
of individual neurons. To overcome this limitation, we propose Neuron-level
Balance between Stability and Plasticity (NBSP) method, by taking inspiration
from the observation that specific neurons are strongly relevant to task-relevant
skills. Specifically, NBSP first (1) defines and identifies RL skill neurons that
are crucial for knowledge retention through a goal-oriented method, and then (2)
introduces a framework by employing adaptive gradient masking and experience
replay techniques targeting these neurons to preserve the encoded existing skills
while enabling adaptation to new tasks. Numerous experimental results on the
Meta-World, Atari, and DMC benchmarks demonstrate that NBSP significantly
outperforms existing approaches in balancing stability and plasticity.

1 INTRODUCTION

Deep reinforcement learning (DRL) has shown exceptional capabilities across a range of complex
scenarios, such as gaming (Mnih et al., 2013), robotic manipulation (Andrychowicz et al., 2020),
and autonomous driving (Kiran et al., 2021). However, most RL research focuses on agents that
learn to solve individual problems rather than learn a sequence of tasks continually. Ideally, the
agent must maintain its performance on previously learned tasks, referred to as stability (McCloskey
& Cohen, 1989), while simultaneously adapting to new tasks, known as plasticity (Carpenter &
Grossberg, 1987). However, it has been revealed that emphasizing stability may hinder the ability
of agents to learn new knowledge (Nikishin et al., 2022a), whereas excessive plasticity can lead to
catastrophic forgetting of previously acquired knowledge (Atkinson et al., 2021b), a challenge known
as the stability-plasticity dilemma (eMermillod et al., 2013). Although there is a growing body of
continual reinforcement learning (CRL) research (Wolczyk et al., 2022), our study specifically targets
the intrinsic balance between stability and plasticity, which remains a fundamental and under-explored
problem in DRL, and further advances this direction by exploring it at the neuron level.

Existing methods to strike a balance between stability and plasticity generally fall into three categories,
i.e. (1) regularization-based methods (Kirkpatrick et al., 2017; Kumar et al., 2023), which apply
penalties to parameter changes to mitigate forgetting while acquiring new knowledge; (2) replay-
based methods (Ahn et al., 2024), which leverage past experiences to consolidate knowledge; and
(3) modularity-based methods (Kim et al., 2023; Anand & Precup, 2024), which seek to decouple
stability and plasticity or isolate different components for different tasks. Despite their contributions,
these methods suffer from three key limitations: (1) They primarily operate at the network level, yet
their ultimate impact manifests at the level of individual neurons. However, these methods fail to
differentiate and fine-grained control neurons based on their specific roles. Therefore, identifying
and effectively utilizing task-relevant neurons remains both critical and under-explored. (2) These
studies are primarily conducted within the paradigm of continual learning, thus overlooking the
unique characteristics intrinsic to DRL. (3) These approaches could sometimes unnecessarily inflate
model parameters, thereby introducing unwarranted complexity (Bai et al., 2023).

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Figure 1: Distribution histogram of the
activation of a neuron, categorized based
on whether the drawer-open task was
successfully completed or not.

By analyzing the activations of neurons in the DRL net-
work, we observe that the activations of certain neurons are
strongly correlated with the task goal. For instance, Figure
1 illustrates the activation distribution of a specific neu-
ron in the network following training on the drawer-open
task from the Meta-World benchmark (Yu et al., 2020).
Activation of the neuron serves as a reliable predictor of
whether the task is successful. Higher activation levels
correspond to an increased likelihood of completing the
task successfully, indicating that this neuron encodes a
critical skill essential for the task. Consequently, it plays
a pivotal role in retaining task-specific memory.

Motivated by the aforementioned observations, we pro-
pose Neuron-level Balance between Stability and Plas-
ticity (NBSP), a novel DRL framework that operates at the level of neurons to tackle the stability-
plasticity dilemma. In particular, (1) we first introduce RL skill neurons, which encode critical
skills necessary for knowledge retention. While skill neurons have been investigated and successfully
exploited in various domains, such as pre-trained language models (Wang et al., 2022) and neural
machine translation (Bau et al., 2018), skill neurons are still much less explored in DRL. We bridge
this research gap by proposing a goal-oriented strategy for identifying RL skill neurons. (2) We
then apply adaptive gradient masking according to the scores of these neurons, ensuring that the
encoded knowledge of prior skills is preserved while allowing fine-tuning during subsequent training.
Meanwhile, the other neurons retain the ability to learn new tasks. (3) Additionally, we incorpo-
rate experience replay to periodically revisit the past experience to reinforce stability, preventing
excessive drift from previous knowledge. Integrally, NBSP offers three key advantages compared
with previous methods: (1) The neuron-level processing enables finer control and greater flexibility,
addressing the stability-plasticity trade-off at the most fundamental level of the network. (2) The
goal-oriented approach for identifying RL skill neurons is specifically tailored to DRL. (3) This
framework is simple, avoiding complex network designs or additional parameters.

We conduct experiments on the Meta-World (Yu et al., 2020), Atari (Mnih et al., 2013), and DMC
(Tunyasuvunakool et al., 2020) benchmarks to evaluate the effectiveness of NBSP. Our results show
that NBSP outperforms existing methods in balancing stability and plasticity, enabling effective
learning of new tasks while preserving knowledge from previous tasks. Additionally, we perform
extensive ablation studies to investigate the contribution of different components within NBSP.
Specially, we analyze the DRL agents by dissecting the performance of the two critical modules, i.e.,
the actor and the critic. Our findings reveal that (1) addressing both the actor and critic networks
yields the best performance, and (2) the critic plays a more critical role in achieving this balance due
to the differences in their inherent training mechanisms. In summary, our key contributions include:

• We introduce the concept of RL skill neurons which encode skills of the task, essential for
knowledge retention, and propose a goal-oriented strategy specifically tailored to DRL for
identification.

• We tackle the stability-plasticity dilemma in DRL from the perspective of RL skill neurons, by
employing gradient masking and experience replay on these neurons, eliminating requirements of
complex network designs or additional parameters.

• We conduct extensive experiments on the Meta-World, Atari, and DMC benchmarks to demon-
strate the effectiveness of our method in balancing stability and plasticity.

2 RELATED WORK

Balance between stability and plasticity. In DRL, addressing the stability-plasticity dilemma
(Carpenter & Grossberg, 1988) has inspired various strategies. Stability-focused methods often utilize
replay techniques, such as A-GEM (Chaudhry et al., 2018b), using episodic memory to constrain
loss, and ClonEx-SAC (Wolczyk et al., 2022), enhancing performance through behavior cloning.
Plasticity-focused methods aim to preserve network expressiveness, with solutions like CBP (Dohare
et al., 2024), resetting (Nikishin et al., 2022b), plasticity injection (Nikishin et al., 2024), Reset
& Distillation (Ahn et al., 2024), and CRelu (Abbas et al., 2023) to prevent activation collapse.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Modularity-based methods balance stability and plasticity by decoupling task-specific knowledge,
exemplified by soft modularity for routing networks (Yang et al., 2020), value function decomposition
(Anand & Precup, 2024), and compositional frameworks leveraging neural components (Mendez et al.,
2022). Shrink & Perturb (Ash & Adams, 2020), which updates weights with shrinkage and noise,
and UPGD (Elsayed & Mahmood, 2024), which varies update sizes by unit utility, also target the
balance. Methods such as CRelu and ClonEx-SAC focus on continual reinforcement learning(CRL),
but our study specifically targets the intrinsic balance between stability and plasticity, with other
factors such as task order controlled in a cycling task setting. Moreover, while most methods operate
at the network level, our approach explores neuron-level research, providing fine-grained control.

Neuron-level research. Recent research has shown that neuron sparsity often correlates with task-
specific performance (Xu et al., 2024), driving a growing focus on skill neurons to interpret network
behavior and tackle challenges across domains. For example, skill neurons have been used to enhance
transferability and efficiency in Transformers via pruning (Wang et al., 2022). Other studies, such
as identifying Rosetta Neurons (Dravid et al., 2023) and language-specific neurons (Tang et al.,
2024), have advanced alignment and interpretability. Despite these achievements, the exploration
of skill neurons in DRL remains largely under-explored. Some works focus on task-specific sub-
network selection at the neuron level, such as CoTASP and PackNet. At a finer granularity, other
approaches target individual neuron management. NPC identifies and constrains important neurons
for maintaining stability. Similarly, ReDO (Sokar et al., 2023) and its successor GraMa (Liu et al.,
2025) introduce schemes for dormant neuron management and activity quantification based on
activation and gradient magnitudes. NE (Liu et al., 2024) dynamically adapts network topology
through neuron growth and pruning based on potential gradients. However, these methods overlook
the fundamental link between a neuron and the task’s goal in RL, and identify neurons through
static measures like activation or gradient. Our work addresses this gap and moves beyond the
static measures by leveraging a significant correlation between a neuron activation and the specific
objective of the RL task. This insight allows us to identify the underlying skill neurons, those that are
functionally relevant to the task success.

3 METHODOLOGY

In this section, we first introduce the terminology of RL skill neurons and then propose the Neuron-
level Balance between Stability and Plasticity (NBSP) method.

3.1 PROBLEM SETUP

We focus on the setting of sequential task learning without constraints on the time intervals between
tasks. In this setting, the agent is expected to perform all previously learned tasks after training,
without relying on task-specific signals. For instance, large models such as DeepSeek employ RL
to enhance their reasoning capabilities. However, different tasks, such as vision and mathematics,
demand distinct reasoning abilities. To first strengthen a specific type of reasoning and then generalize
to others, it is essential to strike a balance between stability and plasticity during sequential training.
Furthermore, in real-world applications, the enhanced model should be able to handle all tasks
without relying on explicit task signals. Let τ ∈ {τ1, τ2, ...} represent a sequence of task, each task τ
corresponds to a distinct Markov Decision Process (MDP) Mτ = (Sτ , Aτ , P τ , Rτ , γτ), where Sτ ,
Aτ , P τ , Rτ and γτ denote the state space, action space, transition dynamics, reward function, and
discount factor, respectively. Instead of addressing a single MDP, the goal is to solve a sequence of
MDPs one by one using a universal policy π(a|s) and Q-function Q(s, a). The primary challenge
lies in balancing plasticity, which refers to maximizing the discounted return of the current task, and
stability, which emphasizes the maximization of the expected discounted return averaged across all
previous tasks. This trade-off constitutes the core problem addressed in this work.

3.2 IDENTIFYING RL SKILL NEURONS

In this study, we make a key observation that the stability and plasticity of the agent network are
closely related to its expressive capabilities, which are significantly influenced by the behavior of
individual neurons. As evidenced in Molchanov et al. (2022), neuron expression determines how
information is propagated and processed, directly affecting the learning and knowledge retention
capabilities of the network. Therefore, understanding and controlling neuron behavior is at the most

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

fundamental level for striking a balance between stability and plasticity. On the one hand, when
neuron expression is stable and generalized, the agent network tends to exhibit high stability. On the
other hand, strong plasticity can be achieved given neuron expression is flexible and adaptable.

Several works have demonstrated the multifaceted capabilities of neurons, such as the storage of
factual knowledge (Dai et al., 2022), the association with specific languages (Tang et al., 2024), and
the encoding of safety information (Chen et al., 2024). These specialized neurons, often referred as
skill neurons, have been shown to significantly contribute to network performance (Wang et al., 2022).
However, the potential of skill neurons in DRL remains largely under-explored. As illustrated in
Figure 1, activations of the specific neuron are strongly correlated with task success: higher activation
levels increase the likelihood of successful task completion, whereas lower levels are associated with
failure. This indicates that the activations of these neurons significantly affect agent performance,
effectively encoding the critical skills required for the task. By preserving the activations of such
neurons, it becomes possible to retain the learned task-specific skills, thereby improving stability.

In this work, we formally define these special neurons as RL skill neurons, which encode critical
skills, essential for knowledge retention in DRL. Furthermore, we propose a goal-oriented method
for the identification of these neurons. Unlike prior approaches that primarily focus on the inputs
triggering neuron activations (Bau et al., 2020; Gurnee & Tegmark, 2023), our method emphasizes
their impact on achieving ultimate goals, i.e. succeeding in finishing Meta-World tasks and attaining
high scores in Atari games, by comparing the activation patterns of the neurons that exhibit varying
performance levels. In Section 4.2, we empirically show the advantage of our goal-oriented method.

For a specific neuron N , let a(N , t) represent its activation at step t. In fully connected layers, each
output dimension corresponds to the activation of a specific neuron, whereas in convolution layers,
the average of each output channel represents the activation of a neuron. To quantify activation level
of a neuron N , we define the average activation as:

a(N) =
1

Tavg

Tavg∑
t=1

a(N , t), (1)

where Tavg represents the step over which we compute the average activation. The neuron activation
level can then be assessed by comparing its current activation with the average activation.

To assess the performance of the agent at step t, we introduce the Goal Metric (GM), denoted as
q(t). It serves as an evaluation metric for assessing the performance of the agent’s network, varying
based on the objective of the task. It is computed in an online manner during training. For instance,
on the Meta-World benchmark, the GM is typically binary, determined by whether the episode is
successful, which is computed at the end of each episode. In contrast, the GM is determined by the
cumulative return of the episode for the Atari benchmark. Additionally, we define the average Goal
Metric (GM) of the agent as follows, which serves as a baseline for evaluating the performance by
comparing it with the current GM.

q =
1

Tavg

Tavg∑
t=1

q(t). (2)

To differentiate the roles of neurons across various tasks, it is essential to assess neuron activations in
relation to specific goals. Intuitively, we can consider a neuron N to be positively contributing to the
goal at step t when its activation a(N , t) surpasses the average activation a(N), i.e. a(N , t) > a(N),
while the GM at the same step also exceeds its average, i.e. q(t) > q. To quantify this contribution,
we accumulate a batch of results over T steps and define the over-activation rate as follows:

Rover(N) =

∑T
t=1 1[1[a(N ,t)>a(N)]=1[q(t)>q]]

T
. (3)

Here, 1[condition] ∈ {0, 1} denotes the indicator function, which returns 1 if and only if the specified
condition is satisfied. While Eq. (3) assesses the positive correlation of neurons towards achieving
the goal, covering the cases (a > a, q > q) and (a < a, q < q), where activation and performance
change in the same direction (positive correlation). However, it overlooks neurons that exhibit a
negative correlation with the goal but still carry valuable task-related knowledge, covering the cases
(a < a, q > q) and (a > a, q < q). Specifically, when the activation of a neuron falls below its

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Figure 2: Framework of NBSP. The agent scores and identifies RL skill neurons for each task by
measuring the activation in relation to the GM. While learning new tasks, the gradient of these
neurons is masked adaptively based on their scores to preserve the encoded skills, while still allowing
fine-tuning for new task learning. Additionally, a replay buffer is used to store a portion of the
experiences from previous tasks, which is periodically sampled to update the agent.

average activation, the agent performs well conversely. To this end, we define a comprehensive score
Score(N) for the neuron that takes into account both positive and negative effects:

Score(N) = max(Rover(N), 1−Rover(N)). (4)

Subsequently, we rank all neurons in the agent network, excluding those in the last layer for the few
neurons and their large role in determining performance, which is validated in Appendix C.10.5, in
descending order based on their scores. The RL skill neurons are determined by selecting the neurons
with the top m% highest scores, formally defined as follows, where τm(·) denotes the top-m selection
operator. And the pseudo-code of the identification method is shown in Appendix D.

NRL skill = τm(Score(N)) (5)

3.3 NEURON-LEVEL BALANCE BETWEEN STABILITY AND PLASTICITY

Building upon the concept of RL skill neurons, we propose a novel DRL framework — Neuron-level
Balance between Stability and Plasticity (NBSP), as shown in Figure 2. Unlike prior methods (Bai
et al., 2023; Kim et al., 2023), the framework proposed does not require complex network designs or
additional parameters. Given that RL skill neurons encode essential task-specific skills, preserving
their activation patterns is critical to maintaining knowledge from previous tasks during continual
tasks learning. However, simply freezing RL skill neurons would hinder the ability of the agent
to adapt to new tasks. To address this challenge, NBSP employs an adaptive gradient masking
technique. Specifically, during each update round in the continual learning process, the gradients of
RL skill neurons are selectively masked to restrict changes in their activation patterns while allowing
other neurons to adapt freely. This process is formally expressed as follows:

∆W:,j = mask
(l)
j ·∆W

(l)
:,j , (6)

where ∆W
(l)
:,j denotes the gradient with respect to the weight W (l)

:,j in the l-th layer of the network,

and j is the index of the output neuron in that layer. The term mask
(l)
j is associated with the score of

j-th neuron in the l-th layer, which could be calculated as follows:

mask(N) =

{
α(1− Score(N)) if N ∈ NRLskill

1 if N /∈ NRLskill
, (7)

where NRLskill represents the set of RL skill neurons, and α is a super-parameter that determines
the degree of restriction on these neurons, which is configured to 0.2 in the experiment. And gradient
masking is applied only to the online networks, where gradients are computed and parameters
are updated. The target networks are updated using EMA from the masked online networks. No

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

additional masking operation is required for target networks. By employing gradient masking, NBSP
effectively safeguards the encoded skills within RL skill neurons from interference during the
learning of new tasks, thereby enhancing stability. At the same time, RL skill neurons remain
adaptable, allowing fine-tuning to accommodate new tasks and maintaining high plasticity. In
addition, neurons except RL skill neurons are free to fully engage in learning new task-specific
knowledge, ensuring comprehensive learning across tasks.

To mitigate excessive drift from knowledge acquired in previous tasks, we integrate the experience
replay technique, periodically sampling prior experiences at specific intervals k. After training on a
task, a portion of the experiences, rather than the entirety, are stored in a unified replay buffer Dpre,
requiring only a modest memory footprint. By incorporating experience replay, the stability of DRL
agents is further enhanced. The corresponding loss function is defined as follows:

L = R(t) · E(st,at,st+1,rt,dt)∼Dpre
[L] + (1−R(t)) · E(st,at,st+1,rt,dt)∼D[L], (8)

where L denotes the original loss function, R(t) is a binary function that evaluates to 1 if and
only if the current step t is at an interval. D represents the replay buffer for the current task, and
(st, at, st+1, rt, dt) denotes the tuple of the current state, action, next state, reward, and whether the
episode is done sampled from the replay buffer. The pseudo-code of NBSP is shown in Appendix D.

4 EXPERIMENT

In this section, we evaluate the performance of NBSP on the Meta-World (Yu et al., 2020), Atari
(Mnih et al., 2013) and DMC (Tunyasuvunakool et al., 2020) benchmarks.

Experiment setting. We follow the the experimental paradigm of Abbas et al. (2023); Liu et al.
(2024), evaluating NBSP on a cycling sequence of tasks characterized by non-stationarity due to
changing environments over time. Specifically, the agent learns each task sequentially and transitions
to the next without resetting the learned networks. The task cycles through a fixed sequence, with a
cycle completing once all tasks in the sequence have been learned. The agent cycles twice, resulting
in each task being repeated twice. Details about the benchmarks are shown in Appendix C.2. For all
experiments, we use the Soft Actor-Critic (SAC) (Haarnoja et al., 2018) algorithm, as implemented
by CleanRL (Huang et al., 2022). Each agent is trained until either reaching a predefined maximum
number of steps or demonstrating stable mastery of the task in the Meta-World benchmark. Each
experiment is repeated using three different random seeds. The shaded regions in the figures and the
plus/minus numbers represent the standard error across multiple seeds. Detailed descriptions of the
hyperparameters and other experimental settings are provided in Appendix C.3.

Compared to the CRL training paradigm, our cycling training paradigm provides a more specific
evaluation of the balance between stability and plasticity. By repeating each task twice within a
cycling sequence, the setup not only assesses the plasticity in adapting to new tasks but also evaluates
its stability when revisiting previous tasks, mitigating the influence of task order.

Metric. Overall performance is commonly assessed using the Average Success Rate (ASR),
analogous to the AIA metric (Wang et al., 2024). The higher the ASR, the better the method balances
stability and plasticity. To evaluate the stability of the agent, we utilize the Forgetting Measure
(FM) (Chaudhry et al., 2018a). The lower the FM, the better the method maintains stability. To
assess the plasticity of the agent, we employ the Forward Transfer (FWT) metric (Lopez-Paz &
Ranzato, 2017). The higher the FWT, the better the method maintains plasticity. Further details about
evaluation metrics are available in Appendix C.4.

Baseline. To assess the effectiveness of the NBSP framework, we compare it with nine baseline
methods dealing with the balance between stability and plasticity. EWC (Kirkpatrick et al., 2017) and
NPC (Paik et al., 2019) primarily emphasize maintaining stability, while CRelu (Abbas et al., 2023),
CBP (Dohare et al., 2024), and PI (Nikishin et al., 2024) focus on enhancing plasticity. ANCL (Kim
et al., 2023), CoTASP (Yang et al., 2023), NE (Liu et al., 2024) and UPGD (Elsayed & Mahmood,
2024) aim to achieve a balance between stability and plasticity. Notably, CoTASP makes relevant
tasks share more neurons in the meta-policy network, NPC consolidates important neurons, and NE
dynamically adapts network topology via neuron growth and pruning, they are all relevant to neurons.
Detailed descriptions of these baselines can be found in Appendix C.1.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Table 1: Results of NBSP with other baselines on the Meta-World benchmark.
Cycling sequential tasks Metrics Methods

EWC NPC ANCL CoTASP CRelu CBP PI NE UPGD NBSP

(window-open
→ window-close)

ASR ↑ 0.63 ± 0.03 0.26 ± 0.01 0.66 ± 0.04 0.05 ± 0.01 0.26 ± 0.14 0.67 ± 0.05 0.61 ± 0.02 0.83 ± 0.04 0.65 ± 0.05 0.90 ± 0.04
FM ↓ 0.89 ± 0.07 0.68 ± 0.04 0.84 ± 0.10 0.01 ± 0.01 0.66 ± 0.42 0.78 ± 0.13 0.91 ± 0.07 0.27 ± 0.12 0.81 ± 0.09 0.18 ± 0.01

FWT ↑ 0.97 ± 0.02 0.26 ± 0.01 0.97 ± 0.03 0.04 ± 0.01 0.33 ± 0.19 0.95 ± 0.02 0.94 ± 0.01 0.95 ± 0.01 0.95 ± 0.02 0.96 ± 0.02

(drawer-open
→ drawer-close)

ASR ↑ 0.68 ± 0.06 0.35 ± 0.05 0.64 ± 0.02 0.07 ± 0.01 0.29 ± 0.20 0.61 ± 0.03 0.60 ± 0.07 0.72 ± 0.02 0.72 ± 0.01 0.96 ± 0.02
FM ↓ 0.80 ± 0.15 0.69 ± 0.05 0.88 ± 0.09 0.01 ± 0.01 0.31 ± 0.32 0.91 ± 0.03 0.71 ± 0.30 0.60 ± 0.02 0.69 ± 0.02 0.07 ± 0.06

FWT ↑ 0.98 ± 0.01 0.39 ± 0.09 0.96 ± 0.01 0.09 ± 0.00 0.42 ± 0.28 0.93 ± 0.04 0.88 ± 0.15 0.93 ± 0.01 0.96 ± 0.01 0.98 ± 0.01

(button-press-topdown
→ window-open)

ASR ↑ 0.66 ± 0.06 0.25 ± 0.00 0.61 ± 0.01 0.03 ± 0.00 0.33 ± 0.10 0.62 ± 0.01 0.63 ± 0.02 0.71 ± 0.03 0.51 ± 0.06 0.95 ± 0.05
FM ↓ 0.85 ± 0.14 0.67 ± 0.00 0.95 ± 0.05 0.01 ± 0.00 0.94 ± 0.01 0.97 ± 0.03 0.97 ± 0.05 0.73 ± 0.10 0.68 ± 0.14 0.08 ± 0.12

FWT ↑ 0.96 ± 0.01 0.25 ± 0.01 0.95 ± 0.03 0.04 ± 0.01 0.42 ± 0.20 0.98 ± 0.02 0.98 ± 0.02 0.96 ± 0.01 0.71 ± 0.13 0.98 ± 0.01
(window-open
→ window-close
→ drawer-open
→ drawer-close)

ASR ↑ 0.44 ± 0.05 0.19 ± 0.04 0.48 ± 0.04 0.04 ± 0.01 0.10 ± 0.06 0.43 ± 0.03 0.41 ± 0.06 0.61 ± 0.04 0.46 ± 0.01 0.66 ± 0.14
FM ↓ 0.74 ± 0.11 0.50 ± 0.02 0.80 ± 0.04 0.04 ± 0.01 0.39 ± 0.02 0.91 ± 0.05 0.84 ± 0.05 0.55 ± 0.06 0.50 ± 0.03 0.48 ± 0.18

FWT ↑ 0.83 ± 0.10 0.20 ± 0.05 0.89 ± 0.06 0.08 ± 0.01 0.13 ± 0.10 0.97 ± 0.02 0.82 ± 0.10 0.84 ± 0.08 0.71 ± 0.01 0.89 ± 0.12
(button-press-topdown
→ window-close
→ door-open
→ drawer-close)

ASR ↑ 0.43 ± 0.03 0.17 ± 0.01 0.44 ± 0.03 0.04 ± 0.01 0.14 ± 0.11 0.41 ± 0.02 0.38 ± 0.01 0.59 ± 0.04 0.34 ± 0.01 0.74 ± 0.07
FM ↓ 0.81 ± 0.09 0.47 ± 0.01 0.87 ± 0.02 0.04 ± 0.00 0.62 ± 0.16 0.94 ± 0.02 0.97 ± 0.02 0.55 ± 0.01 0.59 ± 0.02 0.34 ± 0.15

FWT ↑ 0.88 ± 0.10 0.19 ± 0.02 0.91 ± 0.08 0.07 ± 0.02 0.17 ± 0.15 0.97 ± 0.01 0.92 ± 0.07 0.91 ± 0.03 0.55 ± 0.02 0.95 ± 0.06

4.1 EXPERIMENT ON THE META-WORLD BENCHMARK

The experimental results of NBSP compared with other baselines on the Meta-World benchmark
are presented in Table 1. As shown in the final column, NBSP significantly outperforms all other
methods in the overall performance metric ASR. For two-task cycling tasks, NBSP achieves an ASR
consistently above 0.9, which is substantially higher than other baselines. Its stability metric, FM, is
markedly lower, while its plasticity metric, FWT, remains at a high level. Furthermore, NBSP also
demonstrates excellent performance in four-task cycling tasks, maintaining a substantial lead.

For stability-focused baselines, EWC achieves a relatively good ASR but still falls short of NBSP.
Moreover, EWC exhibits poor stability due to its high FM values. NPC performs even worse, failing
to maintain both stability and plasticity effectively. Among plasticity-focused baselines, CBP and PI
achieve comparable plasticity to NBSP, as reflected in their high FWT scores. However, both suffer
from severe stability loss, indicated by their higher FM values. Another plasticity-focused method,
CRelu, underperforms in both stability and plasticity. For baselines attempting to balance stability
and plasticity, ANCL achieves high plasticity with competitive FWT scores but fails to retain prior
knowledge, as reflected by its high FM value. CoTASP, despite being explicitly designed for this
trade-off, performs poorly overall. NE achieves the best metrics among baselines but still falls short
of NBSP, while UPGD trails NE slightly yet remains competitive.

The effectiveness of NBSP is further demonstrated in Figure 3, which showcases the training dynamics
of NBSP. Specifically, during the second cycle of learning the same task, the agent exhibits a high
success rate even before retraining, indicating that it has retained significant task knowledge. As
a result, the agent is able to master the task more rapidly. This highlights the ability of NBSP to
preserve knowledge from prior tasks while simultaneously maintaining the plasticity required to learn
new tasks effectively. The other training process is demonstrated in Appendix C.7. In summary,
NBSP delivers a remarkable improvement in maintaining stability without compromising plasticity,
achieving a well-balanced trade-off in DRL.

Figure 3: Training process of NBSP on the Meta-World benchmark. The segments to the left and
right of the dashed line represent the training processes of the first and second cycles, respectively.

4.2 ABLATION STUDY

To reveal the underlying working mechanisms of NBSP, we further evaluate (1) the two primary
components of NBSP: the gradient masking technique and experience replay technique, (2) the
neuron identification method, and (3) the two critical modules of DRL: the actor and the critic, (4)

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

sensitivity analysis of hyperparameters, (5) the role of experience replay, (6) the impact of task order,
(7) the generalization of NBSP applied to the PPO algorithm (Schulman et al., 2017).

Gradient masking and experience replay. To evaluate the contributions of the two core components
of NBSP, we designed five experimental settings: (1) vanilla SAC, (2) SAC with only the experience
replay, (3) SAC with only the gradient masking, (4) SAC with experience replay and hard gradient
masking, where the masks of RL skill neurons are set directly to zero, and (5) NBSP.

Table 2: Results of ablation study of gradient masking and
experience replay techniques.

Metrics (button-press-topdown→ window-open)

vanilla SAC experience
replay

only adaptive
gradient masking

only hard
gradient masking NBSP

ASR ↑ 0.62 ± 0.01 0.70 ± 0.08 0.71 ± 0.06 0.71±0.03 0.95 ± 0.05
FM ↓ 0.99 ± 0.02 0.50 ± 0.16 0.73 ± 0.21 0.72±0.04 0.08 ± 0.12
FWT ↑ 0.98 ± 0.02 0.92 ± 0.05 0.97 ± 0.02 0.98±0.03 0.98 ± 0.01

The results of the cycling sequen-
tial tasks (button-press-topdown →
window-open) are shown in Table 2.
From the results, we observe that: (1)
The vanilla SAC algorithm suffers
from severe stability loss, as indicated
by a high FM score. (2) Using either
experience replay or gradient mask-
ing alone alleviates the stability loss
to some extent, confirming their individual effectiveness. (3) Combining both techniques in NBSP
significantly improves performance, with lower FM and higher FWT. (4) Our adaptive gradient
masking, which sets masks of RL skill neurons based on their scores, outperforms hard masking
(setting masks to zero directly), demonstrating its superior effectiveness. These findings demonstrate
that neither experience replay nor gradient masking alone can properly balance stability and
plasticity, while their combination achieves optimal performance. The reason is that gradient
masking and experience replay focus on different mechanisms and therefore complement each other.
Gradient masking primarily targets RL skill neurons to reduce interference with past knowledge
while maintaining the ability to fine-tune for new tasks. And experience replay mainly acts on
neurons except RL skill neurons to prevent these neurons from being overly biased toward new tasks.
Additional results for different task settings are provided in Appendix C.10.1.

To further assess the effectiveness of gradient masking on RL Skill neurons, we measure the sensitivity
of network to perturbations applied to neurons that NBSP would mask (RL Skill neurons) versus those
it would not (non–RL Skill neurons). In the button-press-topdown task, we inject zero-mean Gaussian
noise into the activations of 10% of neurons. The noise is added either to (1) RL Skill neurons or (2)
non–RL Skill neurons, yielding success rates of 0.22 ± 0.03 and 0.92 ± 0.02, respectively. Perturbing
RL Skill neurons leads to a substantial performance drop, indicating that these neurons are critical
for encoding task-specific knowledge. In contrast, perturbing non–RL Skill neurons has only a minor
effect. This contrast demonstrates that masking RL Skill neurons is essential for preserving learned
behavior, thereby supporting the stability side of the stability–plasticity trade-off.

Table 3: Results of network performance with different com-
ponent.

vanilla SAC NBSP SAC + gradient masking SAC + experience replay

gradient-norm variance 7.45 5.62 3.38 8.96
network similarity 0.56 0.89 0.79 0.75

To more clearly characterize the effect
of experience replay, we conduct addi-
tional analyses on gradient-norm vari-
ance and parameter drift. (1) Gradient-
norm variance. We report gradient-
norm variance across four settings:
vanilla SAC, SAC with gradient masking, SAC with experience replay, and NBSP, as shown in
Table 3. The ordering of gradient-norm variance is SAC + experience replay > SAC > NBSP >
SAC + gradient masking. This ordering reveals a fundamental limitation of experience replay: al-
though replay introduces past transitions that help maintain memory, it also injects high-variance
gradients due to stale, off-policy, and often task-mismatched samples. Such noisy gradients desta-
bilize optimization and increase the likelihood of updates drifting toward suboptimal directions,
particularly when the agent encounters new tasks. Consequently, experience replay alone can harm
plasticity because its inherent gradient instability interferes with the efficient acquisition of new
behaviors. In contrast, gradient masking systematically suppresses interfering gradient components
and thus reduces gradient-norm variance. When combined with experience replay, gradient masking
effectively neutralizes the instability introduced by replay. As a result, NBSP preserves the benefits
of experience replay while mitigating its key drawback.

(2) Parameter similarity. We further evaluate the cosine similarity between network parameters
before and after learning a new task, with results reported in Table 3. The ordering of parameter
similarity is: NBSP > SAC + gradient masking > SAC + experience replay > vanilla SAC. Both

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

experience replay and gradient masking help constrain parameter drift, but through different mecha-
nisms. Experience replay anchors parameters by reintroducing historical information, yet stale and
task-mismatched samples still produce conflicting gradients that cause considerable displacement.
Gradient masking regulates harmful gradient directions, but without explicit historical supervision
it cannot fully prevent forgetting. As a result, neither mechanism alone is sufficient, experience
replay still allows substantial drift, and gradient masking alone cannot preserve comprehensive past
knowledge. When combined, however, experience replay supplies essential past-task information
while gradient masking stabilizes the update directions. This complementary interaction keeps
parameter changes within a range that preserves previously learned behaviors, explaining why NBSP
achieves substantially better stability–plasticity performance than either mechanism used in isolation.

Neuron identification method. To evaluate the proposed goal-oriented neuron identification method,
we compare it with three alternative strategies: (1) random neuron identification, (2) identifying
neurons with activation magnitude (Jung et al., 2020), and (3) identifying neurons with weight
magnitude (Dohare et al., 2021). As shown in Table 4, our goal-oriented method consistently
outperforms the other three methods across all three metrics: ASR, FM, and FWT, which confirms
that our method effectively identifies neurons critical for knowledge retention, ensuring better stability
and plasticity in cycling sequential task learning. These findings validate the necessity of task-
specific, goal-oriented neuron identification in enhancing balance between stability and plasticity.

Table 4: Results of ablation study of neuron identification methods.
Metrics (window-open→ window-close) (drawer-open→ drawer-close) (button-press-topdown→ window-open)

activation weight random ours activation weight random ours activation weight random ours

ASR ↑ 0.65±0.30 0.73±0.20 0.78±0.09 0.90±0.04 0.82±0.06 0.51±0.17 0.72±0.26 0.96±0.02 0.75±0.01 0.93±0.06 0.72±0.01 0.95±0.05
FM ↓ 0.56±0.37 0.44±0.31 0.42±0.13 0.18±0.01 0.44±0.16 0.67±0.00 0.41±0.28 0.07±0.06 0.65±0.02 0.15±0.12 0.70±0.05 0.08±0.12
FWT ↑ 0.73±0.35 0.81±0.22 0.90±0.06 0.96±0.02 0.98±0.02 0.69±0.22 0.83±0.23 0.98±0.01 0.99±0.00 0.98±0.02 0.96±0.02 0.98±0.01

Actor and critic. To get a deeper understanding of the individual roles of the actor and critic in DRL
agents, we evaluate NBSP with that only applied on actor and critic. The results are shown in Table 5.
The results indicate that both the actor and critic networks are essential for striking an optimal
balance between stability and plasticity. Notably, the critic proves to be the more critical module in
balancing this trade-off , which aligns with the insight from Ma et al. (2024) that plasticity loss in the
critic serves as the principal bottleneck impeding efficient training in DRL. We further investigate
this phenomenon by examining the training dynamics of actor–critic RL methods and obtain three
key observations: (1) Actor updates are driven by critic feedback; thus, even when RL skill neurons
in the actor are masked, the influence of critic can still lead to adaptation to new tasks at the cost of
prior knowledge. (2) Applying NBSP to the critic indirectly constrains the actor. (3) The recursive
updates of critic, with its target network maintained by an exponential moving average, help preserve
previous knowledge while integrating new skills. These findings highlight the distinct roles of the
actor and critic in balancing stability and plasticity, offering valuable guidance for future research.

Table 5: Results of ablation study of the actor and critic modules.
Metric (window-open→ window-close) (drawer-open→ drawer-close) (button-press-topdown→ window-open)

actor critic both actor critic both actor critic both
ASR ↑ 0.76 ± 0.10 0.79 ± 0.05 0.90 ± 0.04 0.79 ± 0.05 0.86 ± 0.02 0.96 ± 0.02 0.81 ± 0.11 0.85 ± 0.16 0.95 ± 0.05
FM ↓ 0.58 ± 0.19 0.48 ± 0.09 0.18 ± 0.01 0.55 ± 0.15 0.31 ± 0.03 0.07 ± 0.06 0.45 ± 0.28 0.35 ± 0.38 0.08 ± 0.12

FWT ↑ 0.97 ± 0.04 0.94 ± 0.05 0.96 ± 0.02 0.99 ± 0.01 0.96 ± 0.02 0.98 ± 0.01 0.95 ± 0.01 0.95 ± 0.03 0.98 ± 0.01

Figure 4: Performance of NBSP with dif-
ferent proportions of RL skill neurons.

The proportion of RL skill neurons. To evaluate the
impact of the proportion of RL skill neurons m on the
performance of NBSP, we experiment with various pro-
portions on the (button-press-topdown→ window-open)
cycling tasks. The results, shown in Figure 4, reveal an
interesting trend: as the proportion of RL skill neurons in-
creases, the ASR improves initially, but begins to decline
after reaching a certain threshold. Specifically, when the
proportion of masked neurons is too small, not all neurons
that encode task-specific skills can be correctly identified.
As a result, the true RL skill neurons must adjust their
activations to accommodate new tasks, ultimately reducing stability. Conversely, when the proportion
becomes too large, neurons that do not encode task-specific skills may be mistakenly selected as

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

RL skill neurons, which compromises their ability to learn new tasks and thereby reduces plasticity.
Crucially, our experiments demonstrate that NBSP consistently delivers ASR improvements across
a reasonably broad range of values (from 0.15 to 0.3). NBSP is highly robust to the choice of m
across this region, so selecting any value within this interval yields similarly high performance,
demonstrating the robustness of the method.

More ablation results. (1) The experience replay buffer stores information from all previously
encountered tasks. (2) NBSP performs well within certain robust ranges of hyperparameters, making
it easier to tune. (3) Task order does affect performance, but the impact is modest. (4) Vanilla PPO
performs worse than vanilla SAC in our setting, and NBSP helps achieve a better balance. However,
the effect is less pronounced than that of SAC. Please refer to Appendix C.10 for more details.

The role of RL skill neurons. Remarkably, we would like to highlight that RL skill neurons alone
cannot resolve catastrophic forgetting, those non–RL skill neurons, influenced by the environment
and context, also contribute to task success, and their forgetting can likewise cause failures. We
believe neuron-level research for generalization across tasks in a more general sense would be an
important future direction. Within our current framework, the primary contribution of RL skill
neurons is mitigating catastrophic interference by preventing the overwriting the encoded knowledge
during new task learning, which in turn synergizes with experience replay to alleviate catastrophic
forgetting.

4.3 EXPERIMENT ON OTHER BENCHMARKS

Table 6: Results of NBSP with other baselines on the Atari benchmark.
Cycling sequential games Metrics Methods

EWC NPC ANCL CoTASP CRelu CBP PI NE UPGD NBSP

(Pong→ Bowling)
AR ↑ 0.66 ± 0.07 0.51 ± 0.02 0.42 ± 0.29 -0.05 ± 0.02 0.02 ± 0.00 -0.09 ± 0.00 0.53 ± 0.01 0.45 ± 0.03 0.19 ± 0.08 0.87 ± 0.01
FM ↓ 0.58 ± 0.20 0.51 ± 0.04 0.46 ± 0.31 0.07 ± 0.01 0.01 ± 0.00 0.06 ± 0.00 0.78 ± 0.02 0.66 ± 0.04 0.46 ± 0.09 0.05 ± 0.03

FWT ↑ 0.70 ± 0.02 0.35 ± 0.02 0.47 ± 0.31 -0.05 ± 0.05 0.02 ± 0.01 -0.09 ± 0.00 0.60 ± 0.00 0.47 ± 0.02 0.19 ± 0.05 0.72 ± 0.01

(BankHeist→ Alien)
AR ↑ 0.46 ± 0.01 0.38 ± 0.06 0.46 ± 0.01 -0.08 ± 0.05 0.08 ± 0.05 0.12 ± 0.02 0.48 ± 0.14 0.39 ± 0.12 0.28 ± 0.01 0.57 ± 0.02
FM ↓ 0.98 ± 0.02 0.46 ± 0.14 0.98 ± 0.03 0.27 ± 0.04 0.52 ± 0.29 0.44 ± 0.09 0.88 ± 0.27 0.85 ± 0.11 0.60 ± 0.03 0.65 ± 0.07

FWT ↑ 0.71 ± 0.02 0.37 ± 0.03 0.72 ± 0.01 -0.16 ± 0.07 0.28 ± 0.11 0.30 ± 0.05 0.73 ± 0.26 0.63 ± 0.09 0.28 ± 0.02 0.72 ± 0.05

Table 7: Results of NBSP on the DMC benchmark.

Cycling sequential tasks Metrics Methods
Vanilla SAC NBSP

(Cartpole Swingup
→ Cartpole Balance)

AR ↑ 746.80± 5.26 843.47 ± 11.39
FM ↓ 307.42± 16.41 59.26 ± 10.89

FWT ↑ 874.63± 8.22 883.32 ± 6.69

(Walker Walk
→Walker Stand)

AR ↑ 790.26± 54.58 861.09 ± 24.99
FM ↓ 272.26± 67.62 170.63 ± 38.12

FWT ↑ 899.44± 26.46 914.59 ± 30.07

We further evaluate NBSP on the Atari and
DMC benchmarks to assess its generalization
ability. Atari games feature discrete action
spaces and DMC is a widely recognized bench-
mark for continuous control tasks. Episode re-
turns are used to evaluate the performance of
each task and the results are presented in Ta-
ble 6 and Table 7. On the Atari games, NBSP
demonstrates superior performance in balanc-
ing stability and plasticity, outperforming other
baselines across key evaluation metrics, including AR (Average Return), FM, and FWT, as with
the Meta-World benchmark. NBSP also demonstrates its advantage compared to vanilla SAC on
the DMC benchmark. These results further support that NBSP exhibits excellent generalization in
balance stability and plasticity across the Meta-World, Atari and DMC benchmarks.

5 CONCLUSION

This work addresses the fundamental issue of the stability-plasticity dilemma in DRL. To tackle
this problem, we introduce the concept of RL skill neurons by identifying neurons that significantly
contribute to knowledge retention, building upon which we then propose the Neuron-level Balance
between Stability and Plasticity framework, by employing gradient masking and experience replay
techniques on RL skill neurons. Experimental results on the Meta-World, Atari and DMC benchmarks
demonstrate that NBSP significantly outperforms existing methods in managing the stability-plasticity
trade-off. Future research could explore the application of RL skill neurons like model distillation
and extend NBSP to other learning paradigms, such as supervised learning.

Limitation. The hyperparameters, such as the number of RL Skill neurons and the replay frequency,
must currently be manually determined and tuned based on empirical experience, as no automatic
mechanism exists for selecting them. Developing such automated selection methods is an important
direction for future work.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

REFERENCES

Zaheer Abbas, Rosie Zhao, Joseph Modayil, Adam White, and Marlos C Machado. Loss of plasticity
in continual deep reinforcement learning. In Conference on Lifelong Learning Agents, pp. 620–636.
PMLR, 2023.

Hongjoon Ahn, Jinu Hyeon, Youngmin Oh, Bosun Hwang, and Taesup Moon. Reset & distill:
A recipe for overcoming negative transfer in continual reinforcement learning. arXiv preprint
arXiv:2403.05066, 2024.

Nishanth Anand and Doina Precup. Prediction and control in continual reinforcement learning.
Advances in Neural Information Processing Systems, 36, 2024.

OpenAI: Marcin Andrychowicz, Bowen Baker, Maciek Chociej, Rafal Jozefowicz, Bob McGrew,
Jakub Pachocki, Arthur Petron, Matthias Plappert, Glenn Powell, Alex Ray, et al. Learning
dexterous in-hand manipulation. The International Journal of Robotics Research, 39(1):3–20,
2020.

Jordan Ash and Ryan P Adams. On warm-starting neural network training. Advances in neural
information processing systems, 33:3884–3894, 2020.

Craig Atkinson, Brendan McCane, Lech Szymanski, and Anthony Robins. Pseudo-rehearsal: Achiev-
ing deep reinforcement learning without catastrophic forgetting. Neurocomputing, 428:291–307,
2021a.

Craig Atkinson, Brendan McCane, Lech Szymanski, and Anthony Robins. Pseudo-rehearsal: Achiev-
ing deep reinforcement learning without catastrophic forgetting. Neurocomputing, pp. 291–307,
Mar 2021b. doi: 10.1016/j.neucom.2020.11.050. URL http://dx.doi.org/10.1016/j.
neucom.2020.11.050.

Fengshuo Bai, Hongming Zhang, Tianyang Tao, Zhiheng Wu, Yanna Wang, and Bo Xu. Picor: Multi-
task deep reinforcement learning with policy correction. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 37, pp. 6728–6736, 2023.

Anthony Bau, Yonatan Belinkov, Hassan Sajjad, Nadir Durrani, Fahim Dalvi, and James Glass.
Identifying and controlling important neurons in neural machine translation. In International
Conference on Learning Representations, 2018.

David Bau, Jun-Yan Zhu, Hendrik Strobelt, Agata Lapedriza, Bolei Zhou, and Antonio Torralba.
Understanding the role of individual units in a deep neural network. Proceedings of the National
Academy of Sciences, 117(48):30071–30078, 2020.

Marc G Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The arcade learning environ-
ment: An evaluation platform for general agents. Journal of Artificial Intelligence Research, 47:
253–279, 2013.

Gail A Carpenter and Stephen Grossberg. A massively parallel architecture for a self-organizing
neural pattern recognition machine. Computer vision, graphics, and image processing, 37(1):
54–115, 1987.

Gail A. Carpenter and Stephen Grossberg. Art 2: Self-organization of stable category recognition
codes for analog input patterns. In SPIE Proceedings,Intelligent Robots and Computer Vision VI,
Feb 1988. doi: 10.1117/12.942747. URL http://dx.doi.org/10.1117/12.942747.

Arslan Chaudhry, Puneet K Dokania, Thalaiyasingam Ajanthan, and Philip HS Torr. Riemannian
walk for incremental learning: Understanding forgetting and intransigence. In Proceedings of the
European conference on computer vision (ECCV), pp. 532–547, 2018a.

Arslan Chaudhry, Marc’Aurelio Ranzato, Marcus Rohrbach, and Mohamed Elhoseiny. Efficient
lifelong learning with a-gem. In International Conference on Learning Representations, 2018b.

Jianhui Chen, Xiaozhi Wang, Zijun Yao, Yushi Bai, Lei Hou, and Juanzi Li. Finding safety neurons
in large language models. arXiv preprint arXiv:2406.14144, 2024.

11

http://dx.doi.org/10.1016/j.neucom.2020.11.050
http://dx.doi.org/10.1016/j.neucom.2020.11.050
http://dx.doi.org/10.1117/12.942747

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Damai Dai, Li Dong, Yaru Hao, Zhifang Sui, Baobao Chang, and Furu Wei. Knowledge neurons
in pretrained transformers. In Proceedings of the 60th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), Jan 2022. doi: 10.18653/v1/2022.acl-long.
581. URL http://dx.doi.org/10.18653/v1/2022.acl-long.581.

Shibhansh Dohare, Richard S Sutton, and A Rupam Mahmood. Continual backprop: Stochastic
gradient descent with persistent randomness. arXiv preprint arXiv:2108.06325, 2021.

Shibhansh Dohare, J Fernando Hernandez-Garcia, Qingfeng Lan, Parash Rahman, A Rupam Mah-
mood, and Richard S Sutton. Loss of plasticity in deep continual learning. Nature, 632(8026):
768–774, 2024.

Amil Dravid, Yossi Gandelsman, Alexei A Efros, and Assaf Shocher. Rosetta neurons: Mining the
common units in a model zoo. In Proceedings of the IEEE/CVF International Conference on
Computer Vision, pp. 1934–1943, 2023.

Mohamed Elsayed and A Rupam Mahmood. Addressing loss of plasticity and catastrophic forgetting
in continual learning. arXiv preprint arXiv:2404.00781, 2024.

Martial eMermillod, Aurélia eBugaiska, and Patrick eBONIN. The stability-plasticity dilemma:
Investigating the continuum from catastrophic forgetting to age-limited learning effects. Frontiers
in Psychology,Frontiers in Psychology, Aug 2013.

Farama Foundation. Atari environments in gymnasium. https://gymnasium.farama.
org/environments/atari/, 2024. URL https://gymnasium.farama.org/
environments/atari/. Accessed: 2024-09-14.

Wes Gurnee and Max Tegmark. Language models represent space and time. In The Twelfth
International Conference on Learning Representations, Oct 2023.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In International conference
on machine learning, pp. 1861–1870. PMLR, 2018.

Shengyi Huang, Rousslan Fernand Julien Dossa, Chang Ye, Jeff Braga, Dipam Chakraborty, Kinal
Mehta, and JoÃG, o GM AraÃšjo. Cleanrl: High-quality single-file implementations of deep
reinforcement learning algorithms. Journal of Machine Learning Research, 23(274):1–18, 2022.

Sangwon Jung, Hongjoon Ahn, Sungmin Cha, and Taesup Moon. Continual learning with node-
importance based adaptive group sparse regularization. Advances in neural information processing
systems, 33:3647–3658, 2020.

Sanghwan Kim, Lorenzo Noci, Antonio Orvieto, and Thomas Hofmann. Achieving a better stability-
plasticity trade-off via auxiliary networks in continual learning. CVPR2023, Mar 2023.

B Ravi Kiran, Ibrahim Sobh, Victor Talpaert, Patrick Mannion, Ahmad A Al Sallab, Senthil Yogamani,
and Patrick Pérez. Deep reinforcement learning for autonomous driving: A survey. IEEE
Transactions on Intelligent Transportation Systems, 23(6):4909–4926, 2021.

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A.
Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, Demis Hassabis,
Claudia Clopath, Dharshan Kumaran, and Raia Hadsell. Overcoming catastrophic forgetting in
neural networks. Proceedings of the National Academy of Sciences, pp. 3521–3526, Mar 2017. doi:
10.1073/pnas.1611835114. URL http://dx.doi.org/10.1073/pnas.1611835114.

Saurabh Kumar, Henrik Marklund, and Benjamin Van Roy. Maintaining plasticity in continual
learning via regenerative regularization. 2023.

Jiashun Liu, Johan Obando-Ceron, Aaron Courville, and Ling Pan. Neuroplastic expansion in deep
reinforcement learning. arXiv preprint arXiv:2410.07994, 2024.

Jiashun Liu, Zihao Wu, Johan Obando-Ceron, Pablo Samuel Castro, Aaron Courville, and Ling Pan.
Measure gradients, not activations! enhancing neuronal activity in deep reinforcement learning.
arXiv preprint arXiv:2505.24061, 2025.

12

http://dx.doi.org/10.18653/v1/2022.acl-long.581
https://gymnasium.farama.org/environments/atari/
https://gymnasium.farama.org/environments/atari/
https://gymnasium.farama.org/environments/atari/
https://gymnasium.farama.org/environments/atari/
http://dx.doi.org/10.1073/pnas.1611835114

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

David Lopez-Paz and Marc’Aurelio Ranzato. Gradient episodic memory for continual learning.
Advances in neural information processing systems, 30, 2017.

Guozheng Ma, Lu Li, Sen Zhang, Zixuan Liu, Zhen Wang, Yixin Chen, Li Shen, Xueqian Wang, and
Dacheng Tao. Revisiting plasticity in visual reinforcement learning: Data, modules and training
stages. In The Twelfth International Conference on Learning Representations, 2024.

Arun Mallya and Svetlana Lazebnik. Packnet: Adding multiple tasks to a single network by iterative
pruning. In Proceedings of the IEEE conference on Computer Vision and Pattern Recognition, pp.
7765–7773, 2018.

Michael McCloskey and Neal J Cohen. Catastrophic interference in connectionist networks: The
sequential learning problem. In Psychology of learning and motivation, volume 24, pp. 109–165.
Elsevier, 1989.

Jorge A Mendez, Harm van Seijen, and Eric Eaton. Modular lifelong reinforcement learning via
neural composition. arXiv preprint arXiv:2207.00429, 2022.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan
Wierstra, and Martin Riedmiller. Playing atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602, 2013.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Bellemare,
Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level control
through deep reinforcement learning. nature, 518(7540):529–533, 2015.

Pavlo Molchanov, Stephen Tyree, Tero Karras, Timo Aila, and Jan Kautz. Pruning convolutional
neural networks for resource efficient inference. In International Conference on Learning Repre-
sentations, 2022.

Evgenii Nikishin, Max Schwarzer, Pierluca D’Oro, Pierre-Luc Bacon, and Aaron Courville. The
primacy bias in deep reinforcement learning. In International conference on machine learning, pp.
16828–16847. PMLR, 2022a.

Evgenii Nikishin, Max Schwarzer, Pierluca D’Oro, Pierre-Luc Bacon, and Aaron Courville. The
primacy bias in deep reinforcement learning. In International conference on machine learning, pp.
16828–16847. PMLR, 2022b.

Evgenii Nikishin, Junhyuk Oh, Georg Ostrovski, Clare Lyle, Razvan Pascanu, Will Dabney, and André
Barreto. Deep reinforcement learning with plasticity injection. Advances in Neural Information
Processing Systems, 36, 2024.

Inyoung Paik, Sangjun Oh, Tae-Yeong Kwak, and InJung Kim. Overcoming catastrophic forgetting
by neuron-level plasticity control. AAAI2020, Jul 2019.

Hassan Sajjad, Nadir Durrani, and Fahim Dalvi. Neuron-level interpretation of deep nlp models: A
survey. Transactions of the Association for Computational Linguistics, 10:1285–1303, 2022.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Ghada Sokar, Rishabh Agarwal, Pablo Samuel Castro, and Utku Evci. The dormant neuron phe-
nomenon in deep reinforcement learning. In International Conference on Machine Learning, pp.
32145–32168. PMLR, 2023.

Richard S Sutton. Reinforcement learning: An introduction. A Bradford Book, 2018.

Tianyi Tang, Wenyang Luo, Haoyang Huang, Dongdong Zhang, Xiaolei Wang, Xin Zhao, Furu
Wei, and Ji-Rong Wen. Language-specific neurons: The key to multilingual capabilities in large
language models. arXiv preprint arXiv:2402.16438, 2024.

Saran Tunyasuvunakool, Alistair Muldal, Yotam Doron, Siqi Liu, Steven Bohez, Josh Merel, Tom
Erez, Timothy Lillicrap, Nicolas Heess, and Yuval Tassa. dm_control: Software and tasks for
continuous control. Software Impacts, 6:100022, 2020.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Liyuan Wang, Xingxing Zhang, Hang Su, and Jun Zhu. A comprehensive survey of continual learning:
theory, method and application. IEEE Transactions on Pattern Analysis and Machine Intelligence,
2024.

Xiaozhi Wang, Kaiyue Wen, Zhengyan Zhang, Lei Hou, Zhiyuan Liu, and Juanzi Li. Finding skill
neurons in pre-trained transformer-based language models. In Proceedings of the 2022 Conference
on Empirical Methods in Natural Language Processing, pp. 11132–11152, 2022.

Maciej Wolczyk, Michał Zajac, Razvan Pascanu, Łukasz Kuciński, and Piotr Miłoś. Disentangling
transfer in continual reinforcement learning. Advances in Neural Information Processing Systems,
35:6304–6317, 2022.

Haoyun Xu, Runzhe Zhan, Derek F Wong, and Lidia S Chao. Let’s focus on neuron: Neuron-level
supervised fine-tuning for large language model. arXiv preprint arXiv:2403.11621, 2024.

Ruihan Yang, Huazhe Xu, Yi Wu, and Xiaolong Wang. Multi-task reinforcement learning with soft
modularization. Advances in Neural Information Processing Systems, 33:4767–4777, 2020.

Yijun Yang, Tianyi Zhou, Jing Jiang, Guodong Long, and Yuhui Shi. Continual task allocation in
meta-policy network via sparse prompting. In International Conference on Machine Learning, pp.
39623–39638. PMLR, 2023.

Tianhe Yu, Deirdre Quillen, Zhanpeng He, Ryan Julian, Karol Hausman, Chelsea Finn, and Sergey
Levine. Meta-world: A benchmark and evaluation for multi-task and meta reinforcement learning.
In Conference on robot learning, pp. 1094–1100. PMLR, 2020.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

A RELATED WORK

Balance between stability and plasticity. In DRL, the agent faces a fundamental challenge: the
stability-plasticity dilemma, first introduced by Carpenter & Grossberg (1988). Recent research has
proposed various strategies to address this issue by balancing stability and plasticity.

Replay-based methods are widely employed to enhance stability by reusing experiences from past
distributions. For example, Chaudhry et al. (2018b) introduced A-GEM, which combines episodic
memory to ensure that the average loss of prior tasks does not increase when learning a new task.
Similarly, Wolczyk et al. (2022) proposed ClonEx-SAC, which uses actor behavioral cloning and best-
return exploration to boost performance in CRL. To reduce storage requirements, pseudo-rehearsals
generated from a generative model have also been proposed (Atkinson et al., 2021a).

Maintaining the expressiveness of neurons is key to preserving plasticity. Nikishin et al. (2022b)
proposed a mechanism that periodically resets a portion of the agent’s network to counteract plasticity
loss. Likewise, Nikishin et al. (2024) introduced plasticity injection, a lightweight intervention that
enhances network plasticity without increasing trainable parameters or introducing prediction bias.
The Reset & Distillation (R&D) framework combines resetting the online actor-critic network for new
tasks with offline distillation of knowledge from previous action probabilities, effectively retaining
plasticity (Ahn et al., 2024). Additionally, Abbas et al. (2023) proposed the Concatenated ReLUs
(CReLUs) activation function to prevent activation collapse, thereby alleviating plasticity degradation.

Modularity-based approaches have shown promise in balancing stability and plasticity by decoupling
task-specific and general knowledge. For instance, Anand & Precup (2024) decomposed the value
function into a permanent value function, which captures persistent knowledge, and a transient
value function, which facilitates rapid adaptation. Yang et al. (2020) designed a routing network to
estimate task-specific routing strategies, reconfigure the base network, and combine routes using
a soft modularity mechanism, making it effective for sequential tasks. Similarly, Mendez et al.
(2022) proposed a compositional lifelong RL framework that uses accumulated neural components
to accelerate learning for new tasks while preserving performance on past tasks via offline RL and
replayed experiences.

Neuron-level Research. Recent research highlights that not all neurons remain active across varying
contexts, and this neuron sparsity is often positively correlated with task-specific performance (Xu
et al., 2024). Building on this insight, numerous studies have focused on identifying and leveraging
skill neurons to interpret network behavior and tackle specific challenges, achieving significant
advancements. For example, skill neurons in pre-trained Transformers, which demonstrate strong
predictive value for task labels, have been utilized for network pruning to enhance efficiency and
improve transferability (Wang et al., 2022). Sokar et al. (2023) investigate dormant neurons in deep
reinforcement learning and propose a method to recycle them during training. Similarly, Dravid
et al. (2023) introduce Rosetta Neurons, enabling cross-class alignments and transformations without
specialized training. In large language models, language-specific neurons have been identified to
control output languages by selective activation or deactivation (Tang et al., 2024), while safety
neurons have been analyzed to enhance safety alignment through mechanistic interpretability (Chen
et al., 2024).

Despite these achievements, the exploration of skill neurons in DRL remains limited. Existing neuron-
level approaches primarily focus on task-specific sub-network selection. For instance, CoTASP learns
hierarchical dictionaries and meta-policies to generate sparse prompts and extract sub-networks
as task-specific policies (Yang et al., 2023). Similarly, Mallya & Lazebnik (2018) sequentially
allocate multiple tasks within a single network through iterative pruning and re-training, balancing
performance and storage efficiency. Unlike these methods, our work identifies RL skill neurons
specifically tailored to deep reinforcement learning, ensuring a balance between stability and plasticity
by preserving the task-relevant knowledge encoded in these neurons while allowing for fine-tuning.

B PRELIMINARY

B.1 MARKOV DECISION PROCESS (MDP)

A Markov Decision Process(MDP) is a framework used to describe a problem involving learning
from actions to achieve a goal. Almost all reinforcement learning problems can be characterized

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

as a Markov Decision Process. Each MDP is defined by a tuple < S,A, P,R, γ >, where S and A
represent state and action spaces respectively. The transition dynamics of the MDP are defined by the
function P : S×A×S → [0, 1], which represents the probability of transitioning from a give state s
with action a to state s′. The reward function is represented by R : S ×A× S → R, and γ ∈ (0, 1)
is the discount factor. At each time step t, an agent observes the state of the environment, denoted as
st, and selects an action at according to a policy π(a|s). One time step later, the agent receives a
numerical reward rt+1 and transitions to a new state st+1. In the simplest case, the return is the sum
of the rewards when the agent–environment interaction naturally breaks into subsequences, which we
refer to episodes (Sutton, 2018).

B.2 SOFT ACTOR-CRITIC (SAC)

Soft Actor-Critic (SAC) is an off-policy actor-critic deep reinforcement learning algorithm that
leverages maximum entropy to promote exploration. This work employs SAC to train a policy that
effectively balances stability and plasticity , chosen for its sample efficiency, excellent performance,
and robust stability. In this framework, the actor aims to maximize both the expected reward and the
entropy of the policy. The parameters ϕ of the actor are optimized by minimizing the following loss
function:

Jπ(ϕ) = Est∼D,at∼πϕ
[αlogπϕ(at|st)−Qθ(st, at)],

where D is the replay buffer, α is the temperature parameter controlling the trade-off between
exploration and exploitation, θ denotes the parameters of the critic network, πϕ represents the policy
learned by the actor ϕ , and Qθ denotes the Q-value estimated by the critic θ. The critic network is
trained to minimize the squared residual error:

JQ(θ) = E(st,at,st+1)∼D[
1

2
(Qθ(st, at)− rt − γV̂ (st+1)],

V̂ (st) = Eat∼πϕ
[Qθ(st, at)− αlogπϕ(at|st)],

where γ represents the discount factor.

B.3 NEURON

In neural networks, various components, such as blocks and layers, play distinct roles. Here, we
define a neuron as a single output dimension from a layer. For example, in a fully connected layer,
each output dimension corresponds to a neuron. Similarly, in a convolutional layer, each output
channel represents a neuron. Furthermore, following the terminology used by Sajjad et al. (2022),
we classify neurons that encapsulate a single concept as focused neurons, while a group of neurons
collectively representing a concept are termed group neurons.

C EXPERIMENT

C.1 BASELINE

EWC: Elastic Weight Consolidation (EWC) (Kirkpatrick et al., 2017) addresses the challenge of
catastrophic forgetting by allowing neural networks to retain proficiency in previously learned tasks
even after a long hiatus. It achieves this by selectively slowing down learning for weights that are
crucial for retaining knowledge of these tasks. This approach has demonstrated excellent performance
in sequentially solving a series of classification tasks, such as those in the MNIST handwritten digit
dataset, and in learning several Atari 2600 games sequentially.

NPC: Neuron-level Plasticity Control (NPC) (Paik et al., 2019) preserves the existing knowledge
from the previous tasks by controlling the plasticity of the network at the neuron level. NPC estimates
the importance value of each neuron and consolidates important neurons by applying lower learning
rates, rather than restricting individual connection weights to stay close to the values optimized for the
previous tasks. The experimental results on the several classification datasets show that neuron-level
consolidation is substantially effective.

ANCL: Auxiliary Network Continual Learning (ANCL) is an innovative approach that incorporates an
auxiliary network to enhance plasticity within a model that primarily emphasizes stability. Specifically,

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

this framework introduces a regularizer that effectively balances plasticity and stability, achieving
superior performance over strong baselines in both task-incremental and class-incremental learning
scenarios.

CoTASP: Continual Task Allocation via Sparse Prompting (CoTASP) (Yang et al., 2023) learns
over-complete dictionaries to produce sparse masks as prompts extracting a sub-network for each task
from a meta-policy network. Hence, relevant tasks share more neurons in the meta-policy network
due to similar prompts while cross-task interference causing forgetting is effectively restrained. It
outperforms existing continual and multi-task RL methods on all seen tasks, forgetting reduction,
and generalization to unseen tasks. CoTASP: Continual Task Allocation via Sparse Prompting
(CoTASP) (Yang et al., 2023) learns over-complete dictionaries to produce sparse masks as prompts
extracting a sub-network for each task from a meta-policy network. Hence, relevant tasks share more
neurons in the meta-policy network due to similar prompts while cross-task interference causing
forgetting is effectively restrained. It outperforms existing continual and multi-task RL methods on
all seen tasks, forgetting reduction, and generalization to unseen tasks.

CRelu: Concatenated ReLUs (CReLUs) (Abbas et al., 2023) is a simple activation function that
concatenates the input with its negation and applies ReLU to the result. It performs effectively in
facilitating continual learning in a changing environment.

CBP: Continual BackPropagation (CBP) (Dohare et al., 2024) reinitializes a small number of units
during training, typically fewer than one per step. To prevent disruption of what the network
has already learned, only the least-used units are considered for reinitialization. It shows great
performance on Continual ImageNet and class-incremental CIFAR-100.

PI: Plasticity Injection (PI) (Nikishin et al., 2024) freeze the parameters θ and introduce a new set
of parameters θ′ sampled from random initialization at some point in training, where the network
might have started losing plasticity. The results on Atari show that plasticity injection attains stronger
performance compared to alternative methods while being computationally efficient.

NE: Neuroplastic Expansion(NE) (Liu et al., 2024) maintains learnability and adaptability throughout
the entire training process by dynamically growing the network from a smaller initial size to its full
dimension.

UPGD: Utility-based Perturbed Gradient Descent (UPGD) (Elsayed & Mahmood, 2024) combines
gradient updates with perturbations, where it applies smaller modifications to more useful units,
protecting them from forgetting, and larger modifications to less useful units, rejuvenating their
plasticity.

C.2 BENCHMARK

Meta-World. Meta-World is an open-source benchmark for meta-reinforcement learning and
multitask learning, comprising 50 distinct robotic manipulation tasks (Yu et al., 2020).

All tasks are executed by a simulated Sawyer robot, with the action space defined as a 2-tuple: the
change in the 3D position of the end-effector, followed by a normalized torque applied to the gripper
fingers.

The observation space has a consistent dimensionality of 39, although different dimensions correspond
to various aspects of each task. Typically, the observation space is represented as a 6-tuple, including
the 3D Cartesian position of the end-effector, a normalized measure of the gripper’s openness, the 3D
position and the quaternion of the first object, the 3D position and quaternion of the second object, all
previous measurements within the environment, and the 3D position of the goal.

The reward function for all tasks is structured and multi-component, aiding in effective policy learning
for each task component. With this design, the reward functions maintain a similar magnitudes across
tasks, generally ranging between 0 and 10. The descriptions of the six tasks used in our experiments
are listed below, and the appearance of these tasks is shown in Figure 5.

• drawer-open: Open a drawer, with randomized drawer positions.

• drawer-close: Push and close a drawer, with randomized drawer positions.

• window-open: Push and open a window, with randomized window positions.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

• window-close: Push and close a window, with randomized window positions.
• door-open: Open a door with a revolving joint. Randomize door positions.
• button-press-topdown: Press a button from the top. Randomize button positions.

Figure 5: Tasks in the Meta-World benchmark used in our experiments.

Atari. Atari environments are simulated using the Arcade Learning Environment (ALE) (Bellemare
et al., 2013) via the Stella emulator.

Each environment utilizes a subset of the full action space, which includes actions like NOOP,
FIRE, UP, RIGHT, LEFT, DOWN, UPRIGHT, UPLEFT, DOWNRIGHT, DOWNLEFT, UPFIRE,
RIGHTFIRE, LEFTFIRE, DOWNFIRE, UPRIGHTFIRE, UPLEFTFIRE, DOWNRIGHTFIRE, and
DOWNLEFTFIRE. By default, most environments employ only a smaller subset of these actions,
excluding those that have no effect on gameplay.

Observations in Atari environments are RGB images displayed to human players, with obs_type =
”rgb”, corresponding to an observation space defined as Box(0, 255, (210, 160, 3), np.uint8).

The specific reward dynamics vary depending on the environment and are typically detailed in the
game’s manual.

The descriptions of the four games used in our experiments are listed below (Foundation, 2024), and
the appearance of these games is shown in Figure 6.

• Bowling: The goal is to score as many points as possible in a 10-frame game. Each frame allows
up to two tries. Knocking down all pins on the first try is called a "strike", while doing so on the
second try is a "spare". Failing to knock down all pins in two attempts results in an "open" frame.

• Pong: You control the right paddle and compete against the computer-controlled left paddle. The
objective is to deflect the ball away from your goal and into the opponent’s goal.

• BankHeist: You play as a bank robber trying to rob as many banks as possible while avoiding the
police in maze-like cities. You can destroy police cars using dynamite and refill your gas tank by
entering new cities. Lives are lost if you run out of gas, are caught by the police, or run over your
own dynamite.

• Alien: You are trapped in a maze-like spaceship with three aliens. Your goal is to destroy their
eggs scattered throughout the ship while avoiding the aliens. You have a flamethrower to fend
them off and can occasionally collect a power-up (pulsar) that temporarily enables you to kill
aliens.

Figure 6: Games in the Atari benchmark used in our experiments.

DMC. DeepMind Control Suite (DMC) (Tunyasuvunakool et al., 2020) is a widely used set of
standardized environments for reinforcement learning research, designed to provide a challenging

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

benchmark for continuous control tasks. Built upon the powerful MuJoCo physics engine, it offers a
diverse collection of simulations, ranging from simple cart-pole balancing to complex locomotion
tasks for cheetah-like quadrupeds and humanoids.

C.3 EXPERIMENT SETTING

For all experiments, we utilize the open-source PyTorch implementation of Soft Actor-Critic (SAC)
provided by CleanRL (Huang et al., 2022) on a single RTX2080Ti GPU. CleanRL is a Deep
Reinforcement Learning library that offers high-quality, single-file implementations with research-
friendly features. The code is both clean and straightforward, and we adhere to the configurations
provided by CleanRL. During training, we employ an ϵ-greedy exploration policy at the start,
setting ϵ = 1 for the first 104 time steps to promote exploration. The environment is wrapped
using Gym wrappers to facilitate experimentation. For the Meta-World benchmark, we utilize the
RecordEpisodeStatistics wrapper to gather episode statistics. For the Atari benchmark, in addition
to RecordEpisodeStatistics, we preprocess the 210 × 160 pixel images by downsampling them to
84× 84 using bilinear interpolation, converting the RGB images to the YUV format, and using only
the grayscale channel. Additionally, we set a maximum limit on the number of noop and skip steps to
standardize the exploration.

Regarding network architecture, we use the same actor and critic networks for all tasks within the
same benchmark to ensure consistency. For the Meta-World benchmark, we employ a neural network
comprising four fully connected layers, of which the hidden size is [768, 768, 768]. For the Atari
benchmark, we use a convolutional neural network (CNN) with three convolutional layers featuring
32, 64, and 64 channels, respectively, followed by three fully connected layers, of which the hidden
size is [768, 768].

To reduce randomness and enhance the reliability of our results, we train each agent using three
random seeds. Additional hyper-parameters for the SAC algorithm applied in the Meta-World, Atari
and DMC benchmarks are detailed in Table 8.

Table 8: Hyper-parameters of SAC in our experiments.

Parameters Values for Meta-World Values for Atari Values for DMC
Initial collect steps 10000 20000 10000

Discount factor 0.99 0.99 0.99
Training environment steps 106 1.5× 106, 3× 106 3× 105

Testing environment steps 105 105 105

Replay buffer size 106 2× 105 106

Updates per environment step (Replay Ratio) 2 4 2
Target network update period 1 8000 1
Target smoothing coefficient 0.005 1 0.005

Optimizer Adam Adam Adam
Policy learning rate 3× 10−4 10−4 3× 10−4

Q-value learning rate 10−3 10−4 10−3

Minibatch size 256 64 256
Alpha 0.2 0.2 0.2

Autotune True True True
Average environment steps of success rate 10 - -

Stable threshold to finish training 0.9 - -
Replay interval 10 10 10

No-op max - 30 -
Target entropy scale - 0.89 -

Storing experience size 105 105 105

Average steps 5× 104 5× 104 5× 104

Proportion of RL skill neurons 0.2 0.2 0.2

C.4 METRICS

Overall performance is commonly assessed using the Average Success Rate (ASR), analogous to the
AIA metric (Wang et al., 2024). Let sri,j represent the success rate on the j-th task after completing
the learning of the i-th task (i ≥ j), H denote the number of tasks. The ASR is defined as follows.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

The higher the ASR, the better the method balances stability and plasticity.

ASR =
1

H

H∑
i=1

1

i

∑
i≥j

sri,j , (9)

To evaluate the stability of the agent, we utilize the Forgetting Measure (FM) (Chaudhry et al.,
2018a). The lower the FM, the better the method maintains stability, which is calculated as:

FM =
1

H − 1

H∑
i=2

1

i− 1

∑
i≥j

max
l∈{1,...,i−1}

(srl,j − sri,j). (10)

To assess the plasticity of the agent, we employ the Forward Transfer (FWT) metric (Lopez-Paz &
Ranzato, 2017), which is calculated as follows:

FWT =
1

H

H∑
i=1

sri,i. (11)

The higher the FWT, the better the method maintains plasticity.

For the Meta-World benchmark, the average success rate is computed over 20 episodes. For the Atari
benchmark, the success rate is replaced by the return of each episode. We normalize the return for
each game to obtain summary statistics across games, as follows:

R =
ragent − rrandom
rhuman − rrandom

, (12)

where ragent represents the average return evaluated over 105 steps, the random score rrandom and
human score rhuman are consistent with those used by Mnih et al. (2015), as detailed in Table 9.

Table 9: Normalization scores of Atari games.

games rrandom rhuman

Bowling 23.1 154.8
Pong -20.7 9.3

BankHeist 14.2 734.4
Alien 227.5 6875

For the Atari benchmark tasks, the overall performance is evaluated by Average Return (AR), which
is analogous to ASR in the Meta-World benchmark. It is calculated as follows:

AR =
1

k

k∑
i=1

1

i

∑
i≥j

Ri,j , (13)

where Ri,j represents the average return evaluated on the j-th task after completing the learning of
the i-th task (i ≥ j), and k represents the number of tasks. A higher AR indicates better performance
in balancing stability and plasticity.

C.5 RL SKILL NEURONS

To validate the existence of RL skill neurons in sequential task learning instead of single task
learning, we conduct an additional analysis comparing the activation distributions of neurons when
learning button-press-topdown in isolation versus learning button-press-topdown and window-open
simultaneously. As shown in Figure 7, the activation distribution of a representative neuron remains
highly correlated with task success, regardless of whether it is learned in isolation or alongside
another skill. This observation supports our hypothesis that skill-specific neurons retain their essential
role even in a sequential task learning scenario.

Additionally, we dig deeper into the identified RL skill neurons and separate them into general and
specific skills. How to deeply investigate general skills is key for our future research. To explore

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Figure 7: Distribution histogram of the activations of a neuron in two learning settings.

this, we design an experiment to verify the existence of general and specific skills. After sequentially
training on the button-press-topdown and window-open tasks, we identify the RL skill neurons
associated with each task. We hypothesize that the intersection set represents general skill neurons,
while the difference set represents specific skill neurons. To validate this hypothesis, we zero out the
outputs of these neurons separately. The results in Table 10 show that when the outputs of the general
skill neurons are zeroed out, the agent fails to complete both tasks. In contrast, when the outputs of
task-specific neurons are zeroed out, the agent can’t complete the corresponding task but is still able
to complete the other task. This confirms the existence of both general and specific skills.

Table 10: Results of zeroing out the output of general of specific skill neurons.
tasks zero out the in-

tersection set
zero out the difference set
of button-press-topdown
relative to window-open

zero out the difference set
of window-open relative to
button-press-topdown

button-press-topdown 0 0.33 1.00
window-open 0 1.0 0.42

C.6 RESULTS OF VANILLA SAC

To validate the effectiveness of NBSP, it is essential to first confirm whether the vanilla SAC algorithm
can successfully solve each task individually. So we conducted experiments by training a vanilla
SAC agent on all tasks in our experiment. The results, presented in Figure 8, demonstrate that the
vanilla SAC algorithm successfully learns all tasks in our experiment. This confirms that the balance
between stability and plasticity is not an artifact of modifications to the SAC algorithm itself but
rather a result of NBSP. Furthermore, the failure of other methods is not due to limitations of the SAC
algorithm.

C.7 RESULTS ON THE META-WORLD BENCHMARK

C.7.1 RESULTS OF LONGER TASK SEQUENCE

Table 11: Results of ten task sequences on the Meta-world benchmark.
ASR ↑ FM ↓ FWT ↑

vanilla SAC 0.27 ± 0.05 0.79 ± 0.07 0.52 ± 0.19
NE 0.58 ± 0.05 0.44 ± 0.04 0.64 ± 0.03
NBSP 0.66 ± 0.02 0.32 ± 0.06 0.74 ± 0.01

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Figure 8: Training process of vanilla SAC on each individual task in our experiment.

To further evaluate NBSP under longer task sequences, we additionally conduct experiments on a 10-
task sequence (button-press-topdown→ window-close→ door-open→ drawer-close→ drawer-open
→ door-close→ button-press-topdown-wall→ window-open→ push→ reach) in the Meta-World
benchmark. As shown in Table 11, NBSP continues to outperform vanilla SAC by a large margin,
particularly in terms of stability, where the forgetting metric decreases from 0.79 to 0.32. We also
compare NBSP with NE, which is the strongest baseline in our earlier Meta-World experiments.
Although NE achieves a better stability–plasticity balance than vanilla SAC, it still lags behind NBSP
on the longer 10-task sequence. These results demonstrate that NBSP generalizes well beyond short
task chains and is effective even in long-horizon task settings.

C.7.2 LEARNING CURVE

The training process of the other four-tasks cycling task is shown in Figure 9, and those of the
two-task cycling tasks are shown in Figure 10, Figure 11 and Figure 12 respectively. The same as
found in Section 4.1, during the second cycle of learning the same task, the agent is able to master
the task more rapidly.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Figure 9: Training process of NBSP on (button-press-topdown→ window-close→ door-open→
drawer-close) cycling task.

Figure 10: Training process of NBSP on (window-open→ window-close) cycling task.

Figure 11: Training process of NBSP on (drawer-open→ drawer-close) cycling task.

Figure 12: Training process of NBSP on (button-press-topdown→ window-open) cycling task.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

C.8 RESULTS ON THE ATARI BENCHMARK

The training process of the two-task cycling tasks are shown in Figure 13, Figure 14.

Figure 13: Training process of NBSP on (Pong→ Bowling) cycling task.

Figure 14: Training process of NBSP on (BankHeist→ Alien) cycling task.

C.9 RESULTS ON THE DMC BENCHMARK

The training process of the two-task cycling tasks are shown in Figure 15, Figure 16.

Figure 15: Training process of NBSP on (Cartpole Swingup→ Cartpole Balance) cycling task.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Figure 16: Training process of NBSP on (Walker Walker→Walker Stand) cycling task.

C.10 ABLATION STUDY

C.10.1 GRADIENT MASKING AND EXPERIENCE REPLAY

The results of the ablation study on two critical components, gradient masking and experience replay
techniques, are shown in Table 12 for the (window-open → window-close) cycling task and in
Table 13 for the (drawer-open→ drawer-close) cycling task. From these results, it is evident that
both gradient masking and experience replay techniques independently contribute to improving the
stability of the agent while maintaining great plasticity. Furthermore, combining both techniques
yields superior performance, demonstrating the enhanced effectiveness of their integration.

Table 12: Results of ablation study of gradient masking and experience replay techniques on (window-
open→ window-close) cycling task.

Metrics (button-press-topdown→ window-open)
vanilla SAC only experience replay only gradient masking NBSP with hard gradient masking NBSP

ASR ↑ 0.63 ± 0.02 0.81 ± 0.08 0.78 ± 0.11 0.71±0.04 0.90 ± 0.04
FM ↓ 0.91 ± 0.10 0.41 ± 0.13 0.54 ± 0.26 0.54±0.13 0.18 ± 0.01
FWT ↑ 0.97 ± 0.02 0.96 ± 0.01 0.98 ± 0.01 0.91±0.05 0.96 ± 0.02

Table 13: Results of ablation study of gradient masking and experience replay techniques on (drawer-
open→ drawer-close) cycling task.

Metrics (button-press-topdown→ window-open)
vanilla SAC only experience replay only gradient masking NBSP with hard gradient masking NBSP

ASR ↑ 0.67 ± 0.05 0.78 ± 0.04 0.74 ± 0.01 0.59±0.16 0.96 ± 0.02
FM ↓ 0.78 ± 0.10 0.48 ± 0.10 0.64 ± 0.01 0.52±0.35 0.07 ± 0.06
FWT ↑ 0.94 ± 0.04 0.97 ± 0.01 0.98 ± 0.02 0.82±0.21 0.98 ± 0.01

C.10.2 GRADIENT MASKING

To verify that the effectiveness of adaptive gradient masking goes beyond simply reducing the learning
rate, we additionally conduct experiments on the cyclic task sequence (button-press-topdown →
window-open) comparing three settings: (1) Lowering the learning rate only on RL skill neurons, (2)
Lowering the learning rate on the entire network, (3) Our proposed NBSP gradient masking. The
results are presented in Table 14. We observe the following:

• NBSP achieves the best balance between stability and plasticity.
NBSP adaptively applies different degrees of masking to RL skill neurons based on their score.
This allows high-score neurons to be more strongly preserved while still enabling low-importance
neurons to tune. A constant scaled learning rate cannot capture this differentiation and therefore
underperforms NBSP.

• Lowering the learning rate on RL skill neurons only offers partial benefits but remains inferior.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Treating all RL skill neurons uniformly ignores the heterogeneity in how different neurons
contribute to task-specific behaviors. While this reduces interference to some extent, it still results
in suboptimal stability–plasticity trade-offs.

• Lowering the learning rate across the entire network performs the worst.
This merely slows down parameter updates without specifically protecting the neurons that encode
task skills. As a result, RL skill neurons continue to be overwritten by new tasks, leading to high
forgetting (FM) and degraded performance.

Overall, these comparisons show that the benefit of NBSP cannot be replicated by globally reducing
the learning rate. The key advantage comes from adaptive and selective protection of RL skill neurons.

Table 14: Results of gradient masking and lowering the learning rate.
ASR ↑ FM ↓ FWT ↑

Lower the lr of RL Skill neuron 0.86 ± 0.07 0.27 ± 0.15 0.97 ± 0.02
Lower the lr of the entire network 0.71 ± 0.12 0.68 ± 0.34 0.98 ± 0.01
NBSP 0.95 ± 0.05 0.08 ± 0.12 0.98 ± 0.01

C.10.3 EXPERIENCE REPLAY

To investigate whether the experience replay buffer stores information from all previously encountered
tasks, we conduct experiments on the cycling task sequence (button-press-topdown → window-close
→ door-open → drawer-close), where we compared two buffer configurations: (1) Storing only the
most recent task’s experience. (2) Storing experience from all past tasks. As Table 15 below clearly
shows, restricting the buffer to just the previous task leads to significantly higher Forgetting Metric
(FM) values, indicating greater forgetting and reduced stability. In comparison, storing data from all
previously encountered tasks consistently improves stability.

Table 15: Performance under different replay buffer configurations.

Buffer configurations ASR FM FWT
Storing only the most recent task’s experience 0.51± 0.12 0.75± 0.12 0.90± 0.20

Storing experience from all past tasks. 0.74± 0.07 0.34± 0.15 0.95± 0.06

To further confirm this, we evaluate the success rates of the first three tasks after training on the fourth
task, specifically under the setting where the experience replay buffer contained only data from the
most recent task. Results in Table 16 show that when the agent is trained on the four task with the
buffer restricted to experience from only the third task, it retained its ability to perform the third
task but entirely failed on the first and second one. This validates that the experience replay buffer
must store information from all previously encountered tasks. Omitting earlier tasks from the buffer
directly leads to catastrophic forgetting.

Table 16: Performance of the first three tasks after training on the fourth task.
Task First task: button-press-topdown Second task: window-close Third task: door-open
Success rate 0.00± 0.00 0.03± 0.05 0.80± 0.08

The results also demonstrate that RL skill neurons cannot resolve catastrophic forgetting on their own.
For example, for the success of a specific task, those non-RL skill neurons could also matter, which
may relate to factors such as the environments and contexts. And catastrophic forgetting of these
non-RL skill cabilities could also lead to task failures. Under the current framework, the primary
contribution of RL skill neurons is mitigating catastrophic interference by preventing overwriting
the knowledge encoded in these neurons when learning new tasks. We would like to highlight that
mitigating catastrophic interference could also benefit catastrophic forgetting, where RL skill neurons
and experience replay buffer work in a synergic way to alleviate forgetting.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

C.10.4 BASELINES WITH EXPERIENCE REPLAY

To ensure fair comparison, we add experience replay to ANCL and CoTASP on the cycling task
sequence (button-press-topdown → window-open). As shown in Table 17, ANCL with experience
replay heavily improves stability (FM from 0.95 to 0.42), while CoTASP with experience replay gets
no substantial performance gain, for the characteristics of tasks differ from the knowledge distribution
captured by the existing dictionary, preventing the generation of effective sparse prompts. And NBSP
achieves better performance on all metrics.

Table 17: Performance comparison of methods with experience replay.

Method ASR ↑ FM ↓ FWT ↑
ANCL 0.61± 0.01 0.95± 0.05 0.95± 0.03
ANCL + experience replay 0.83± 0.07 0.42± 0.18 0.97± 0.02
CoTASP 0.03± 0.00 0.01± 0.00 0.04± 0.01
CoTASP + experience replay 0.03± 0.01 0.01± 0.01 0.05± 0.01
NBSP 0.95± 0.05 0.08± 0.12 0.98± 0.01

C.10.5 NEURONS IN THE LAST LAYER

We exclude the final layer from neuron scoring for two main reasons: (1) The final layer contains
very few neurons (e.g., a single output unit in the critic). Masking such neurons would excessively
constrain the network and directly damage its optimization capacity. (2) Final-layer activations
correspond directly to network outputs. These neurons inherently play a disproportionately large role
in determining performance. As a result, in practice they are more likely to be identified as RL Skill
neuron. Thus masking them is more likely to degrade the learning dynamics.

To validate this design choice, we conducted additional experiments where the final layer was included
in the neuron identification and masking process. The results shown in the Table 18 confirm our
hypothesis. Overall performance deteriorates, primarily due to a substantial decrease in ASR, and
plasticity is harmed (lower FWT), as restricting output-layer neurons prevents the network from
efficiently adapting to new tasks, and stability also worsens, because once the final-layer neurons are
masked, the network compensates by over-adjusting earlier RL skill neurons, inadvertently damaging
previously acquired knowledge.

Table 18: Results of RL Skill neurons with/without the last layer neurons.
ASR ↑ FM ↓ FWT ↑

include the last layer 0.76 ± 0.01 0.41 ± 0.02 0.87 ± 0.02
exclude the last layer 0.95 ± 0.05 0.08 ± 0.12 0.98 ± 0.01

C.10.6 SENSITIVITY ANALYSIS

We investigate the sensitivity of these parameters on a cycling task sequence (button-press-topdown
→ window-open).

m: As discussed in 4.2, the performance improves as m increases, but it begins to decline after a
certain threshold. The results in Figure 4 demonstrate that NBSP consistently delivers significant
ASR improvements across a broad range of m values (from 0.15 to 0.3), indicating that its selection
is not overly sensitive within a practical operational range. Setting m within this range yields strong
performance gains across different tasks and benchmarks in our experiments.

α: We vary α from 0.1 to 1.0, whose results are shown in Tabel 19. As α decreases, FM consistently
improves, indicating better stability, while FWT remains relatively stable, suggesting that plasticity is
not highly sensitive to α. Notably, ASR performance is strong as long as α < 0.3, Overall, NBSP is
robust to the choice of α within this range.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Table 19: Effect of the hyperparameter α on performance.

α ASR ↑ FM ↓ FWT ↑
0.1 0.93± 0.04 0.07± 0.10 0.96± 0.01
0.2 0.95± 0.05 0.08± 0.12 0.98± 0.01
0.3 0.91± 0.07 0.13± 0.16 0.98± 0.01
0.5 0.85± 0.01 0.33± 0.00 0.98± 0.01
1.0 0.81± 0.06 0.48± 0.15 0.98± 0.01

|Dpre|: We vary buffer sizes ranging from 1e2 to 1e6. The results are shown in Table 20, when the
buffer size is too small, previous task information cannot be fully stored, leading to stability loss
(high FM). However, when |Dpre| reaches around 1e5, NBSP performs well and remains insensitive
to buffer size beyond this point.

Table 20: Effect of the hyperparameter |Dpre| on performance.

Dpre ASR ↑ FM ↓ FWT ↑
1e2 0.62± 0.01 0.99± 0.01 0.99± 0.01
1e3 0.62± 0.01 0.99± 0.01 0.98± 0.01
1e4 0.74± 0.09 0.67± 0.21 0.98± 0.01
1e5 0.95± 0.05 0.08± 0.12 0.98± 0.01
1e6 0.93± 0.04 0.13± 0.13 0.99± 0.01

k: We test values of k ranging from 2 to 100 (see Table 21 below). When k is small, frequent
replay of previous experiences enhances stability but reduces plasticity (low FWT). In contrast,
past experiences are underutilized, weakening stability. When k is within the range of 5-13, NBSP
performs well, demonstrating insensitivity to variations in k in this range.

Table 21: Effect of the hyperparameter k on performance.

k ASR ↑ FM ↓ FWT ↑
2 0.62± 0.01 0.02± 0.02 0.50± 0.00
5 0.95± 0.04 0.07± 0.09 0.97± 0.02

10 0.95± 0.05 0.08± 0.12 0.98± 0.01
13 0.94± 0.04 0.11± 0.09 0.98± 0.01
20 0.89± 0.06 0.21± 0.13 0.98± 0.01
100 0.66± 0.01 0.90± 0.05 0.99± 0.01

Tavg: As shown in Table 22, when the window size is too small, the running averages of neuronal
activations and performance become noisy, leading to inaccurate estimation of a and q, which in
turn hinders the correct identification of RL skill neurons. When the window size exceeds 50,000,
NBSP becomes insensitive to the specific value, and performance remains consistently high. Since
excessively large window sizes introduce unnecessary computational overhead, we choose 50,000 as
a practical trade-off between estimation stability and efficiency.

Table 22: Effect of the hyperparameter Tavg on performance.

Tavg ASR ↑ FM ↓ FWT ↑
5000 0.81 ± 0.03 0.44 ± 0.08 0.98 ± 0.02
25000 0.88 ± 0.03 0.30 ± 0.08 0.99 ± 0.01
50000 0.95 ± 0.05 0.08 ± 0.12 0.98 ± 0.01

100000 0.94 ± 0.04 0.09 ± 0.11 0.98 ± 0.01
150000 0.95 ± 0.04 0.08 ± 0.11 0.98 ± 0.01

In summary, there is a practical and systematic tuning criterion as follows:

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

• Stable performance within broad ranges.
Each hyper-parameter exhibits a wide “safe range” within which NBSP performs consistently well.
Therefore, tuning does not require fine-grained search. The recommended ranges are provided in
Table 23.

Table 23: The recommended ranges of hyper-parameters.
Hyper-parameters Range

m [0.15, 0.3]
α [0.1, 0.3]

∥Dpre∥ [105,∞)
k [5, 13]

• Key hyper-parameter for task variation. Among the four hyper-parameters, m is the primary
one that may vary across tasks, as the number of RL skill neurons naturally depends on the skill
complexity of each environment. In practice, tuning m within [0.15, 0.3] is sufficient in our
experiments.

• Other hyper-parameters remain stable across benchmarks.
The remaining three hyper-parameters require only minor adjustments within their recommended
ranges. In our experiments, they remain fixed across all benchmarks, and NBSP still achieves
strong and stable performance, demonstrating their robustness and confirming that the method
does not rely on brittle manual tuning.

C.10.7 TASK ORDER

In our experimental setup, we repeat each task twice within a cycling sequence to mitigate the
potential influence of task order. For example, in a two-task cycling sequence (button-press-topdown
→ window-open), repeating these tasks results in the sequence (button-press-topdown → window-
open → button-press-topdown → window-open). This sequence contains two occurrences of the
subsequence (button-press-topdown → window-open) and one occurrence of (window-open →
button-press-topdown), which helps mitigate the impact of task order. However, we acknowledge that
this approach does not fully eliminate the influence of task order, and we will revise the description
to clarify this point.

To further investigate the effect of task order, we conduct experiments with randomized task order.
The results, shown in Table 24, indicate that task order does affect performance, particularly in terms
of stability. However, the impact is modest, and NBSP still performs well in balancing stability and
plasticity regardless of the task order. Determining task order presents a promising future direction,
where task difficulty, diversity, and coherency might be taken into account.

Table 24: Performance of different task orders.

Cycling sequential tasks ASR ↑ FM ↓ FWT ↑
(window-open→ button-press-topdown) 0.90± 0.08 0.17± 0.13 0.95± 0.02
(button-press-topdown→ window-open) 0.95± 0.05 0.08± 0.12 0.98± 0.01
(drawer-open→ drawer-close) 0.96± 0.02 0.07± 0.06 0.98± 0.01
(drawer-close→ drawer-open) 0.92± 0.05 0.12± 0.12 0.97± 0.01

C.10.8 PPO ALGORITHM

We further apply NBSP to PPO (Schulman et al., 2017) on a cycling task sequence (button-press-
topdown→window-open). The results in Table 25 show that vanilla PPO performs worse than
vanilla SAC in our setting, suffering from both stability and plasticity loss. NBSP helps reduce FM,
improving stability and achieving a better balance, as reflected by a higher ASR. However, the effect
is less pronounced than that of SAC. Potential reasons include:

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Table 25: Comparison of vanilla PPO and PPO with NBSP.

Method ASR ↑ FM ↓ FWT ↑
vanilla PPO 0.40± 0.04 0.82± 0.18 0.66± 0.12
PPO with NBSP 0.49± 0.06 0.58± 0.09 0.67± 0.11

• On-Policy Nature of PPO: PPO is an on-policy algorithm, and cannot fully leverage the experience
replay mechanism. While old experiences can still be sampled, they are more likely located
outside the "trust region", leading to suboptimal updates.

• Differences in Exploration Mechanisms: SAC incorporates an entropy regularization term in
its objective function. When NBSP masks RL skill neurons, the entropy term of SAC helps
maintain exploration in other neurons, without sacrificing too much plasticity. In contrast, PPO’s
exploration is driven primarily by its stochastic policy and lacks explicit entropy constraint,
making it more prone to instability if RL skill neurons are masked.

D ALGORITHM

The pseudo-code of the goal-oriented method to find RL skill neurons is presented in Algorithm
1. And the pseudo-code for SAC with NBSP is presented in Algorithm 2. Key differences from
standard SAC are highlighted in blue. In addition to the extra input, two main modifications include
the sampling process and the network update process.

Algorithm 1 Procedure for Identifying RL Skill Neurons
Input: Initial average step Tavg, initial evaluation step T , initial proportion of RL skill neuron m,
initial average activation a(N) = 0, initial average GM q = 0, initial over-activation rate Rover = 0.

1: for each step t do
2: Compute activation a(N , t)← ϕ(·)
3: Compute GM q(t)
4: Compute average activation:

a(N) = a(N) +
1

Tavg
a(N , t).

5: Compute average GM:

q = q +
1

Tavg
q(t).

6: end for
7: for each step t do
8: Compute activation a(N , t)← ϕ(·)
9: Compute GM q(t)

10: Capture association:

Rover = Rover +
1

T
1[1[a(N ,t)>a(N)]=1[q(t)>q]]

11: end for
12: Derive scores Score for each neuron:

Score(N) = max(Rover(N), 1−Rover(N))

13: Identify the top-performing neurons as RL skill neurons:

NRL skill = τm(Score(N))

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Algorithm 2 Neuron-level Balance between Stability and Plasticity (NBSP) Applied in SAC
Initialize policy parameters θ, Q-function parameters ϕ1, ϕ2, and target Q-function parameters ϕ′

1, ϕ′
2

Initialize empty replay buffer D
Initialize replay interval k
Input: Replay buffer Dpre, mask of the policy maskθ and mask of the Q-function parameters
maskϕ1 ,maskϕ2

1: for each task do
2: for each iteration do
3: for each environment step do
4: Sample action at ∼ πθ(at|st)
5: Execute action at and observe reward rt and next state st+1

6: Store (st, at, rt, st+1) in replay buffer D
7: end for
8: for each gradient step do
9: if step≡ 0 (mod k) then Sample batch of transitions (si,ai, ri, si+1) fromDpre

10: else Sample batch of transitions (si, ai, ri, si+1) from D
11: end if
12: Compute target value:

yi = ri + γ

(
min
j=1,2

Qϕ′
j
(si+1, ãi+1)− α log πθ(ãi+1|si+1)

)
, where ãi+1 ∼ πθ(·|si+1)

13: Update Q-functions by one step of gradient descent with mask:

ϕj ← ϕj − λQmaskϕj
∇ϕj

1

N

∑
i

(
Qϕj

(si, ai)− yi
)2

for j = 1, 2

14: Update policy by one step of gradient ascent with mask:

θ ← θ + λπmaskθ∇θ
1

N

∑
i

(
α log πθ(ai|si)− min

j=1,2
Qϕj

(si, ai)

)
15: Update temperature α by one step of gradient descent:

α← α− λα∇α
1

N

∑
i

(
−α log πθ(ai|si)− αH̄

)
16: Update target Q-function parameters:

ϕ′
j ← τϕj + (1− τ)ϕ′

j for j = 1, 2

17: end for
18: end for
19: Select RL skill neurons {NRLskill} according to Algorithm 1
20: Update maskϕ1 ,maskϕ2 and maskθ:

mask(N) =

{
α(1− Score(N)) if N ∈ NRLskill

1 if N /∈ NRLskill

21: Store part of D into Dpre

22: end for

E LIMITATION AND FUTURE WORK

Limitation. While the proposed NBSP method effectively balances stability and plasticity in DRL,
it does have a notable limitation. Specifically, the number of RL skill neurons must be manually
determined and adjusted according to the complexity of the learning task, as there is no automatic
mechanism for this selection. And our method currently faces challenges when applied to longer
task sequences (e.g., 10+ tasks). One key limitation is the constraint imposed by the model scale,

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

which inherently limits the number of skills it can learn. As the number of tasks increases, the overlap
between skill neurons across different tasks may become significant. Consequently, applying a mask
to protect RL skill neurons can restrict the learning of new tasks, making it difficult to scale without
introducing interference with previously learned knowledge.

Future work. The neuron analysis introduced in this work offers a novel approach for identifying
RL skill neurons, significantly enhancing the balance between stability and plasticity in DRL. The
identification of RL skill neurons opens up several promising directions for future research and
applications, such as: (1) Model Distillation: by focusing on RL skill neurons, it becomes possible to
distill models by pruning less relevant neurons, leading to more efficient and compact models with
minimal performance degradation. (2) Bias Control and Model Manipulation: RL skill neurons could
be leveraged to control biases and modify model behaviors by selectively adjusting their activations.
This approach could be particularly valuable in scenarios requiring specific outputs or behaviors.

While our current method may not yet fully address longer task sequences, it lays a strong foundation
for future research. Moving forward, we aim to explore strategies to better leverage RL skill neurons
for continual learning over an extended sequence of tasks. What’s more, its applicable potential
extends beyond DRL. It could also be adapted to other learning paradigms, such as supervised and
unsupervised learning, to address similar stability-plasticity challenges. In future work, we plan to
explore these extensions and verify their effectiveness across various domains.

F THE USE OF LARGE LANGUAGE MODELS

In preparing this manuscript, we employ the large language model solely for minor linguistic
refinement. The LLM is not used for research design, data analysis, result interpretation, or generating
any scientific content. All conceptual contributions, experimental designs, analyses, and conclusions
are entirely the work of the authors.

32

	Introduction
	Related Work
	Methodology
	Problem Setup
	Identifying RL Skill Neurons
	Neuron-level Balance between Stability and Plasticity

	Experiment
	Experiment on the Meta-World Benchmark
	Ablation Study
	Experiment on other Benchmarks

	Conclusion
	Related Work
	Preliminary
	Markov Decision Process (MDP)
	Soft Actor-Critic (SAC)
	Neuron

	Experiment
	Baseline
	Benchmark
	Experiment setting
	Metrics
	RL Skill Neurons
	Results of Vanilla SAC
	Results on the Meta-world Benchmark
	Results of longer task sequence
	Learning curve

	Results on the Atari Benchmark
	Results on the DMC Benchmark
	Ablation Study
	Gradient masking and experience replay
	Gradient masking
	Experience replay
	Baselines with experience replay
	Neurons in the last layer
	Sensitivity analysis
	Task order
	PPO algorithm

	Algorithm
	Limitation and Future Work
	The Use of Large Language Models

