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Abstract

In today’s age, it is becoming increasingly difficult to de-
cipher truth from lies. Every day, politicians, media outlets,
and public figures make conflicting claims—often about top-
ics that can, in principle, be verified against structured data.
For instance, statements about crime rates, economic growth
or healthcare can all be verified against official public records
and structured datasets. Building a system that can automat-
ically do that would have sounded like science fiction just a
few years ago. Yet, with the extraordinary progress in LLMs
and agentic Al, this is now within reach. Still, there remains
a striking gap between what is technically possible and what
is being demonstrated by recent work. Most existing verifica-
tion systems operate only on small, single-table databases—
typically a few hundred rows—that conveniently fit within an
LLM’s context window.

In this paper we report our progress on THUCY, the first
cross-database, cross-table multi-agent claim verification sys-
tem that also provides concrete evidence for each verification
verdict. THUCY remains completely agnostic to the under-
lying data sources before deployment and must therefore au-
tonomously discover, inspect, and reason over all available re-
lational databases to verify claims. Importantly, THUCY also
reports the exact SQL queries that support its verdict (whether
the claim is accurate or not) offering full transparency to ex-
pert users familiar with SQL. When evaluated on the TabFact
dataset—the standard benchmark for fact verification over
structured data—THUCY surpasses the previous state of the
art by 5.6 percentage points in accuracy (94.3% vs. 88.7%).

Code — https://github.com/michaeltheologitis/thucy

1 Introduction

In the Annual Report released last year by the Seattle City
Attorney’s Office (2024), we read the following:

I am pleased to acknowledge that 2024 saw a reduc-
tion in property crime and violent crime in Seattle.
— Ann Davison, City Attorney

However, for many residents of Seattle, this statement might
not quite match their lived experience. The natural instinct
is to want to find out more. Was crime really down in 2024?
And if so, by how much—and according to which source?
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It turns out, the City of Seattle publicly provides an offi-
cial crime dataset (Seattle Police Department 2025b)—with
all crimes from 2008 until now—that is structured, detailed,
and updated almost daily. In principle, that is all you would
need to verify such a claim. In practice, though, very few
people ever try. Most will simply take the statement at face
value and move on, keeping the comforting thought that
“Seattle is safer now” somewhere in the back of their mind.

A few more curious and determined souls might go a step
further, dig around, discover the dataset, and even download
it. Then reality hits: it is technical, messy, and not exactly
friendly to non-specialists. So they, too, eventually give up.
And so the claim remains—unchecked, unchallenged, and
protected by the technical complexity of verification.

In this work, we present a multi-agent system called
THUCY that takes over the verification process once the user
has obtained the structured data and imported it into a re-
lational database. From that point on, THUCY figures ev-
erything out: it autonomously explores the available data
sources, reasoning over them on the fly to produce a verdict
and supporting evidence.

In our example, we can simply download the City of Seat-
tle’s official crime dataset, load it into a SQL database, and
invoke THUCY with the verbatim claim of Ann Davison for
verification. THUCY takes care of the rest—no further clari-
fications are needed. In fact, THUCY is completely agnostic
to the underlying data environment before deployment.

We draw inspiration from the work of Thucy(dides), the
Athenian historian (460—400 BC) who wrote the History of
the Peloponnesian War between Sparta and Athens. “Thucy-
dides has been dubbed the father of scientific history by
those who accept his claims to have applied strict standards
of impartiality and evidence-gathering” (Wikipedia 2025).

Following Thucydides’ example of reporting, THUCY’s
job is twofold: (D provide a verification verdict (whether the
claim is supported or not based on the available data), and

return a report together with SQL queries that explain its
findings. By returning the explanations in the form of SQL
queries, THUCY empowers the data analyst to modify these
SQL queries and explore the claim further. For example they
can “roll-up” by checking if crime of all types has decreased
in Seattle in 2024 (not just property and violent crime), or to
“drill down” and check how crime changed in 2024 for each
Seattle neighborhood.
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Figure 1: The architecture of THUCY, a multi-agent system led by the Verifier. Its job is to verify NL claims grounded in
relational databases and report the corresponding SQL evidence. The Verifier coordinates three expert agents: the Data E.\‘/J(’rl,
which summarizes available data sources; the Schema Expert, which answers schema-related questions; and the

which writes and executes SQL queries to obtain verifiable answers. The data layer follows a plug-and-play design and can
include any number of relational databases—each potentially containing many tables—with PostgreSQL, MySQL, SQL Server,
and Oracle shown here only as examples. THUCY remains fully agnostic to the underlying data sources. The agents must
therefore operate in an open-ended environment, discovering and reasoning about available data as they encounter it. The
experts interact with these relational databases through specialized tools managed via Google’s MCP Toolbox. Adding or
removing databases is straightforward: it simple involves adding or removing the corresponding tool from the toolbox.

2 Architecture

In this section, we describe the architecture of THUCY. We
start by discussing the data sources and our minimal assump-
tions about them. Then, we go over the recent standardized
ways modern Al agents connect to databases. Finally, we
delve into the details of our multi-agent system (Figure 1).

Throughout this section, we aim to be as informative as
possible about the unique ways multi-agent systems must
navigate relational databases. Table 1 summarizes, at a high
level, how THUCY differs from prior systems that operate
over structured data. Beyond explaining how our system
works, our goal is to also make clear the rationale behind the
design choices that made THUCY possible. Doing so natu-
rally requires unpacking some of the subtleties of relational
databases along the way.

Data Sources

The vision behind THUCY is simple. A user can drop a few
grounding data sources into SQL databases and immedi-
ately start asking the system to verify claims. We make only
minimal assumptions about these data sources: they are re-
lational—as is often the case with official federal or state
data—and we treat them as reliable and trustworthy.

THUCY remains completely agnostic of both the informa-
tion content and the internal structure of these tables and
databases. We provide no additional metadata, schema in-
formation, or prior knowledge to our multi-agent system.
Instead, we assume that the grounding data sources are en-
tirely unknown before deployment. The agents must there-
fore operate in an open-ended environment, discovering and
reasoning about available data as they encounter it.

This design makes our approach highly flexible as we can

quickly plug-and-play by adding or removing data sources
without concern for compatibility or reconfiguration. This
flexibility has been a central motivation since the inception
of our system.

Tools

To enable this flexibility, we must address a fundamental
challenge: LLLMs, no matter how capable, are inherently dis-
connected from external data sources—they can only op-
erate in isolation, with no way to interact with databases.
Agents bridge this gap by using fools. A tool acts as an inter-
face to external capabilities, allowing agents to interact with,
perceive, and affect their environment. In general, tools can
include capabilities that perform mathematical calculations,
or read files from disk, or query a database. Each agent has
a fixed collection of such tools. At runtime, the agent1 au-
tonomously decides which tool to invoke, how to call it, and
when to use it; the tool’s output is then fed back into the
reasoning loop (Yao et al. 2023). This interactive feedback
cycle between reasoning, action, and observations forms the
backbone of modern agentic Al.

Building tools from scratch is challenging, because they
need to be carefully designed. They must return well format-
ted values, and informative error messages, because these
are fed back into the LLM. Building a tool also requires
domain expertise. For example, a simple tool that fetches
schema information from a PostgreSQL database requires
knowledge of relational databases, Postgres internals, and
query execution. Building a similar tool for MySQL (an-
other database management system), the developer has to

"More precisely, it is the LLM that makes this decision, though
we often use “agent” and “LLM” interchangeably in such contexts



Table 1: Capabilities of different LLM-based systems for fact verification over structured data. Cross-Table and Cross-Database
refer to a system’s ability to verify claims that span multiple tables or databases. Interpretable means that users can understand
the reasoning behind the model’s verdict. Verifiable goes a step further—it allows users to reproduce the verification process
(e.g., providing the exact Python or SQL commands), eliminating any suspicion of hallucinations. Finally, Source-Agnostic
indicates that the system can operate without prior knowledge of its data environment, figuring out everything from scratch.

Method Cross-Table Cross-Database Interpretable Verifiable Source-Agnostic
BINDER (Cheng et al. 2023) X X v X X
DATER (Ye et al. 2023) X X v X X
CoTable (Wang et al. 2024) X X v X X
ReAcTable (Zhang et al. 2024) X X X X X
AutoTQA (Zhu et al. 2024) v v X X X
POS (Nguyen et al. 2025) X X v X X
THUCY (ours) v v v v v
start over, since there are differences in the catalog layout, tools:

the connection logic, etc. Switching to a different agentic
framework might require rebuilding all tools from scratch.
The solution we adopted for THUCY was to use MCP.

MCP The Model Context Protocol (MCP), introduced
by Anthropic (2024), standardizes how Al applications con-
nect to different data sources, effectively eliminating the
need for custom connections for each new Al model and ex-
ternal system allowing us to direct our energy elsewhere—
away from repetitive boilerplate code. MCP simplifies and
streamlines the tool building process, and has already been
adopted by industry (Mehrotra 2025; Gonzales and Murch-
ing 2025; Ganguly 2025; Agarwal et al. 2025).

Toolsets We use Google’s MCP Toolbox for
Databases (Buvaraghan and Egan 2025), a framework
that makes it effortless to organize and manage database
tools. It provides built-in primitives—actual implementa-
tions of low-level functions like executing SQL—across
different database systems (e.g., PostgreSQL, MySQL),
ready to use without us having to code anything.

Using these primitives as building blocks, we define
higher-level tools that bind and interact with specific
databases. For example, in Figure 2, we create the tools
seattle sql and portland sqgql, both of which use
Google’s postgres—execute-sgl primitive to run
SQL queries on the respective Postgres databases seattle
and portland. We also define los angeles _sql,
which uses the MySQL primitive mysgl-execute-sql,
to query the 1os_angeles database.

Of course, there can be many such tool definitions for
many different databases. Once the tools are defined, we
can group them into flexible collections called toolsets. Each
agent can then simply “subscribe” to the toolsets it needs.

As a simple example, suppose we want an agent to in-
vestigate crime statistics across cities in the “West Coast”—
Seattle, Portland, and Los Angeles. To do that, it needs ac-
cess to all three databases. All we have to do is bundle
the corresponding tools from Figure 2 into a single foolset,
west—-coast-sql, and then subscribe the agent to it. It’s
just as easy to give the agent access to schema information:

seattle_sql:
kind: postgres—-execute-sqgl # Google
source: seattle # Postgres DB
portland_sql:
kind: postgres—execute-sql # Google
source: portland # Postgres DB
los_angeles_sql:
kind: mysgl-execute-sqgl # Google
source: los_angeles # MySOL DB

Figure 2: A YAML fragment showing the configuration of
database tools; schema-related tools are omitted for brevity.

we simply subscribe it to west—coast—-schema. The re-
sulting configuration is shown in Figure 3.

In the same spirit, we might also maintain a
washington-state toolset, bundling together the
tools for databases from the Seattle area and other cities
in WA. Within each database, we can import official data
from various governmental sources, which THUCY can then
explore when verifying claims about the state—exactly as
in the ongoing investigation of the City Attorney’s claim
from Section 1.

If we later decide to remove access to a database (say, the
Portland database), we only need to delete the correspond-
ing tools in Figure 3—literally commenting out two lines of
code from the configuration. Conversely, if we want to add
another city into the mix, we simply append two more tools.

Agentic System

With the data layer now in place, we turn our attention to the
core of THUCY: its multi-agent architecture. Connecting to
databases modularly is only part of the challenge—the real
difficulty lies in navigating and reasoning over them effec-
tively. Our system tackles this through a team of three spe-
cialized expert-agents: the Data Expert, Schema Expert and

. Each agent has a distinct role, specific instruc-
tions, clear output expectations, and subscribes to one of the



toolsets:

west—-coast-sql:

- seattle_sqgl

- portland_sqgl

- los_angeles_sqgl
west—-coast-schema:

— seattle_schema

- portland_schema

— los_angeles_schema
washington-state-schema:

- seattle_sqgl

washington-state—-sql:
- seattle_schema

Figure 3: Example YAML configuration of toolsets

two toolsets described earlier (sql or schema).

They are coordinated by the Verifier, a higher-level agent
responsible for driving the verification process and produc-
ing the final verdict on claims—along with a transparent re-
port containing explanatory SQL queries. Importantly, the
three expert-agents are designed as atomic components: they
never communicate directly with one another; they interact
only with non-Al static tools exposed through their respec-
tive toolsets.

In this section, we discuss the rationale behind our design
choices, the challenges we encountered, and the unique so-
lutions that made our approach effective.

Data Expert Since the data environment is unknown, with
potentially many databases and tables, we need a mechanism
to rapidly survey the available landscape. This is the role of
the Data Expert, which “subscribes” to the schema toolset.
Its task is to perform a high-level scan of all accessible data
sources and summarize what each source appears to contain.

The usefulness of this step might not be immediately
apparent, but it is crucial: data exploration involves nu-
merous tool calls and exposure to large amounts of low-
level information—database, table, and column names; data
types, schemas, and various metadata—that must be in-
evitably consumed to truly understand what the data is
about. The Data Expert’s job is to “bite the bullet” navi-
gating this chaos, and deliver a clean single-paragraph sum-
mary to the Verifier. This summary enables the Verifier
to plan an effective verification strategy knowing the data
sources it has in its disposal, while keeping its expensive
context from being cluttered by useless details.

Schema Expert In order to write any successful query
over relational databases, the first step is always to under-
stand the schema. In theory, relational databases should have
table and column names that are unambiguous, column types
should match their intended semantics (e.g., an age column
is a number and not text), and keys and foreign keys should
be explicitly declared in the schema. In practice, this is rarely
the case. Corporate or institutional databases have dozens or

even hundreds of tables, each with dozens of attributes, and
the table or column names are frequently non-descriptive.
For example even the relatively well organized Crime Data
for Seattle (Seattle Police Department 2025a) has opaque
column names like NIBRS Group AB or Beat.

This is where the Schema Expert comes into play. Its
high-level role is to answer arbitrary schema-related ques-
tions about the available databases. It is equipped with the
schema toolset—similar to the Data Expert—which al-
lows it to fetch detailed schema information from the con-
nected databases. Unlike the Data Expert, however, it oper-
ates without guardrails and is in fact encouraged to dive deep
into the structural details of the schemata. It can investigate
nearly any aspect of the databases’ design; from simple col-
umn names to specific constraints on those columns (e.g.,
foreign key relationships, nullability, and more).

However, misuse of its own tools can quickly clutter the
agent’s memory (for example, by the misfortune of querying
the schema of a messy corporate database containing sev-
eral hundred-column tables). To try avoid this as much as
possible, we require one additional input to the Schema Ex-
pert. Along with the schema question, we must also provide
a brief context hint—this is a short, high-level NL cue that
steers the agent toward relevant databases (Figure 4).

All in all, the Schema Expert expects D a NL schema
question along with (2) a context hint, and investigates the re-
lated data sources in order to provide a crisp, precise answer
in NL. The exact response and format is left to the agent
and depends on the question at hand. For example, a recent
query was “List all tables related to to crime, police inci-
dents, offense categories, or year-by-year statistics.” with
the context hint of “Seattle, WA”. The resulting answer was
a well-structured, markdown-formatted summary detailing
the relevant tables, column names, and types.

During execution, the Verifier frequently invokes the
Schema Expert to answer different things about some
database’s schema (as in the example above). The responses
are always clear, complete, and to the point—exactly what
we want. This design “protects” the Verifier’s expensive con-
text by allowing it to access highly curated schema informa-
tion without having to endure the messiness of retrieving it.

SQL Expert Once a reasonable understanding of the
database’s schema has been established, the next step is to
interact and play around with the data itself. For relational
databases, this means writing SQL. The NL to SQL prob-
lem consists of automatically converting a natural language
question over a relational database (with known schema) to
an SQL query (Li and Jagadish 2014; Sen et al. 2020). De-
spite lots of progress in this space and the availability of pop-
ular benchmarks—Ilike Spider (Yu et al. 2018), KaggleD-
BQA (Lee, Polozov, and Richardson 2021) and BIRD (Li
et al. 2023)—NL2SQL remains a challenging problem for
real-world scenarios, because of schema complexity, query
ambiguity, and semantic mismatch (Floratou et al. 2024).
For example, suppose that we want to ask: Which neigh-
borhood of Seattle recorded the most parking tickets in
the second quarter of 2025? Everyone roughly understands
what this question means, yet translating it into SQL quickly
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Figure 4: Inputs and outputs of the three expert-agents. The
Data Expert is invoked without input and returns a concise
high-level report of what the connected databases appear to
contain. The Schema Expert expects a schema-related ques-
tion along with a short hint about where to look (for exam-
ple, “NYC database”), and returns a precise answer to that
question. Lastly, the expects a question about
the data along with specific information of the schema that
is relevant to the question. The process usually involves a
couple of SQL queries on the databases, depending on what
the agent decides. At some point, it returns a clear answer
together with the concrete SQL commands that verify it.

reveals several challenges. First, to compute total parking
tickets, we must discover the semantics of “quarter” —is it
relative to the calendar year or the fiscal year? Sometimes,
the best we can do is to infer it by exploring the data itself.
For example, by investigating the actual data, we might find
out that the table conveniently includes concatenated infor-
mation that indicate the quarter (e.g., “Q1” to “Q4”). Even
if we are not that lucky, this process still helps us understand
how dates are stored and organized. In other words, while
the question is inherently ambiguous, careful inspection of
the data often reveals its intended meaning. The first stage
of query formulation consists of an interactive exploration
of the data.

After this exploratory stage, the next stage is to write the
query or queries that answer the question. Unfortunately,
many things can still go wrong at this point. We might write
a logically incorrect query (a semantic mismatch) and only
realize it when no results appear—perhaps because we ac-
cidentally filtered everything out. On top of that, there are
the usual syntax errors, some of which are due to the dif-
ferent vendor-specific versions of SQL (e.g., PostgreSQL,
MySQL, Oracle, etc.) of the available databases.

In summary, NL2SQL is not a one-shot process, but
requires a continuous back-and-forth with the database
through SQL queries. In THUCY this is the role of the

. This expert emulates the interactive process in order
to answer questions over the available relational databases.
To ensure transparency, we instruct it to always also return
the concrete evidence that supports its answer. We want ev-
ery result to be fully traceable back to the data through con-
crete SQL. We instruct the to exclude from the
answer SQL queries that are irrelevant to the final answer
(e.g., exploratory or failed queries).

The expects two inputs: (1) the NL query it-
self, and (2) the relevant database schema information (Fig-
ure 4). The latter contains all the necessary schema details
the agent might need to write SQL queries within the scope
of the question—such as the explicit names of the relevant
databases, tables, relationships, and columns. This way, the
agent can focus precisely on the relevant parts of the data,
without being distracted by the rest of the environment.
There might be countless other tables or databases avail-
able, but we want our to enter a kind of “tunnel-
vision” mode, concentrating solely on the question at hand
and on the small relevant portion of the data landscape that
contains the answer.

Verifier Finally, the role of the Verifier is to coordinate
all other agents, and verify the factual claim requested by
the users. The Verifier produces two outputs: a verifica-
tion verdict (one of Verified, Partly Verified, Partly Inaccu-
rate, or Inaccurate), and an analytical report containing the
SQL queries that explain and support this verdict. This re-
port is organized in a clear, chronological way, effectively
walking the user through each stage of the verification pro-
cess. If desired, the data analyst can execute the explanation
SQL queries herself, examine their outputs, modify and re-
execute them, until she is completely satisfied with the ve-
racity and generality of the claim.

To achieve this task, the Verifier interacts with all other
agents in the system. In order to ask the SQL Expert some-
thing about the data, it will provide it with the relevant
schema information indicating where exactly to look (Fig-
ure 4), obtained from the Schema Expert, while the latter
requires information from Data Expert.

To summarize, the Verifier begins by asking the Data Ex-
pert to provide an overview of the available data sources. Us-
ing this information, the Verifier consults the Schema Expert
to obtain the schema of the relevant databases, initially at
some high level of detail (for example, only the table names
without their attributes). Next, it invokes the SQL Expert to
ask a question about a specific step of the claim verifica-
tion, and obtains concrete, verifiable answers consisting of
both SQL queries and their results. Usually, more informa-
tion is needed, and the Verifier repeats this in a cycle: ask the
Schema Expert for more detail, in order to ask the SQL Ex-
pert new queries; if the answers remain unsatisfactory, the
Verifier may decide to ask the Data Expert for additional
relevant data sources, and the process continues. Eventually,
the Verifier is satisfied and writes the answer to the user.

Importantly, the Verifier never interacts directly with the
messy data sources—it leaves the “dirty work™ to the three
experts. They are the ones who dive into the details, explore
the data with whatever trials and tribulations, and handle its
inevitable quirks. The Verifier simply asks the right ques-
tions and receives informative, concise, and crisp answers
in return; without ever touching the chaos underneath. Thus,
its context remains light, focused, and packed only with the
most useful information. This efficiency allows us to equip
the Verifier with a powerful model.



Orchestration

In practice, our three expert-agents are wrapped as callable
functions and exposed to the Verifier as fools. This allows
the Verifier to invoke any of them directly, much like calling
a non-Al tool like a calculator. The architecture follows an
“Agents as Tools” pattern, where specialized agents are en-
capsulated as a tools with clearly defined inputs and outputs.

For the expert-agents, we persist memory only within a
single tool invocation, not across different calls. This design
choice makes the agents reusable atomic components—any
lead agent, such as the Verifier, can seamlessly employ them
without inheriting messy context from previous runs. This
keeps the multi-agent system simple, modular, and easy to
extend.

3 Verification Example

Now, we can turn our focus to the verification example in-
troduced in Section 1. As a reminder, Ann Davison, Seattle’s
City Attorney, made the following statement in the 2024 An-
nual Report:

I am pleased to acknowledge that 2024 saw a reduc-
tion in property crime and violent crime in Seattle.

We set out to verify this claim using THUCY. We have
access to a PostgreSQL database with the City of Seattle’s
official crime data. We had downloaded this data from the
Seattle Police Department (2025b) in the form of a CSV
file, then uploaded it into PostgreSQL. It contains roughly
1.5M rows of all recorded crimes from 2008 to the present.
To verify claims like that by the city’s attorney, we invoked
THUCY with the verbatim claim above. After a few minutes,
our multi-agent system produces the following report and
verdict (excerpted verbatim):

Findings:
— Property crime increased from 40,951 (2023) to
41,220 (2024), a rise of 269 incidents (~ 0.7%).
— Violent crime increased from 5,435 (2023) to 5,477
(2024), a rise of 42 incidents (~ 0.8%).
Conclusion: The claim is contradicted by the data: both
property crime and violent crime were slightly higher in
2024 than in 2023 in the Seattle dataset examined.
Verdict: Inaccurate

An important feature of THUCY is that it also returns the
explanatory SQL query (or queries) that lead it to its verdict.
These queries can be directly inspected, executed, and repro-
duced by expert users. In our example, THUCY generated
the query shown in Figure 5. In essence, the query groups
crimes by year and category, and then counts the number of
incidents—exactly what we would expect for this verifica-
tion. The output of the query is also shown in the figure. It
was easy to run this query ourselves and confirm the cor-
rectness of THUCY’s verdict; we show the answers in the
figure. We also checked these results on the interactive crime
dashboard of the City of Seattle (Seattle Police Department
2025a), and got the same results.’

’In the dashboard, make sure that “all” is selected in Precinct.

SELECT

EXTRACT (YEAR FROM offense_date) : :int
AS year,

offense_category,

COUNT (#) AS incident_count
FROM public.crime_data
WHERE offense_category IN

('"PROPERTY CRIME', '"VIOLENT CRIME'")

AND offense_date >= '2023-01-01"'::date
AND offense_date < '2025-01-01"'::date
GROUP BY 1, 2
ORDER BY 1, 2;

Year Category Incidents

2023  Property Crime 40,951
2023  Violent Crime 5,435
2024  Property Crime 41,220
2024  Violent Crime 5,477

Figure 5: SQL query and results produced by THUCY
when verifying the City Attorney’s claim. The query groups
crimes by year and category and counts total incidents.

4 Experiments

In this section, we present the experimental evaluation of
THUCY. We first describe the widely used fact verification
benchmark TabFact, followed by the baselines. Next, we
outline the framework in which THUCY was built and the
LLMs it uses. Finally, we present our findings, which show
that THUCY decidedly surpasses the state of the art.

Benchmark We conduct experiments on TabFact (Chen
et al. 2020), a widely used benchmark for fact verification
over Wikipedia tables. The task is to determine whether a
claim holds given the evidence in a relational table. The
claim is labeled “false” if any part of it conflicts with the data
from the table. Many cases involve subtle linguistic reason-
ing and common sense. Following all prior work (Nguyen
et al. 2025; Zhu et al. 2024; Zhang et al. 2024), we evaluate
on the small test split of TabFact, which contains roughly 2k
fact-table pairs.

Baselines We compare against recent fact-verification sys-
tems that all rely on LLMs, as these have achieved state-
of-the-art performance (Zhu et al. 2024). We do not re-
implement the baselines; instead, we report the results pro-
vided in their original papers for the same task and dataset.

We compare against BINDER (Cheng et al. 2023),
DATER (Ye et al. 2023), CoTable (Wang et al. 2024),
ReActTable (Zhang et al. 2024), AutoTQA (Zhu et al. 2024),
and POS (Nguyen et al. 2025).

Among them, AutoTQA is particularly relevant, as it also
builds a multi-agent system and is the only one in the litera-
ture to also support cross-table querying. Their agents follow
a cyclic orchestration pattern—executing, critiquing, and re-
fining plans in a loop. Our approach differs in two main
ways: (D) THUCY is agnostic to the underlying data environ-
ment, and (2) it provides concrete traceable evidence along-



side the answers. We also take a different stance on agent
orchestration: instead of cyclic pattern, we employ decou-
pled, specialized expert-agents. This choice is validated by
recent successful applications in industry (Anthropic 2025).

POS is also related to our work, as it focuses on inter-
pretability. It returns the execution plan to the user as a logi-
cal sequence of NL atomic steps. We differ in two key ways:
(D we output concrete SQL queries, eliminating any suspi-
cion of hallucinations, since expert users can directly verify
them; and %) we are not constrained to an answer coming
from a single query. In contrast to POS, which assumes the
final answer is produced by a single SQL query, we allow—
and in fact encourage—multi-step reasoning where poten-
tially many arbitrary queries contribute to the final answer
in different ways.

Setup We built THUCY using the OpenAl Agents SDK.
Following our discussion in Section 2, we equip the Verifier
with a highly capable model (GPT-5), since its context
remains lightweight. We then experiment with the expert
agents—Data Expert, Schema Expert, and —
using two model variants: GPT-5-mini and GPT-40-mini.

Results As we can see in Table 2, THUCY beats the pre-
vious state of the art by 5.6 percentage points, setting a new
best-known result on TabFact at 94.3%. To test the robust-
ness of THUCY, we also swapped the models of our three
expert agents for GPT-4o0-mini, aligning them to those used
in the baseline systems (e.g., we match POS). The outcome
remains the same: THUCY outperforms the previous state
of the art by 5 points in accuracy. This result is especially
encouraging—it shows that THUCY remains effective even
when the individual agents use less capable models. It also
reinforces our design choice of specialized, task-specific
agents, since we can confidently downgrade their models to
reduce cost without sacrificing much. We believe this de-
composition of the overall task into smaller, well-defined
subtasks, each handled by a dedicated expert agent under a
single lead agent, plays a central role in these improvements.

5 A Journalistic Tale

A very recent article by MyNorthwest (2025) claimed that
violent crime in downtown Seattle had “plummeted” during
the summer months compared to the same period last year.
The second sentence of the article reads:

Between June and August 2025, officials reported that
violent crime incidents in downtown Seattle dropped
by 36% compared to the same period in 2024.

Within just a few hours, other outlets—including Kiro7
(2025) and Yahoo News (2025)—had picked up and repub-
lished the same story, all citing the original source.
Naturally, having built THUCY and with the crime dataset
from the Seattle Police Department (2025b) already in hand,
we were eager to see what it would say. We submitted the
exact claim verbatim and waited a few minutes for the an-
swer. Unlike the earlier statement by Seattle’s City Attor-
ney (Sections 1 and 3), however, this one was trickier. The
term, “downtown”, in particular, can mean different things

Table 2: Accuracy (1) on the small test set of the TabFact
Benchmark. Some papers decided to re-run the same experi-
ments of previous methods using newer models, so we report
the new results as well. Each entry points to its source paper.

Method Model Acc (1)
BINDER (Cheng et al. 2023) Codex 85.1%
BINDER (Nguyen et al. 2025) GPT-40-mini  84.6%
DATER (Ye et al. 2023) Codex 85.6%

GPT-40-mini  81.0%
PalM 2 86.6%
GPT-40-mini 84.2%

DATER (Nguyen et al. 2025)
CoTable (Wang et al. 2024)
CoTable (Nguyen et al. 2025)

ReAcTable (Zhu et al. 2024) GPT4 83.4%
ReAcTable (Zhu et al. 2024) GPT-4-turbo  85.0%
ReAcTable (Zhang et al. 2024) Codex 86.1%
AutoTQA (Zhu et al. 2024) GPT-4 87.4%

GPT-4-turbo  88.7%
GPT-40-mini 82.7%

AutoTQA (Zhu et al. 2024)
POS (Nguyen et al. 2025)

GPT-40-mini  93.7%
GPT-5-mini 94.3%

THUCY (ours)
THUCY (ours)

depending on who you ask. After a few minutes, THUCY
returned the following report (excerpted verbatim):

Conclusion

— The Seattle crime data do not support the claim that
“violent crime incidents in downtown Seattle dropped
by 36%” in Summer (Jun—Aug) 2025 versus the same
period in 2024. Depending on how “downtown” is de-
fined, overall violent crime either increased modestly
or decreased slightly, but nowhere near 36%.

Verdict: Inaccurate

Assumptions and notes

— “Downtown Seattle” was operationalized as the
neighborhoods BELLTOWN, DOWNTOWN COM-
MERCIAL, and PIONEER SQUARE, and also tested
with CHINATOWN/INTERNATIONAL DISTRICT in-
cluded.

What THUCY considered as ‘“Downtown Seattle” is, in
principle, reasonable. Still, before accepting the ver-
dict, we wanted to dig deeper. The dataset includes a
neighborhood attribute, which THUCY correctly? lever-
aged to filter by the relevant neighborhoods. This is exactly
what a data analyst would do too. But this raised an inter-
esting question: could there exist some other combination
of neighborhoods—perhaps the one implicitly used by the
news articles—for which the 36% drop actually holds?

We dug deeper into the SQL queries produced by THUCY.
As experienced SQL users, we tweaked those queries to de-
fine “downtown” geographically instead: based on the dis-
tance from Seattle Central Library (which is undoubtedly
downtown). To our surprise, when we restricted to crimes
only within a radius of about 0.7km, the trend of the claim
begun to emerge (Table 3). That only made us more deter-
mined to get to the bottom of this.

30r rather incorrectly, as we will see in Section 6



Table 3: Cumulative violent crime counts and percentage
reduction (Jun—Aug 2024 vs. Jun—Aug 2025). Distance is
counted from Seattle’s Downtown Library using latitude and
longitude coordinates available in the data.

Distance 2024 2025 Reduction

< 0.5km 30 37 —23.33%
< 0.7km 112 87 22.32
< 1.0km 178 146 17.98
< 1.5km 302 289 4.30

After further investigation on the Web, we finally uncov-
ered the source of the confusion. The original news source
came from a different article, published by the Downtown
Seattle Association (2025), which stated:

Violent crime incidents in Seattle police’s M sectors (the
downtown core) declined 36% between June—August
2025 compared to the same period in 2024.

This claim is far more specific: it reveals that the 36% refers
specifically to the police’s M sectors. Admittedly, we were
not familiar with this terminology. So, once again, we in-
voked THUCY with the exact wording of this claim. This
time, it returned the following report:

Summary conclusion

— Using report_datetime (report month), violent
crime incidents in Seattle Police’s sector M (down-
town) fell from 105 in June-August 2024 to 67
in June—August 2025: a —36.19% change, which
rounds to —36%. This matches the claim.

Verdict: Verified

With the extra M sector information at hand, THUCY was
able to verify it. We noticed that this time THUCY took a dif-
ferent route: it filtered the data using attributes like sector.
We also verified THUCY ’s findings by cross-checking the
results on the interactive crime dashboard of the Seattle Po-
lice Department (2025a). The numbers match perfectly.*
Even though we are not journalists, this whole process
convinced us even further of the urgent need for journalis-
tic tools that actually produce the concrete SQL evidence
of their verdict. THUCY is one of them. It doesn’t just give
a verdict—the story doesn’t just end there. It can be trans-
formed, magnified, and turned to something greater. This is
what Cohen et al. (2011) envisioned long ago in their pio-
neering seminal work on computational journalism.

6 Limitations & Future Work

Dirty Data. Coming back to the previous example,
when we first gave THUCY the ambiguous claim about
downtown Seattle, it made some assumptions about the
neighborhood. It then filtered this attribute with the val-
ues it considered as downtown. So far so good—but what
THUCY missed was that this column has many missing val-
ues. In fact, roughly 50% of them are missing. Since THUCY

“When reproducing the results, after choosing the year and of-
fense category, keep only beats M1-M3 selected; this is sector M.

also returns the concrete SQL, we were able to spot this im-
mediately.

Assumptions & Ambiguity. Another direction we want to
explore is controlling how much the agents rely on assump-
tions. Assumptions are useful as this is the only way to com-
bat ambiguity in both the data and user questions. However,
they can also introduce subtle errors (for example, using the
wrong current date). We want to experiment with ways to
make these assumptions better grounded. One idea is to cre-
ate another specialized expert-agent that searches the web.
Quantitative Evaluation. In the evaluation of THUCY, we
used TabFact (Chen et al. 2020). There is, however, a mis-
match: we propose a system that can navigate data environ-
ments with many databases and tables, while our evaluation
is conducted on a single-table benchmark. This is indeed
the case, but to the best of our knowledge there is no fact-
verification benchmark in the literature that focuses on large-
scale cross-table or cross-database data. We believe this is an
important next step for fact-verification, and we are actively
working on creating one.

Ablation Studies. As we were building THUCY, we manu-
ally tested and refined each agent, observing both their indi-
vidual behavior and their interactions within the full system.
However, in this work we do not present systematic ablation
studies. A careful evaluation and a systematic study of the
contribution of each component—both in isolation and by
removing individual agents from the system—is warranted.
Stateless Expert-Agents. Each expert agent does not pre-
serve memory across tasks. This is a deliberate design
choice, as it allows THUCY to operate in dynamic data en-
vironments. However, this increases cost, since agents must
re-discover information across tasks.

Expensive. Lastly, multi-agent systems like THUCY burn
through tokens fast (Anthropic 2025). In our case, fact-
checking all 4K examples in our experiments cost about
$183.9 in total. That comes out to roughly 5S¢ per example.
In messy real-world fact-checking scenarios like the one dis-
cussed earlier (Section 5), the cost rises to 20¢ per verifica-
tion. Still, we believe that our journalistic use case is high-
stakes enough that this trade-off is worthwhile. After all, we
can easily imagine journalists at the New York Times being
more than happy to spend a few dollars to have their articles
stamped by THUCY as verified and fault-proof.

7 Conclusion

We described our preliminary results for THUCY, the first
multi-agent claim-verification system that operates over
multiple relational databases and provides the concrete SQL
evidence behind its verdicts. THUCY remains agnostic to
the data environment prior to deployment and must there-
fore figure everything out from scratch. Our experimental re-
sults on a widely used fact-verification benchmark highlight
the strength of our multi-agent design. THUCY improves the
current state of the art in claim verification.
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