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Abstract Quantization has become a mainstream compression technique for reducing model size, 5

computational requirements, and energy consumption for modern deep neural networks 6

(DNNs). With improved numerical support in recent hardware, including multiple vari- 7

ants of integer and floating point, mixed-precision quantization has become necessary to 8

achieve high-quality results with low model cost. Prior mixed-precision methods have 9

performed either a post-training quantization search, which compromises on accuracy, or 10

a differentiable quantization search, which leads to high memory usage from branching. 11

Therefore, we propose the first one-shot mixed-precision quantization search that elimi- 12

nates the need for retraining in both integer and low-precision floating point models. We 13

evaluate our search (FLIQS) on multiple convolutional and vision transformer networks to 14

discover Pareto-optimal models. Our approach improves upon uniform precision, manual 15

mixed-precision, and recent integer quantization search methods. With integer models, we 16

increase the accuracy of ResNet-18 on ImageNet by 1.31% points and ResNet-50 by 0.90% 17

points with equivalent model cost over previous methods. Additionally, for the first time, 18

we explore a novel mixed-precision floating-point search and improve MobileNetV2 by up 19

to 0.98% points compared to prior state-of-the-art FP8 models. Finally, we extend FLIQS to 20

simultaneously search a joint quantization and neural architecture space and improve the 21

ImageNet accuracy by 2.69% points with similar model cost on a MobileNetV2 search space. 22

1 Introduction 23

In recent years, deep neural networks (DNNs) have achieved state-of-the-art results on a wide 24

range of tasks including image classification, speech recognition, image and speech generation, and 25

recommendation systems. Each model iteration typically enhances quality but also tends to increase 26

computation, memory usage, and power consumption. These increases limit DNN adoption in 27

resource-constrained edge devices, worsen their latency across platforms, and expand their carbon 28

footprint, especially within cloud systems. DNN quantization to low-precision formats has become 29

the standard method for reducing model storage size, memory bandwidth, and complexity of MAC 30

operations [1, 2]. These formats include both integer and low-precision floating-point, which has 31

recently gained attention as a flexible alternative to integer formats. 32

At the same time, DNN accelerators have become more diverse and now support a wide range 33

of numerical formats. For example, the Google TPUv3 supports FP32, BF16, FP16, and INT8 [3], 34

while the latest NVIDIA Hopper architecture supports FP32, BF16, FP8, and INT8 [4]. Furthermore, 35

reprogrammable systems such as FPGA devices allow arbitrary precision arithmetic such as INT5, 36

FP11, FP9, or FP8 for more granular accuracy-performance trade-offs [5]. While these devices 37

enable mixed-precision quantization, where layers take on different formats within the same model, 38

it is challenging to optimally assign per-layer formats since layers exhibit different quantization 39

characteristics. In simple cases, this assignment can be performed manually, yet with the explosion 40

of DNN architectures and accelerator designs, automated methods are more reliable, scalable, and 41

reproducible for achieving high accuracy and performance. 42
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Figure 1: FLIQS – The explosion of model architectures, numerical support, and deployment platforms

requires automated methods for searching model configurations to utilize platform-specific

numerical formats. We establish FLIQS as the first one-shot quantization and neural archi-

tecture search framework for searching for integer and floating point formats.

In this paper, we introduce FLoating-Point and Integer Quantization Search (FLIQS) to auto- 43

mate mixed-precision floating-point and integer quantization and automatically assign per-layer 44

formats. In addition, FLIQS can jointly optimize for quantization formats and neural architecture 45

to intelligently allocate compute across the kernel, channel, and bitwidth dimensions. FLIQS is a 46

one-shot search based on reinforcement learning (RL) and unlike expensive multi-trial searches, it 47

avoids training separate models for each configuration, leading to overall reduced search overhead. 48

Furthermore, as the search takes place during training, FLIQS can achieve higher accuracies than 49

post-training quantization (PTQ) searches. Coupled with additional entropy regularization, the 50

final model can be deployed without the need for further retraining or fine-tuning. As shown in 51

Figure 1(a), FLIQS accelerates the process of adapting legacy models to new hardware, co-designing 52

models and accelerators, and finding Pareto-optimal models on current hardware systems. We 53

summarize our contributions as follows: 54

1. Introduce the first one-shot quantization search without retraining through the addition of a 55

new cosine entropy regularization schedule; 56

2. Demonstrate state-of-the-art results for integer and low-precision floating-point quantization 57

search across a range of convolutional and transformer networks; 58

3. Perform the largest comparison of integer and floating-point mixed-precision networks; 59

4. Conduct the first study of quantization and neural architecture search on low-precision floating- 60

point networks and establish recommendations for allocating compute across bitwidth and 61

neural architectural dimensions. 62

2 Related Work 63

Low-Precision Floating Point: Low-precision floating point is being discussed as the next gen- 64

eration format for DNN training and inference. [6]. Companies, including AMD, Intel, NVIDIA, 65

and Qualcomm, have recently agreed to adopt 8-bit floating-point (FP8) in future deep learning 66

systems. Within these formats, recent studies generally focus on two variants: E5M2 and E4M3, 67

where E represents the number of exponent bits and M is the number of mantissa bits. For example, 68

HFP8 suggests using E4M3 for the forward pass and E5M2 for backpropagation [7]. Building upon 69

these uniform precision works [7, 8, 9, 10, 11], FLIQS proposes an automated approach for finding 70

mixed-precision floating-point networks, compares these to mixed-precision integer networks with 71

similar cost, and performs a joint floating-point quantization and neural architecture search. 72
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Figure 2: FLIQS Overview – (a) FLIQS begins with pure training to allow the reward signal to stabilize

before updating its policy. The activation quantization is delayed to allow the activation

statistics to stabilize. (b) The RL then controller proposes per-layer formats and architectural

decisions during training

Quantization Search: Prior work has explored mixed-precision integer quantization searches, 73

as shown in Figure 1(b). For instance, HAQ [12] and ReLeQ [13] both perform PTQ quantization 74

searches that utilize RL to allocate bitwidths based on the model accuracy and cost estimates. 75

In addition, the HAWQ series of works further develops these PTQ searches, using the Hessian 76

spectrum to determine layer sensitivities and constrained ILP formulations to find optimal bitwidth 77

configurations [14, 15, 16]. However, being PTQ-based, these methods cannot take advantage of 78

the higher accuracy and more accurate feedback provided by quantization-aware training (QAT) 79

during the search. 80

Other efforts perform quantization search during training, often using neural architecture search 81

(NAS) with super-networks or differentiable NAS [17, 18, 19, 13, 20]. For instance, MPQ uses an 82

adaptive one-shot method that trains models using multiple bitwidths and automatically freezes the 83

bitwidths of specific layers during training to improve the model convergence across bitwidths [21]. 84

In addition, EDMIPS creates branches for each bitwidth, forms a linear combination of them, and 85

then alternates training the layer weights and the branch weights [22]. These differentiable searches 86

often have simpler formulations since the layer and branch weights are unified and trained together 87

with gradient descent. However, because they replicate the weights and activations, they incur 88

higher memory and computational costs compared to RL-based methods. In addition, both PTQ 89

and QAT prior works require additional retraining steps on the model after the search, while FLIQS 90

directly serves the final model without fine-tuning. 91

Quantization Neural Architecture Search (QNAS): In addition, prior work has explored joint 92

search spaces with quantization formats and neural architecture [23, 24, 25, 26, 27]. For example, 93

APQ uses knowledge distillation from a full-precision accuracy predictor to optimize neural archi- 94

tecture, quantization formats, and pruning policies [25]. FLIQS expands on this line of work by 95

jointly searching quantization formats and neural architecture and highlights trends for allocating 96

compute across this joint search space for high accuracy and performance. 97

3 FLIQS Framework 98

As a one-shot method, FLIQS employs a controller to sample per-layer formats and model archi- 99

tectures during training. This method allows the search and model to adapt to each other yet it 100

comes with certain challenges. First, the search may interfere with the original model training 101

process, since modifying the architecture shifts the weight and activation distributions during 102

training. In addition, one-shot search needs to evaluate the quality signal of different architectures 103
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Figure 3: FLIQS Examples – In these quantization search examples, FLIQS allocates more precision

to the first and last layers and the small pointwise convolutions of ResNet-18, and to the

attention block within DeiT-B16. More configurations are listed in Appendix A.1.

on different batches of training data to avoid lengthening the training process. This introduces noise 104

into the reward signal since different batches may have significantly different quality. Also, the 105

controller and policy model must be efficient enough to be embedded within the training graph to 106

not significantly increase the training time. This section addresses these challenges, while focusing 107

on the search space involving per-layer formats and channel widths. 108

As shown in Figure 2, the model first trains without search, and the architecture is sampled 109

uniformly at random to avoid overfitting to a single option. It uses standard fake quantization 110

and employs a two-phase approach that delays activation quantization to improve stability (Ap- 111

pendix A.2). Next, at each training step, the controller proposes a new architecture and applies it to 112

the model. The model then performs a standard forward and backward pass on the training data to 113

produce the model gradients and a forward pass on the validation data to produce a quality signal 114

for the controller. This quality signal is combined with the model cost in Figure 2(b) to produce 115

a reward and reward advantage, which the controller then uses to update its policy. After the 116

search and training finish, the model is directly used for inference without additional fine-tuning 117

or retraining. 118

Cost and Reward Function: FLIQS uses the quadratic cost model, bit operations (BOPs), 119

as described in Equation 1 where 𝑏 (𝛼) is the total bitwidth of the current layer architecture 𝛼 120

and 𝑀𝐴𝐶𝑙 (𝛼) represents the number of multiply-accumulates (MACs) in layer 𝑙 . Quadratic cost 121

models, which predict power and area, are particularly useful in model-accelerator co-design where 122

multipliers dominate resources and scale quadratically in power and area [28]. 123

𝐶𝑙 (𝛼) = 𝑏 (𝛼)2 ·𝑀𝐴𝐶𝑙 (𝛼), 𝑟 (𝜶 ) = 𝑄 (𝜶 ) + 𝛾
����∑𝑙 𝐶𝑙 (𝛼)

𝐶𝑇

− 1

���� (1)

124
This model cost is combined with the quality signal, 𝑄 (𝛼), in the absolute reward function 125

shown in Equation 1 [29]. This quality signal is model and application dependent but in the simple 126

case is the validation accuracy. The absolute reward function includes a cost target𝐶𝑇 that provides 127

the user control over the accuracy-performance trade off. More restrictive targets tend to result 128

in less compute-intensive models (as shown in Figure 3), which often have lower accuracy. This 129

resultant cost term is combined with the model quality using the cost scalar 𝛾 , which balances the 130

importance of performance and quality. 131

RL Controller: The RL controller is in charge of choosing the model architecture at each step. It 132

learns a policy 𝜋𝑙 (𝛼) for each layer 𝑙 that represents a probability distribution over each architecture 133

𝛼 . At each training step, the controller samples and applies a new layer architecture 𝛼𝑙 ∼ 𝜋𝑙 (𝛼). 134

The channel widths are efficiently searched by applying channel masks, which dynamically zero 135

out channels and reuse the underlying weights during training. This policy 𝜋𝑙 (𝛼) is parameterized 136

by 𝜃𝑙,𝛼 , where 𝜃𝑙,𝛼 represents the logit for the 𝛼𝑡ℎ
decision in the 𝑙𝑡ℎ layer. These logits are then 137

passed through a softmax layer to produce the policy probability distribution. 138

𝜋𝑙 (𝛼) =
exp(𝜃𝑙,𝛼 )∑
𝑗 exp(𝜃𝑙, 𝑗 )

(2)
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Figure 4: FLIQS Analysis – (a) The switching error grows relatively large when either bitwidth is

small and affects model convergence. In addition, the optimal clipping threshold depends

on the current bitwidth, which motivates swapping thresholds. (b) Accuracy improves for

higher entropy regularization, and the entropy regularization affects the policy convergence.

139
After sampling and assigning the model architecture, 𝜶 , the reward 𝑟 (𝜶 ) is calculated according 140

to Equation 1. However, since the reward depends on the quality signal, which increases throughout 141

training, the difference between the running average of previous rewards, 𝑟 (𝜶 ), and the current 142

reward is used instead: 𝑟Δ (𝜶 ) = 𝑟 (𝜶 ) − 𝑟 (𝜶 ). Then, the REINFORCE algorithm [30] is used to 143

update the policy 𝜋𝑙 (𝛼) by performing gradient descent on the policy loss, L𝜃 : 144

L𝜃 = −𝑟Δ (𝜶 )
∑︁
𝑙

log (𝛼𝑙 ∼ 𝜋𝑙 (𝛼)), 𝜃 ← 𝜃 + 𝜂∇𝜃L𝜃 (3)

145
where 𝜂 is the RL learning rate. This procedure is chosen due to its low complexity, and it 146

helps address the performance concerns with one-shot searches (analysis shown in Appendix A.6). 147

Other reinforcement learning methods, such as PPO, and more sophisticated policy models, such 148

as multi-layer perceptron models, offered no quality improvements while being more costly. 149

Format Search Space: For pure quantization search, this work evaluates FLIQS on two search 150

spaces: FLIQS-S and FLIQS-L. FLIQS-S includes the standard power-of-two formats, while FLIQS-L 151

includes a larger set of formats between four and eight bits. For floating point, FLIQS-L includes 16 152

formats, which to our knowledge is the largest quantization search performed. Full details of the 153

quantization search spaces can be found in Appendix A.5. 154

Switchable Clipping: FLIQS also introduces a switchable clipping threshold that changes based 155

on the current format. This is necessary since smaller bitwidths require more aggressive clipping, 156

and vice versa, as shown in Figure 4(a). These clipping thresholds can either be pre-computed 157

with synthetic data, or computed during the first phase of the search with real data. In general, 158

pre-computing the thresholds leads to high-quality results with less complexity, and it is used for 159

the experimental sections below. 160

4 FLIQS Analysis 161

Switching Error: The primary challenge for FLIQS is minimizing the effect of the search on the 162

model training. Within a pure quantization search, this effect can be formalized by introducing the 163

switching error. Consider the standard symmetric integer quantizer, 𝑄 (𝑥 ; 𝑠) with the scale factor 164

𝑠 = (2𝑘−1 − 1)/𝜎𝑇 , where 𝜎𝑇 is the clipping threshold. This gives the absolute quantization error 165

Δ(𝑥 ; 𝑠), defined as: 166

𝑄 (𝑥 ; 𝑠) = ⌊𝑥 · 𝑠⌉ /𝑠, Δ(𝑥 ; 𝑠) = |𝑄 (𝑥 ; 𝑠) − 𝑥 | (4)

167
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Figure 5: ImageNet FLIQS Quantization Search – FLIQS reaches higher accuracies at lower costs,

and in general FLIQS-L achieves higher accuracies. Models are evaluated at multiple widths

ranging .25× to 2× of their original channel width to generate each data point.

For a fixed 𝜎𝑇 , 𝑄 (𝑥 ; 𝑠) and Δ(𝑥 ; 𝑠) can instead be parameterized solely by the bitwidth 𝑘 . When 168

this varies during the search, it produces a switching error: 169

Δ𝑆 (𝑥 ;𝑘1, 𝑘2) = |𝑄 (𝑥 ;𝑘2) −𝑄 (𝑥 ;𝑘1) | (5)

170
As illustrated in Figure 4(a), this switching error for standard search spaces, such as integer 171

FLIQS-S, can be relatively large (setup details listed in Appendix A.8). 172

Convergence: This switching error can be viewed as an additional source of noise for the 173

model optimizer, typically SGD or Adam [31]. Intuitively, the expected switching error should be 174

proportional to the total policy entropy 𝐻𝑀 of the model𝑀 : 175

𝐻𝑀 = −
∑︁
𝑙∈𝑀

∑︁
𝑘

𝜋𝑙 (𝑘) log𝜋𝑙 (𝑘), 𝐸 [Δ𝑆 (𝑥 ;𝑘1, 𝑘2)] ∝ 𝐻 (𝜋𝑙 ) (6)

176
That is, as the policy decreases entropy over time by settling on specific formats, the expected 177

switching error decreases and converges to zero as the entropy tends toward negative infinity. This 178

can be seen explicitly by modeling 𝜋𝑙 (𝑘) ∼ 𝑁 (𝑘 ; 𝜇, 𝜎) as a Gaussian distribution, which has an 179

entropy 𝐻 = 1

2
log(2𝜋𝑒𝜎2). Under these assumptions, lim𝐻→−∞ ⇒ lim𝜎→0 ⇒ lim𝑘1→𝑘2

and thus: 180

lim

𝐻→−∞
𝐸 [Δ𝑆 (𝑥 ;𝑘1, 𝑘2)] = 𝐸 [ lim

𝑘1→𝑘2

Δ𝑆 (𝑥 ;𝑘1, 𝑘2)] = 𝐸 [Δ𝑆 (𝑥 ;𝑘2, 𝑘2)] = 0 (7)

181
since Δ𝑆 (𝑥 ;𝑘, 𝑘) = 0. Therefore, as the model entropy decreases, the search no longer interferes 182

with the model training, and this interference can be formulated in terms of additional optimization 183

noise. The noise ball around the optimum is proportional to the entropy, and therefore convergence 184

requires carefully controlling the entropy. 185

Entropy Regularization: FLIQS introduces entropy regularization to reduce the entropy toward 186

the end of the search and enable searches without a final retraining. This addresses the key challenge 187

of one-shot quantization search by diminishing the effects of the search on the model training. The 188

entropy regularization adds a new loss term to the policy loss L𝜃 , balanced by a factor 𝛽𝐻 . 189

L = L𝜃 − 𝛽𝐻𝐻𝑀 (8)

𝛽cos

𝐻 = −.5𝛽𝑒𝑛𝑑𝐻 (1 + cos(𝜋𝑠)) + 𝛽𝑒𝑛𝑑𝐻 (9)

190In addition, FLIQS introduces a cosine entropy regularization schedule in Equation 9, where 191

𝑠 ∈ [0, 1] represents the current training progress and 𝛽𝑒𝑛𝑑
𝐻

= 0.5. Figure 4(b) demonstrates the 192

characteristics of this schedule and the tradeoffs in choosing 𝛽𝐻 . It can achieve high quality 193

results through high exploration at the beginning of the search (high 𝐻𝑀 ) and final stability for 194
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Table 1: Quantization Search – ‘GBOPS’ is the model cost given in billions of bit-ops, and ‘*’ indicates

the first and last layers are kept in higher precision. The mean and standard deviations are

listed for FLIQS methods, aggregated over three trials.

Method Precision ResNet-18 ResNet-50 MobileNetV2

GBOPs Top-1 GBOPs Top-1 GBOPs Top-1

BF16 16 467 72.800.16 1047 78.050.05 77 73.130.14

HAWQ-V3 [16] 4* 34 68.45 71 74.24 - -

ZeroQ [32] 2,8 - - 70 76.08 5 69.44

EDMIPS [22] [1,4] 22 67.20 49 73.20 - -

LQNets [33] 4* 34 69.30 71 75.10 - -

INT FLIQS-S 4,8,16 310.06 69.910.18 731.43 77.400.12 70.03 71.210.18

INT FLIQS-L [4,8],16 320.17 70.610.04 720.53 77.310.03 70.09 71.870.24

HAWQ-V3 [16] 4, 8* 72 70.38 154 76.73 - -

Bayesian Bits [34] [2,32] 56 69.80 - - 17 72.00

DQ [35] [2,10] 226 70.08 - - 37 69.74

PACT [36] 5* 50 69.80 101 76.70 - -

INT FLIQS-S 4,8,16 481.61 71.230.10 811.25 77.320.05 170.73 72.980.22

INT FLIQS-L [4,8],16 431.10 71.510.10 802.30 77.340.05 170.06 72.960.26

HFP8 [7] 8* 137 69.39 284 76.22 21 71.61

FPQuant [9] 8 116 70.28 - - 19 71.60

MPFP [8] 8* 137 69.71 284 75.70 - -

FP FLIQS-L [4,8],16 461.01 71.640.37 740.51 77.340.14 170.32 72.940.09

the quantization-aware training at the end. Appendix A.11 demonstrates that retraining after the 195

search adds no benefit with entropy regularization. 196

5 Quantization Search 197

We begin by evaluating FLIQS on pure quantization search spaces, since this allows comparisons to 198

the most previous work. All models were trained from scratch with cloud-based TPUv3 cluster, 199

and all training and search hyper-parameters are listed in Appendix A.3. 200

Pareto Curves: Figure 5 shows the Pareto curves for uniform precision and FLIQS models. It 201

demonstrates that FLIQS outperforms uniform precision methods across ImageNet models, often 202

with large margins. The FLIQS-L searched models lead to the highest accuracy overall, yet this 203

search space requires support for arbitrary precision in hardware, e.g. within FPGA platforms. 204

In addition, when comparing models together, the FLIQS-L MobileNetV2 outperforms all others 205

models across floating-point and integer formats, with FLIQS-L EfficientNet following closely 206

behind. Finally, the integer and floating-point models are plotted together and show that in nearly 207

every case, floating-point outperforms integer. 208

To achieve these results, FLIQS makes different decisions for each model guided by the reward 209

signal. For the ResNet models, it assigns most layers to low-precision, except for the first and 210

last. It further increases the precision of the pointwise convolutions in the downsampling skip 211

branches (the top 8B convolutions in Figure 3). In contrast, for EfficientNet and MobileNetV2 the 212

pointwise convolutions are typically in lower precision while the depthwise convolutions are in 213

higher precision. Lastly, the vision transformer model, DeiT, shows similar behavior to the other 214

models in terms of its first and last layers and also allocates more bits to its self-attention blocks. 215

All of the detailed configurations can be found in Appendix A.1. 216

Table Comparison: Table 1 further evaluates FLIQS against previous work. As shown in this 217

table, FLIQS improves overall accuracy while simultaneously reducing the model cost in most cases. 218

For example, it outperforms the recent mixed-precision QS method HAWQ-V3 [16] across multiple 219
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ResNet Performance – The ResNet18 area estimates demonstrate a small impact from the additional

layers in higher precision with FLIQS-L and additionally show the correlation between GBOPs and

area. The precision column for each of the three layers in the ResNet-18 downsampling block: 3×3,

3×3, 1×1. The ResNet50 results demonstrate that the integer FLIQS-S mixed-precision model does not

add significant overhead over HAWQ-V3. FPGA results were gathered on the Xilinx UltraScale+ FPGA

platform, where look-up tables (LUTs) are the primary resource.

Method Prec. LUTs Rel. × GBOPs Top-1

4B 4,4,4 42.8K 1.00× 29 67.310.10

5B 5,5,5 44.8K 1.05× 45 68.560.13

6B 6,6,6 48.3K 1.13× 65 69.030.09

7B 7,7,7 54.9K 1.28× 89 70.320.07

8B 8,8,8 67.6K 1.58× 117 70.780.10

FLIQS-L 5,5,6 45.9K 1.07× 46 70.120.07

FLIQS-L 5,6,6 47.1K 1.10× 67 71.510.10

Table 2: ResNet18 Estimated Area

Method GBOPs Speedup (×) Top1

2080 Ti A6000

INT8 262 1.000 1.000 77.470.09

INT4 65 1.338 1.234 74.910.15

INT4* 71 1.334 1.228 76.310.15

FLIQS-S 73 1.303 1.213 77.400.12

Table 3: ResNet50 GPU Latency

model cost targets. For ResNet-50, FLIQS improves the Top-1 accuracy by 0.61% while using only 220

51% of its GBOPs. In addition, FLIQS-L outperforms many recent works on FP8 model inference. 221

For example, against MPFP [8] on ResNet18, FLIQS finds a variant with 1.93% higher accuracy 222

with a third of the model cost by allocating more bits to the downsampling convolutions and first 223

convolutions in the network. 224

These results demonstrate that the searched models consistently outperform their uniform 225

precision baselines. Moreover, this section to our knowledge shows the first large-scale compari- 226

son of floating-point and integer mixed-precision models and shows that floating-point models 227

outperform their integer counterparts for the same total bitwidth. Joint integer and floating-point 228

searches were attempted; however, since floating-point dominates integer formats at the same total 229

bitwidths, the outputs of these searches were the same as the pure floating-point searches. 230

Performance: To evaluate the performance of the searched models, we use an infrastructure 231

developed by the authors of HAWQV3 [16] that extends the TVM [37] compiler to support INT4 232

inference. Table 3 shows that on Turing GPUs, the FLIQS-S model improves accuracy significantly 233

with only 1% lower inference speed compared to the INT4 model. In addition, Table 2 shows that 234

LUTs scale quadratically with the precision bitwidth, and since LUTs act as a proxy for area, this 235

verifies the usefulness of the BOPs cost model. This table also confirms the overhead from these 236

searched models is relatively small compared to the accuracy improvements shown in Table 1. 237

6 Quantization Neural Architecture Search 238

FLIQS can efficiently traverse large quantization search spaces and achieve Pareto-optimal combi- 239

nations of accuracy and model cost within fixed model architectures. Yet, further improvements 240

can come from combining the quantization search of FLIQS with neural architecture search, which 241

is referred to as FLIQNAS in this section. 242

Figure 6 evaluates this method on a MobileNetV2 search space, which incorporates tunable filter 243

widths on inverted bottleneck projection layers and adjustable kernel sizes on central depthwise 244

layers. Altogether, there are 230 tunable values leading to a search space of over 10
100

configurations 245

for FLIQNAS-S. This search space is significantly larger than that of the original MobileNetV2 246

FLIQS-S with 53 options and approximately 10
25
configurations. 247

This figure compares FLIQNAS to FLIQS and quantized NAS, which fixes the quantization 248

format for all layers and only searches for the architecture. It shows that FLIQS-S and FLIQS-L 249

8



Method Precision GBOPs Top1

MobileNetV2 8 19 72.830.24

FLIQNAS-S 4,8,16 130.34 73.790.14

FLIQNAS-L [4,8],16 130.25 74.790.08

APQ-A 2,4,6 13 72.10

FLIQS-S 4,8,16 170.73 72.980.22

FLIQS-L [4,8],16 170.21 72.960.26

FLIQNAS-S 4,8,16 170.27 75.170.08

FLIQNAS-L [4,8],16 170.14 75.650.20

APQ-B 2,4,6 16 74.10

FLIQNAS-S 4,8,16 210.21 75.710.11

FLIQNAS-L [4,8],16 220.29 75.950.04

APQ-C 2,4,6 23 75.10
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Figure 6: MobileNetV2 FLIQNAS – FLIQNAS outperforms APQ in similar search spaces. In addition,

the combination of quantization search and neural architecture search outperforms the two

methods separately on integer and floating-point formats.

searches perform well for low model costs, yet as the model scales to higher costs, the compute 250

is better allocated by increasing the size of the architectural components. In this region, both 251

quantized NAS and FLIQNAS yield the best performance. For all model costs, FLIQNAS-L is able to 252

reach the Pareto-optimal tradeoff of accuracy and model cost. Lastly, when compared at identical 253

cost targets, floating-point FLIQNAS surpasses the performance of the integer search space. 254

In Figure 6, we include a FLIQNAS comparison against APQ [25], which performs a joint 255

architecture, pruning, and quantization search by using a large once-for-all network. Its search 256

space is similar and includes multiple kernel sizes, channel widths, and integer bitwidths built on 257

top of the original MobileNetV2 architecture. This table shows that for similar GBOPs, FLIQNAS 258

leads to higher accuracy over APQ across its three published design points. Further layer-wise 259

analysis of these results is located in Appendix A.7. 260

7 Conclusion 261

As AI hardware supports an increasing number of numerical formats, DNN quantization search 262

to integer and low-precision floating-point grows increasingly important for reducing memory 263

and compute. This paper proposes FLIQS, the first one-shot RL-based integer and low-precision 264

floating-point quantization search without retraining. Compared to prior work, FLIQS can achieve 265

higher accuracy without involving additional fine-tuning or retraining steps by introducing a 266

cosine entropy regularization schedule. Moreover, as an RL-based method, it reduces the amount 267

of memory needed for weights, activations, and gradients during the search compared to recent 268

differentiable NAS searches. 269

These enhancements accelerate research progress and enable quantization searches on larger 270

search spaces and more substantial models, such as DeiT-B16, which has 10 times the model cost as 271

BF16 MobileNetV2. In addition, FLIQS conducts the first floating-point quantization search and 272

produces mixed-precision models that outperform the latest works on FP8 formats. When further 273

combined with architecture search, it identifies even stronger MobileNetV2 models than NAS and 274

quantization search alone. It further suggests that for a fixed compute budget, larger models benefit 275

from increasing architectural dimensions over bitwidth. Overall, FLIQS represents an efficient 276

framework for searching multi-precision models on current hardware and gives further insight 277

into model and hardware co-design for future accelerator generations. 278
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benchmarks, data (sub)sets, available resources)? [Yes] 411

(b) Did you specify all the necessary details of your evaluation (e.g., data splits, pre-processing, 412

search spaces, hyperparameter tuning)? [Yes] In the Appendix 413

(c) Did you repeat your experiments (e.g., across multiple random seeds or splits) to account for 414

the impact of randomness in your methods or data? [Yes] Listed the variance for different 415

runs 416

(d) Did you report the uncertainty of your results (e.g., the variance across random seeds or 417

splits)? [Yes] 418

(e) Did you report the statistical significance of your results? [Yes] the variance captures the 419

significance 420

(f) Did you use tabular or surrogate benchmarks for in-depth evaluations? Unclear 421

(g) Did you compare performance over time and describe how you selected the maximum 422

duration? Unclear 423

(h) Did you include the total amount of compute and the type of resources used (e.g., type of 424

gpus, internal cluster, or cloud provider)? [Yes] Mentioned TPU usage in Pareto section 425

(i) Did you run ablation studies to assess the impact of different components of your approach? 426

[Yes] In the Appendix 427

3. With respect to the code used to obtain your results. . . 428

(a) Did you include the code, data, and instructions needed to reproduce the main experimental 429

results, including all requirements (e.g., requirements.txt with explicit versions), random 430

seeds, an instructive README with installation, and execution commands (either in the 431

supplemental material or as a url)? [Yes] Included in Supplemental 432

(b) Did you include a minimal example to replicate results on a small subset of the experiments 433

or on toy data? [Yes] Included in Supplemental 434

(c) Did you ensure sufficient code quality and documentation so that someone else can execute 435

and understand your code? [Yes] Included in Supplemental 436

(d) Did you include the raw results of running your experiments with the given code, data, and 437

instructions? [Yes] Included in Supplemental 438
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(e) Did you include the code, additional data, and instructions needed to generate the figures 439

and tables in your paper based on the raw results? [No] 440

4. If you used existing assets (e.g., code, data, models). . . 441

(a) Did you cite the creators of used assets? [Yes] Citations throughout paper 442

(b) Did you discuss whether and how consent was obtained from people whose data you’re 443

using/curating if the license requires it? [Yes] 444

(c) Did you discuss whether the data you are using/curating contains personally identifiable 445

information or offensive content? [No] Not relevant 446

5. If you created/released new assets (e.g., code, data, models). . . 447

(a) Did you mention the license of the new assets (e.g., as part of your code submission)? [No] 448

Not relevant 449

(b) Did you include the new assets either in the supplemental material or as a url (to, e.g., 450

GitHub or Hugging Face)? [No] Not relevant 451

6. If you used crowdsourcing or conducted research with human subjects. . . 452

(a) Did you include the full text of instructions given to participants and screenshots, if appli- 453

cable? [No] Not relevant 454

(b) Did you describe any potential participant risks, with links to Institutional Review Board 455

(irb) approvals, if applicable? [No] Not relevant 456

(c) Did you include the estimated hourly wage paid to participants and the total amount spent 457

on participant compensation? [No] Not relevant 458

7. If you included theoretical results. . . 459

(a) Did you state the full set of assumptions of all theoretical results? [Yes] 460

(b) Did you include complete proofs of all theoretical results? [Yes] 461
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A Appendix 462

The following sections contain additional experimental details, small experiments, ablation studies, 463

and example output bitwidths. The listed hyper-parameters attempt to make the results more 464

reproducible and interpretable. In addition, the small-scale experiments motivate certain hyper- 465

parameter selections discussed in the main paper. And finally, the example configurations give 466

more insight into how FLIQS allocates bitwidth across different models and cost targets. 467

A.1 Example Configurations 468

FLIQS bitwidth configurations vary based on the model and search space. Figure 7 shows a set of 469

configurations for FLIQS-L and FLIQS-S searches on a ResNet18 across four different model cost 470

targets. Lower bitwidths are represented with colors closer to red and higher bitwidths are closer 471

to green. This figure shows that FLIQS typically gives higher bitwidth to the first and last layers of 472

the model. It also consistently gives higher bitwidths to the 1x1 convolution on the upper branch, 473

and although not obvious in this figure, it usually allocates more bitwidth to the earlier stages of 474

the model compared to later stages. 475

Figure 8 shows example bitwidth configurations for all models evaluated. It reveals that 476

ResNet50 has similar trends to ResNet18: more bitwidth for the first and last layers, 1x1 convolutions 477

on the upper branch, and generally more in the early stages. Unlike the ResNet models, MobileNetV2 478

has a main block that comprises a sequence of a pointwise convolution, depthwise convolution, 479

and then pointwise convolution. FLIQS allocates more bitwidth to the central 3x3 depthwise 480

convolution in this block (groups of three in the figure). InceptionV3 has a more complicated 481

branched architecture of 1x1, 3x3, and 5x5 convolutions. This block is shown in the figure as the 482

repeated structure of one, three, two, and then one convolution, from top to bottom. FLIQS likewise 483

gives more bitwidth to the earlier stages of InceptionV3 and its first and last layers. Additionally, it 484

increases the precision of the 1x1 convolutions on the top and bottom of the repeated block. 485
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Figure 7: ResNet18 Integer FLIQS – Output configurations depend on the model, model cost target,

and supported bitwidths. FLIQS-S uses 4 and 8 bits as the search space, while FLIQS-L uses 4

to 8 bits, inclusive. For both variants, FLIQS generally allocates higher bits to the first and

last layers, with a slight preference for the last layer. It also assigns more bits to the small

upper 1x1 convolutions and more bits to the first 3x3 convolution within a block.
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Figure 8: Integer FLIQS-L Examples
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Figure 9: Floating-Point FLIQS-L Examples
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Start Step Top-1

1000 75.59

2000 75.59

4000 76.11

6000 76.05

8000 76.02

10000 76.03

15000 75.94

20000 75.93

25000 75.54

30000 74.19

(a) Start Step

STD Multiple Top-1

1 63.39

2 67.79

3 68.02

4 67.91

5 67.19

6 67.00

7 66.15

8 64.91

(b) STD Multiple

Profile Batches Top-1

1 67.92

5 68.09

10 68.00

50 67.75

100 68.02

(c) Profile Batches

Figure 10: Quantization Ablation Studies – (a) The optimal start time for activation quantization is

approximately 20% into the training process. (b) The optimal STD multiple to determine

the activation clipping threshold is around 3. (c) The quantization process is relatively

insensitive to the number of profiling batches.

A.2 Two-Phase Quantization 486

These shared weights are quantized dynamically with a method adapted from the open-source 487

library Accurate Quantized Training (AQT) [38], which supports both integer and emulated low- 488

precision floating point quantization. This process can be summarized as: 489

𝑥𝑞 = ⌊𝑠 · 𝜎 (𝑥 𝑓 ;𝜎𝑡 )⌉ (10)

𝜎 (𝑥 𝑓 ;𝜎𝑡 ) = max(−𝜎𝑡 ,min(𝑥 𝑓 , 𝜎𝑡 )) (11)

490
where 𝑥𝑞 is the quantized value, 𝑥 𝑓 is the original full-precision number, 𝑠 is the scale factor, 491

and 𝜎𝑡 denotes the clipping threshold. In addition, 𝜎 (·) represents a clipping function, and ⌊·⌉ 492

represents a generic rounding function that pushes the value to the nearest integer or low-precision 493

floating-point value. 494

The scale factor 𝑠 normalizes the input to the chosen maximum representable number and then 495

rescales to the maximum quantized value. The clipping threshold and scale factor are determined 496

by the run-time statistics of the weights and activations. Additionally, FLIQS uses a two-phase 497

quantization approach where the weights and activations begin quantization at different training 498

steps, as shown in Figure 2. 499

The two-phase quantization approach has been found empirically to improve the final accuracy 500

of the model. In the first phase, only the weights are quantized and in the second phase, the weights 501

and activations are quantized. The start step of the second phase has a large effect on the final 502

accuracy. Table 10a shows the effect of sweeping the starting step for activation quantization 503

on a ResNet50 trained to 30,200 steps. On one extreme, with the second phase starting as soon 504

as possible, this method degenerates into a single-phase quantization method where weight and 505

activation quantization begin immediately. On the other extreme, where the second phase begins 506

as late as possible, it becomes a hybrid QAT-PTQ method where the weights are quantized during 507

training and the activations are quantized after training. 508

Table 10a shows that accuracy peaks around 15-20% of the total training time. For this reason, 509

FLIQS uses 7500 steps as the start step for activation quantization for ResNets and InceptionV3, 510

which train to 30,200 steps, and 20,000 as the start step for MobileNetV2, EfficientNet, and DeiT, 511

which train to 112,000 steps or longer. 512

The quantization method additionally depends on the activation clipping threshold, which is 513

calculated as a multiple of the profiled activation standard deviations per layer. With too small a 514
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clipping threshold, there is lower rounding error on the more numerous central values distribution, 515

yet there is significant clipping error on the larger values. With too large a threshold, there is more 516

rounding error on the central values and less clipping error on the larger values. 517

This trade-off is demonstrated empirically in Table 10b, where standard deviation multiples 518

are swept from 1 to 8 and applied globally to a ResNet18. This table shows that the best accuracy 519

are achieved around 3-4 times the standard deviation in ResNet18. For simplicity, we apply this 520

multiple to all models for our experiments. Table 10c shows that the final accuracy is not sensitive 521

to the number of profiling batches. This is likely because we use a large batch size of 2048, and 522

since it is shuffled, it likely already provides a strong estimate of the statistics. 523

A.3 Training Hyper-Parameters 524

The training hyper-parameters are chosen to be close to original paper hyper-parameters or recent 525

related work. Table 4 shows the hyper-parameters used to produce Table 1 and Figure 5.

Table 4: Training Hyper-Parameters – Training Hyper-parameters for all quantization search table

results. Same hyper-parameters are used to produce the Pareto-curve figures, although

the total training time is reduced along with dependent hyper-parameters, e.g. activation

quantization start step.

Parameter ResNets DeiT-B16 MBV2
IncV3 EffNet

LR Schedule Cos Cos Exp

LR Base 2.64 4e-3 0.256

LR Warmup 10 30 15

Optimizer SGD AdamW RMSProp

Epochs 350 400 360

Act. Quant Start 15,000 15,000 18,000

ST Multiple 4 4 4

526

A.4 Search Hyper-Parameters 527

For our search, the RL controller warmup period lasts the first 25% of the training It uses an Adam 528

optimizer with learning rate of 4.6E-3 and momentum of .95. The loss function is a standard softmax 529

cross entropy loss with a label smoothing coefficient set to 0.1. A cosine entropy regularization 530

schedule is applied to all runs beginning with no regularization and ending with 𝛽𝐻 = .5. For 531

QNAS, during the RL controller warmup period, the branches corresponding to various kernel 532

sizes are sampled jointly with a probability schedule. This schedule begins at 1 at the beginning of 533

training and decreases linearly to 0 at the end of the warmup period. After the warmup period, 534

only a single branch is sampled at a time. 535

A.5 Search Space 536

In general, the search spaces used with FLIQS should reflect the capabilities of the target hardware. 537

Small search spaces are useful for adapting a model to existing hardware such as the TPUv3 or 538

NVIDIA A100. Large search spaces are useful for reconfigurable hardware such as the AMD Xilinx 539

UltraScale+ FPGA and for co-designing models with future accelerators. The largest search space 540

evaluated in this work includes 16 floating-point formats. 541

For the integer FLIQS-S search space, we include INT4, INT8, and BF16. These are the standard 542

formats supported in modern GPU micro-architectures, such as NVIDIA Ampere. Many platforms 543

additionally support FP16, yet this format typically performs worse than BF16 in most common use 544
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Table 5: Search Space: FLIQS-S is a small search space designed to target existing hardware support,

while FLIQS-L is a large search space useful for co-design with custom hardware. The floating-

point FLIQS-L space demonstrates the scalability of RL-based approaches

FLIQS-S FLIQS-L

Integer INT4, INT8, BF16 INT4, INT5, INT6,

INT7, INT8, BF16

Floating E2M1, E4M3, BF16 E2M1, E2M2, E2M3, E2M4,

Point E2M5, E3M1, E3M2, E3M3,

E3M4, E4M1, E4M2, E4M3,

E5M1, E5M2, E6M1, BF16

cases, so it omitted. For integer FLIQS-L, we fill in the values between INT4 and INT8 primarily 545

considering custom hardware with integer support. For example, bit-serial deep learning engines 546

can take advantage of this additional flexibility. 547

For floating-point FLIQS-S, we include three formats to be consistent with the integer search 548

variant. BF16 is the most common half-precision format, E4M3 is the FP8 variant most useful for 549

inference (E4M2 primarily used for gradients), and E2M1 is a custom FP4 format. For FLIQS-L, we 550

include all the formats with total bitwidths between four and eight. 551

All custom formats support subnormals and do not support infinity. The bias terms are selected 552

so the exponent range is symmetric about zero. However, this bias term is not relevant to FLIQS, 553

since continuing from prior work [38, 6], it uses a profiled scale factor during training and search. 554

This means that the bias term combines with the profiled scale factor and has no additional effect. 555

Therefore, the dynamic range is controlled more by the additional scale factor than the format itself 556

and can adequately scale to various data distributions; the format instead primarily determines the 557

distribution of quantization points (non-linear for floating-point and linear for integer ). 558

A.6 Search Performance 559

Memory (MiB) Search

Gradient Weight Activation Parameters

FLIQS 46.8 23.4 73.6 51

Branched 92.6 70.2 220.8 51

Table 6: ResNet18 Memory – the estimated memory breakdown for a ResNet18 model during quan-

tization search on the FLIQS-S search space. Branched represents the class of quantization

searches that create multiple branches during their search. Batch size is fixed at 32, model

weights and activations are stored in half-precision, and gradients are full-precision with no

gradient checkpointing. Search Parameters represents the additional parameters necessary

for the search process. FLIQS and branched methods require an additional parameter for each

searched layer for each searched option.

A.7 QNAS Analysis 560

In general, QNAS searches tend to allocate more of their compute to architectural components, 561

especially at high cost targets. This behavior is shown in Figure 6, where expanding quantization 562

searches to include flexible channels and kernel size dimensions increases the accuracy of the 563

model at similar costs. Within these architectural components, typically the channel dimension 564
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is increased before the kernel size to reach cost targets. This could be due to the fundamental 565

difference between kernel size and channel width; kernel size reflects the ability to aggregate 566

information faster across spatial dimensions and channel width controls the depth of a neural 567

network representation. 568

The channel dimension allocations also show an interesting trend in that lower bitwidths 569

typically receive a larger number of channels. This is intuitive since increasing the channel width 570

can potentially recuperate losses in representational ability from the lower bitwidth. There is a 571

weaker trend in this direction with kernel size, where the kernel size can tend to be larger with 572

lower bitwidths, although it is not as strong. 573

A.8 Analysis Setup 574

For shifting error and clipping analysis, we simulate the data distributions commonly found within 575

neural networks. For this, we use Gaussian and Laplacian distributions and inject additional outlier 576

values. These outliers are set at 3× the maximum value in the original tensor and are injected at 577

various rates from 1:10 to 1:10000. These outliers are especially common in activation tensors. 578

For the shifting error, we then sample 1000 tensors independently at random, and quantize 579

them with two different symmetric linear quantizers that vary only in their bitwidths. We then 580

calculate the RMS error between the two output tensors and average over all 1000 tensors. Finally, 581

we fit the best exponential function with the form: 𝐴𝑒 (−𝐵𝑥 ) +𝐶 . 582

Similarly, for the clipping analysis, we sample 100 tensors and calculate the quantization error 583

between the original FP32 and quantized tensors for each percentile value. For the percentiles, 584

we use a linear grid of 100 values from [1, 101]. We then plot the average MSE error over the 100 585

tensors and separately plot the optimal percentile. We experimented with different metrics, such as 586

the Kullback-Liebler (KL) divergence, yet these did not lead to qualitatively different results. 587

A.9 Mantissa Sweep 588

Table 7: FP8 Sweep – Sweep over possible FP8 values and evaluate Top-1 accuracy on ImageNet. All

methods use an exponent bias of 11.

Mode ResNet18 ResNet50 MobileNetV2 InceptionV3

E1M6 71.72 77.80 73.20 76.53

E2M5 71.70 77.74 73.14 76.36

E3M4 71.69 77.55 73.17 76.48

E4M3 71.69 77.66 72.65 76.30

E5M2 71.59 76.90 72.07 76.15

Table 7 shows the general effects of different possible FP8 formats on ImageNet accuracy. The 589

models are generally resilient to FP8 quantization with MobileNetV2 having the largest accuracy 590

degradation with the E5M2 format. This is analogous to integer quantization, where typically 591

INT8 is sufficient for most models to maintain neutral accuracy and where MobileNetV2 is more 592

sensitive to low-bit quantization. In this table, the accuracy trends upward with more mantissa 593

bits, and therefore not only do they determine the majority of the area in floating-point units, they 594

increase the accuracy of the models. This leads to the classical accuracy-performance trade-off 595

that floating-point quantization search attempts to navigate for optimal configurations. Yet for 596

hardened accelerators, the peak throughput for different FP8 formats is the same, and therefore 597

higher mantissa bitwidth is preferable. 598
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A.10 Cost Model FPGA Validation 599

Table 2 shows the hardware area estimates and accuracy of a set of ResNet-18 models on an AMD 600

Xilinx UltraScale+ FPGA, implemented using Vivado HLS [39]. Since the whole model does not fit 601

on the board, we estimate the cost with the first residual block in the model, which consists of two 602

convolutional layers on one branch, and a pointwise convolution on the other, followed by their 603

sum. Since all MAC operations are mapped to look-up tables (LUTs), the LUT count acts as a proxy 604

for the area and power overhead of the model. The precision settings for FLIQS-L are taken from 605

actual runs and represent the general bitwidth allocation to the ResNet blocks, although there may 606

be some deviation within individual blocks. 607

This table shows that LUTs scale quadratically with the precision bitwidth. Since the LUTs act 608

as a proxy for area, this verifies the core assumption of the BOPs model (Section 1) that BOPs are 609

proportional to the model area and power on chip. This table also confirms the overhead from 610

these searched models is indeed relatively small compared to the accuracy improvements shown in 611

Table 1. 612

A.11 Retraining vs. No Retraining 613

With sufficient entropy regularization, retraining the model after FLIQS is unnecessary. Table 8 614

shows a sweep for ResNet18 with and without retraining. With retraining, the search occurs as 615

described in Section 3, except that the best configuration is taken and retrained from scratch for the 616

original training length. The table shows natural variance between the retraining and no-retraining 617

methods, but there is no noticeable advantage to retraining across model widths.

Table 8: Retraining ResNet-18

ImageNet Top1

Format 0.5× 0.75× 1.0× 1.25× 1.5× 2.0×
FLIQS-S 59.08 64.93 69.92 71.94 73.32 75.06

+ Retrain 59.00 66.47 69.53 71.63 73.20 74.95

FLIQS-L 60.11 66.28 69.56 71.61 73.12 74.83

+ Retrain 60.10 66.39 69.56 71.58 73.02 74.78

618

A.12 All Models 619

Figure 11 plot all models with corresponding colors for methods and corresponding symbols for 620

models. It shows that FLIQS MobileNetV2 and EfficientNet models consistently outperform other 621

models in terms of accuracy and model cost, and BF16 models consistently perform the worst. This 622

is expected since, as their name suggests, these models are designed specifically to be efficient and 623

both use inverted bottleneck structures to reduce overall compute. The worst performing model 624

overall is ResNet18, which is followed in the higher model costs by ResNet50. 625

A.13 Recommendation Model 626

Next, we briefly explore FLIQNAS on recommendation models using the Criteo dataset [40], which 627

is the most popular public advertisement click-through-rate (CTR) prediction benchmark. We 628

evaluate a multi-layer perceptron (MLP) model with four hidden layers and layer factorization 629

technique [41] similar to the method used in DCN-V2 (Deep & Cross Network) [42]. We use the 630

AUC metric for evaluation, and list additional details about the dataset, model architecture and 631

search space. 632

Figure 13 compares FLIQNAS and FLIQS with uniformly quantized models on both integer and 633

float quantization. We focus only on FLIQS-L due to the small search space and do not include the 634
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Figure 11: Model Comparisons: Left – Integer All Models. Right – Floating-Point All Models.
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Figure 12: Floating-Point vs. Integer FLIQS-L – Floating-point models typically outperform their

integer counter-parts.

uniformly quantized INT4 and E2M1 models since they show significant quality loss. Figure 13 635

shows that FLIQNAS-L performs better than FLIQS-L especially at larger MBOPs. Both of them 636

show better quality and performance trade-offs than uniform quantization. 637

Criteo: The Criteo dataset [40] contains user logs over a period of 7 days with a total of 45M 638

examples. Each example has 13 continuous features and 26 categorical features with a binary label 639

indicating if an advertisement was clicked or not. 640

Architecture: The recommendationmodel architecture starts with an embedding layer to project 641

the sparse categorical features into dense vectors. The embedded vectors are then concatenated 642

with the continuous features and fed into the MLP with four hidden layers and low-rank on each 643

layer to reduce the computational cost. 644

Search Space: For FLIQS-L, the search space uses the same configurations for integer or floating- 645

point search on each layer. For FLIQNAS-L, besides the quantization search space, we also include 646

128 and 512 × [0.25, 0.5, 0.75, 1.0, 1.25, 1.5, 1.75, 2.0] for rank values and layer widths respectively 647

on each layer. 648
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A.14 Additional Pareto Tables 649

This section lists all of the raw data used to produce the Pareto curves in Figure 5. 650
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Figure 14: Additional Pareto Curves – Additional integer and floating-point Pareto curves that could

not fit in the main paper.

ImageNet Top1

Format 0.5× 0.75× 1.0× 1.25× 1.5× 2.0×
BF16 62.63 68.34 71.17 72.89 74.31 75.56

INT4 57.03 63.64 67.32 69.79 71.39 73.57

INT8 62.46 67.80 70.60 72.65 74.01 75.58

FLIQS-S 59.08 64.93 69.92 71.94 73.32 75.06

FLIQS-L 60.11 66.28 69.56 71.61 73.12 74.83

+ (𝛽cos

𝐻
) 60.21 66.47 69.83 71.76 73.19 74.91

GBOPs

Format 0.5× 0.75× 1.0× 1.25× 1.5× 2.0×
BF16 124.5 268.8 467.7 721.3 1030 1810

INT4 7.78 16.80 29.23 45.08 64.35 113.1

INT8 31.13 67.19 116.9 180.3 257.4 452.5

FLIQS-S 8.18 17.68 36.46 54.60 76.35 130.7

FLIQS-L 9.04 19.09 32.33 49.22 69.20 120.2

+ (𝛽cos

𝐻
) 9.30 19.58 33.54 49.57 70.54 120.8

Figure 15: Integer ResNet-18

ImageNet Top1

Format 0.5× 0.75× 1.0× 1.25× 1.5× 2.0×
INT4 69.27 73.03 74.91 76.07 76.81 77.68

INT8 73.20 76.17 77.47 77.98 78.66 79.00

FLIQS-S 71.85 75.11 76.62 77.52 78.06 78.76

FLIQS-L 71.56 74.67 76.52 77.37 78.02 78.73

+ (𝛽cos

𝐻
) 72.12 75.01 76.79 77.66 78.17 78.72

BF16 73.87 76.22 77.68 78.45 78.82 79.14

GBOPs

Format 0.5× 0.75× 1.0× 1.25× 1.5× 2.0×
INT4 16.84 37.16 65.43 101.6 145.8 257.9

INT8 67.35 148.7 261.7 406.5 583.1 1031

FLIQS-S 20.49 42.87 73.66 112.7 160 279.3

FLIQS-L 20.51 41.13 71.57 112.9 156.4 273.5

+ (𝛽cos

𝐻
) 21.03 43.55 74.49 114.8 161.5 282

BF16 269.4 594.6 1047 1626 2332 4126

Figure 16: Integer ResNet-50
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ImageNet Top1

Format 0.25× 0.5× 1.0× 1.4× 2.0×
BF16 55.18 65.72 73.13 76.00 77.64

INT4 40.62 54.11 65.80 70.60 73.85

INT8 55.09 65.70 72.83 75.95 77.37

FLIQS-S 50.78 63.03 71.21 74.64 76.61

FLIQS-L 52.38 63.15 71.73 74.99 77.01

+ (𝛽cos

𝐻
) 52.11 63.35 71.87 74.83 76.98

GBOPs

Format 0.25× 0.5× 1.0× 1.4× 2.0×
BF16 9.52 24.87 77.00 149.0 291.2

INT4 0.595 1.55 4.81 9.31 18.20

INT8 2.38 6.21 19.25 37.20 72.80

FLIQS-S 1.16 2.90 7.42 13.21 23.51

FLIQS-L 1.06 2.38 7.06 12.70 22.26

+ (𝛽cos

𝐻
) 1.02 2.42 7.21 12.69 22.31

Figure 17: Integer MobileNetV2

ImageNet Top1

Format 0.25× 0.5× 0.75× 1.0× 1.5×
BF16 63.65 72.10 75.24 76.26 77.55

INT4 53.20 67.20 71.16 73.55 76.00

INT8 62.86 71.52 74.56 75.87 77.38

FLIQS-S 59.49 69.66 73.04 75.07 77.05

+ (𝛽cos

𝐻
) 60.72 70.28 73.91 75.67 77.12

GBOPs

Format 0.25× 0.5× 0.75× 1.0× 1.5×
BF16 48.69 193.1 433.3 769.2 1728

INT4 3.04 12.07 27.08 48.08 108.0

INT8 12.17 48.28 108.3 192.3 432.0

FLIQS-S 4.18 15.53 29.88 52.02 112.5

+ (𝛽cos

𝐻
) 4.31 15.99 33.17 59.16 119.9

Figure 18: Integer InceptionV3

ImageNet Top1

Format B0 B1 B2 B3 B4

BF16 73.53 75.50 76.36 78.68 80.35

INT4 59.83 66.08 67.71 70.46 74.29

INT8 73.04 75.08 76.48 78.39 79.55

FLIQS-S 68.94 71.92 74.53 77.67 79.89

FLIQS-L 70.51 73.23 75.41 77.96 80.03

+ (𝛽cos

𝐻
) 70.01 72.96 74.62 77.81 79.92

GBOPs

Format B0 B1 B2 B3 B4

BF16 98.61 175.5 254.0 467.3 1124

INT4 6.16 10.97 15.88 29.21 70.25

INT8 24.65 43.89 63.50 116.8 281.0

FLIQS-S 7.86 13.62 23.81 52.30 198.0

FLIQS-L 7.40 13.21 21.62 49.38 187.0

+ (𝛽cos

𝐻
) 7.42 13.32 19.85 45.26 187.1

Figure 19: Integer EfficientNet

ImageNet Top1

Format 0.25×0.375× 0.5× 0.75×0.875× 1.0×
INT4 66.51 72.53 76.19 78.75 79.26 79.84

INT8 70.77 76.41 78.33 79.71 79.55 79.49

FLIQS-S 66.36 74.05 76.96 79.44 79.05 79.47

FLIQS-L 67.04 73.93 77.10 79.27 79.27 79.35

+ (𝛽cos

𝐻
) 67.78 73.90 76.88 79.23 79.16 79.28

GBOPs

Format 0.25×0.375× 0.5× 0.75×0.875× 1.0×
INT4 20.29 38.42 67.96 152.1 206.8 269.8

INT8 80.94 153.5 271.5 608.1 826.6 1079

FLIQS-S 20.31 40.52 70.74 156.3 211.7 275.4

FLIQS-L 21.08 39.55 69.12 153.9 208.8 272.0

+ (𝛽cos

𝐻
) 21.47 40.45 70.57 154.5 210.4 273.2

Figure 20: Integer DeiT-B16
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ImageNet Top1

Format 0.5× 0.75× 1.0× 1.25× 1.5× 2.0×
BF16 62.63 68.34 71.17 72.89 74.31 75.56

E2M1 58.17 64.18 67.96 70.43 72.08 74.22

E4M3 62.06 67.57 70.56 72.66 73.75 75.43

FLIQS-S 59.80 65.77 68.89 72.10 73.50 75.26

+ (𝛽cos

𝐻
) 60.99 66.61 70.01 71.92 73.32 74.80

GBOPs

Format 0.5× 0.75× 1.0× 1.25× 1.5× 2.0×
BF16 124.5 268.8 467.7 721.3 1030 1810

E2M1 7.78 16.80 29.23 45.08 64.35 113.1

E4M3 31.13 67.19 116.9 180.3 257.4 452.5

FLIQS-S 8.18 17.68 30.80 54.60 76.35 128.2

+ (𝛽cos

𝐻
) 9.60 19.48 32.78 50.01 68.43 118.2

Figure 21: Floating-Point ResNet-18

ImageNet Top1

Format 0.5× 0.75× 1.0× 1.25× 1.5× 2.0×
BF16 73.87 76.22 77.68 78.45 78.82 79.14

E2M1 70.24 73.91 75.77 76.89 77.40 78.01

E4M3 73.09 75.86 77.42 78.13 78.42 78.97

FLIQS-S 72.16 75.14 76.84 77.83 78.22 78.94

+ (𝛽cos

𝐻
) 72.39 75.61 76.95 78.00 78.24 78.81

GBOPs

Format 0.5× 0.75× 1.0× 1.25× 1.5× 2.0×
BF16 269.4 594.6 1047 1626 2332 4126

E2M1 16.84 37.16 65.43 101.6 145.8 257.9

E4M3 67.35 148.7 261.7 406.5 583.1 1031

FLIQS-S 21.72 42.87 74.28 112.7 160.0 279.2

+ (𝛽cos

𝐻
) 21.93 44.70 76.43 115.6 165.6 297.9

Figure 22: Floating-Point ResNet-50

ImageNet Top1

Format 0.25× 0.5× 1.0× 1.4×
BF16 55.18 65.72 73.13 76.00

E2M1 — 52.32 66.29 69.26

E4M3 53.98 64.85 72.63 75.86

FLIQS-S 50.76 62.58 71.14 74.34

+ (𝛽cos

𝐻
) 51.11 63.65 71.97 75.26

GBOPs

Format 0.25× 0.5× 1.0× 1.4×
BF16 9.52 24.87 77.00 149.0

E2M1 0.595 1.55 4.81 9.31

E4M3 2.38 6.21 19.25 37.20

FLIQS-S 1.22 2.69 7.35 12.6

+ (𝛽cos

𝐻
) 0.95 2.36 6.77 12.37

Figure 23: Floating-Point MobileNetV2

ImageNet Top1

Format 0.25× 0.5× 0.75× 1.0× 1.5×
BF16 63.65 72.10 75.24 76.26 77.55

E2M1 54.14 67.80 72.09 74.55 76.35

E4M3 62.65 71.50 74.49 75.94 77.39

FLIQS-S 58.78 69.50 73.43 75.28 77.03

+ (𝛽cos

𝐻
) 60.90 70.63 74.16 75.94 77.43

GBOPs

Format 0.25× 0.5× 0.75× 1.0× 1.5×
BF16 48.69 193.1 433.3 769.2 1728

E2M1 3.04 12.07 27.08 48.08 108.0

E4M3 12.17 48.28 108.3 192.3 432.0

FLIQS-S 3.66 13.46 29.16 51.65 111.4

+ (𝛽cos

𝐻
) 3.89 15.23 32.86 56.15 124.2

Figure 24: Floating-Point InceptionV3

ImageNet Top1

Format B0 B1 B2 B3 B4

BF16 73.53 75.50 76.36 — —

E2M1 62.45 67.49 69.14 71.22 76.12

E4M3 72.99 75.36 76.20 78.17 79.52

FLIQS-S 67.60 71.63 74.67 78.05 80.30

+ (𝛽cos

𝐻
) 71.13 74.34 75.58 78.03 80.29

GBOPs

Format B0 B1 B2 B3 B4

BF16 98.61 175.5 254.0 — —

E2M1 6.16 10.97 15.88 29.21 70.25

E4M3 24.65 43.89 63.50 116.8 281.0

FLIQS-S 7.77 13.58 23.26 55.15 203.3

+ (𝛽cos

𝐻
) 7.30 13.00 19.61 36.6 212.9

Figure 25: Floating-Point EfficientNet
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ImageNet Top1

Format 0.25×0.375× 0.5× 0.75×0.875× 1.0×
E2M1 66.63 73.88 76.35 80.10 79.04 79.49

E4M3 71.19 76.96 78.85 79.13 79.90 79.17

FLIQS-S 67.27 73.95 77.52 79.24 79.56 79.27

FLIQS-L 68.25 74.36 77.35 78.89 79.56 79.54

GBOP

Format 0.25×0.375× 0.5× 0.75×0.875× 1.0×
E2M1 20.29 38.42 67.96 152.1 206.8 269.8

E4M3 80.94 153.5 271.5 608.1 826.6 1079

FLIQS-S 20.3 38.42 70.74 156.3 211.7 275.4

FLIQS-L 21.08 39.40 68.49 152.9 207.7 270.8

Figure 26: Floating-Point DeiT-B16
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