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ABSTRACT

In this paper, we introduce DIA, dissolving is amplifying. DIA is a fine-grained
anomaly detection framework for medical images. We describe two novel com-
ponents in the paper. First, we introduce dissolving transformations. Our main
observation is that generative diffusion models are feature-aware and applying
them to medical images in a certain manner can remove or diminish fine-grained
discriminative features such as tumors or hemorrhaging. Second, we introduce
an amplifying framework based on contrastive learning to learn a semantically
meaningful representation of medical images in a self-supervised manner. The
amplifying framework contrasts additional pairs of images with and without dis-
solving transformations applied and thereby boosts the learning of fine-grained
feature representations. DIA significantly improves the medical anomaly detec-
tion performance with around 18.40% AUC boost against the baseline method and
achieves an overall SOTA against other benchmark methods. Our code is available
at http://.

1 INTRODUCTION

Anomaly detection aims at detecting exceptional data instances that significantly deviate from nor-
mal data. A popular application is the detection of anomalies in medical images where these
anomalies often indicate a form of disease or medical problem. In the medical field, anoma-
lous data is scarce and diverse so anomaly detection is commonly modeled as semi-supervised
anomaly detection. This means that anomalous data is not available during training and the
training data contains only the “normal” class.1 Traditional anomaly detection methods in-
clude one-class methods (e.g. One-class SVM Chen et al. (2001)), reconstruction-based methods
(e.g. AutoEncoders Williams et al. (2002)), and statistical models (e.g. HBOS Goldstein & Den-
gel (2012)). However, most anomaly detection methods suffer from a low recall rate meaning that
many normal samples are wrongly reported as anomalies while true yet sophisticated anomalies are
missed (Pang et al., 2021). Notably, due to the nature of anomalies, the collection of anomaly data
can hardly cover all anomaly types even for supervised classification-based methods (Pang et al.,
2019). An inherited challenge is the inconsistent behavior of anomalies, which varies without a
concrete definition (Thudumu et al., 2020; Chalapathy & Chawla, 2019). Thus, identifying unseen
anomalous features without requiring prior knowledge of anomalous feature patterns is crucial to
anomaly detection applications.

In order to identify unseen anomalous features, many studies leveraged data augmentations (Golan
& El-Yaniv, 2018; Ye et al., 2022) and adversarial features (Akcay et al., 2019b) to emphasize var-
ious feature patterns that deviate from normal data. This field attracted more attention after incor-
porating Generative Adversarial Networks (GANs) (Goodfellow et al., 2014), including Sabokrou
et al. (2018); Ruff et al. (2018); Schlegl et al. (2017b); Akcay et al. (2019a;b); Zhao et al. (2018);
Shekarizadeh et al. (2022), to enlarge the feature distances between normal and anomalous fea-
tures through adversarial data generation methods. Furthermore, some studies Salem et al. (2018);
Pourreza et al. (2021); Murase & Fukumizu (2022) explored the use of GANs to deconstruct im-
ages to generate out-of-distribution data for obtaining more varied anomalous features. Inspired
by the recent successes of contrastive learning (Chen et al., 2020a;b; He et al., 2019; Chen et al.,

1Some early studies refer to training with only normal data as unsupervised anomaly detection. However, we follow Musa & Bouras
(2021); Pang et al. (2021) and other newer methods and use the term semi-supervised.
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2020c; Grill et al., 2020; Chen & He, 2021; Caron et al., 2020), contrastive-based anomaly de-
tection methods such as Contrasting Shifted Instances (CSI) (Tack et al., 2020) and mean-shifted
contrastive loss (Reiss & Hoshen, 2021) improve upon GAN-based methods by a large margin. The
contrastive-based methods fit the anomaly detection context well as they are able to learn robust
feature encoding without supervision. By comparing the feature differences between positive pairs
(e.g. the same image with different views) and negative pairs (e.g. different images w/wo different
views) without knowing the anomalous patterns, contrastive-based methods achieved outstanding
performance in many general anomaly detection tasks (Tack et al., 2020; Reiss & Hoshen, 2021).
However, given the low performance in experiments in Section 4, those methods are less effective for
medical anomaly detection. We suspect that contrastive learning in conjunction with traditional data
augmentation methods (e.g. crop, rotation) cannot focus on fine-grained features and only identifies
coarse-grained feature differences well (e.g. car vs. plane). As a result, medical anomaly detection
remains challenging because models struggle to recognize these fine-grained, inconspicuous yet
important anomalous features that manifest differently across individual cases. These features are
critical for identifying anomalies, but they can be subtle and easy to overlook. Thus, in this work,
we investigate the principled question: how to emphasize the fine-grained features for fine-grained
anomaly detection?

Our method. In this paper, we propose a new type of data augmentation that helps to learn fine-
grained discriminative features. We introduce dissolving transformations based on pre-trained dif-
fusion models. We observed that a clever application of a generative diffusion model can remove
or suppress fine-grained discriminative features from an input image. We also introduce the frame-
work DIA, dissolving is amplifying, that leverages the proposed dissolving transformations. DIA
is a contrasting learning framework. It enhanced understanding of fine-grained discriminative fea-
tures stems from a loss function that contrasts images that have been transformed with dissolving
transformations to images that have not. On six medical datasets, our method obtained roughly an
18.40% AUC boost against the baseline method and achieved the overall SOTA compared to existing
methods for fine-grained medical anomaly detection.

Key contributions of DIA include:
• Conceptual Contribution. We propose a novel strategy to learn fine-grained features by em-

phasizing the differences between images and their feature-dissolved counterparts.
• Technical Contribution 1. We introduce dissolving transformations to dissolve the fine-

grained features of images. In particular, we propose dissolving transformations to perform
semantic feature dissolving via the reverse process of generative diffusion models as described
in Fig. 1.

• Technical Contribution 2. We propose a new feature amplified NT-Xent loss to learn fine-
grained feature representations in a self-supervised manner. Essentially, with image pairs where
only one of them has been transformed by a dissolving transformation, we compare them in a
contrastive learning framework.

2 RELATED WORK

2.1 SYNTHESIS-BASED ANOMALY DETECTION

As Pang et al. (2021); Rani & E (2020) indicated, semi-supervised anomaly detection methods
dominated this research field. These methods utilized only normal data whilst training. With the
introduction of GANs (Goodfellow et al., 2014), many attempts have been made to bring GANs into
anomaly detection. Here, we roughly categorize current methods to positive synthesis that increases
the variation of normal data, and negative synthesis that generates more anomalous data.

Positive Synthesis. Many studies (Brock et al., 2018; Zhang et al., 2021) focused on synthesizing
various in-distribution data (i.e. normal data) with synthetic methods. For anomaly detection tasks,
earlier works such as AnoGAN (Schlegl et al., 2017a) learn normal data distributions with GANs
that attempt to reconstruct the most similar images by optimizing a latent noise vector iteratively.
With the success of Adversarial Auto Encoders (AAE) (Makhzani et al., 2016), some more recent
studies combined AutoEncoders and GANs together to detect anomalies. GANomaly (Akcay et al.,
2019a) further regularized the latent spaces between inputs and reconstructed images, then some
following works improved it with more advanced generators such as UNet (Akcay et al., 2019b)
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and UNet++ (Cheng et al., 2020). AnoDDPM (Wyatt et al., 2022) replaced GANs with diffusion
model generators, and stated the effectiveness of noise types for medical images (i.e. Simplex noise
is better than Gaussian noise). In general, most of the positive synthesis methods aim to improve
normality feature learning despite the awareness of abnormalities, which impedes the model from
understanding the anomaly feature patterns.

Negative Synthesis. Due to the difficulties of data acquisition and to protect patient privacy, getting
high-quality, balanced datasets in medical field is difficult (Ker et al., 2017). Thus, negative synthe-
sis methods are widely applied in medical image domains, such as X-ray (Salehinejad et al., 2018),
lesion (Frid-Adar et al., 2018), and MRI (Han et al., 2018). Recent studies tried to integrate such
negative data generation methods into anomaly detection. G2D (Pourreza et al., 2021) proposed a
two-phased training to train an anomaly image generator then an anomaly detector. Similarly, AL-
GAN (Murase & Fukumizu, 2022) proposed an end-to-end method that generates pseudo-anomalies
during the training of anomaly detectors. Such GAN-based methods deconstruct images to generate
pseudo-anomalies, resulting in unrealistic anomaly patterns, though multiple regularizers are applied
to preserve image semantics. Unlike most works to synthesize novel samples from noises, we dis-
solve the fine-grained features on input data. Our method therefore learns the fine-grained instance
feature patterns by comparing samples against their feature-dissolved counterparts. Benefiting from
the step-by-step diffusing process of diffusion models, our proposed dissolving transformations can
provide fine control over feature dissolving levels.

2.2 CONTRASTIVE-BASED ANOMALY DETECTION

To improve anomaly detection performances, previous studies such as Dosovitskiy et al. (2014); Wen
et al. (2016) explored the discriminative feature learning to reduce the needs of labelled samples for
supervised anomaly detection. More recently, GeoTrans (Golan & El-Yaniv, 2018) leveraged geo-
metric transformations to learn discriminative features, which significantly improved anomaly de-
tection abilities. ARNet (Ye et al., 2022) attempted to use embedding-guided feature restoration to
learn more semantic-preserving anomaly features. Specifically, contrastive learning methods (Chen
et al., 2020a;b; He et al., 2019; Chen et al., 2020c; Grill et al., 2020; Chen & He, 2021; Caron
et al., 2020) are proven to be promising in unsupervised representation learning. Inspired by the
recent integration (Tack et al., 2020; Reiss & Hoshen, 2021; Cho et al., 2021) of contrastive learning
and anomaly detection tasks, we propose to construct negative pairs of a given sample and its corre-
sponding feature-dissolved samples in a contrastive manner to enhance the awareness of fine-grained
discriminative features for medical anomaly detection.

3 METHODOLOGY

This section introduces DIA (Dissolving Is Amplifying), a method curated for fine-grained anomaly
detection for medical imaging. DIA is a self-supervised method based on contrastive learning. DIA
learns representations that can distinguish fine-grained discriminative features in medical images.
First, DIA employs a dissolving strategy based on dissolving transformations (Section 3.1). The
dissolving transformations are able to remove or deemphasize fine-grained discriminative features.
Second, DIA uses the amplifying framework described in Section 3.2 to contrast images that have
been transformed with and without dissolving transformations. We use the term amplifying frame-
work as it amplifies the representation of fine-grained discriminative features.

3.1 DISSOLVING STRATEGY

We introduce dissolving transformations, a novel data augmentation strategy to create negative ex-
amples in a contrastive learning framework. The dissolving transformations can be achieved by a
pre-trained diffusion model. The output image maintains a similar structure and appearance to the
input image, but several fine-grained discriminative features unique to the input image are removed
or attenuated. While the regular diffusion process starts with pure noise, we initialize the diffusion
process with the input image without adding any noise. As depicted in Fig. 1, dissolving transfor-
mations gradually remove fine-grained discriminative features of various datasets (Figs. 1b to 1e).
The effect of dissolving transformations increases with an increasing number of diffusion time steps
t.
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(a) Input Images (b) t = 50 (c) t = 100 (d) t = 200 (e) t = 400

Figure 1: Dissolving Transformations. Figs. 1b to 1e show how the fine-grained features are dis-
solved (removed or suppressed). This effect is stronger as the time step t is increased from left to
right. In the extreme case, in Fig. 1e, different input images become very similar or almost identical
depending on the dataset. We show results for four datasets from top to bottom.

To recap, diffusion models consist of forward and reverse processes, and each process is performed
for T time steps. The forward process q gradually adds noise to an image x0 for T steps to obtain a
pure noise image xT , whereas the reverse process p aims at restoring the starting image x0 from xT .
In particular, we sample an image x0 ∼ q(x0) from a real data distribution q(x0), then add noise at
each step t with the forward diffusion process q(xt|xt−1), which can be expressed as:

q(xt|xt−1) = N (xt;
√

1− βt · xt−1, βt · I), (1)

q(x1:T |x0) =

T∏
t=1

q(xt|xt−1), (2)

where βt represents a known variance schedule that follows 0 < β1 < β2 < · · · < βT < 1.
Afterwards, the reverse process removes noise starting at p(xT ) = N (xT ; 0, I) for T steps. Let θ be
the network parameters:

pθ(xt−1|xt) = N (xt−1;µθ(xt, t),Σθ(xt, t)), (3)

where µθ and Σθ are the mean and variance conditioned on step number t.

The proposed dissolving transformations are based on Eq. (3). Instead of generating images by
progressive denoising, we apply reverse diffusion in a single step directly on an input image. Essen-
tially, we set xt = x in Eq. (3), where x is the input image. We then compute an approximated state
x0 and denote it as x̂t→0 to make it clear that the equation below is parameterized by the time step
t. By reparametrizing Eq. (3), x̂t→0 can be obtained by:

x̂t→0 =

√
1

ᾱt
· x−

√
1

ᾱt
− 1 · ϵθ(x, t), ᾱt := Πt

s=1αs and αt := 1− βt, (4)

where ϵθ is a function approximator (e.g. UNet) to predict the corresponding noise from x. Since
a greater value of t leads to a higher variance βt, x̂t→0 is expected to remove more of the “noise”
if t is large. In our context, we do not remove “noise” but discriminative instance features. If t
is small, the removed discriminative instance features are more fine-grained. If t is larger, larger
discriminative instance features may be removed. See Fig. 1 for examples.

3.2 AMPLIFYING FRAMEWORK

We propose a novel contrastive learning framework to enhance the awareness of the fine-grained
image features by integrating the proposed dissolving transformations. In particular, we aim to
enforce the model to focus on fine-grained features by emphasizing the differences between images
with and without dissolving transformations. Fig. 2 illustrates the proposed fine-grained feature
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xT xt xt−1 x0· · · · · ·pθ(xt−1|xt)

q(xt|xt−1)

I. Pretrain a diffusion model

Dissolving transformation with t-step reverse diffusion:

xT xt xt−1 x0

x x̂
pθ(x̂|x)

pθ(xt−1|xt)· · · · · ·

t = 0

t = 50

t = 100

t = 200

Dissolved samples x̂ at different t steps:

II. Dissolving transformation

O(m)

O′(m)

A(m; t)

rot 0◦ rot 90◦ rot 180◦ rot 270◦

k = 0 k = 1 k = 2 k = 3

Feature
Space

O0(m; ·)

O′
0(m; ·)

A0(m; t, ·) O1(m; ·)

O′
3(m; ·)

O(n; ·)

III. Fine-grained Contrastive Learning

Positive Pairs Negative Pairs

Positive Samples Negative Samples

Figure 2: DIA on Kvasir-polyp dataset. (I) With a pretrained diffusion model, (II) the dissolving
transformations of image x result in x̂. With a bigger time step t, x̂ gradually loses fine-grained fea-
tures. (III) Given images m and n, we generated transformed versions A(m; t, ·), O(m; ·), O′(m; ·)
for image m and A(n; t, ·), O(n; ·), O′(n; ·) for image n using a mixture of dissolving and other
standard transformations. Then we form positive and negative pairs as described in Section 3.2.2.
Here the two green positive samples form one positive pair. All other image pairings (between green
and red or between red and red samples) form a negative pair.

learning method of DIA. We first present the different transformation branches in Section 3.2.1 and
then introduce the fine-grained contrastive learning framework using our proposed feature-amplified
NT-Xent loss in Section 3.2.2.

3.2.1 TRANSFORMATION BRANCHES

We extend the framework by Tack et al. (2020) for contrastive learning-based anomaly detection.
They employ two types of transformations: shifting transformations (e.g. large rotations) and non-
shifting transformations (e.g. color jitter, random resized crop, and grayscale). During contrastive
learning, an input image is transformed by 2K transformations, where each transformation is the
concatenation of one shifting transformation and multiple non-shifting transformations.

We use a set S of K different shifting transformations. This set contains only fixed (non-random)
transformations and starts from the identity I so that S := {S0 = I, S1, . . . , SK−1}. With in-
put image x, we obtain S1(x), . . . , SK−1(x) as shifted images that strongly differ from the in-
distribution samples S0(x) = x. Each of these K shifted images then passes through multi-
ple non-shifting transformations ∈ T . This yields the set of combined transformations O :=
{O0, O1, . . . , OK−1} and Ok = T ◦Sk. With a slight abuse of notations, we use T as a sequence of
random non-shifting transformations. This process is then repeated a second time, yielding another
transformation set O′. We also refer to O and O′ as two augmentation branches. Each image is
therefore transformed 2K times, K times in each augmentation branch. All transformations have
supposedly different randomly sampled non-shifting transformations, but Oi(x) and O′

j(x) share
the same shifting transformation if i = j.

Building on this framework, we introduce a third augmentation branch using dissolving transforma-
tions, denoted as A := {A0, . . . , AK−1}. The dissolving transformations branch outputs transfor-
mations of the form:

Ak = T ◦ Sk ◦ D (5)
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where T is a sequence of random non-shifting transformations, Sk is a shifting transformation, and
D is a randomly sampled dissolving transformation. In summary, this yields 3K transformations of
each image, K in each of the three augmentation branches.

3.2.2 FINE-GRAINED CONTRASTIVE LEARNING

The goal of contrastive learning is to transform input images into a semantically meaningful feature
representation. To design a loss function for contrastive learning, we need to decide for which of the
image pairs the feature representation should be made more similar (i.e. positive pairs) and for which
of the image pairs the feature representation should be made more different (i.e. negative pairs).

For a single image, we have 3K different transformations. In addition, we have B different images
in a batch, yielding 3K · B images that are considered jointly. For all possible pairs of images,
they can either be a negative pair, a positive pair, or not be considered in the loss function. We
relegate the explanation to an illustration in Fig. 3. In the top left quadrant of the matrix, we
can see the design choices of what constitutes a positive and a negative pair inherited from Tack
et al. (2020), based on the NT-Xent loss Chen et al. (2020a). The region highlighted in red, is
our proposed design for the new negative pairs for dissolving transformations. The purpose of
these newly introduced negative pairs is to learn a representation that can better distinguish between
fine-grained semantically meaningful features. The contrastive loss for each image sample can be
computed as follows:

ℓi,j = − log
exp(sim(zi, zj)/τ)∑3N

k=1 1k,i · (exp(sim(zi, zk))/τ)
1k,i =

{
0 i = k,

1 otherwise,
(6)

where N is the number of samples (i.e.N = B · K), sim(z, ẑ) = z · ẑ/||z||||ẑ||, and τ is a
temperature hyperparameter to control the penalties of negative samples.
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Figure 3: Visualization of the target similar-
ity matrix (K = 2 with two samples in a
batch). The white, blue, and lavender blocks
denote the excluded, positive, and negative
pairs, respectively. The red area contains the
newly introduced negative pairs with dissolv-
ing transformations.

As mentioned previously, the positive pairs are se-
lected from Oi(·) and O′

j(·) branches only when
i = j. The proposed feature-amplified NT-Xent loss
can therefore be expressed as:

Lcon =
1

3BK

1

|{x+}|
∑

ℓi,j ·

{
0 1i,j ∈ {x−}
1 1i,j ∈ {x+}

, (7)

where {x+} and {x−} denote the positive and nega-
tive pairs, and |{x+}| is the number of positive pairs.
The resulting target similarity matrix is shown in
Fig. 3.

Additionally, an auxiliary softmax classifier fθ is
used to predict which shifting transformation is ap-
plied for a given input x, resulting in pcls(y

S |x).
With the union of non-dissolving and dissolving
transformed samples XS∪A, the classification loss is
defined as:

Lcls =
1

3B

1

K

K−1∑
k=0

∑
x̂∈XS∪A

− log pcls(y
S |x̂). (8)

The final training loss is hereby defined as:

LDIA = Lcon + γ · Lcls, (9)

where γ is set to 1 in this work.

3.3 THE SCORE FUNCTIONS

During inference, we adopt an anomaly score function that consists of two parts, (1) scon ensembles
the anomaly scores over all shifted transformations, in addition to (2) scls sums the confidence of
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the shifting transformation classifier. For the kth shifting transformation, given an input image x,
training example set {xm}, and a feature extractor c, we have:

scon(x̃, {x̃m}) = max
m

sim(c(x̃m), c(x̃)) · ||c(x̃)||, scls(x̃) = Wkfθ(x̃), (10)

With x̃ = Tk(x) x̃m = Tk(xm)

where maxm sim(c(xm), c(x)) computes the cosine similarity between x and its nearest training
sample in {xm}, fθ is an auxiliary classifier that aims at determining if x is a shifted example or
not, and Wk is the weight vector in the linear layer of pcls(yS |x).

4 EXPERIMENTS

This section presents major experiment results to demonstrate the effectiveness of DIA for fine-
grained anomaly detection.

4.1 EXPERIMENT SETTING

We evaluated our methods on six datasets with various imaging protocols (e.g. CT, OCT, endoscopy,
retinal fundus) and areas (e.g. chest, breast, colon, eye). In particular, we experiment on low-
resolution datasets of Pnuemonia MNIST and Breast MNIST, and higher resolution datasets of SARS-
COV-2, Kvasir-Polyp, Retinal-OCT, and APTOS-2019. A detailed description is in Appendix A.1.

We performed semi-supervised anomaly detection that uses only the normal class for training,
namely, the healthy samples. Then we output the anomaly scores for each data instance to eval-
uate the anomaly detection performance. We use the area under the receiver operating characteristic
curve (AUROC) as the anomaly detection metric. All the presented values are computed by averag-
ing at least three runs.

We use ResNet18 as the backbone model and a batch size of 32. In terms of shifting transformations,
we adopted rotation as suggested by CSI (Tack et al., 2020), with a fixed K = 4 for 0◦, 90◦, 180◦,
270◦. For dissolving transformations, all diffusion models are trained on 32 × 32 images. The
diffusion step t is randomly sampled from t ∼ U(100, 200) for Kvasir-Polyp and t ∼ U(30, 130)
for the other datasets. For high-resolution datasets, we downsampled images to 32× 32 for feature
dissolving and then resized them back, avoiding massive computations of diffusion models.

4.2 TECHNICAL DETAILS

Our experiments are carried on NVIDIA A100 GPU server with CUDA 11.3 and PyTorch 1.11.0.
We use a popular diffusion model implementation2 to train diffusion models for dissolving transfor-
mation, and the codebase for DIA is based on the official CSI (Tack et al., 2020) implementation3.
Additionally, we use the official implementation for all benchmark models included in the paper.

The Training of Diffusion Models. The diffusion models are trained with a 0.00008 learning rate,
2 step gradient accumulation, 0.995 exponential moving average decay for 25,000 steps. Each step
adopts 256, 128, 32 batchsize for the resolution of 32 × 32, 64 × 64, 128 × 128, respectively.
Adam (Kingma & Ba, 2014) optimizer and L1 loss are used for optimizing the diffusion model
weights, and random horizontal flip is the only augmentation used. Notably, we found that automatic
mixed precision (Micikevicius et al., 2017) cannot be used for training as it impedes the model
from convergence. Commonly, the models trained for around 12,500 steps are already usable for
dissolving features and training DIA.

The Training of DIA. The DIA models are trained with a 0.001 learning rate with cosine anneal-
ing (Loshchilov & Hutter, 2016) scheduler, and LARS (You et al., 2017) optimizer is adopted for
optimizing the DIA model parameters. After sampling positive and negative samples, dissolving
transformation applies then we perform data augmentation from SimCLR (Chen et al., 2020a). We
randomly select 200 samples from the dataset for training each epoch and we commonly obtain the
best model within 200 epochs.

2https://github.com/lucidrains/denoising-diffusion-pytorch
3https://github.com/alinlab/CSI
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4.3 RESULTS

As shown in Table 1, our method beats all other methods on four out of six datasets. RD4AD has
the best performance on two datasets. In addition, we can significantly outperform the baseline CSI
on all datasets thereby clearly demonstrating the value of our novel components.

Methods Pnuemonia
MNIST

Breast
MNIST SARS-COV-2 Kvasir-Polyp Retinal-OCT APTOS-2019

KDAD (Salehi et al., 2021) (CVPR 21) 0.378±0.02 0.611±0.02 0.770±0.01 0.775±0.01 0.801±0.00 0.631±0.01
†Transformly (Cohen & Avidan, 2022) (CVPR 22) 0.821±0.01 0.738±0.04 0.711±0.00 0.568±0.00 0.824±0.01 0.616±0.01
RD4AD (Deng & Li, 2022) (CVPR 22) 0.815±0.01 0.759±0.02 0.842±0.00 0.757±0.01 0.996±0.00 0.921±0.00
‡UniAD (You et al., 2022) (NeurIPS 22) 0.734±0.02 0.624±0.01 0.636±0.00 0.724±0.03 0.921±0.01 0.874±0.00
Meanshift (Reiss & Hoshen, 2021) (AAAI 23) 0.818±0.02 0.648±0.01 0.767±0.03 0.694±0.05 0.438±0.01 0.826±0.01

Baseline CSI Tack et al. (2020) (NeurIPS 20) 0.834±0.03 0.546±0.03 0.785±0.02 0.609±0.03 0.803±0.00 0.927±0.00

Ours DIA 0.903±0.01 0.750±0.03 0.851±0.03 0.860±0.04 0.944±0.00 0.934±0.00

†Transformaly is trained under unimodel settings as the original paper.
‡UniAD does not support 32 × 32 resolution. PnuemoniaMNIST and BreastMNIST datasets are trained with 128 × 128 resolution.

Table 1: Semi-supervised fine-grained medical anomaly detection results.

5 ABLATION STUDIES

This section presents a series of ablation studies to understand how our proposed method works
under different configurations and parameter settings.

5.1 THE ROLE OF DIFFUSION MODELS

Given the challenges of acquiring additional medical data, we evaluate how diffusion models affect
anomaly detection performances. Specifically, we limit the training data ratio (γ) for diffusion mod-
els to simulate less optimal diffusion models, while keeping anomaly detection settings unchanged.
This experiment examines how anomaly detection performances are impacted when deployed with
underperforming diffusion models with insufficient training data.

Datasets DIA(γ = 0.1) DIA(γ = 1)

PneumoniaMNIST 0.745 0.903
Kvasir-Polyp 0.679 0.732

CIFAR10 0.916 0.935
CIFAR100 0.832 0.883

Figure 4: Results with different training data ratios.

As shown in Fig. 4, a significant performance drop happened, especially for PneumoniaMNIST,
while the other datasets also face around 0.02 ∼ 0.05 AUROC drop. Therefore, with the increasing
amount of available data for training diffusion models, better performances of anomaly detection
can be obtained. We conclude that the image generation quality of the diffusion model is a critical
factor for obtaining decent performance.

5.2 ROTATE VS. PERM

Rotate and perm (i.e. jigsaw transformation) are reported as the most performant shifting transforma-
tions (Tack et al., 2020). This experiment evaluates their performances under fine-grained settings.
As shown in Table 2, the rotation transformation outperforms the perm transformation.

Method SARS-COV-2 Kvasir-Polyp Retinal-OCT APTOS-2019

DIA-Perm 0.841±0.01 0.840±0.01 0.890±0.02 0.926±0.00
DIA-Rotate 0.851±0.03 0.860±0.03 0.944±0.01 0.934±0.00

Table 2: Results comparison between using rotate or perm as shifting transformation methods.
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5.3 THE RESOLUTION OF FEATURE DISSOLVED SAMPLES

This work adopted feature-dissolved samples with a small resolution of 32×32, which significantly
improves the anomaly detection performances. Notably, the downsample-upsample routine also
dissolves fine-grained features. This experiment investigates the effects of different resolutions for
feature-dissolved samples. As shown in Table 3 and Table 4, the computational cost increases dra-
matically with increased resolutions, while it can hardly boost model performances.

Dslv. Size SARS-COV-2 Kvasir-Polyp Retinal-OCT APTOS-2019

32 0.851±0.03 0.860±0.04 0.944±0.01 0.934±0.00
64 0.803±0.01 0.721±0.01 0.922±0.00 0.937±0.00
128 0.807±0.02 0.730±0.02 0.930±0.00 0.905±0.00

Table 3: Results for different resolutions for dissolving transformations.

Res. w/o 32×32 64×64 128×128

Params (M) 11.2 19.93 19.93 19.93
MACs (G) 1.82 2.33 3.84 9.90

Table 4: Multiply–accumulate operations (MACs) for different resolutions of dissolving transfor-
mations. w/o denotes no dissolving transformation applied.

6 CONCLUSION

We proposed an intuitive dissolving is amplifying (DIA) method to support fine-grained discrimina-
tive feature learning for medical anomaly detection. Specifically, we introduced dissolving trans-
formations that can be achieved with a pre-trained diffusion model. We use contrastive learning to
enhance the difference between images that have been transformed by dissolving transformations
and images that have not. Experiments show DIA significantly boosts performance on fine-grained
medical anomaly detection without prior knowledge of anomalous features. One significant limi-
tation is that our method requires additional training on low-resolution diffusion models for each
of the datasets, instead of using the latest off-the-shelf diffusion models. We believe it would be
interesting to directly adapt the SOTA off-the-shelf diffusion models to perform dissolving transfor-
mations. Additionally, in future work, we would like to extend our method to enhance supervised
contrastive learning and fine-grained classification by leveraging the fine-grained feature learning
strategy.
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