
NBSP: A NEURON-LEVEL FRAMEWORK FOR BALANCING STABILITY AND PLASTICITY IN DEEP RL

000
001
002
003
004
005 **Anonymous authors**
006 Paper under double-blind review
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

ABSTRACT

In contrast to the human ability to continuously acquire knowledge, agents struggle with the stability-plasticity dilemma in deep reinforcement learning (DRL), which refers to the trade-off between retaining existing skills (stability) and learning new knowledge (plasticity). Current methods focus on balancing these two aspects at the network level, lacking sufficient differentiation and fine-grained control of individual neurons. To overcome this limitation, we propose Neuron-level Balance between Stability and Plasticity (NBSP) method, by taking inspiration from the observation that specific neurons are strongly relevant to task-relevant skills. Specifically, NBSP first (1) defines and identifies RL skill neurons that are crucial for knowledge retention through a goal-oriented method, and then (2) introduces a framework by employing adaptive gradient masking and experience replay techniques targeting these neurons to preserve the encoded existing skills while enabling adaptation to new tasks. Numerous experimental results on the Meta-World, Atari, and DMC benchmarks demonstrate that NBSP significantly outperforms existing approaches in balancing stability and plasticity.

1 INTRODUCTION

Deep reinforcement learning (DRL) has shown exceptional capabilities across a range of complex scenarios, such as gaming (Mnih et al., 2013), robotic manipulation (Andrychowicz et al., 2020), and autonomous driving (Kiran et al., 2021). However, most RL research focuses on agents that learn to solve individual problems rather than learn a sequence of tasks continually. Ideally, the agent must maintain its performance on previously learned tasks, referred to as **stability** (McCloskey & Cohen, 1989), while simultaneously adapting to new tasks, known as **plasticity** (Carpenter & Grossberg, 1987). However, it has been revealed that emphasizing stability may hinder the ability of agents to learn new knowledge (Nikishin et al., 2022a), whereas excessive plasticity can lead to catastrophic forgetting of previously acquired knowledge (Atkinson et al., 2021b), a challenge known as the **stability-plasticity dilemma** (eMermilliod et al., 2013). Although there is a growing body of continual reinforcement learning (CRL) research (Wolczyk et al., 2022), our study specifically targets the intrinsic balance between stability and plasticity, which remains a fundamental and under-explored problem in DRL, and further advances this direction by exploring it at the neuron level.

Existing methods to strike a balance between stability and plasticity generally fall into three categories, i.e. (1) **regularization-based methods** (Kirkpatrick et al., 2017; Kumar et al., 2023), which apply penalties to parameter changes to mitigate forgetting while acquiring new knowledge; (2) **replay-based methods** (Ahn et al., 2024), which leverage past experiences to consolidate knowledge; and (3) **modularity-based methods** (Kim et al., 2023; Anand & Precup, 2024), which seek to decouple stability and plasticity or isolate different components for different tasks. Despite their contributions, these methods suffer from three key limitations: (1) They primarily operate at the network level, yet their ultimate impact manifests at the level of individual neurons. However, these methods fail to differentiate and fine-grained control neurons based on their specific roles. Therefore, identifying and effectively utilizing task-relevant neurons remains both critical and under-explored. (2) These studies are primarily conducted within the paradigm of continual learning, thus overlooking the unique characteristics intrinsic to DRL. (3) These approaches could sometimes unnecessarily inflate model parameters, thereby introducing unwarranted complexity (Bai et al., 2023).

054 By analyzing the activations of neurons in the DRL net-
 055 work, we observe that the activations of certain neurons are
 056 strongly correlated with the task goal. For instance, Figure
 057 1 illustrates the activation distribution of a specific neu-
 058 ron in the network following training on the drawer-open
 059 task from the Meta-World benchmark (Yu et al., 2020).
 060 Activation of the neuron serves as a reliable predictor of
 061 whether the task is successful. Higher activation levels
 062 correspond to an increased likelihood of completing the
 063 task successfully, indicating that this neuron encodes a
 064 critical skill essential for the task. Consequently, it plays
 065 a pivotal role in retaining task-specific memory.

066 Motivated by the aforementioned observations, we pro-
 067 pose **Neuron-level Balance between Stability and Plas-**
 068 **ticity (NBSP)**, a novel DRL framework that operates at the level of neurons to tackle the stability-
 069 plasticity dilemma. In particular, (1) we first introduce **RL skill neurons**, which encode critical
 070 skills necessary for knowledge retention. While skill neurons have been investigated and successfully
 071 exploited in various domains, such as pre-trained language models (Wang et al., 2022) and neural
 072 machine translation (Bau et al., 2018), skill neurons are still much less explored in DRL. We bridge
 073 this research gap by proposing a goal-oriented strategy for identifying RL skill neurons. (2) We
 074 then apply adaptive **gradient masking** according to the scores of these neurons, ensuring that the
 075 encoded knowledge of prior skills is preserved while allowing fine-tuning during subsequent training.
 076 Meanwhile, the other neurons retain the ability to learn new tasks. (3) Additionally, we incorpo-
 077 **rate experience replay** to periodically revisit the past experience to reinforce stability, preventing
 078 excessive drift from previous knowledge. Integrally, NBSP offers three key advantages compared
 079 with previous methods: (1) The neuron-level processing enables finer control and greater flexibility,
 080 addressing the stability-plasticity trade-off at the most fundamental level of the network. (2) The
 081 goal-oriented approach for identifying RL skill neurons is specifically tailored to DRL. (3) This
 082 framework is simple, avoiding complex network designs or additional parameters.

083 We conduct experiments on the **Meta-World** (Yu et al., 2020), **Atari** (Mnih et al., 2013), and **DMC**
 084 (Tunyasuvunakool et al., 2020) benchmarks to evaluate the effectiveness of NBSP. Our results show
 085 that NBSP outperforms existing methods in balancing stability and plasticity, enabling effective
 086 learning of new tasks while preserving knowledge from previous tasks. Additionally, we perform
 087 extensive ablation studies to investigate the contribution of different components within NBSP.
 088 Specially, we analyze the DRL agents by dissecting the performance of the two critical modules, i.e.,
 089 the actor and the critic. Our findings reveal that (1) addressing both the actor and critic networks
 090 yields the best performance, and (2) the critic plays a more critical role in achieving this balance due
 091 to the differences in their inherent training mechanisms. In summary, our key contributions include:

- 092 • We introduce the concept of **RL skill neurons** which encode skills of the task, essential for
 093 knowledge retention, and propose a goal-oriented strategy specifically tailored to DRL for
 094 identification.
- 095 • We tackle the stability-plasticity dilemma in DRL from the perspective of RL skill neurons, by
 096 employing gradient masking and experience replay on these neurons, eliminating requirements of
 097 complex network designs or additional parameters.
- 098 • We conduct extensive experiments on the Meta-World, Atari, and DMC benchmarks to demon-
 099 strate the effectiveness of our method in balancing stability and plasticity.

100 2 RELATED WORK

101 **Balance between stability and plasticity.** In DRL, addressing the stability-plasticity dilemma
 102 (Carpenter & Grossberg, 1988) has inspired various strategies. Stability-focused methods often utilize
 103 replay techniques, such as A-GEM (Chaudhry et al., 2018b), using episodic memory to constrain
 104 loss, and ClonEx-SAC (Wolczyk et al., 2022), enhancing performance through behavior cloning.
 105 Plasticity-focused methods aim to preserve network expressiveness, with solutions like CBP (Dohare
 106 et al., 2024), resetting (Nikishin et al., 2022b), plasticity injection (Nikishin et al., 2024), Reset
 107 & Distillation (Ahn et al., 2024), and CRelu (Abbas et al., 2023) to prevent activation collapse.

108 Figure 1: Distribution histogram of the
 109 activation of a neuron, categorized based
 110 on whether the drawer-open task was
 111 successfully completed or not.

108 Modularity-based methods balance stability and plasticity by decoupling task-specific knowledge,
109 exemplified by soft modularity for routing networks (Yang et al., 2020), value function decomposition
110 (Anand & Precup, 2024), and compositional frameworks leveraging neural components (Mendez et al.,
111 2022). Shrink & Perturb (Ash & Adams, 2020), which updates weights with shrinkage and noise,
112 and UPGD (Elsayed & Mahmood, 2024), which varies update sizes by unit utility, also target the
113 balance. Methods such as CReLU and ClonEx-SAC focus on continual reinforcement learning(CRL),
114 but our study specifically targets the intrinsic balance between stability and plasticity, with other
115 factors such as task order controlled in a cycling task setting. Moreover, while most methods operate
116 at the network level, our approach explores neuron-level research, providing fine-grained control.
117

118 **Neuron-level research.** Recent research has shown that neuron sparsity often correlates with task-
119 specific performance (Xu et al., 2024), driving a growing focus on skill neurons to interpret network
120 behavior and tackle challenges across domains. For example, skill neurons have been used to enhance
121 transferability and efficiency in Transformers via pruning (Wang et al., 2022). Other studies, such
122 as identifying Rosetta Neurons (Dravid et al., 2023) and language-specific neurons (Tang et al.,
123 2024), have advanced alignment and interpretability. Despite these achievements, the exploration
124 of skill neurons in DRL remains largely under-explored. Some works focus on task-specific sub-
125 network selection at the neuron level, such as CoTASP and PackNet. At a finer granularity, other
126 approaches target individual neuron management. NPC identifies and constrains important neurons
127 for maintaining stability. Similarly, ReDO (Sokar et al., 2023) and its successor GraMa (Liu et al.,
128 2025) introduce schemes for dormant neuron management and activity quantification based on
129 activation and gradient magnitudes. NE (Liu et al., 2024) dynamically adapts network topology
130 through neuron growth and pruning based on potential gradients. However, these methods overlook
131 the fundamental link between a neuron and the task’s goal in RL, and identify neurons through
132 static measures like activation or gradient. Our work addresses this gap and moves beyond the
133 static measures by leveraging a significant correlation between a neuron activation and the specific
134 objective of the RL task. This insight allows us to identify the underlying skill neurons, those that are
135 functionally relevant to the task success.

136 3 METHODOLOGY

137 In this section, we first introduce the terminology of RL skill neurons and then propose the Neuron-
138 level Balance between Stability and Plasticity (NBSP) method.

139 3.1 PROBLEM SETUP

140 We focus on the setting of sequential task learning without constraints on the time intervals between
141 tasks. In this setting, the agent is expected to perform all previously learned tasks after training,
142 without relying on task-specific signals. For instance, large models such as DeepSeek employ RL
143 to enhance their reasoning capabilities. However, different tasks, such as vision and mathematics,
144 demand distinct reasoning abilities. To first strengthen a specific type of reasoning and then generalize
145 to others, it is essential to strike a balance between stability and plasticity during sequential training.
146 Furthermore, in real-world applications, the enhanced model should be able to handle all tasks
147 without relying on explicit task signals. Let $\tau \in \{\tau_1, \tau_2, \dots\}$ represent a sequence of task, each task τ
148 corresponds to a distinct Markov Decision Process (MDP) $M^\tau = (S^\tau, A^\tau, P^\tau, R^\tau, \gamma^\tau)$, where S^τ ,
149 A^τ , P^τ , R^τ and γ^τ denote the state space, action space, transition dynamics, reward function, and
150 discount factor, respectively. Instead of addressing a single MDP, the goal is to solve a sequence of
151 MDPs one by one using a universal policy $\pi(a|s)$ and Q-function $Q(s, a)$. The primary challenge
152 lies in balancing plasticity, which refers to maximizing the discounted return of the current task, and
153 stability, which emphasizes the maximization of the expected discounted return averaged across all
154 previous tasks. This trade-off constitutes the core problem addressed in this work.

155 3.2 IDENTIFYING RL SKILL NEURONS

156 In this study, we make a key observation that the stability and plasticity of the agent network are
157 closely related to its expressive capabilities, which are significantly influenced by the behavior of
158 individual neurons. As evidenced in Molchanov et al. (2022), neuron expression determines how
159 information is propagated and processed, directly affecting the learning and knowledge retention
160 capabilities of the network. Therefore, understanding and controlling neuron behavior is at the most

fundamental level for striking a balance between stability and plasticity. On the one hand, when neuron expression is stable and generalized, the agent network tends to exhibit high stability. On the other hand, strong plasticity can be achieved given neuron expression is flexible and adaptable.

Several works have demonstrated the multifaceted capabilities of neurons, such as the storage of factual knowledge (Dai et al., 2022), the association with specific languages (Tang et al., 2024), and the encoding of safety information (Chen et al., 2024). These specialized neurons, often referred as skill neurons, have been shown to significantly contribute to network performance (Wang et al., 2022). However, the potential of skill neurons in DRL remains largely under-explored. As illustrated in Figure 1, activations of the specific neuron are strongly correlated with task success: higher activation levels increase the likelihood of successful task completion, whereas lower levels are associated with failure. ***This indicates that the activations of these neurons significantly affect agent performance, effectively encoding the critical skills required for the task. By preserving the activations of such neurons, it becomes possible to retain the learned task-specific skills, thereby improving stability.***

In this work, we formally define these special neurons as **RL skill neurons**, which encode critical skills, essential for knowledge retention in DRL. Furthermore, we propose a goal-oriented method for the identification of these neurons. Unlike prior approaches that primarily focus on the inputs triggering neuron activations (Bau et al., 2020; Gurnee & Tegmark, 2023), our method emphasizes their impact on achieving ultimate goals, i.e. succeeding in finishing Meta-World tasks and attaining high scores in Atari games, by comparing the activation patterns of the neurons that exhibit varying performance levels. In Section 4.2, we empirically show the advantage of our goal-oriented method.

For a specific neuron \mathcal{N} , let $a(\mathcal{N}, t)$ represent its activation at step t . In fully connected layers, each output dimension corresponds to the activation of a specific neuron, whereas in convolution layers, the average of each output channel represents the activation of a neuron. To quantify activation level of a neuron \mathcal{N} , we define the **average activation** as:

$$\bar{a}(\mathcal{N}) = \frac{1}{T_{avg}} \sum_{t=1}^{T_{avg}} a(\mathcal{N}, t), \quad (1)$$

where T_{avg} represents the step over which we compute the average activation. The neuron activation level can then be assessed by comparing its current activation with the average activation.

To assess the performance of the agent at step t , we introduce the **Goal Metric (GM)**, denoted as $q(t)$. It serves as an evaluation metric for assessing the performance of the agent's network, varying based on the objective of the task. It is computed in an online manner during training. For instance, on the Meta-World benchmark, the GM is typically binary, determined by whether the episode is successful, which is computed at the end of each episode. In contrast, the GM is determined by the cumulative return of the episode for the Atari benchmark. Additionally, we define the **average Goal Metric (GM)** of the agent as follows, which serves as a baseline for evaluating the performance by comparing it with the current GM.

$$\bar{q} = \frac{1}{T_{avg}} \sum_{t=1}^{T_{avg}} q(t). \quad (2)$$

To differentiate the roles of neurons across various tasks, it is essential to assess neuron activations in relation to specific goals. Intuitively, we can consider a neuron \mathcal{N} to be positively contributing to the goal at step t when its activation $a(\mathcal{N}, t)$ surpasses the average activation $\bar{a}(\mathcal{N})$, i.e. $a(\mathcal{N}, t) > \bar{a}(\mathcal{N})$, while the GM at the same step also exceeds its average, i.e. $q(t) > \bar{q}$. To quantify this contribution, we accumulate a batch of results over T steps and define the over-activation rate as follows:

$$R_{over}(\mathcal{N}) = \frac{\sum_{t=1}^T 1_{[a(\mathcal{N}, t) > \bar{a}(\mathcal{N})] = 1_{[q(t) > \bar{q}]}}}{T}. \quad (3)$$

Here, $1_{[condition]} \in \{0, 1\}$ denotes the indicator function, which returns 1 if and only if the specified condition is satisfied. While Eq. (3) assesses the positive correlation of neurons towards achieving the goal, **covering the cases ($a > \bar{a}, q > \bar{q}$) and ($a < \bar{a}, q < \bar{q}$)**, where activation and performance change in the same direction (positive correlation). However, it overlooks neurons that exhibit a negative correlation with the goal but still carry valuable task-related knowledge, **covering the cases ($a < \bar{a}, q > \bar{q}$) and ($a > \bar{a}, q < \bar{q}$)**. Specifically, when the activation of a neuron falls below its

Figure 2: Framework of NBSP. The agent scores and identifies RL skill neurons for each task by measuring the activation in relation to the GM. While learning new tasks, the gradient of these neurons is masked adaptively based on their scores to preserve the encoded skills, while still allowing fine-tuning for new task learning. Additionally, a replay buffer is used to store a portion of the experiences from previous tasks, which is periodically sampled to update the agent.

average activation, the agent performs well conversely. To this end, we define a **comprehensive score** $Score(\mathcal{N})$ for the neuron that takes into account both positive and negative effects:

$$Score(\mathcal{N}) = \max(R_{over}(\mathcal{N}), 1 - R_{over}(\mathcal{N})). \quad (4)$$

Subsequently, we rank all neurons in the agent network, excluding those in the last layer **for the few neurons and their large role in determining performance, which is validated in Appendix C.10.5**, in descending order based on their scores. The RL skill neurons are determined by selecting the neurons with the top $m\%$ highest scores, formally defined as follows, where $\tau_m(\cdot)$ denotes the top- m selection operator. And the pseudo-code of the identification method is shown in Appendix D.

$$\mathcal{N}_{RL\ skill} = \tau_m(Score(\mathcal{N})) \quad (5)$$

3.3 NEURON-LEVEL BALANCE BETWEEN STABILITY AND PLASTICITY

Building upon the concept of RL skill neurons, we propose a novel DRL framework — **Neuron-level Balance between Stability and Plasticity (NBSP)**, as shown in Figure 2. Unlike prior methods (Bai et al., 2023; Kim et al., 2023), the framework proposed does not require complex network designs or additional parameters. Given that RL skill neurons encode essential task-specific skills, preserving their activation patterns is critical to maintaining knowledge from previous tasks during continual tasks learning. However, simply freezing RL skill neurons would hinder the ability of the agent to adapt to new tasks. To address this challenge, NBSP employs an adaptive **gradient masking** technique. Specifically, during each update round in the continual learning process, the gradients of RL skill neurons are selectively masked to restrict changes in their activation patterns while allowing other neurons to adapt freely. This process is formally expressed as follows:

$$\Delta W_{:,j} = mask_j^{(l)} \cdot \Delta W_{:,j}^{(l)}, \quad (6)$$

where $\Delta W_{:,j}^{(l)}$ denotes the gradient with respect to the weight $W_{:,j}^{(l)}$ in the l -th layer of the network, and j is the index of the output neuron in that layer. The term $mask_j^{(l)}$ is associated with the score of j -th neuron in the l -th layer, which could be calculated as follows:

$$mask(\mathcal{N}) = \begin{cases} \alpha(1 - Score(\mathcal{N})) & \text{if } \mathcal{N} \in \mathcal{N}_{RL\ skill} \\ 1 & \text{if } \mathcal{N} \notin \mathcal{N}_{RL\ skill} \end{cases}, \quad (7)$$

where $\mathcal{N}_{RL\ skill}$ represents the set of RL skill neurons, and α is a super-parameter that determines the degree of restriction on these neurons, which is configured to 0.2 in the experiment. **And gradient masking is applied only to the online networks, where gradients are computed and parameters are updated. The target networks are updated using EMA from the masked online networks. No**

270 additional masking operation is required for target networks. By employing gradient masking, NBSP
271 effectively safeguards the encoded skills within RL skill neurons from interference during the
272 learning of new tasks, thereby enhancing stability. At the same time, RL skill neurons remain
273 adaptable, allowing fine-tuning to accommodate new tasks and maintaining high plasticity. In
274 addition, neurons except RL skill neurons are free to fully engage in learning new task-specific
275 knowledge, ensuring comprehensive learning across tasks.

276 To mitigate excessive drift from knowledge acquired in previous tasks, we integrate the **experience**
277 **replay** technique, periodically sampling prior experiences at specific intervals k . After training on a
278 task, a portion of the experiences, rather than the entirety, are stored in a unified replay buffer D_{pre} ,
279 requiring only a modest memory footprint. By incorporating experience replay, the stability of DRL
280 agents is further enhanced. The corresponding loss function is defined as follows:

281

$$\mathcal{L} = R(t) \cdot \mathbb{E}_{(s_t, a_t, s_{t+1}, r_t, d_t) \sim D_{pre}} [L] + (1 - R(t)) \cdot \mathbb{E}_{(s_t, a_t, s_{t+1}, r_t, d_t) \sim D} [L], \quad (8)$$

282

283 where L denotes the original loss function, $R(t)$ is a binary function that evaluates to 1 if and
284 only if the current step t is at an interval. D represents the replay buffer for the current task, and
285 $(s_t, a_t, s_{t+1}, r_t, d_t)$ denotes the tuple of the current state, action, next state, reward, and whether the
286 episode is done sampled from the replay buffer. The pseudo-code of NBSP is shown in Appendix D.
287

288 4 EXPERIMENT

289

290 In this section, we evaluate the performance of NBSP on the **Meta-World** (Yu et al., 2020), **Atari**
291 (Mnih et al., 2013) and **DMC** (Tunyasuvunakool et al., 2020) benchmarks.

292 **Experiment setting.** We follow the the experimental paradigm of Abbas et al. (2023); Liu et al.
293 (2024), evaluating NBSP on a **cycling sequence of tasks** characterized by non-stationarity due to
294 changing environments over time. Specifically, the agent learns each task sequentially and transitions
295 to the next without resetting the learned networks. The task cycles through a fixed sequence, with a
296 cycle completing once all tasks in the sequence have been learned. The agent cycles twice, resulting
297 in each task being repeated twice. Details about the benchmarks are shown in Appendix C.2. For all
298 experiments, we use the Soft Actor-Critic (SAC) (Haarnoja et al., 2018) algorithm, as implemented
299 by CleanRL (Huang et al., 2022). Each agent is trained until either reaching a predefined maximum
300 number of steps or demonstrating stable mastery of the task in the Meta-World benchmark. Each
301 experiment is repeated using three different random seeds. The shaded regions in the figures and the
302 plus/minus numbers represent the standard error across multiple seeds. Detailed descriptions of the
303 hyperparameters and other experimental settings are provided in Appendix C.3.

304 Compared to the CRL training paradigm, our cycling training paradigm provides a more specific
305 evaluation of the balance between stability and plasticity. By repeating each task twice within a
306 cycling sequence, the setup not only assesses the plasticity in adapting to new tasks but also evaluates
307 its stability when revisiting previous tasks, mitigating the influence of task order.

308 **Metric.** Overall performance is commonly assessed using the **Average Success Rate (ASR)**,
309 analogous to the AIA metric (Wang et al., 2024). The higher the ASR, the better the method balances
310 stability and plasticity. To evaluate the stability of the agent, we utilize the **Forgetting Measure**
311 (**FM**) (Chaudhry et al., 2018a). The lower the FM, the better the method maintains stability. To
312 assess the plasticity of the agent, we employ the **Forward Transfer (FWT)** metric (Lopez-Paz &
313 Ranzato, 2017). The higher the FWT, the better the method maintains plasticity. Further details about
314 evaluation metrics are available in Appendix C.4.

315 **Baseline.** To assess the effectiveness of the NBSP framework, we compare it with nine baseline
316 methods dealing with the balance between stability and plasticity. **EWC** (Kirkpatrick et al., 2017) and
317 **NPC** (Paik et al., 2019) primarily emphasize maintaining stability, while **CRelu** (Abbas et al., 2023),
318 **CBP** (Dohare et al., 2024), and **PI** (Nikishin et al., 2024) focus on enhancing plasticity. **ANCL** (Kim
319 et al., 2023), **CoTASP** (Yang et al., 2023), **NE** (Liu et al., 2024) and **UPGD** (Elsayed & Mahmood,
320 2024) aim to achieve a balance between stability and plasticity. Notably, CoTASP makes relevant
321 tasks share more neurons in the meta-policy network, NPC consolidates important neurons, and NE
322 dynamically adapts network topology via neuron growth and pruning, they are all relevant to neurons.
323 Detailed descriptions of these baselines can be found in Appendix C.1.

Table 1: Results of NBSP with other baselines on the Meta-World benchmark.

Cycling sequential tasks	Metrics	Methods									
		EWC	NPC	ANCL	CoTASP	CRElu	CBP	PI	NE	UPGD	NBSP
(window-open → window-close)	ASR ↑	0.63 ± 0.03	0.26 ± 0.01	0.66 ± 0.04	0.05 ± 0.01	0.26 ± 0.14	0.67 ± 0.05	0.61 ± 0.02	0.83 ± 0.04	0.65 ± 0.05	0.90 ± 0.04
	FM ↓	0.89 ± 0.07	0.68 ± 0.04	0.84 ± 0.10	0.01 ± 0.01	0.66 ± 0.42	0.78 ± 0.13	0.91 ± 0.07	0.27 ± 0.12	0.81 ± 0.09	0.18 ± 0.01
	FWT ↑	0.97 ± 0.02	0.26 ± 0.01	0.97 ± 0.03	0.04 ± 0.01	0.33 ± 0.19	0.95 ± 0.02	0.94 ± 0.01	0.95 ± 0.01	0.95 ± 0.02	0.96 ± 0.02
(drawer-open → drawer-close)	ASR ↑	0.68 ± 0.06	0.35 ± 0.05	0.64 ± 0.02	0.07 ± 0.01	0.29 ± 0.20	0.61 ± 0.03	0.60 ± 0.07	0.72 ± 0.02	0.72 ± 0.01	0.96 ± 0.02
	FM ↓	0.80 ± 0.15	0.69 ± 0.05	0.88 ± 0.09	0.01 ± 0.01	0.31 ± 0.32	0.91 ± 0.03	0.71 ± 0.30	0.60 ± 0.02	0.69 ± 0.02	0.07 ± 0.06
	FWT ↑	0.98 ± 0.01	0.39 ± 0.09	0.96 ± 0.01	0.09 ± 0.00	0.42 ± 0.28	0.93 ± 0.04	0.88 ± 0.15	0.93 ± 0.01	0.96 ± 0.01	0.98 ± 0.01
(button-press-topdown → window-open)	ASR ↑	0.66 ± 0.06	0.25 ± 0.00	0.61 ± 0.01	0.03 ± 0.00	0.33 ± 0.10	0.62 ± 0.01	0.63 ± 0.02	0.71 ± 0.03	0.51 ± 0.06	0.95 ± 0.05
	FM ↓	0.85 ± 0.14	0.67 ± 0.00	0.95 ± 0.05	0.01 ± 0.00	0.94 ± 0.01	0.97 ± 0.03	0.97 ± 0.05	0.73 ± 0.10	0.68 ± 0.14	0.08 ± 0.12
	FWT ↑	0.96 ± 0.01	0.25 ± 0.01	0.95 ± 0.03	0.04 ± 0.01	0.42 ± 0.20	0.98 ± 0.02	0.98 ± 0.02	0.96 ± 0.01	0.71 ± 0.13	0.98 ± 0.01
(window-open → window-close → drawer-open → drawer-close)	ASR ↑	0.44 ± 0.05	0.19 ± 0.04	0.48 ± 0.04	0.04 ± 0.01	0.10 ± 0.06	0.43 ± 0.03	0.41 ± 0.06	0.61 ± 0.04	0.46 ± 0.01	0.66 ± 0.14
	FM ↓	0.74 ± 0.11	0.50 ± 0.02	0.80 ± 0.04	0.04 ± 0.01	0.39 ± 0.02	0.91 ± 0.05	0.84 ± 0.05	0.55 ± 0.06	0.50 ± 0.03	0.48 ± 0.18
	FWT ↑	0.83 ± 0.10	0.20 ± 0.05	0.89 ± 0.06	0.08 ± 0.01	0.13 ± 0.10	0.97 ± 0.02	0.82 ± 0.10	0.84 ± 0.08	0.71 ± 0.01	0.89 ± 0.12
(button-press-topdown → window-close → door-open → drawer-close)	ASR ↑	0.43 ± 0.03	0.17 ± 0.01	0.44 ± 0.03	0.04 ± 0.01	0.14 ± 0.11	0.41 ± 0.02	0.38 ± 0.01	0.59 ± 0.04	0.34 ± 0.01	0.74 ± 0.07
	FM ↓	0.81 ± 0.09	0.47 ± 0.01	0.87 ± 0.02	0.04 ± 0.00	0.62 ± 0.16	0.94 ± 0.02	0.97 ± 0.02	0.55 ± 0.01	0.59 ± 0.02	0.34 ± 0.15
	FWT ↑	0.88 ± 0.10	0.19 ± 0.02	0.91 ± 0.08	0.07 ± 0.02	0.17 ± 0.15	0.97 ± 0.01	0.92 ± 0.07	0.91 ± 0.03	0.55 ± 0.02	0.95 ± 0.08

4.1 EXPERIMENT ON THE META-WORLD BENCHMARK

The experimental results of NBSP compared with other baselines on the Meta-World benchmark are presented in Table 1. As shown in the final column, NBSP significantly outperforms all other methods in the overall performance metric ASR. For two-task cycling tasks, NBSP achieves an ASR consistently above 0.9, which is substantially higher than other baselines. Its stability metric, FM, is markedly lower, while its plasticity metric, FWT, remains at a high level. Furthermore, NBSP also demonstrates excellent performance in four-task cycling tasks, maintaining a substantial lead.

For stability-focused baselines, EWC achieves a relatively good ASR but still falls short of NBSP. Moreover, EWC exhibits poor stability due to its high FM values. NPC performs even worse, failing to maintain both stability and plasticity effectively. Among plasticity-focused baselines, CBP and PI achieve comparable plasticity to NBSP, as reflected in their high FWT scores. However, both suffer from severe stability loss, indicated by their higher FM values. Another plasticity-focused method, CRelu, underperforms in both stability and plasticity. For baselines attempting to balance stability and plasticity, ANCL achieves high plasticity with competitive FWT scores but fails to retain prior knowledge, as reflected by its high FM value. CoTASP, despite being explicitly designed for this trade-off, performs poorly overall. NE achieves the best metrics among baselines but still falls short of NBSP, while UPGD trails NE slightly yet remains competitive.

The effectiveness of NBSP is further demonstrated in Figure 3, which showcases the training dynamics of NBSP. Specifically, during the second cycle of learning the same task, the agent exhibits a high success rate even before retraining, indicating that it has retained significant task knowledge. As a result, the agent is able to master the task more rapidly. This highlights the ability of NBSP to preserve knowledge from prior tasks while simultaneously maintaining the plasticity required to learn new tasks effectively. The other training process is demonstrated in Appendix C.7. In summary, ***NBSP delivers a remarkable improvement in maintaining stability without compromising plasticity, achieving a well-balanced trade-off in DRL.***

Figure 3: Training process of NBSP on the Meta-World benchmark. The segments to the left and right of the dashed line represent the training processes of the first and second cycles, respectively.

4.2 ABLATION STUDY

To reveal the underlying working mechanisms of NBSP, we further evaluate (1) the two primary components of NBSP: the gradient masking technique and experience replay technique, (2) the neuron identification method, and (3) the two critical modules of DRL: the actor and the critic, (4)

378 sensitivity analysis of hyperparameters, (5) the role of experience replay, (6) the impact of task order,
379 (7) the generalization of NBSP applied to the PPO algorithm (Schulman et al., 2017).

380
381 **Gradient masking and experience replay.** To evaluate the contributions of the two core components
382 of NBSP, we designed five experimental settings: (1) vanilla SAC, (2) SAC with only the experience
383 replay, (3) SAC with only the gradient masking, (4) SAC with experience replay and hard gradient
384 masking, where the masks of RL skill neurons are set directly to zero, and (5) NBSP.

385 The results of the cycling sequen-
386 tial tasks (button-press-topdown →
387 window-open) are shown in Table 2.
388 From the results, we observe that: (1)
389 The vanilla SAC algorithm suffers
390 from severe stability loss, as indicated
391 by a high FM score. (2) Using either
392 experience replay or gradient masking
393 alone alleviates the stability loss

394 to some extent, confirming their individual effectiveness. (3) Combining both techniques in NBSP
395 significantly improves performance, with lower FM and higher FWT. (4) Our adaptive gradient
396 masking, which sets masks of RL skill neurons based on their scores, outperforms hard masking
397 (setting masks to zero directly), demonstrating its superior effectiveness. *These findings demonstrate*
398 *that neither experience replay nor gradient masking alone can properly balance stability and*
399 *plasticity, while their combination achieves optimal performance.* The reason is that gradient
400 masking and experience replay focus on different mechanisms and therefore complement each other.
401 Gradient masking primarily targets RL skill neurons to reduce interference with past knowledge
402 while maintaining the ability to fine-tune for new tasks. And experience replay mainly acts on
403 neurons except RL skill neurons to prevent these neurons from being overly biased toward new tasks.
404 Additional results for different task settings are provided in Appendix C.10.1.

405 To further assess the effectiveness of gradient masking on RL Skill neurons, we measure the sensitivity
406 of network to perturbations applied to neurons that NBSP would mask (RL Skill neurons) versus those
407 it would not (non–RL Skill neurons). In the button-press-topdown task, we inject zero-mean Gaussian
408 noise into the activations of 10% of neurons. The noise is added either to (1) RL Skill neurons or (2)
409 non–RL Skill neurons, yielding success rates of 0.22 ± 0.03 and 0.92 ± 0.02 , respectively. Perturbing
410 RL Skill neurons leads to a substantial performance drop, indicating that these neurons are critical
411 for encoding task-specific knowledge. In contrast, perturbing non–RL Skill neurons has only a minor
412 effect. This contrast demonstrates that masking RL Skill neurons is essential for preserving learned
413 behavior, thereby supporting the stability side of the stability–plasticity trade-off.

414 To more clearly characterize the effect
415 of experience replay, we conduct addi-
416 tional analyses on gradient-norm var-
417 iance and parameter drift. (1) Gradient-
418 norm variance. We report gradient-
419 norm variance across four settings:

420 vanilla SAC, SAC with gradient masking, SAC with experience replay, and NBSP, as shown in
421 Table 3. The ordering of gradient-norm variance is SAC + experience replay > SAC > NBSP >
422 SAC + gradient masking. This ordering reveals a fundamental limitation of experience replay: al-
423 though replay introduces past transitions that help maintain memory, it also injects high-variance
424 gradients due to stale, off-policy, and often task-mismatched samples. Such noisy gradients destab-
425 ilize optimization and increase the likelihood of updates drifting toward suboptimal directions,
426 particularly when the agent encounters new tasks. Consequently, experience replay alone can harm
427 plasticity because its inherent gradient instability interferes with the efficient acquisition of new
428 behaviors. In contrast, gradient masking systematically suppresses interfering gradient components
429 and thus reduces gradient-norm variance. When combined with experience replay, gradient masking
430 effectively neutralizes the instability introduced by replay. As a result, NBSP preserves the benefits
431 of experience replay while mitigating its key drawback.

(2) Parameter similarity. We further evaluate the cosine similarity between network parameters
432 before and after learning a new task, with results reported in Table 3. The ordering of parameter
433 similarity is: NBSP > SAC + gradient masking > SAC + experience replay > vanilla SAC. Both

Table 2: Results of ablation study of gradient masking and experience replay techniques.

Metrics	(button-press-topdown → window-open)				
	vanilla SAC	experience replay	only adaptive gradient masking	only hard gradient masking	NBSP
ASR ↑	0.62 ± 0.01	0.70 ± 0.08	0.71 ± 0.06	0.71 ± 0.03	0.95 ± 0.05
FM ↓	0.99 ± 0.02	0.50 ± 0.16	0.73 ± 0.21	0.72 ± 0.04	0.08 ± 0.12
FWT ↑	0.98 ± 0.02	0.92 ± 0.05	0.97 ± 0.02	0.98 ± 0.03	0.98 ± 0.01

Table 3: Results of network performance with different component.

	vanilla SAC	NBSP	SAC + gradient masking	SAC + experience replay
gradient-norm variance	7.45	5.62	3.38	8.96
network similarity	0.56	0.89	0.79	0.75

experience replay and gradient masking help constrain parameter drift, but through different mechanisms. Experience replay anchors parameters by reintroducing historical information, yet stale and task-mismatched samples still produce conflicting gradients that cause considerable displacement. Gradient masking regulates harmful gradient directions, but without explicit historical supervision it cannot fully prevent forgetting. As a result, neither mechanism alone is sufficient, experience replay still allows substantial drift, and gradient masking alone cannot preserve comprehensive past knowledge. When combined, however, experience replay supplies essential past-task information while gradient masking stabilizes the update directions. This complementary interaction keeps parameter changes within a range that preserves previously learned behaviors, explaining why NBSP achieves substantially better stability–plasticity performance than either mechanism used in isolation.

Neuron identification method. To evaluate the proposed goal-oriented neuron identification method, we compare it with three alternative strategies: (1) random neuron identification, (2) identifying neurons with activation magnitude (Jung et al., 2020), and (3) identifying neurons with weight magnitude (Dohare et al., 2021). As shown in Table 4, our goal-oriented method consistently outperforms the other three methods across all three metrics: ASR, FM, and FWT, which confirms that our method effectively identifies neurons critical for knowledge retention, ensuring better stability and plasticity in cycling sequential task learning. *These findings validate the necessity of task-specific, goal-oriented neuron identification in enhancing balance between stability and plasticity.*

Table 4: Results of ablation study of neuron identification methods.

Metrics	(window-open → window-close)				(drawer-open → drawer-close)				(button-press-topdown → window-open)			
	activation	weight	random	ours	activation	weight	random	ours	activation	weight	random	ours
ASR ↑	0.65±0.30	0.73±0.20	0.78±0.09	0.90±0.04	0.82±0.06	0.51±0.17	0.72±0.26	0.96±0.02	0.75±0.01	0.93±0.06	0.72±0.01	0.95±0.05
FM ↓	0.56±0.37	0.44±0.31	0.42±0.13	0.18±0.01	0.44±0.16	0.67±0.00	0.41±0.28	0.07±0.06	0.65±0.02	0.15±0.12	0.70±0.05	0.08±0.12
FWT ↑	0.73±0.35	0.81±0.22	0.90±0.06	0.96±0.02	0.98±0.02	0.69±0.22	0.83±0.23	0.98±0.01	0.99±0.00	0.98±0.02	0.96±0.02	0.98±0.01

Actor and critic. To get a deeper understanding of the individual roles of the actor and critic in DRL agents, we evaluate NBSP with that only applied on actor and critic. The results are shown in Table 5. *The results indicate that both the actor and critic networks are essential for striking an optimal balance between stability and plasticity. Notably, the critic proves to be the more critical module in balancing this trade-off*, which aligns with the insight from Ma et al. (2024) that plasticity loss in the critic serves as the principal bottleneck impeding efficient training in DRL. *We further investigate this phenomenon by examining the training dynamics of actor–critic RL methods and obtain three key observations:* (1) Actor updates are driven by critic feedback; thus, even when RL skill neurons in the actor are masked, the influence of critic can still lead to adaptation to new tasks at the cost of prior knowledge. (2) Applying NBSP to the critic indirectly constrains the actor. (3) The recursive updates of critic, with its target network maintained by an exponential moving average, help preserve previous knowledge while integrating new skills. These findings highlight the distinct roles of the actor and critic in balancing stability and plasticity, offering valuable guidance for future research.

Table 5: Results of ablation study of the actor and critic modules.

Metric	(window-open → window-close)			(drawer-open → drawer-close)			(button-press-topdown → window-open)		
	actor	critic	both	actor	critic	both	actor	critic	both
ASR ↑	0.76 ± 0.10	0.79 ± 0.05	0.90 ± 0.04	0.79 ± 0.05	0.86 ± 0.02	0.96 ± 0.02	0.81 ± 0.11	0.85 ± 0.16	0.95 ± 0.05
FM ↓	0.58 ± 0.19	0.48 ± 0.09	0.18 ± 0.01	0.55 ± 0.15	0.31 ± 0.03	0.07 ± 0.06	0.45 ± 0.28	0.35 ± 0.38	0.08 ± 0.12
FWT ↑	0.97 ± 0.04	0.94 ± 0.05	0.96 ± 0.02	0.99 ± 0.01	0.96 ± 0.02	0.98 ± 0.01	0.95 ± 0.01	0.95 ± 0.03	0.98 ± 0.01

The proportion of RL skill neurons. To evaluate the impact of the proportion of RL skill neurons m on the performance of NBSP, we experiment with various proportions on the (button-press-topdown → window-open) cycling tasks. The results, shown in Figure 4, reveal an interesting trend: *as the proportion of RL skill neurons increases, the ASR improves initially, but begins to decline after reaching a certain threshold*. Specifically, when the proportion of masked neurons is too small, not all neurons that encode task-specific skills can be correctly identified. As a result, the true RL skill neurons must adjust their activations to accommodate new tasks, ultimately reducing stability. Conversely, when the proportion becomes too large, neurons that do not encode task-specific skills may be mistakenly selected as

Figure 4: Performance of NBSP with different proportions of RL skill neurons.

486 RL skill neurons, which compromises their ability to learn new tasks and thereby reduces plasticity.
487 Crucially, our experiments demonstrate that NBSP consistently delivers ASR improvements across
488 a reasonably broad range of values (from 0.15 to 0.3). NBSP is highly robust to the choice of m
489 across this region, so selecting any value within this interval yields similarly high performance,
490 demonstrating the robustness of the method.

491 **More ablation results.** (1) The experience replay buffer stores information from all previously
492 encountered tasks. (2) NBSP performs well within certain robust ranges of hyperparameters, making
493 it easier to tune. (3) Task order does affect performance, but the impact is modest. (4) Vanilla PPO
494 performs worse than vanilla SAC in our setting, and NBSP helps achieve a better balance. However,
495 the effect is less pronounced than that of SAC. Please refer to Appendix C.10 for more details.

496 **The role of RL skill neurons.** Remarkably, we would like to highlight that RL skill neurons alone
497 cannot resolve catastrophic forgetting, those non-RL skill neurons, influenced by the environment
498 and context, also contribute to task success, and their forgetting can likewise cause failures. We
499 believe neuron-level research for generalization across tasks in a more general sense would be an
500 important future direction. Within our current framework, the primary contribution of RL skill
501 neurons is mitigating catastrophic interference by preventing the overwriting the encoded knowledge
502 during new task learning, which in turn synergizes with experience replay to alleviate catastrophic
503 forgetting.

504 4.3 EXPERIMENT ON OTHER BENCHMARKS

505 Table 6: Results of NBSP with other baselines on the Atari benchmark.

506 Cycling sequential games	Metrics	Methods									
		EWC	NPC	ANCL	CoTASP	CRelu	CBP	PI	NE	UPGD	NBSP
(Pong → Bowling)	AR ↑	0.66 ± 0.07	0.51 ± 0.02	0.42 ± 0.29	-0.05 ± 0.02	0.02 ± 0.00	-0.09 ± 0.00	0.53 ± 0.01	0.45 ± 0.03	0.19 ± 0.08	0.87 ± 0.01
	FM ↓	0.58 ± 0.20	0.51 ± 0.04	0.46 ± 0.31	0.07 ± 0.01	0.01 ± 0.00	0.06 ± 0.00	0.78 ± 0.02	0.66 ± 0.04	0.46 ± 0.09	0.05 ± 0.03
	FWT ↑	0.70 ± 0.02	0.35 ± 0.02	0.47 ± 0.31	-0.05 ± 0.05	0.02 ± 0.01	-0.09 ± 0.00	0.60 ± 0.00	0.47 ± 0.02	0.19 ± 0.05	0.72 ± 0.01
(BankHeist → Alien)	AR ↑	0.46 ± 0.01	0.38 ± 0.06	0.46 ± 0.01	-0.08 ± 0.05	0.08 ± 0.05	0.12 ± 0.02	0.48 ± 0.14	0.39 ± 0.12	0.28 ± 0.01	0.57 ± 0.02
	FM ↓	0.98 ± 0.02	0.46 ± 0.14	0.98 ± 0.03	0.27 ± 0.04	0.52 ± 0.29	0.44 ± 0.09	0.88 ± 0.27	0.85 ± 0.11	0.60 ± 0.03	0.65 ± 0.07
	FWT ↑	0.71 ± 0.02	0.37 ± 0.03	0.72 ± 0.01	-0.16 ± 0.07	0.28 ± 0.11	0.30 ± 0.05	0.73 ± 0.26	0.63 ± 0.09	0.28 ± 0.02	0.72 ± 0.05

514 We further evaluate NBSP on the Atari and
515 DMC benchmarks to assess its generalization
516 ability. Atari games feature discrete action
517 spaces and DMC is a widely recognized bench-
518 mark for continuous control tasks. Episode re-
519 turns are used to evaluate the performance of
520 each task and the results are presented in Ta-
521 ble 6 and Table 7. On the Atari games, NBSP
522 demonstrates superior performance in balanc-
523 ing stability and plasticity, outperforming other
524 baselines across key evaluation metrics, including AR (Average Return), FM, and FWT, as with
525 the Meta-World benchmark. NBSP also demon-
526 strates its advantage compared to vanilla SAC on
527 the DMC benchmark. These results further support that **NBSP exhibits excellent generalization in**
528 **balance stability and plasticity across the Meta-World, Atari and DMC benchmarks.**

529 5 CONCLUSION

530 This work addresses the fundamental issue of the stability-plasticity dilemma in DRL. To tackle
531 this problem, we introduce the concept of RL skill neurons by identifying neurons that significantly
532 contribute to knowledge retention, building upon which we then propose the Neuron-level Balance
533 between Stability and Plasticity framework, by employing gradient masking and experience replay
534 techniques on RL skill neurons. Experimental results on the Meta-World, Atari and DMC benchmarks
535 demonstrate that NBSP significantly outperforms existing methods in managing the stability-plasticity
536 trade-off. Future research could explore the application of RL skill neurons like model distillation
537 and extend NBSP to other learning paradigms, such as supervised learning.

538 **Limitation.** The hyperparameters, such as the number of RL Skill neurons and the replay frequency,
539 must currently be manually determined and tuned based on empirical experience, as no automatic
540 mechanism exists for selecting them. Developing such automated selection methods is an important
541 direction for future work.

540 REFERENCES

541 Zaheer Abbas, Rosie Zhao, Joseph Modayil, Adam White, and Marlos C Machado. Loss of plasticity
542 in continual deep reinforcement learning. In *Conference on Lifelong Learning Agents*, pp. 620–636.
543 PMLR, 2023.

544 Hongjoon Ahn, Jinu Hyeon, Youngmin Oh, Bosun Hwang, and Taesup Moon. Reset & distill:
545 A recipe for overcoming negative transfer in continual reinforcement learning. *arXiv preprint*
546 *arXiv:2403.05066*, 2024.

547 Nishanth Anand and Doina Precup. Prediction and control in continual reinforcement learning.
548 *Advances in Neural Information Processing Systems*, 36, 2024.

549 OpenAI: Marcin Andrychowicz, Bowen Baker, Maciek Chociej, Rafal Jozefowicz, Bob McGrew,
550 Jakub Pachocki, Arthur Petron, Matthias Plappert, Glenn Powell, Alex Ray, et al. Learning
551 dexterous in-hand manipulation. *The International Journal of Robotics Research*, 39(1):3–20,
552 2020.

553 Jordan Ash and Ryan P Adams. On warm-starting neural network training. *Advances in neural*
554 *information processing systems*, 33:3884–3894, 2020.

555 Craig Atkinson, Brendan McCane, Lech Szymanski, and Anthony Robins. Pseudo-rehearsal: Achiev-
556 ing deep reinforcement learning without catastrophic forgetting. *Neurocomputing*, 428:291–307,
557 2021a.

558 Craig Atkinson, Brendan McCane, Lech Szymanski, and Anthony Robins. Pseudo-rehearsal: Achiev-
559 ing deep reinforcement learning without catastrophic forgetting. *Neurocomputing*, pp. 291–307,
560 Mar 2021b. doi: 10.1016/j.neucom.2020.11.050. URL <http://dx.doi.org/10.1016/j.neucom.2020.11.050>.

561 Fengshuo Bai, Hongming Zhang, Tianyang Tao, Zhiheng Wu, Yanna Wang, and Bo Xu. Picor: Multi-
562 task deep reinforcement learning with policy correction. In *Proceedings of the AAAI Conference*
563 *on Artificial Intelligence*, volume 37, pp. 6728–6736, 2023.

564 Anthony Bau, Yonatan Belinkov, Hassan Sajjad, Nadir Durrani, Fahim Dalvi, and James Glass.
565 Identifying and controlling important neurons in neural machine translation. In *International*
566 *Conference on Learning Representations*, 2018.

567 David Bau, Jun-Yan Zhu, Hendrik Strobelt, Agata Lapedriza, Bolei Zhou, and Antonio Torralba.
568 Understanding the role of individual units in a deep neural network. *Proceedings of the National*
569 *Academy of Sciences*, 117(48):30071–30078, 2020.

570 Marc G Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The arcade learning environ-
571 ment: An evaluation platform for general agents. *Journal of Artificial Intelligence Research*, 47:
572 253–279, 2013.

573 Gail A Carpenter and Stephen Grossberg. A massively parallel architecture for a self-organizing
574 neural pattern recognition machine. *Computer vision, graphics, and image processing*, 37(1):
575 54–115, 1987.

576 Gail A. Carpenter and Stephen Grossberg. Art 2: Self-organization of stable category recognition
577 codes for analog input patterns. In *SPIE Proceedings, Intelligent Robots and Computer Vision VI*,
578 Feb 1988. doi: 10.1117/12.942747. URL <http://dx.doi.org/10.1117/12.942747>.

579 Arslan Chaudhry, Puneet K Dokania, Thalaiyasingam Ajanthan, and Philip HS Torr. Riemannian
580 walk for incremental learning: Understanding forgetting and intransigence. In *Proceedings of the*
581 *European conference on computer vision (ECCV)*, pp. 532–547, 2018a.

582 Arslan Chaudhry, Marc’Aurelio Ranzato, Marcus Rohrbach, and Mohamed Elhoseiny. Efficient
583 lifelong learning with a-gem. In *International Conference on Learning Representations*, 2018b.

584 Jianhui Chen, Xiaozhi Wang, Zijun Yao, Yushi Bai, Lei Hou, and Juanzi Li. Finding safety neurons
585 in large language models. *arXiv preprint arXiv:2406.14144*, 2024.

594 Damai Dai, Li Dong, Yaru Hao, Zhifang Sui, Baobao Chang, and Furu Wei. Knowledge neurons
595 in pretrained transformers. In *Proceedings of the 60th Annual Meeting of the Association for*
596 *Computational Linguistics (Volume 1: Long Papers)*, Jan 2022. doi: 10.18653/v1/2022.acl-long.
597 581. URL <http://dx.doi.org/10.18653/v1/2022.acl-long.581>.

598 Shibhansh Dohare, Richard S Sutton, and A Rupam Mahmood. Continual backprop: Stochastic
599 gradient descent with persistent randomness. *arXiv preprint arXiv:2108.06325*, 2021.

600 Shibhansh Dohare, J Fernando Hernandez-Garcia, Qingfeng Lan, Parash Rahman, A Rupam Mah-
601 mood, and Richard S Sutton. Loss of plasticity in deep continual learning. *Nature*, 632(8026):
602 768–774, 2024.

603 Amil David, Yossi Gandelsman, Alexei A Efros, and Assaf Shocher. Rosetta neurons: Mining the
604 common units in a model zoo. In *Proceedings of the IEEE/CVF International Conference on*
605 *Computer Vision*, pp. 1934–1943, 2023.

606 Mohamed Elsayed and A Rupam Mahmood. Addressing loss of plasticity and catastrophic forgetting
607 in continual learning. *arXiv preprint arXiv:2404.00781*, 2024.

608 Martial eMermillod, Aurélia eBugaiska, and Patrick eBONIN. The stability-plasticity dilemma:
609 Investigating the continuum from catastrophic forgetting to age-limited learning effects. *Frontiers*
610 *in Psychology,Frontiers in Psychology*, Aug 2013.

611 Farama Foundation. Atari environments in gymnasium. <https://gymnasium.farama.org/environments/atari/>, 2024. URL <https://gymnasium.farama.org/environments/atari/>. Accessed: 2024-09-14.

612 Wes Gurnee and Max Tegmark. Language models represent space and time. In *The Twelfth*
613 *International Conference on Learning Representations*, Oct 2023.

614 Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
615 maximum entropy deep reinforcement learning with a stochastic actor. In *International conference*
616 *on machine learning*, pp. 1861–1870. PMLR, 2018.

617 Shengyi Huang, Rousslan Fernand Julien Dossa, Chang Ye, Jeff Braga, Dipam Chakraborty, Kinal
618 Mehta, and Joāo GM Araújo. Cleanrl: High-quality single-file implementations of deep
619 reinforcement learning algorithms. *Journal of Machine Learning Research*, 23(274):1–18, 2022.

620 Sangwon Jung, Hongjoon Ahn, Sungmin Cha, and Taesup Moon. Continual learning with node-
621 importance based adaptive group sparse regularization. *Advances in neural information processing*
622 *systems*, 33:3647–3658, 2020.

623 Sanghwan Kim, Lorenzo Noci, Antonio Orvieto, and Thomas Hofmann. Achieving a better stability-
624 plasticity trade-off via auxiliary networks in continual learning. *CVPR2023*, Mar 2023.

625 B Ravi Kiran, Ibrahim Sobh, Victor Talpaert, Patrick Mannion, Ahmad A Al Sallab, Senthil Yogamani,
626 and Patrick Pérez. Deep reinforcement learning for autonomous driving: A survey. *IEEE*
627 *Transactions on Intelligent Transportation Systems*, 23(6):4909–4926, 2021.

628 James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A.
629 Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, Demis Hassabis,
630 Claudia Clopath, Dharshan Kumaran, and Raia Hadsell. Overcoming catastrophic forgetting in
631 neural networks. *Proceedings of the National Academy of Sciences*, pp. 3521–3526, Mar 2017. doi:
632 10.1073/pnas.1611835114. URL <http://dx.doi.org/10.1073/pnas.1611835114>.

633 Saurabh Kumar, Henrik Marklund, and Benjamin Van Roy. Maintaining plasticity in continual
634 learning via regenerative regularization. 2023.

635 Jiashun Liu, Johan Obando-Ceron, Aaron Courville, and Ling Pan. Neuroplastic expansion in deep
636 reinforcement learning. *arXiv preprint arXiv:2410.07994*, 2024.

637 Jiashun Liu, Zihao Wu, Johan Obando-Ceron, Pablo Samuel Castro, Aaron Courville, and Ling Pan.
638 Measure gradients, not activations! enhancing neuronal activity in deep reinforcement learning.
639 *arXiv preprint arXiv:2505.24061*, 2025.

648 David Lopez-Paz and Marc' Aurelio Ranzato. Gradient episodic memory for continual learning.
649 *Advances in neural information processing systems*, 30, 2017.
650

651 Guozheng Ma, Lu Li, Sen Zhang, Zixuan Liu, Zhen Wang, Yixin Chen, Li Shen, Xueqian Wang, and
652 Dacheng Tao. Revisiting plasticity in visual reinforcement learning: Data, modules and training
653 stages. In *The Twelfth International Conference on Learning Representations*, 2024.

654 Arun Mallya and Svetlana Lazebnik. Packnet: Adding multiple tasks to a single network by iterative
655 pruning. In *Proceedings of the IEEE conference on Computer Vision and Pattern Recognition*, pp.
656 7765–7773, 2018.

657 Michael McCloskey and Neal J Cohen. Catastrophic interference in connectionist networks: The
658 sequential learning problem. In *Psychology of learning and motivation*, volume 24, pp. 109–165.
659 Elsevier, 1989.

660 Jorge A Mendez, Harm van Seijen, and Eric Eaton. Modular lifelong reinforcement learning via
661 neural composition. *arXiv preprint arXiv:2207.00429*, 2022.

663 Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan
664 Wierstra, and Martin Riedmiller. Playing atari with deep reinforcement learning. *arXiv preprint*
665 *arXiv:1312.5602*, 2013.

667 Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Bellemare,
668 Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level control
669 through deep reinforcement learning. *nature*, 518(7540):529–533, 2015.

670 Pavlo Molchanov, Stephen Tyree, Tero Karras, Timo Aila, and Jan Kautz. Pruning convolutional
671 neural networks for resource efficient inference. In *International Conference on Learning Representations*, 2022.

673 Evgenii Nikishin, Max Schwarzer, Pierluca D’Oro, Pierre-Luc Bacon, and Aaron Courville. The
674 primacy bias in deep reinforcement learning. In *International conference on machine learning*, pp.
675 16828–16847. PMLR, 2022a.

677 Evgenii Nikishin, Max Schwarzer, Pierluca D’Oro, Pierre-Luc Bacon, and Aaron Courville. The
678 primacy bias in deep reinforcement learning. In *International conference on machine learning*, pp.
679 16828–16847. PMLR, 2022b.

680 Evgenii Nikishin, Junhyuk Oh, Georg Ostrovski, Clare Lyle, Razvan Pascanu, Will Dabney, and André
681 Barreto. Deep reinforcement learning with plasticity injection. *Advances in Neural Information
682 Processing Systems*, 36, 2024.

684 Inyoung Paik, Sangjun Oh, Tae-Yeong Kwak, and InJung Kim. Overcoming catastrophic forgetting
685 by neuron-level plasticity control. *AAAI2020*, Jul 2019.

686 Hassan Sajjad, Nadir Durrani, and Fahim Dalvi. Neuron-level interpretation of deep nlp models: A
687 survey. *Transactions of the Association for Computational Linguistics*, 10:1285–1303, 2022.

689 John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
690 optimization algorithms. *arXiv preprint arXiv:1707.06347*, 2017.

694 Ghada Sokar, Rishabh Agarwal, Pablo Samuel Castro, and Utku Evci. The dormant neuron phe-
692 nomenon in deep reinforcement learning. In *International Conference on Machine Learning*, pp.
693 32145–32168. PMLR, 2023.

695 Richard S Sutton. Reinforcement learning: An introduction. *A Bradford Book*, 2018.

696 Tianyi Tang, Wenyang Luo, Haoyang Huang, Dongdong Zhang, Xiaolei Wang, Xin Zhao, Furu
697 Wei, and Ji-Rong Wen. Language-specific neurons: The key to multilingual capabilities in large
698 language models. *arXiv preprint arXiv:2402.16438*, 2024.

700 Saran Tunyasuvunakool, Alistair Muldal, Yotam Doron, Siqi Liu, Steven Bohez, Josh Merel, Tom
701 Erez, Timothy Lillicrap, Nicolas Heess, and Yuval Tassa. dm_control: Software and tasks for
continuous control. *Software Impacts*, 6:100022, 2020.

702 Liyuan Wang, Xingxing Zhang, Hang Su, and Jun Zhu. A comprehensive survey of continual learning:
703 theory, method and application. *IEEE Transactions on Pattern Analysis and Machine Intelligence*,
704 2024.

705 Xiaozhi Wang, Kaiyue Wen, Zhengyan Zhang, Lei Hou, Zhiyuan Liu, and Juanzi Li. Finding skill
706 neurons in pre-trained transformer-based language models. In *Proceedings of the 2022 Conference*
707 *on Empirical Methods in Natural Language Processing*, pp. 11132–11152, 2022.

708 Maciej Wolczyk, Michał Zajac, Razvan Pascanu, Łukasz Kuciński, and Piotr Miłoś. Disentangling
709 transfer in continual reinforcement learning. *Advances in Neural Information Processing Systems*,
710 35:6304–6317, 2022.

711 Haoyun Xu, Runzhe Zhan, Derek F Wong, and Lidia S Chao. Let's focus on neuron: Neuron-level
712 supervised fine-tuning for large language model. *arXiv preprint arXiv:2403.11621*, 2024.

713 Ruihan Yang, Huazhe Xu, Yi Wu, and Xiaolong Wang. Multi-task reinforcement learning with soft
714 modularization. *Advances in Neural Information Processing Systems*, 33:4767–4777, 2020.

715 Yijun Yang, Tianyi Zhou, Jing Jiang, Guodong Long, and Yuhui Shi. Continual task allocation in
716 meta-policy network via sparse prompting. In *International Conference on Machine Learning*, pp.
717 39623–39638. PMLR, 2023.

718 Tianhe Yu, Deirdre Quillen, Zhanpeng He, Ryan Julian, Karol Hausman, Chelsea Finn, and Sergey
719 Levine. Meta-world: A benchmark and evaluation for multi-task and meta reinforcement learning.
720 In *Conference on robot learning*, pp. 1094–1100. PMLR, 2020.

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756 A RELATED WORK
757

758 **Balance between stability and plasticity.** In DRL, the agent faces a fundamental challenge: the
759 stability-plasticity dilemma, first introduced by Carpenter & Grossberg (1988). Recent research has
760 proposed various strategies to address this issue by balancing stability and plasticity.

761 Replay-based methods are widely employed to enhance stability by reusing experiences from past
762 distributions. For example, Chaudhry et al. (2018b) introduced A-GEM, which combines episodic
763 memory to ensure that the average loss of prior tasks does not increase when learning a new task.
764 Similarly, Wolczyk et al. (2022) proposed ClonEx-SAC, which uses actor behavioral cloning and best-
765 return exploration to boost performance in CRL. To reduce storage requirements, pseudo-rehearsals
766 generated from a generative model have also been proposed (Atkinson et al., 2021a).

767 Maintaining the expressiveness of neurons is key to preserving plasticity. Nikishin et al. (2022b)
768 proposed a mechanism that periodically resets a portion of the agent’s network to counteract plasticity
769 loss. Likewise, Nikishin et al. (2024) introduced plasticity injection, a lightweight intervention that
770 enhances network plasticity without increasing trainable parameters or introducing prediction bias.
771 The Reset & Distillation (R&D) framework combines resetting the online actor-critic network for new
772 tasks with offline distillation of knowledge from previous action probabilities, effectively retaining
773 plasticity (Ahn et al., 2024). Additionally, Abbas et al. (2023) proposed the Concatenated ReLUs
774 (CReLU) activation function to prevent activation collapse, thereby alleviating plasticity degradation.
775

776 Modularity-based approaches have shown promise in balancing stability and plasticity by decoupling
777 task-specific and general knowledge. For instance, Anand & Precup (2024) decomposed the value
778 function into a permanent value function, which captures persistent knowledge, and a transient
779 value function, which facilitates rapid adaptation. Yang et al. (2020) designed a routing network to
780 estimate task-specific routing strategies, reconfigure the base network, and combine routes using
781 a soft modularity mechanism, making it effective for sequential tasks. Similarly, Mendez et al.
782 (2022) proposed a compositional lifelong RL framework that uses accumulated neural components
783 to accelerate learning for new tasks while preserving performance on past tasks via offline RL and
784 replayed experiences.

785 **Neuron-level Research.** Recent research highlights that not all neurons remain active across varying
786 contexts, and this neuron sparsity is often positively correlated with task-specific performance (Xu
787 et al., 2024). Building on this insight, numerous studies have focused on identifying and leveraging
788 skill neurons to interpret network behavior and tackle specific challenges, achieving significant
789 advancements. For example, skill neurons in pre-trained Transformers, which demonstrate strong
790 predictive value for task labels, have been utilized for network pruning to enhance efficiency and
791 improve transferability (Wang et al., 2022). Sokar et al. (2023) investigate dormant neurons in deep
792 reinforcement learning and propose a method to recycle them during training. Similarly, Dravid
793 et al. (2023) introduce Rosetta Neurons, enabling cross-class alignments and transformations without
794 specialized training. In large language models, language-specific neurons have been identified to
795 control output languages by selective activation or deactivation (Tang et al., 2024), while safety
796 neurons have been analyzed to enhance safety alignment through mechanistic interpretability (Chen
797 et al., 2024).

798 Despite these achievements, the exploration of skill neurons in DRL remains limited. Existing neuron-
799 level approaches primarily focus on task-specific sub-network selection. For instance, CoTASP learns
800 hierarchical dictionaries and meta-policies to generate sparse prompts and extract sub-networks
801 as task-specific policies (Yang et al., 2023). Similarly, Mallya & Lazebnik (2018) sequentially
802 allocate multiple tasks within a single network through iterative pruning and re-training, balancing
803 performance and storage efficiency. Unlike these methods, our work identifies RL skill neurons
804 specifically tailored to deep reinforcement learning, ensuring a balance between stability and plasticity
805 by preserving the task-relevant knowledge encoded in these neurons while allowing for fine-tuning.

806 B PRELIMINARY
807

808 B.1 MARKOV DECISION PROCESS (MDP)

809 A Markov Decision Process(MDP) is a framework used to describe a problem involving learning
810 from actions to achieve a goal. Almost all reinforcement learning problems can be characterized

810 as a Markov Decision Process. Each MDP is defined by a tuple $\langle S, A, P, R, \gamma \rangle$, where S and A
 811 represent state and action spaces respectively. The transition dynamics of the MDP are defined by the
 812 function $P : S \times A \times S \rightarrow [0, 1]$, which represents the probability of transitioning from a give state s
 813 with action a to state s' . The reward function is represented by $R : S \times A \times S \rightarrow \mathbb{R}$, and $\gamma \in (0, 1)$
 814 is the discount factor. At each time step t , an agent observes the state of the environment, denoted as
 815 s_t , and selects an action a_t according to a policy $\pi(a|s)$. One time step later, the agent receives a
 816 numerical reward r_{t+1} and transitions to a new state s_{t+1} . In the simplest case, the return is the sum
 817 of the rewards when the agent–environment interaction naturally breaks into subsequences, which we
 818 refer to episodes (Sutton, 2018).

819 **B.2 SOFT ACTOR-CRITIC (SAC)**

820 Soft Actor-Critic (SAC) is an off-policy actor-critic deep reinforcement learning algorithm that
 821 leverages maximum entropy to promote exploration. This work employs SAC to train a policy that
 822 effectively balances stability and plasticity, chosen for its sample efficiency, excellent performance,
 823 and robust stability. In this framework, the actor aims to maximize both the expected reward and the
 824 entropy of the policy. The parameters ϕ of the actor are optimized by minimizing the following loss
 825 function:

$$826 J_{\pi}(\phi) = E_{s_t \sim D, a_t \sim \pi_{\phi}} [\alpha \log \pi_{\phi}(a_t | s_t) - Q_{\theta}(s_t, a_t)],$$

827 where D is the replay buffer, α is the temperature parameter controlling the trade-off between
 828 exploration and exploitation, θ denotes the parameters of the critic network, π_{ϕ} represents the policy
 829 learned by the actor ϕ , and Q_{θ} denotes the Q-value estimated by the critic θ . The critic network is
 830 trained to minimize the squared residual error:

$$831 J_Q(\theta) = E_{(s_t, a_t, s_{t+1}) \sim D} \left[\frac{1}{2} (Q_{\theta}(s_t, a_t) - r_t - \gamma \hat{V}(s_{t+1}))^2 \right],$$

$$832 \hat{V}(s_t) = E_{a_t \sim \pi_{\phi}} [Q_{\theta}(s_t, a_t) - \alpha \log \pi_{\phi}(a_t | s_t)],$$

833 where γ represents the discount factor.

834 **B.3 NEURON**

835 In neural networks, various components, such as blocks and layers, play distinct roles. Here, we
 836 define a neuron as a single output dimension from a layer. For example, in a fully connected layer,
 837 each output dimension corresponds to a neuron. Similarly, in a convolutional layer, each output
 838 channel represents a neuron. Furthermore, following the terminology used by Sajjad et al. (2022),
 839 we classify neurons that encapsulate a single concept as focused neurons, while a group of neurons
 840 collectively representing a concept are termed group neurons.

841 **C EXPERIMENT**

842 **C.1 BASELINE**

843 **EWC**: Elastic Weight Consolidation (EWC) (Kirkpatrick et al., 2017) addresses the challenge of
 844 catastrophic forgetting by allowing neural networks to retain proficiency in previously learned tasks
 845 even after a long hiatus. It achieves this by selectively slowing down learning for weights that are
 846 crucial for retaining knowledge of these tasks. This approach has demonstrated excellent performance
 847 in sequentially solving a series of classification tasks, such as those in the MNIST handwritten digit
 848 dataset, and in learning several Atari 2600 games sequentially.

849 **NPC**: Neuron-level Plasticity Control (NPC) (Paik et al., 2019) preserves the existing knowledge
 850 from the previous tasks by controlling the plasticity of the network at the neuron level. NPC estimates
 851 the importance value of each neuron and consolidates important neurons by applying lower learning
 852 rates, rather than restricting individual connection weights to stay close to the values optimized for the
 853 previous tasks. The experimental results on the several classification datasets show that neuron-level
 854 consolidation is substantially effective.

855 **ANCL**: Auxiliary Network Continual Learning (ANCL) is an innovative approach that incorporates an
 856 auxiliary network to enhance plasticity within a model that primarily emphasizes stability. Specifically,

864 this framework introduces a regularizer that effectively balances plasticity and stability, achieving
865 superior performance over strong baselines in both task-incremental and class-incremental learning
866 scenarios.

867 **CoTASP:** Continual Task Allocation via Sparse Prompting (CoTASP) (Yang et al., 2023) learns
868 over-complete dictionaries to produce sparse masks as prompts extracting a sub-network for each task
869 from a meta-policy network. Hence, relevant tasks share more neurons in the meta-policy network
870 due to similar prompts while cross-task interference causing forgetting is effectively restrained. It
871 outperforms existing continual and multi-task RL methods on all seen tasks, forgetting reduction,
872 and generalization to unseen tasks. **CoTASP:** Continual Task Allocation via Sparse Prompting
873 (CoTASP) (Yang et al., 2023) learns over-complete dictionaries to produce sparse masks as prompts
874 extracting a sub-network for each task from a meta-policy network. Hence, relevant tasks share more
875 neurons in the meta-policy network due to similar prompts while cross-task interference causing
876 forgetting is effectively restrained. It outperforms existing continual and multi-task RL methods on
877 all seen tasks, forgetting reduction, and generalization to unseen tasks.

878 **CRelu:** Concatenated ReLUs (CRelUs) (Abbas et al., 2023) is a simple activation function that
879 concatenates the input with its negation and applies ReLU to the result. It performs effectively in
880 facilitating continual learning in a changing environment.

881 **CBP:** Continual BackPropagation (CBP) (Dohare et al., 2024) reinitializes a small number of units
882 during training, typically fewer than one per step. To prevent disruption of what the network
883 has already learned, only the least-used units are considered for reinitialization. It shows great
884 performance on Continual ImageNet and class-incremental CIFAR-100.

885 **PI:** Plasticity Injection (PI) (Nikishin et al., 2024) freeze the parameters θ and introduce a new set
886 of parameters θ' sampled from random initialization at some point in training, where the network
887 might have started losing plasticity. The results on Atari show that plasticity injection attains stronger
888 performance compared to alternative methods while being computationally efficient.

890 **NE:** Neuroplastic Expansion(NE) (Liu et al., 2024) maintains learnability and adaptability throughout
891 the entire training process by dynamically growing the network from a smaller initial size to its full
892 dimension.

893 **UPGD:** Utility-based Perturbed Gradient Descent (UPGD) (Elsayed & Mahmood, 2024) combines
894 gradient updates with perturbations, where it applies smaller modifications to more useful units,
895 protecting them from forgetting, and larger modifications to less useful units, rejuvenating their
896 plasticity.

897 **C.2 BENCHMARK**

900 **Meta-World.** Meta-World is an open-source benchmark for meta-reinforcement learning and
901 multitask learning, comprising 50 distinct robotic manipulation tasks (Yu et al., 2020).

902 All tasks are executed by a simulated Sawyer robot, with the action space defined as a 2-tuple: the
903 change in the 3D position of the end-effector, followed by a normalized torque applied to the gripper
904 fingers.

905 The observation space has a consistent dimensionality of 39, although different dimensions correspond
906 to various aspects of each task. Typically, the observation space is represented as a 6-tuple, including
907 the 3D Cartesian position of the end-effector, a normalized measure of the gripper’s openness, the 3D
908 position and the quaternion of the first object, the 3D position and quaternion of the second object, all
909 previous measurements within the environment, and the 3D position of the goal.

910 The reward function for all tasks is structured and multi-component, aiding in effective policy learning
911 for each task component. With this design, the reward functions maintain a similar magnitudes across
912 tasks, generally ranging between 0 and 10. The descriptions of the six tasks used in our experiments
913 are listed below, and the appearance of these tasks is shown in Figure 5.

914

- 915 • **drawer-open:** Open a drawer, with randomized drawer positions.
- 916 • **drawer-close:** Push and close a drawer, with randomized drawer positions.
- 917 • **window-open:** Push and open a window, with randomized window positions.

918 • **window-close**: Push and close a window, with randomized window positions.
 919 • **door-open**: Open a door with a revolving joint. Randomize door positions.
 920 • **button-press-topdown**: Press a button from the top. Randomize button positions.
 921

928 Figure 5: Tasks in the Meta-World benchmark used in our experiments.

929
 930 **Atari**. Atari environments are simulated using the Arcade Learning Environment (ALE) (Bellemare
 931 et al., 2013) via the Stella emulator.

932
 933 Each environment utilizes a subset of the full action space, which includes actions like NOOP,
 934 FIRE, UP, RIGHT, LEFT, DOWN, UPRIGHT, UPLEFT, DOWNRIGHT, DOWNLEFT, UPFIRE,
 935 RIGHTFIRE, LEFTFIRE, DOWNFIRE, UPRIGHTFIRE, UPLEFTFIRE, DOWNRIGHTFIRE, and
 936 DOWNLEFTFIRE. By default, most environments employ only a smaller subset of these actions,
 937 excluding those that have no effect on gameplay.

938 Observations in Atari environments are RGB images displayed to human players, with $obs_type =$
 939 "rgb", corresponding to an observation space defined as $Box(0, 255, (210, 160, 3), np.uint8)$.

940
 941 The specific reward dynamics vary depending on the environment and are typically detailed in the
 942 game's manual.

943 The descriptions of the four games used in our experiments are listed below (Foundation, 2024), and
 944 the appearance of these games is shown in Figure 6.

945
 946 • **Bowling**: The goal is to score as many points as possible in a 10-frame game. Each frame allows
 947 up to two tries. Knocking down all pins on the first try is called a "strike", while doing so on the
 948 second try is a "spare". Failing to knock down all pins in two attempts results in an "open" frame.
 949
 950 • **Pong**: You control the right paddle and compete against the computer-controlled left paddle. The
 951 objective is to deflect the ball away from your goal and into the opponent's goal.
 952
 953 • **BankHeist**: You play as a bank robber trying to rob as many banks as possible while avoiding the
 954 police in maze-like cities. You can destroy police cars using dynamite and refill your gas tank by
 955 entering new cities. Lives are lost if you run out of gas, are caught by the police, or run over your
 956 own dynamite.
 957
 958 • **Alien**: You are trapped in a maze-like spaceship with three aliens. Your goal is to destroy their
 959 eggs scattered throughout the ship while avoiding the aliens. You have a flamethrower to fend
 960 them off and can occasionally collect a power-up (pulsar) that temporarily enables you to kill
 961 aliens.

970 Figure 6: Games in the Atari benchmark used in our experiments.

971 **DMC**. DeepMind Control Suite (DMC) (Tunyasuvunakool et al., 2020) is a widely used set of
 972 standardized environments for reinforcement learning research, designed to provide a challenging

benchmark for continuous control tasks. Built upon the powerful MuJoCo physics engine, it offers a diverse collection of simulations, ranging from simple cart-pole balancing to complex locomotion tasks for cheetah-like quadrupeds and humanoids.

C.3 EXPERIMENT SETTING

For all experiments, we utilize the open-source PyTorch implementation of Soft Actor-Critic (SAC) provided by CleanRL (Huang et al., 2022) on a single RTX2080Ti GPU. CleanRL is a Deep Reinforcement Learning library that offers high-quality, single-file implementations with research-friendly features. The code is both clean and straightforward, and we adhere to the configurations provided by CleanRL. During training, we employ an ϵ -greedy exploration policy at the start, setting $\epsilon = 1$ for the first 10^4 time steps to promote exploration. The environment is wrapped using Gym wrappers to facilitate experimentation. For the Meta-World benchmark, we utilize the RecordEpisodeStatistics wrapper to gather episode statistics. For the Atari benchmark, in addition to RecordEpisodeStatistics, we preprocess the 210×160 pixel images by downsampling them to 84×84 using bilinear interpolation, converting the RGB images to the YUV format, and using only the grayscale channel. Additionally, we set a maximum limit on the number of noop and skip steps to standardize the exploration.

Regarding network architecture, we use the same actor and critic networks for all tasks within the same benchmark to ensure consistency. For the Meta-World benchmark, we employ a neural network comprising four fully connected layers, of which the hidden size is [768, 768, 768]. For the Atari benchmark, we use a convolutional neural network (CNN) with three convolutional layers featuring 32, 64, and 64 channels, respectively, followed by three fully connected layers, of which the hidden size is [768, 768].

To reduce randomness and enhance the reliability of our results, we train each agent using three random seeds. Additional hyper-parameters for the SAC algorithm applied in the Meta-World, Atari and DMC benchmarks are detailed in Table 8.

Table 8: Hyper-parameters of SAC in our experiments.

Parameters	Values for Meta-World	Values for Atari	Values for DMC
Initial collect steps	10000	20000	10000
Discount factor	0.99	0.99	0.99
Training environment steps	10^6	$1.5 \times 10^6, 3 \times 10^6$	3×10^5
Testing environment steps	10^5	10^5	10^5
Replay buffer size	10^6	2×10^5	10^6
Updates per environment step (Replay Ratio)	2	4	2
Target network update period	1	8000	1
Target smoothing coefficient	0.005	1	0.005
Optimizer	Adam	Adam	Adam
Policy learning rate	3×10^{-4}	10^{-4}	3×10^{-4}
Q-value learning rate	10^{-3}	10^{-4}	10^{-3}
Minibatch size	256	64	256
Alpha	0.2	0.2	0.2
Autotune	True	True	True
Average environment steps of success rate	10	-	-
Stable threshold to finish training	0.9	-	-
Replay interval	10	10	10
No-op max	-	30	-
Target entropy scale	-	0.89	-
Storing experience size	10^5	10^5	10^5
Average steps	5×10^4	5×10^4	5×10^4
Proportion of RL skill neurons	0.2	0.2	0.2

C.4 METRICS

Overall performance is commonly assessed using the **Average Success Rate (ASR)**, analogous to the AIA metric (Wang et al., 2024). Let $sr_{i,j}$ represent the success rate on the j -th task after completing the learning of the i -th task ($i \geq j$), H denote the number of tasks. The ASR is defined as follows.

1026 The higher the ASR, the better the method balances stability and plasticity.
 1027

$$1028 \quad ASR = \frac{1}{H} \sum_{i=1}^H \frac{1}{i} \sum_{i \geq j} sr_{i,j}, \quad (9)$$

1029
 1030

1031 To evaluate the stability of the agent, we utilize the **Forgetting Measure (FM)** (Chaudhry et al.,
 1032 2018a). The lower the FM, the better the method maintains stability, which is calculated as:
 1033

$$1034 \quad FM = \frac{1}{H-1} \sum_{i=2}^H \frac{1}{i-1} \sum_{i \geq j} \max_{l \in \{1, \dots, i-1\}} (sr_{l,j} - sr_{i,j}). \quad (10)$$

1035
 1036

1037 To assess the plasticity of the agent, we employ the **Forward Transfer (FWT)** metric (Lopez-Paz &
 1038 Ranzato, 2017), which is calculated as follows:
 1039

$$1040 \quad FWT = \frac{1}{H} \sum_{i=1}^H sr_{i,i}. \quad (11)$$

1041
 1042

The higher the FWT, the better the method maintains plasticity.

For the Meta-World benchmark, the average success rate is computed over 20 episodes. For the Atari
 1044 benchmark, the success rate is replaced by the return of each episode. We normalize the return for
 1045 each game to obtain summary statistics across games, as follows:
 1046

$$1047 \quad R = \frac{r_{agent} - r_{random}}{r_{human} - r_{random}}, \quad (12)$$

1048
 1049

where r_{agent} represents the average return evaluated over 10^5 steps, the random score r_{random} and
 1050 human score r_{human} are consistent with those used by Mnih et al. (2015), as detailed in Table 9.
 1051

1052
 1053 Table 9: Normalization scores of Atari games.
 1054

1055 games	1056 r_{random}	1057 r_{human}
1056 Bowling	23.1	154.8
1057 Pong	-20.7	9.3
1058 BankHeist	14.2	734.4
1059 Alien	227.5	6875

1060 For the Atari benchmark tasks, the overall performance is evaluated by Average Return (AR), which
 1061 is analogous to ASR in the Meta-World benchmark. It is calculated as follows:
 1062

$$1063 \quad AR = \frac{1}{k} \sum_{i=1}^k \frac{1}{i} \sum_{i \geq j} R_{i,j}, \quad (13)$$

1064
 1065

1066 where $R_{i,j}$ represents the average return evaluated on the j -th task after completing the learning of
 1067 the i -th task ($i \geq j$), and k represents the number of tasks. A higher AR indicates better performance
 1068 in balancing stability and plasticity.
 1069

1070 C.5 RL SKILL NEURONS

1071

1072 To validate the existence of RL skill neurons in sequential task learning instead of single task
 1073 learning, we conduct an additional analysis comparing the activation distributions of neurons when
 1074 learning button-press-topdown in isolation versus learning button-press-topdown and window-open
 1075 simultaneously. As shown in Figure 7, the activation distribution of a representative neuron remains
 1076 highly correlated with task success, regardless of whether it is learned in isolation or alongside
 1077 another skill. This observation supports our hypothesis that skill-specific neurons retain their essential
 1078 role even in a sequential task learning scenario.
 1079

Additionally, we dig deeper into the identified RL skill neurons and separate them into general and
 specific skills. How to deeply investigate general skills is key for our future research. To explore

Figure 7: Distribution histogram of the activations of a neuron in two learning settings.

this, we design an experiment to verify the existence of general and specific skills. After sequentially training on the button-press-topdown and window-open tasks, we identify the RL skill neurons associated with each task. We hypothesize that the intersection set represents general skill neurons, while the difference set represents specific skill neurons. To validate this hypothesis, we zero out the outputs of these neurons separately. The results in Table 10 show that when the outputs of the general skill neurons are zeroed out, the agent fails to complete both tasks. In contrast, when the outputs of task-specific neurons are zeroed out, the agent can't complete the corresponding task but is still able to complete the other task. This confirms the existence of both general and specific skills.

Table 10: Results of zeroing out the output of general of specific skill neurons.

tasks	zero out the intersection set	zero out the difference set of button-press-topdown relative to window-open	zero out the difference set of window-open relative to button-press-topdown
button-press-topdown	0	0.33	1.00
window-open	0	1.0	0.42

C.6 RESULTS OF VANILLA SAC

To validate the effectiveness of NBSP, it is essential to first confirm whether the vanilla SAC algorithm can successfully solve each task individually. So we conducted experiments by training a vanilla SAC agent on all tasks in our experiment. The results, presented in Figure 8, demonstrate that the vanilla SAC algorithm successfully learns all tasks in our experiment. This confirms that the balance between stability and plasticity is not an artifact of modifications to the SAC algorithm itself but rather a result of NBSP. Furthermore, the failure of other methods is not due to limitations of the SAC algorithm.

C.7 RESULTS ON THE META-WORLD BENCHMARK

C.7.1 RESULTS OF LONGER TASK SEQUENCE

Table 11: Results of ten task sequences on the Meta-world benchmark.

	ASR \uparrow	FM \downarrow	FWT \uparrow
vanilla SAC	0.27 ± 0.05	0.79 ± 0.07	0.52 ± 0.19
NE	0.58 ± 0.05	0.44 ± 0.04	0.64 ± 0.03
NBSP	0.66 ± 0.02	0.32 ± 0.06	0.74 ± 0.01

Figure 8: Training process of vanilla SAC on each individual task in our experiment.

1170 To further evaluate NBSP under longer task sequences, we additionally conduct experiments on a 10-
 1171 task sequence (button-press-topdown → window-close → door-open → drawer-close → drawer-open
 1172 → door-close → button-press-topdown-wall → window-open → push → reach) in the Meta-World
 1173 benchmark. As shown in Table 11, NBSP continues to outperform vanilla SAC by a large margin,
 1174 particularly in terms of stability, where the forgetting metric decreases from 0.79 to 0.32. We also
 1175 compare NBSP with NE, which is the strongest baseline in our earlier Meta-World experiments.
 1176 Although NE achieves a better stability–plasticity balance than vanilla SAC, it still lags behind NBSP
 1177 on the longer 10-task sequence. These results demonstrate that NBSP generalizes well beyond short
 1178 task chains and is effective even in long-horizon task settings.

1179 C.7.2 LEARNING CURVE

1180 The training process of the other four-tasks cycling task is shown in Figure 9, and those of the
 1181 two-task cycling tasks are shown in Figure 10, Figure 11 and Figure 12 respectively. The same as
 1182 found in Section 4.1, during the second cycle of learning the same task, the agent is able to master
 1183 the task more rapidly.

1184
1185
1186
1187

Figure 9: Training process of NBSP on (button-press-topdown → window-close → door-open → drawer-close) cycling task.

Figure 10: Training process of NBSP on (window-open → window-close) cycling task.

Figure 11: Training process of NBSP on (drawer-open → drawer-close) cycling task.

Figure 12: Training process of NBSP on (button-press-topdown → window-open) cycling task.

1242 C.8 RESULTS ON THE ATARI BENCHMARK

C.8 RESULTS ON THE ATARI BENCHMARK

1244 The training process of the two-task cycling tasks are shown in Figure 13, Figure 14.

Figure 13: Training process of NBSP on (Pong \rightarrow Bowling) cycling task.

Figure 14: Training process of NBSP on (BankHeist \rightarrow Alien) cycling task.

C.9 RESULTS ON THE DMC BENCHMARK

The training process of the two-task cycling tasks are shown in Figure 15, Figure 16.

Figure 15: Training process of NBSP on (Cartpole Swingup \rightarrow Cartpole Balance) cycling task.

Figure 16: Training process of NBSP on (Walker Walker → Walker Stand) cycling task.

C.10 ABLATION STUDY

C.10.1 GRADIENT MASKING AND EXPERIENCE REPLAY

The results of the ablation study on two critical components, gradient masking and experience replay techniques, are shown in Table 12 for the (window-open → window-close) cycling task and in Table 13 for the (drawer-open → drawer-close) cycling task. From these results, it is evident that both gradient masking and experience replay techniques independently contribute to improving the stability of the agent while maintaining great plasticity. Furthermore, combining both techniques yields superior performance, demonstrating the enhanced effectiveness of their integration.

Table 12: Results of ablation study of gradient masking and experience replay techniques on (window-open → window-close) cycling task.

Metrics	(button-press-topdown → window-open)				
	vanilla SAC	only experience replay	only gradient masking	NBSP with hard gradient masking	NBSP
ASR ↑	0.63 ± 0.02	0.81 ± 0.08	0.78 ± 0.11	0.71±0.04	0.90 ± 0.04
FM ↓	0.91 ± 0.10	0.41 ± 0.13	0.54 ± 0.26	0.54±0.13	0.18 ± 0.01
FWT ↑	0.97 ± 0.02	0.96 ± 0.01	0.98 ± 0.01	0.91±0.05	0.96 ± 0.02

Table 13: Results of ablation study of gradient masking and experience replay techniques on (drawer-open → drawer-close) cycling task.

Metrics	(button-press-topdown → window-open)				
	vanilla SAC	only experience replay	only gradient masking	NBSP with hard gradient masking	NBSP
ASR ↑	0.67 ± 0.05	0.78 ± 0.04	0.74 ± 0.01	0.59±0.16	0.96 ± 0.02
FM ↓	0.78 ± 0.10	0.48 ± 0.10	0.64 ± 0.01	0.52±0.35	0.07 ± 0.06
FWT ↑	0.94 ± 0.04	0.97 ± 0.01	0.98 ± 0.02	0.82±0.21	0.98 ± 0.01

C.10.2 GRADIENT MASKING

To verify that the effectiveness of adaptive gradient masking goes beyond simply reducing the learning rate, we additionally conduct experiments on the cyclic task sequence (button-press-topdown → window-open) comparing three settings: (1) Lowering the learning rate only on RL skill neurons, (2) Lowering the learning rate on the entire network, (3) Our proposed NBSP gradient masking. The results are presented in Table 14. We observe the following:

- NBSP achieves the best balance between stability and plasticity.
NBSP adaptively applies different degrees of masking to RL skill neurons based on their score. This allows high-score neurons to be more strongly preserved while still enabling low-importance neurons to tune. A constant scaled learning rate cannot capture this differentiation and therefore underperforms NBSP.
- Lowering the learning rate on RL skill neurons only offers partial benefits but remains inferior.

1350 Treating all RL skill neurons uniformly ignores the heterogeneity in how different neurons
1351 contribute to task-specific behaviors. While this reduces interference to some extent, it still results
1352 in suboptimal stability–plasticity trade-offs.

1353 • Lowering the learning rate across the entire network performs the worst.

1354 This merely slows down parameter updates without specifically protecting the neurons that encode
1355 task skills. As a result, RL skill neurons continue to be overwritten by new tasks, leading to high
1356 forgetting (FM) and degraded performance.

1357 Overall, these comparisons show that the benefit of NBSP cannot be replicated by globally reducing
1358 the learning rate. The key advantage comes from adaptive and selective protection of RL skill neurons.

1360
1361
1362 Table 14: Results of gradient masking and lowering the learning rate.

	ASR \uparrow	FM \downarrow	FWT \uparrow
Lower the lr of RL Skill neuron	0.86 ± 0.07	0.27 ± 0.15	0.97 ± 0.02
Lower the lr of the entire network	0.71 ± 0.12	0.68 ± 0.34	0.98 ± 0.01
NBSP	0.95 ± 0.05	0.08 ± 0.12	0.98 ± 0.01

1368 1369 C.10.3 EXPERIENCE REPLAY

1370 To investigate whether the experience replay buffer stores information from all previously encountered
1371 tasks, we conduct experiments on the cycling task sequence (button-press-topdown \rightarrow window-close
1372 \rightarrow door-open \rightarrow drawer-close), where we compared two buffer configurations: (1) Storing only the
1373 most recent task’s experience. (2) Storing experience from all past tasks. As Table 15 below clearly
1374 shows, restricting the buffer to just the previous task leads to significantly higher Forgetting Metric
1375 (FM) values, indicating greater forgetting and reduced stability. In comparison, storing data from all
1376 previously encountered tasks consistently improves stability.

1377
1378
1379 Table 15: Performance under different replay buffer configurations.

1380 Buffer configurations	ASR	FM	FWT
1381 Storing only the most recent task’s experience	0.51 ± 0.12	0.75 ± 0.12	0.90 ± 0.20
1382 Storing experience from all past tasks.	0.74 ± 0.07	0.34 ± 0.15	0.95 ± 0.06

1383 To further confirm this, we evaluate the success rates of the first three tasks after training on the fourth
1384 task, specifically under the setting where the experience replay buffer contained only data from the
1385 most recent task. Results in Table 16 show that when the agent is trained on the four task with the
1386 buffer restricted to experience from only the third task, it retained its ability to perform the third
1387 task but entirely failed on the first and second one. This validates that the experience replay buffer
1388 must store information from all previously encountered tasks. Omitting earlier tasks from the buffer
1389 directly leads to catastrophic forgetting.

1390
1391
1392 Table 16: Performance of the first three tasks after training on the fourth task.

1393 Task	First task: button-press-topdown	Second task: window-close	Third task: door-open
1394 Success rate	0.00 ± 0.00	0.03 ± 0.05	0.80 ± 0.08

1395 The results also demonstrate that RL skill neurons cannot resolve catastrophic forgetting on their own.
1396 For example, for the success of a specific task, those non-RL skill neurons could also matter, which
1397 may relate to factors such as the environments and contexts. And catastrophic forgetting of these
1398 non-RL skill capabilities could also lead to task failures. Under the current framework, the primary
1399 contribution of RL skill neurons is mitigating catastrophic interference by preventing overwriting
1400 the knowledge encoded in these neurons when learning new tasks. We would like to highlight that
1401 mitigating catastrophic interference could also benefit catastrophic forgetting, where RL skill neurons
1402 and experience replay buffer work in a synergic way to alleviate forgetting.

1404 C.10.4 BASELINES WITH EXPERIENCE REPLAY
1405

1406 To ensure fair comparison, we add experience replay to ANCL and CoTASP on the cycling task
1407 sequence (button-press-topdown \rightarrow window-open). As shown in Table 17, ANCL with experience
1408 replay heavily improves stability (FM from 0.95 to 0.42), while CoTASP with experience replay gets
1409 no substantial performance gain, for the characteristics of tasks differ from the knowledge distribution
1410 captured by the existing dictionary, preventing the generation of effective sparse prompts. And NBSP
1411 achieves better performance on all metrics.
1412

1413 Table 17: Performance comparison of methods with experience replay.
1414

1415

Method	ASR \uparrow	FM \downarrow	FWT \uparrow
ANCL	0.61 ± 0.01	0.95 ± 0.05	0.95 ± 0.03
ANCL + experience replay	0.83 ± 0.07	0.42 ± 0.18	0.97 ± 0.02
CoTASP	0.03 ± 0.00	0.01 ± 0.00	0.04 ± 0.01
CoTASP + experience replay	0.03 ± 0.01	0.01 ± 0.01	0.05 ± 0.01
NBSP	0.95 ± 0.05	0.08 ± 0.12	0.98 ± 0.01

1421 C.10.5 NEURONS IN THE LAST LAYER
1422

1423 We exclude the final layer from neuron scoring for two main reasons: (1) The final layer contains
1424 very few neurons (e.g., a single output unit in the critic). Masking such neurons would excessively
1425 constrain the network and directly damage its optimization capacity. (2) Final-layer activations
1426 correspond directly to network outputs. These neurons inherently play a disproportionately large role
1427 in determining performance. As a result, in practice they are more likely to be identified as RL Skill
1428 neuron. Thus masking them is more likely to degrade the learning dynamics.
1429

1430 To validate this design choice, we conducted additional experiments where the final layer was included
1431 in the neuron identification and masking process. The results shown in the Table 18 confirm our
1432 hypothesis. Overall performance deteriorates, primarily due to a substantial decrease in ASR, and
1433 plasticity is harmed (lower FWT), as restricting output-layer neurons prevents the network from
1434 efficiently adapting to new tasks, and stability also worsens, because once the final-layer neurons are
1435 masked, the network compensates by over-adjusting earlier RL skill neurons, inadvertently damaging
1436 previously acquired knowledge.
1437

1438 Table 18: Results of RL Skill neurons with/without the last layer neurons.
1439

1440

	ASR \uparrow	FM \downarrow	FWT \uparrow
include the last layer	0.76 ± 0.01	0.41 ± 0.02	0.87 ± 0.02
exclude the last layer	0.95 ± 0.05	0.08 ± 0.12	0.98 ± 0.01

1443 C.10.6 SENSITIVITY ANALYSIS
1444

1445 We investigate the sensitivity of these parameters on a cycling task sequence (button-press-topdown
1446 \rightarrow window-open).
1447

1448 m : As discussed in 4.2, the performance improves as m increases, but it begins to decline after a
1449 certain threshold. The results in Figure 4 demonstrate that NBSP consistently delivers significant
1450 ASR improvements across a broad range of m values (from 0.15 to 0.3), indicating that its selection
1451 is not overly sensitive within a practical operational range. Setting m within this range yields strong
1452 performance gains across different tasks and benchmarks in our experiments.
1453

1454 α : We vary α from 0.1 to 1.0, whose results are shown in Tabel 19. As α decreases, FM consistently
1455 improves, indicating better stability, while FWT remains relatively stable, suggesting that plasticity is
1456 not highly sensitive to α . Notably, ASR performance is strong as long as $\alpha < 0.3$. Overall, NBSP is
1457 robust to the choice of α within this range.
1458

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

Table 19: Effect of the hyperparameter α on performance.

α	ASR \uparrow	FM \downarrow	FWT \uparrow
0.1	0.93 \pm 0.04	0.07 \pm 0.10	0.96 \pm 0.01
0.2	0.95 \pm 0.05	0.08 \pm 0.12	0.98 \pm 0.01
0.3	0.91 \pm 0.07	0.13 \pm 0.16	0.98 \pm 0.01
0.5	0.85 \pm 0.01	0.33 \pm 0.00	0.98 \pm 0.01
1.0	0.81 \pm 0.06	0.48 \pm 0.15	0.98 \pm 0.01

1468

$|D_{pre}|$: We vary buffer sizes ranging from $1e2$ to $1e6$. The results are shown in Table 20, when the buffer size is too small, previous task information cannot be fully stored, leading to stability loss (high FM). However, when $|D_{pre}|$ reaches around $1e5$, NBSP performs well and remains insensitive to buffer size beyond this point.

1472

1473

Table 20: Effect of the hyperparameter $|D_{pre}|$ on performance.

D_{pre}	ASR \uparrow	FM \downarrow	FWT \uparrow
1e2	0.62 \pm 0.01	0.99 \pm 0.01	0.99 \pm 0.01
1e3	0.62 \pm 0.01	0.99 \pm 0.01	0.98 \pm 0.01
1e4	0.74 \pm 0.09	0.67 \pm 0.21	0.98 \pm 0.01
1e5	0.95 \pm 0.05	0.08 \pm 0.12	0.98 \pm 0.01
1e6	0.93 \pm 0.04	0.13 \pm 0.13	0.99 \pm 0.01

1481

1482

1483

1484

1485

k : We test values of k ranging from 2 to 100 (see Table 21 below). When k is small, frequent replay of previous experiences enhances stability but reduces plasticity (low FWT). In contrast, past experiences are underutilized, weakening stability. When k is within the range of 5-13, NBSP performs well, demonstrating insensitivity to variations in k in this range.

1486

1487

Table 21: Effect of the hyperparameter k on performance.

k	ASR \uparrow	FM \downarrow	FWT \uparrow
2	0.62 \pm 0.01	0.02 \pm 0.02	0.50 \pm 0.00
5	0.95 \pm 0.04	0.07 \pm 0.09	0.97 \pm 0.02
10	0.95 \pm 0.05	0.08 \pm 0.12	0.98 \pm 0.01
13	0.94 \pm 0.04	0.11 \pm 0.09	0.98 \pm 0.01
20	0.89 \pm 0.06	0.21 \pm 0.13	0.98 \pm 0.01
100	0.66 \pm 0.01	0.90 \pm 0.05	0.99 \pm 0.01

1496

1497

1498

1499

1500

1501

T_{avg} : As shown in Table 22, when the window size is too small, the running averages of neuronal activations and performance become noisy, leading to inaccurate estimation of \bar{a} and \bar{q} , which in turn hinders the correct identification of RL skill neurons. When the window size exceeds 50,000, NBSP becomes insensitive to the specific value, and performance remains consistently high. Since excessively large window sizes introduce unnecessary computational overhead, we choose 50,000 as a practical trade-off between estimation stability and efficiency.

1502

1503

1504

Table 22: Effect of the hyperparameter T_{avg} on performance.

T_{avg}	ASR \uparrow	FM \downarrow	FWT \uparrow
5000	0.81 \pm 0.03	0.44 \pm 0.08	0.98 \pm 0.02
25000	0.88 \pm 0.03	0.30 \pm 0.08	0.99 \pm 0.01
50000	0.95 \pm 0.05	0.08 \pm 0.12	0.98 \pm 0.01
100000	0.94 \pm 0.04	0.09 \pm 0.11	0.98 \pm 0.01
150000	0.95 \pm 0.04	0.08 \pm 0.11	0.98 \pm 0.01

1511

In summary, there is a practical and systematic tuning criterion as follows:

1512 • Stable performance within broad ranges.
 1513 Each hyper-parameter exhibits a wide “safe range” within which NBSP performs consistently well.
 1514 Therefore, tuning does not require fine-grained search. The recommended ranges are provided in
 1515 Table 23.

1517
 1518 Table 23: The recommended ranges of hyper-parameters.

Hyper-parameters	Range
m	$[0.15, 0.3]$
α	$[0.1, 0.3]$
$\ D_{\text{pre}}\ $	$[10^5, \infty)$
\hat{k}	$[5, 13]$

1525 • Key hyper-parameter for task variation. Among the four hyper-parameters, m is the primary
 1526 one that may vary across tasks, as the number of RL skill neurons naturally depends on the skill
 1527 complexity of each environment. In practice, tuning m within $[0.15, 0.3]$ is sufficient in our
 1528 experiments.
 1529 • Other hyper-parameters remain stable across benchmarks.
 1530 The remaining three hyper-parameters require only minor adjustments within their recommended
 1531 ranges. In our experiments, they remain fixed across all benchmarks, and NBSP still achieves
 1532 strong and stable performance, demonstrating their robustness and confirming that the method
 1533 does not rely on brittle manual tuning.

1535
 1536 C.10.7 TASK ORDER

1537 In our experimental setup, we repeat each task twice within a cycling sequence to mitigate the
 1538 potential influence of task order. For example, in a two-task cycling sequence (button-press-topdown
 1539 → window-open), repeating these tasks results in the sequence (button-press-topdown → window-
 1540 open → button-press-topdown → window-open). This sequence contains two occurrences of the
 1541 subsequence (button-press-topdown → window-open) and one occurrence of (window-open →
 1542 button-press-topdown), which helps mitigate the impact of task order. However, we acknowledge that
 1543 this approach does not fully eliminate the influence of task order, and we will revise the description
 1544 to clarify this point.

1545 To further investigate the effect of task order, we conduct experiments with randomized task order.
 1546 The results, shown in Table 24, indicate that task order does affect performance, particularly in terms
 1547 of stability. However, the impact is modest, and NBSP still performs well in balancing stability and
 1548 plasticity regardless of the task order. Determining task order presents a promising future direction,
 1549 where task difficulty, diversity, and coherency might be taken into account.

1551
 1552 Table 24: Performance of different task orders.

Cycling sequential tasks	ASR \uparrow	FM \downarrow	FWT \uparrow
(window-open → button-press-topdown)	0.90 ± 0.08	0.17 ± 0.13	0.95 ± 0.02
(button-press-topdown → window-open)	0.95 ± 0.05	0.08 ± 0.12	0.98 ± 0.01
(drawer-open → drawer-close)	0.96 ± 0.02	0.07 ± 0.06	0.98 ± 0.01
(drawer-close → drawer-open)	0.92 ± 0.05	0.12 ± 0.12	0.97 ± 0.01

1559
 1560 C.10.8 PPO ALGORITHM

1561 We further apply NBSP to PPO (Schulman et al., 2017) on a cycling task sequence (button-press-
 1562 topdown → window-open). The results in Table 25 show that vanilla PPO performs worse than
 1563 vanilla SAC in our setting, suffering from both stability and plasticity loss. NBSP helps reduce FM,
 1564 improving stability and achieving a better balance, as reflected by a higher ASR. However, the effect
 1565 is less pronounced than that of SAC. Potential reasons include:

1566

1567

1568

1569

1570

1571

1572

1573

- On-Policy Nature of PPO: PPO is an on-policy algorithm, and cannot fully leverage the experience replay mechanism. While old experiences can still be sampled, they are more likely located outside the "trust region", leading to suboptimal updates.
- Differences in Exploration Mechanisms: SAC incorporates an entropy regularization term in its objective function. When NBSP masks RL skill neurons, the entropy term of SAC helps maintain exploration in other neurons, without sacrificing too much plasticity. In contrast, PPO's exploration is driven primarily by its stochastic policy and lacks explicit entropy constraint, making it more prone to instability if RL skill neurons are masked.

1582

1583

D ALGORITHM

1584

1585

The pseudo-code of the goal-oriented method to find RL skill neurons is presented in Algorithm 1. And the pseudo-code for SAC with NBSP is presented in Algorithm 2. Key differences from standard SAC are highlighted in blue. In addition to the extra input, two main modifications include the sampling process and the network update process.

1590

1591

Algorithm 1 Procedure for Identifying RL Skill Neurons

Input: Initial average step T_{avg} , initial evaluation step T , initial proportion of RL skill neuron m , initial average activation $\bar{a}(\mathcal{N}) = 0$, initial average GM $\bar{q} = 0$, initial over-activation rate $R_{over} = 0$.

- 1: **for** each step t **do**
- 2: Compute activation $a(\mathcal{N}, t) \leftarrow \phi(\cdot)$
- 3: Compute GM $q(t)$
- 4: Compute average activation:

$$\bar{a}(\mathcal{N}) = \bar{a}(\mathcal{N}) + \frac{1}{T_{avg}} a(\mathcal{N}, t).$$

- 5: Compute average GM:

$$\bar{q} = \bar{q} + \frac{1}{T_{avg}} q(t).$$

- 6: **end for**

- 7: **for** each step t **do**
- 8: Compute activation $a(\mathcal{N}, t) \leftarrow \phi(\cdot)$
- 9: Compute GM $q(t)$
- 10: Capture association:

$$R_{over} = R_{over} + \frac{1}{T} \mathbf{1}_{[1_{[a(\mathcal{N}, t) > \bar{a}(\mathcal{N})]} = 1_{[q(t) > \bar{q}]}]}$$

- 11: **end for**

- 12: Derive scores $Score$ for each neuron:

$$Score(\mathcal{N}) = \max(R_{over}(\mathcal{N}), 1 - R_{over}(\mathcal{N}))$$

- 13: Identify the top-performing neurons as RL skill neurons:

$$\mathcal{N}_{RL\ skill} = \tau_m(Score(\mathcal{N}))$$

1618

1619

1620 **Algorithm 2** Neuron-level Balance between Stability and Plasticity (NBSP) Applied in SAC
1621 Initialize policy parameters θ , Q-function parameters ϕ_1, ϕ_2 , and target Q-function parameters ϕ'_1, ϕ'_2
1622 Initialize empty replay buffer \mathcal{D}
1623 Initialize replay interval k
1624 **Input:** Replay buffer \mathcal{D}_{pre} , mask of the policy mask $_{\theta}$ and mask of the Q-function parameters
1625 $\text{mask}_{\phi_1}, \text{mask}_{\phi_2}$
1626 1: **for** each task **do**
1627 2: **for** each iteration **do**
1628 3: **for** each environment step **do**
1629 4: Sample action $a_t \sim \pi_{\theta}(a_t|s_t)$
1630 5: Execute action a_t and observe reward r_t and next state s_{t+1}
1631 6: Store (s_t, a_t, r_t, s_{t+1}) in replay buffer \mathcal{D}
1632 7: **end for**
1633 8: **for** each gradient step **do**
1634 9: **if** step $\equiv 0 \pmod{k}$ **then** Sample batch of transitions (s_i, a_i, r_i, s_{i+1}) from \mathcal{D}_{pre}
1635 10: **else** Sample batch of transitions (s_i, a_i, r_i, s_{i+1}) from \mathcal{D}
1636 11: **end if**
1637 12: Compute target value:
1638 13: $y_i = r_i + \gamma \left(\min_{j=1,2} Q_{\phi'_j}(s_{i+1}, \tilde{a}_{i+1}) - \alpha \log \pi_{\theta}(\tilde{a}_{i+1}|s_{i+1}) \right)$, where $\tilde{a}_{i+1} \sim \pi_{\theta}(\cdot|s_{i+1})$
1639 14: Update Q-functions by one step of gradient descent with mask:
1640 15: $\phi_j \leftarrow \phi_j - \lambda_Q \text{mask}_{\phi_j} \nabla_{\phi_j} \frac{1}{N} \sum_i (Q_{\phi_j}(s_i, a_i) - y_i)^2 \quad \text{for } j = 1, 2$
1641 16: Update policy by one step of gradient ascent with mask:
1642 17: $\theta \leftarrow \theta + \lambda_{\pi} \text{mask}_{\theta} \nabla_{\theta} \frac{1}{N} \sum_i \left(\alpha \log \pi_{\theta}(a_i|s_i) - \min_{j=1,2} Q_{\phi_j}(s_i, a_i) \right)$
1643 18: Update temperature α by one step of gradient descent:
1644 19: $\alpha \leftarrow \alpha - \lambda_{\alpha} \nabla_{\alpha} \frac{1}{N} \sum_i (-\alpha \log \pi_{\theta}(a_i|s_i) - \alpha \bar{\mathcal{H}})$
1645 20: Update target Q-function parameters:
1646 21: $\phi'_j \leftarrow \tau \phi_j + (1 - \tau) \phi'_j \quad \text{for } j = 1, 2$
1647 22: **end for**
1648 23: **end for**
1649 24: **Select RL skill neurons $\{\mathcal{N}_{\text{RL skill}}\}$ according to Algorithm 1**
1650 25: **Update $\text{mask}_{\phi_1}, \text{mask}_{\phi_2}$ and mask_{θ} :**
1651 26: $\text{mask}(\mathcal{N}) = \begin{cases} \alpha(1 - \text{Score}(\mathcal{N})) & \text{if } \mathcal{N} \in \mathcal{N}_{\text{RL skill}} \\ 1 & \text{if } \mathcal{N} \notin \mathcal{N}_{\text{RL skill}} \end{cases}$
1652 27: **Store part of \mathcal{D} into \mathcal{D}_{pre}**
1653 28: **end for**
1654 29: **end for**
1655 30: **end for**
1656 31: **end for**
1657 32: **end for**
1658 33: **Select RL skill neurons $\{\mathcal{N}_{\text{RL skill}}\}$ according to Algorithm 1**
1659 34: **Update $\text{mask}_{\phi_1}, \text{mask}_{\phi_2}$ and mask_{θ} :**
1660 35: $\text{mask}(\mathcal{N}) = \begin{cases} \alpha(1 - \text{Score}(\mathcal{N})) & \text{if } \mathcal{N} \in \mathcal{N}_{\text{RL skill}} \\ 1 & \text{if } \mathcal{N} \notin \mathcal{N}_{\text{RL skill}} \end{cases}$
1661 36: **Store part of \mathcal{D} into \mathcal{D}_{pre}**
1662 37: **end for**
1663 38: **end for**
1664 39: **end for**
1665 40: **end for**
1666 41: **end for**
1667 42: **end for**
1668 43: **end for**
1669 44: **end for**
1670 45: **end for**
1671 46: **end for**
1672 47: **end for**
1673 48: **end for**

E LIMITATION AND FUTURE WORK

Limitation. While the proposed NBSP method effectively balances stability and plasticity in DRL, it does have a notable limitation. Specifically, the number of RL skill neurons must be manually determined and adjusted according to the complexity of the learning task, as there is no automatic mechanism for this selection. And our method currently faces challenges when applied to longer task sequences (e.g., 10+ tasks). One key limitation is the constraint imposed by the model scale,

1674 which inherently limits the number of skills it can learn. As the number of tasks increases, the overlap
1675 between skill neurons across different tasks may become significant. Consequently, applying a mask
1676 to protect RL skill neurons can restrict the learning of new tasks, making it difficult to scale without
1677 introducing interference with previously learned knowledge.

1678 **Future work.** The neuron analysis introduced in this work offers a novel approach for identifying
1679 RL skill neurons, significantly enhancing the balance between stability and plasticity in DRL. The
1680 identification of RL skill neurons opens up several promising directions for future research and
1681 applications, such as: (1) Model Distillation: by focusing on RL skill neurons, it becomes possible to
1682 distill models by pruning less relevant neurons, leading to more efficient and compact models with
1683 minimal performance degradation. (2) Bias Control and Model Manipulation: RL skill neurons could
1684 be leveraged to control biases and modify model behaviors by selectively adjusting their activations.
1685 This approach could be particularly valuable in scenarios requiring specific outputs or behaviors.

1686 While our current method may not yet fully address longer task sequences, it lays a strong foundation
1687 for future research. Moving forward, we aim to explore strategies to better leverage RL skill neurons
1688 for continual learning over an extended sequence of tasks. What's more, its applicable potential
1689 extends beyond DRL. It could also be adapted to other learning paradigms, such as supervised and
1690 unsupervised learning, to address similar stability-plasticity challenges. In future work, we plan to
1691 explore these extensions and verify their effectiveness across various domains.

1692

1693 F THE USE OF LARGE LANGUAGE MODELS

1694

1695 In preparing this manuscript, we employ the large language model solely for minor linguistic
1696 refinement. The LLM is not used for research design, data analysis, result interpretation, or generating
1697 any scientific content. All conceptual contributions, experimental designs, analyses, and conclusions
1698 are entirely the work of the authors.

1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727