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Abstract

Antibodies are key therapeutic biomolecules yet the principles underlying
diverse paratopes binding to the same epitope remain unexplained. An
insufficient understanding of the structural rules of antibody-antigen bind-
ing, due to a lack of experimentally resolved structures, leads to the current
inability to characterize antibody variants in silico. Here we explore a rule-
based antibody design strategy that relies on a thorough understanding
of epitope-paratope interactions, in contrast to generative design based on
millions of trials and errors. We identified the epitope of six affinity-verified
complexes between HER2 and Trastuzumab paratope variants using cryo-
EM and position-resolved HDX-MS. Computational analysis of modeled
structural conformational ensembles replicates and expands experimental
results and highlights the importance of flexibility in understanding high
and low-affinity binders. Structural parameters calculated based on geom-
etry, surface, and biochemical properties were able to stratify antibodies
by affinity. Overall, our study describes the structural interfaces of the
paratope variants, showing how antibodies with diverse sequences share
similar binding rules.

1



Published at the GEM workshop, ICLR 2025

1 Introduction

Antibodies are leading drugs against cancer, infectious, and autoimmune diseases estimated
to reach 445 billion USD in market sales by 2028 (Lyu et al., 2022). The biomedical and
commercial success of antibodies may be explained by the potential to engineer antibodies
specific to nearly any target molecule (antigen). Antibodies consist of four polypeptide
chains – two heavy (H) and two light (L) – connected by disulfide bridges (Chiu et al., 2019).
The main diversity of antibody sequences is concentrated in complementarity-determining
regions (CDRs) located within the variable domains (VH and VL) of the antibody structure
(Chiu et al., 2019; Wilson & Stanfield, 2021). Among all CDRs, the CDRH3 is particularly
interesting as it is the source of the highest sequence diversity and has been shown previously
to play a predominant role in binding (Xu & Davis, 2000; Akbar et al., 2021).

CDRs are flexible and dynamic, providing sufficient plasticity for a conformational comple-
mentarity to the antigen binding site (epitope) (Bashour et al., 2024; Guo et al., 2023; Park
& Izadi, 2024). Experimental techniques that can capture molecular flexibility (e.g., cryo-
EM) are widely used for protein structure determination (Klebe, 2024; Chen et al., 2022).
However, high cost and processing time and a low success rate cause the lack of experi-
mentally resolved structures (Hummer et al., 2022), leading to the need for computational
approaches to model antibody-antigen binding.

It is known that sequence-similar and sequence-dissimilar antibodies can bind to the same
epitope (Mason et al., 2021; Robinson et al., 2021; Wong et al., 2021; Chinery et al., 2024)
suggesting an immense binding space of possible antibodies for one epitope. For example,
there exist HER2-binding ¿105 Trastuzumab variants (Mason et al., 2021; Chinery et al.,
2024). While previous studies found that CDRH3 regions can maintain structural similarity
despite sequence differences, they left unexplained the fundamental rules – the how and why
– behind this structural conservation (Wong et al., 2021). Understanding the structural rules
that allow diverse CDRH3 sequences to bind to the same epitope requires careful study of
the underlying biological, chemical, and physical principles, along with the forces that drive
these interactions.

Figure 1: Antibody-antigen binding consists of different levels of complexity. The pro-
gression from global binding properties to interatomic contacts revealed hidden structural principles
underlying antibody variant binding, previously obscured by insufficient refinement.

2 Results

To investigate how different paratope variants bind to the same epitope, we used a model
system of six TZ sequences: one WT and five variants (hereafter named FLJ1, FLJ2, FLJ3,
FLJ4, and FLJ5) (Figure 1, Table S1). We performed experimental and computational
analysis of their structure and binding to HER2. All variants differed from the WT sequence
by, on average, 5 amino acids (33%) in the 15 amino acid long CDRH3 region compared
to the WT sequence (96-CSRWGGDGFYAMDYW-110, IMGT numbering scheme) (Table
S1). All other parts of the complex, including the epitope, remained unmodified, leading to
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the same sequence length for all antibody variants and the antigen. With such substantial
differences in CDRH3 sequence, we first tested if all TZ variants showed binding to HER2
using surface plasmon resonance (SPR). SPR binding kinetics data of TZ WT and TZ
variants with HER2 indicated that all the tested variants and WT antibody have affinities
(KD) in the predominantly nanomolar (nM) range. FLJ2 showed the highest affinity (KD

= 0.35 nM) and FLJ4 variant showed the lowest affinity (KD = 77.5 nM). The rest of the
variants showed KD within a range of 0.72-2.03 nM (Table S1). To conclude, 4 out of 5 TZ
variants (all except FLJ4) showed comparably high binding affinity to HER2 as TZ WT.

Next, to identify the binding site of each TZ variant, we performed experimental structure
determination using cryogenic electron microscopy (cryo-EM). The high flexibility of the
binding interface (Ruedas et al., 2024) had both beneficial and detrimental effects. Specif-
ically, the high flexibility of the epitope resulted in low-resolution cryo-EM maps (Figure
S1A, Figure 2A). However, this provided us with the insight that interface dynamics play a
crucial role in TZ-HER2 binding and led us to explore the binding flexibility and dynamics
in greater detail.

We applied hydrogen-deuterium exchange (HDX) mass spectrometry (MS) (Masson et al.,
2019) to experimentally refine the cryo-EM binding interface from the epitope side and gain
additional insights into HER2 binding flexibility. HDX-MS measures deuterium uptake in
peptides, into which the antigen is divided, highlighting bound regions through lower uptake
values. The lowest uptakes are observed at the periphery of the epitope (555-567 and 587-
601), while the central region (576) shows higher uptake values, suggesting a nonlinear
(conformational) epitope with lower binding strength in the middle (Figure 2B). These
results indicate the great structural importance of the epitope conformation in these regions
and reveal slight differences in the interactions of the HER2-TZ variants. However, HDX-
MS provides only peptide-level resolution, leading to the need for additional computational
techniques to obtain the residue-wise results.

First, we applied ReX (Crook et al., 2024), a statistical approach for achieving residue-level
uptakes in HDX-MS peptide-level measurements. Residue-wise protection is confirmed iden-
tical to the peptide-wise epitope with residues in the span 563-573 and around 593 showing a
high probability of protection. Supervised conformational signature analysis (sCSA) in com-
bination with orthogonal partial least squares discriminant analysis (OPLS-DA) concluded
that for some residues, HDX variation is not associated with binding affinity (Figure 2D,
upper and lower triangle), for some residues, higher flexibility (Figure 2D, higher uptake)
is associated with binding affinity and for some lower flexibility (lower uptake) is associated
with higher binding affinity. Most residues at 1 and 100 minutes show that decreased up-
take correlates with higher binding affinity. No single residue is highly predictive, suggesting
many small effects contribute to affinity. At 1 minute, residues at the antibody-antigen in-
terface show decreased uptake, with more flexibility at residues 567 and 568 linked to higher
affinity, indicating a subtle conformational change. At 100 minutes, variability increases,
with both increased and decreased flexibility in the epitope region being important. Fur-
thermore, the residues where variability is most predictive have changed, suggesting that
the epitope region and critical residues are dynamic.

Second, we applied molecular dynamics (MD) simulations to obtain the flexibility data ab
initio (independent from HDX-MS) and for both epitope and paratope residues (in contrast
to HDX-MS and ReX, which revealed flexibility only of the epitope). We had two groups of
initial rigid models as an input for MD simulations: 1) all TZ variants have the same binding
orientation as TZ WT (called ”FoldX”, no docking applied), and 2) the antibody-antigen
orientation is adjusted compared to rigid TZ WT (called ”ClusPro”, docking applied). Then
we applied 300 ns classical MD simulations with 3 repetitions for each system. MD revealed
high fluctuations of the antigen binding region (Figure 2B), explaining why many experi-
mental structures have missing atoms in the epitope. These fluctuations can be measured
quantitatively through root mean squared fluctuations (RMSF) that highlights which re-
gions of a molecule are mobile or rigid, revealing functional dynamics and stability. We
computed RMSF over the full MD trajectories for antibody (CDRH3) and antigen (global
binding region) independently. Antibody RMSF at the CDRH3 region highlighted residue-
wise flexibility differences between variants through time (Figure 2B, left). FLJ4 and FLJ3
show noticeably higher RMSD values for residues 96-108 for ClusPro and FLJ4 for 99-105
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Figure 2: Tested TZ variants share a position-based HER2 epitope, with flexibility
in the binding interface detectable via cryo-EM, HDX-MS, RMSF, and ReX. Variant
colors: TZ WT (green), FLJ1 (yellow), FLJ2 (blue), FLJ3 (red), FLJ4 (purple), FLJ5 (orange). A.
Cryo-EM maps show all variants bind the same region. Density maps (gray) and FoldX-modeled
structures (cartoons) were aligned for optimal fit. FLJ2 and FLJ5 had the poorest fit (79% and
74%), while others averaged 93.75%. Binding region is shown in black. B. HDX-MS refined the
binding site to peptides spanning residues 555–567 and 587–601. Bound regions (black) showed
reduced deuterium uptake, especially at residues 563, 565, 587, and 597. C. RMSF aligned with
HDX-MS, revealing binding regions (562–580, 591–604) with low fluctuation. FLJ4, the weakest
binder, had the highest RMSF. Structural models show RMSF patterns, with CDRH3 in red and
epitope in dark gray. D. ReX data matched RMSF findings. OPLS-DA plots linked specific
residues to SPR Kd: early-time associations include 567–581; later-time include 573–599, with
both increased and decreased flexibility linked to affinity.
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for FoldX which is in line with SPR experiments that identified FLJ4 as the worst binder
(worst KD and Koff) and FLJ3 as the binder with the second worst Koff. On the antigen
side, when we looked at the RMSF values at the global binding region we found two parts
with noticeably lower RMSF values that span over residues 562-580 and 591-604. These re-
gions are aligned with conformational epitope detected by HDX-MS (555-567 and 587-601 +
9 on average amino acids resolution) and ReX (563-573 and around 593) (Figure 2). These
findings suggest that RMSF can identify the residues involved in TZ binding to HER2 and
among the interacting residues RMSF is higher for weaker binders.

Having confirmed the importance of flexibility in binding, we focused on identifying specific
interactions between TZ WT and TZ variants and HER2 to explain their binding. To prove
that we can define the correct contacts computationally, we calculated solvent-accessible
surface area (SASA). SASA measures residue exposure to solvent, with low values indicating
inter- or intra-molecular contacts. To focus only on the binding-induced contact changes, we
normalized bound SASA values by unbound values. SASA revealed that residues 100-105
on the paratope and 550-553, 564-567, 576-580, 592-600, and 609-612 on the epitope were
significantly lower than others in the binding region, suggesting they play key roles in binding
(Figure 3A, left). These findings align with results from HDX-MS, ReX, and RMSF, which
indicate that the epitope is divided into two main regions: 555-567 and 587-601, with no
significant interactions starting from residue 576. To pinpoint paratope-epitope interactions
we selected key binding residues based on the lowest SASA values, ensuring that consecutive
residues (with at most one missing in between) were included in defining the refined paratope
and epitope regions. Then we integrated SASA over these residues and compared variants
with and without dynamics (Figure 3A, right). While integrating SASA over the full
antibody (TZ WT and TZ variants) or full antigen (HER2) showed no distinction between
binders (Figure 3, right, white), the selected residues effectively differentiated them (Figure
3, right, black). Moreover, at the key residues MD improved TZ variant ranking, making
post-MD SASA more consistent with SPR affinities (Table S1).

To deepen our understanding of paratope-epitope interactions, we applied co-solvent MD
Bruciaferri et al. (2024) with eight amino acid groups to probe biochemical properties across
the molecular surface of unbound HER2 and TZ variants. This approach identified dominant
interactions in the binding region, providing insights on enhanced surface complementarity
between antibodies and their targets (Figure 3B). WT, FLJ1, FLJ2, and FLJ3 show a
strong preference for negatively charged probes in the paratope complementarity to posi-
tively charged probes in the epitope. This trend is reduced in FLJ4 and FLJ5, with FLJ4
showing additional positive probe density in the paratope due to D103 in CDRH3, linked
to its poor binding affinity. Both FLJ3 and FLJ4 have a unique hydrophobic patch at the
binding site, with FLJ4’s Y107 mutation forming hydrogen bonds with CDRL3. Increased
hydrophobicity in the paratope, where the epitope shows no hydrophobic probes, may re-
duce binding. To summarize, we found that even a few mutations in the CDRH3 loop can
disrupt the interplay between electrostatic and hydrophobic complementarity, thereby af-
fecting antibody-antigen binding. The ranking of antibodies based on surface match aligns
well with SPR data (Table S1), keeping the best binders (WT, FLJ2, and FLJ5) at the
top and the worst binder (FLJ4) at the bottom in terms of paratope-epitope surface com-
plementarity.

By focusing on the key residues identified by SASA, we found that their interatomic con-
tacts align with SPR binding affinities (Figure 3C, top). The total interatomic contacts
between paratope-epitope residues, calculated using Arpeggio Jubb et al. (2016), mirror
the broader binding surface trend, suggesting these contacts alone are sufficient to reflect
binding and remove the need to analyze all interface residues. After MD simulations, the
number of interatomic interactions increases, but individual contact types alone do not fully
capture binding differences. Analyzing multiple contact types together in an interaction
graph, where nodes represent residues and edges correspond to interactions (with thicker
edges indicating more interactions formed throughout MD), explains better the experimen-
tal binding affinity differences between TZ variants (Figure 3C, bottom), emphasizing the
value of comparing structural properties in a refined, mechanistic manner.
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Figure 3: TZ variants share a location-based HER2 epitope, detectable by both exper-
imental and computational methods. Variant colors: TZ WT (green), FLJ1 (yellow), FLJ2
(blue), FLJ3 (red), FLJ4 (purple), FLJ5 (orange). A. SASA analysis sharpens HDX-MS and ReX
binding site definitions and distinguishes variants via paratope-epitope interactions. Normalized
SASA highlights buried residues (darker), identifying key CDRH3 and epitope contacts. Selected
residue SASA aligns well with SPR (black, right), especially after MD (”End”), unlike full TZ
and HER2 SASA (white). B. Biochemical surface analysis shows complementary epitope-paratope
properties. Mapping with hydrophobic (purple), positive (red), and negative (blue) probes reveals
strong binders possess paratopes with opposite properties to HER2, emphasizing electrostatic and
hydrophobic complementarity. C. Interatomic interaction analysis reveals more contacts post-MD
and in strong binders. Eight interaction types are shown via barplots and networks linking paratope
(left) and epitope (right). Edge thickness and color indicate interaction strength and type.
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3 Conclusions

We demonstrate that conformational flexibility is crucial for extracting accurate, biochem-
ically relevant structural features from TZ-HER2 complexes. Various computational ap-
proaches (ReX, RMSF, SASA, surface complementarity, and interatomic interactions) can
identify key residues, reflecting and explaining the experimental binding affinity of TZ vari-
ants.

Our findings support a hypothesis of ”sum of weak effects” in antibody-antigen binding
(structural rules): to have a good binder, the candidate antibody 1) should engage in
interactions with the antigen in several places throughout the epitope, 2) should not overly
restrict the flexibility of the antigen, and 3) should form multiple types of weak interactions
rather than few strong ones.

Taken together, we demonstrate that subtle structural shifts, detectable through accurate
computational modeling and MD, are crucial for expanding our understanding of TZ variant
binding to HER2.
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A Appendix

A.1 Supplementary results

We obtained FLJ1, FLJ2, and FLJ5 from the literature (Mason et al., 2021; Shanehsazzadeh
et al., 2023) while FLJ3 and FLJ4 were sourced from a TZ CDRH3 combinatorial mutant
library using in-house yeast display technology (similar to the one described in Chinery et al.
(2024) (Methods, Table S1).

We resolved cryo-EM maps of TZ WT and all TZ variants at 4 to 7 Å resolution. Although
insufficient for atomistic analysis of the binding interface, such resolution provides insights
into the global structure of the complex, revealing shared HER2 binding region across all TZ
variants (Figure S1). We computationally modeled TZ variants using the original TZ WT
orientation (”FoldX”) and two adjusted docking orientations (”ClusPro” and ”zdock”) and
fitted them into cryo-EM maps to evaluate the model’s accuracy. FoldX and ClusPro models
of TZ variants and the WT fit well into the experimental cryo-EM maps, indicating that
five TZ variants share similar to TZ WT HER2 binding region. For each FoldX system,
we observed an average fit of 88% of atoms: TZ WT = 87% (5706 atoms out of 6530
are inside the map), FLJ1 = 93% (6115/6542), FLJ2 = 79% (5199/6540), FLJ3 = 96%
(6275/6532), FLJ4 = 99% (6494/6536), FLJ5 = 74% (6551/4859). ClusPro structures show
comparable to FoldX fit (TZ WT = 88% (5737/6527), FLJ1 = 93% (6077/6539), FLJ2
= 82% (5388/6537), FLJ3 = 92% (5986/6529), FLJ4 = 99% (6459/6533), FLJ5 = 77%
(5068/6548), 88% of atoms inside on average), while zdock models performed the worst (TZ
WT = 72% (4717/6527), FLJ1 = 77% (5056/6541), FLJ2 = 68% (4419/6539), FLJ3 = 90%
(5858/6531), FLJ4 = 94% (6115/6535), FLJ5 = 68% (4426/6550), 78% of atoms inside on
average).

Though FoldX models provide the best fit, ClusPro structures exhibit a comparable fit,
while zdock models perform the worst. We found that the zdock starting pose significantly
differs from the other two tools, and notably, orients the antibody by the framework region
(not epitope) towards the antigen (Figure S1). Thus, FoldX and ClusPro were found to be
reliable models, while zdock was excluded from further structural analysis, as the structural
characteristics of FoldX were similar to ClusPro but differed from those of zdock.

Table S1: Sequence and Kon, Koff and KD description of TZ variants. ”ID” reflects
the ID of each TZ variant (FLJ1-FLJ5) and the TZ WT as used in this study. ”CDRH3 se-
quence” provides the full CDRH3 region (based on IMGT numbering scheme). ”Mutations”
column contains the percent of amino acid differences between the respective variant and
the WT (mutations are only present in the 15-amino acid long CDRH3 region). The last
three columns (”Kon” in 104/Ms, ”Koff” in 10−5/s, ”KD” in nM) summarize the binding
kinetics of TZ WT and TZ variants with HER2 at pH = 7.4.

ID CDRH3 sequence Mutations Kon Koff KD

TZ WT CSRWGGDGFYAMDYW 0/15 (0%) 21.5 15.5 0.72
FLJ1 CSRWMETGFYTHDYW 5/15 ( 33%) 5.84 6.49 1.11
FLJ2 CSRWQRGGFYVNDYW 5/15 ( 33%) 23.6 8.13 0.35
FLJ3 CSRFGHPGMYAFDYW 5/15 ( 33%) 16.3 33.3 2.03
FLJ4 CSRWGANDLYAYDYW 5/15 ( 33%) 7.34 564 77.5
FLJ5 CTRYFFNGWYYFDVW 10/15 ( 67%) 20.7 15.8 0.76
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Figure S1: FoldX and ClusPro modeled complexes fit well into the cryo-EM maps, while
zdock models perform significantly worse. Tool colors: ClusPro (yellow), FoldX (pink), zdock
(blue). A. Cryo-EM maps show all variants bind the same region. Density maps (gray) and modeled
structures (cartoons) were aligned for optimal fit. FoldX and ClusPro models have comparably
successful fit, but zdock models are positioned largely outside cryo-EM maps. Binding region is
shown in black. B. Conformational snapshots at three different stages (start, middle, end) of MD
simulations. ClusPro and FoldX show minor conformational changes throughout MD, suggesting
that the initial rigid conformation is close to optimal (global energy minimum). In contrast, zdock
exhibits large conformational shifts even at the end of MD, indicating a suboptimal initial rigid
structure that would require much longer simulation time to reach the energy minimum.

A.2 Methods

A.2.1 Proteins and antibodies

Extracellular domain region of HER2 fused with rabbit Fc was cloned in pFUSE2ss-CLIg-hK
mammalian expression vector (Invivogen) and transfected by transient transfection of HEK
Expi293F cells (Thermo Fisher Scientific) using manufactures’ protocol. Transfection was

11



Published at the GEM workshop, ICLR 2025

performed at 250 ml scale. Supernatant was collected and filtered at day 5 post transfection.
Filtered supernatant was subjected to Ni+-NTA affinity chromatography using His-trap
column using the manufacture’s protocol. Eluted HER2 was concentrated using 50 kDa
spin filters (Merck) and protein was subjected to size exclusion chromatography.

WT TZ (Herceptin) was purchased from Roche. TZ variants (FLJ1-FLJ5) were synthe-
sized as recombinant human IgG1 antibodies in HEK293 system by Sino Biological. The
subsequent Fab fragments were generated from WT TZ and its variants using Fabalactica
immobilized enzyme spin column kit (Genovis) following the manufacturer’s protocol. Con-
centrations of the respective Fab solutions were determined using a NanoDrop Lite Plus
Spectrophotometer (Thermo Scientific).

A.2.2 Surface plasmon resonance (SPR)

SPR experiments for determination of binding kinetics were performed using a Biacore S200
(GE Health Sciences) at 25.00 °C in (Foss et al., 2015). Polyhistidine-tagged HER2 (2 µg/ml)
was immobilized on a NTA sensor chip (Cytiva) at approximately 180 resonance units (RU),
according to the manufacturer’s instructions. For binding experiments, phosphate-buffered
saline (PBS) (8.1 mM Na2HPO4, 1.5 mM KH2PO4, 137 mM NaCl, 2.7 mM KCl) at pH 7.4
was used as running buffer and for sample dilution. Kinetics measurements were performed
using 3-fold serial dilutions of Fab versions of WT TZ and TZ variants (starting between 100
and 300 nM), at a flow rate of 30 µl/min at 25.00 °C. Kinetic rate values were calculated using
a simple Langmuir 1:1 ligand binding model provided by the BIAevaluation 4.1 software
(Table S1).

Kon characterizes the antibody binding rate, Koff measures the rate of antibody unbinding,
and KD quantifies the antibody-antigen interactions at equilibrium. KD can be defined
using the equation:

KD =
Koff

Kon
(1)

A.2.3 Hydrogen deuterium exchange mass spectrometry (HDX-MS)

The on-exchange reaction was carried out by diluting HER2 (either in its apo-state or in
complex with an antibody variant) 20-fold in exchange buffer (25 mM Tris, pD 7.1, 100 mM
NaCl in D2), resulting in a final D2 concentration of 95%. To capture different stages of
exchange, the reaction was quenched at 1, 10, 100, and 300 minutes by mixing 50 µl of the
exchange reaction with an equal volume of ice-cold quench buffer (2% formic acid, 0.025%
trifluoroacetic acid, 3M guanidine HCl, 0.5M Tris(2-carboxyethyl)phosphine hydrochloride),
followed by flash freezing in liquid nitrogen. The quenched samples were stored at –80°C until
further processing for proteolysis and liquid chromatography-mass spectrometry (LC-MS).
The HDX experiment was performed in three technical replicates to ensure reproducibility.

Before analysis, the quenched samples were thawed on ice and injected into a nanoACQUITY
UPLC system with HDX technology (Waters). The sample loop, UPLC, and trap columns
were maintained at 0.5°C, while the pepsin column was set to 10°C. Each quenched sample
(10 pmol) was injected into a 50 µl sample loop and processed in trapping mode. The protein
was digested using a homemade poros pepsin column (2.1 × 30 mm, 5 µm), and the resulting
peptide fragments were immediately directed to a trap column (Waters Acquity Vanguard
BEH C18, 1.7 µm, 2.1 × 5 mm) for desalting. The flow rate was initially 70 µl/min for
one minute, followed by 100 µl/min for an additional two minutes using buffer A (0.2%
formic acid, 0.01% trifluoroacetic acid, pH 2.5). After desalting, peptides were separated
using a C18 analytical column (Waters Acquity BEH C18, 1.7 µm, 1.0 × 100 mm) with a
linear 5–50% acetonitrile gradient in buffer B (99.9% acetonitrile, 0.1% formic acid, 0.01%
trifluoroacetic acid, pH 2.5). The gradient was applied at 40 µl/min for 17 minutes, and the
eluted peptides were analyzed using a Q-TOF SYNAPT G2-Si mass spectrometer (Waters)
to determine peptide identities and deuterium uptake. The mass spectrometer operated in
positive ion electrospray mode with an ion mobility function, using the MSE acquisition
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mode (Waters) to minimize spectral overlap. Lock mass correction with Leu-ENK peptide
ensured accurate mass determination.

A.2.4 HDX-MS data evaluation

To analyze the HDX-MS data, a library of non-deuterated peptides was generated using
ProteinLynx Global Server 3.0 (PLGS, Waters) with the following criteria: 1) a mass error
below 10 ppm for precursor ions, 2) identification of at least two fragment ions, and 3)
detection in at least two out of three non-deuterated runs. Deuterium uptake levels for
peptides were quantified using DynamX 3.0 (Waters), with manual inspection to verify
peptide assignments and discard noisy or overlapping spectra.

The difference in deuteration between the two states ∆D = [HER2]− [HER2 Antibody] was
calculated as a percentage by normalizing against the theoretical maximum uptake (Max-
Uptake), defined as MaxUptake = N − P − 2, where N is the number of amino acids in
the peptide and P is the number of prolines. The percentage of deuteration was determined
using this formula, and 95% confidence intervals for differential HDX-MS (∆HDX) mea-
surements at each time point were calculated using Deuteros 2.0 software Lau et al., 2020,
following the approach described by Houde et al. 2011.

Confidence intervals of 95% confidence or higher for ∆HDX measurements of any individual
time point were determined according to Houde et al. 2011 using the Deuteros software 2.0
Lau et al., 2020.

A.2.5 Residue-level HDX-MS (ReX)

Rex analysis was performed using the RexMS package version 0.99.7
(https://github.com/ococrook/RexMS). Default parameters were used in all cases
with density set to the ”laplace” option. In all cases, 5000 Markov-chain Monte Carlo
(MCMC) iterations were performed for four parallel chains. Only the last 500 iterations
were retained and the chain with highest likelihood over these 500 iterations was used
for downstream analysis. All figures were produced as described in the RexMS tutorials
(https://ococrook.github.io/RexMS/) with minor cosmetic adjustment such as choice of
colours. The input data was the HDX ”cluster” data for three independent experimental
replicates with per peptide per time point mean imputation performed for any missing
data. Charge states were combined using the mean. A peptide was discarded if it did not
have a complete time-series.

A.2.6 ReX conformational signatures

ReX analysis was used to produce conformational signatures as described in the su-
pervised conformational signature analysis with continuous outcomes as described
at https://ococrook.github.io/RexMS/articles/ConformationalSignatureAnalysis.html.
Again, defaults were used with the timepoints adjusted to the experimental timepoints
described in the HDX experimental design. In brief, ReX builds an orthogonal partial least
squares discriminant analysis (OPLS-DA) using the − log(KD) as the outcome variable and
the differential HDX data as input. The number of orthogonal and predictive components
was set to one. To avoid overfitting the model was fitted using k-fold cross-validation with
k set to half the input variable rounded down to the nearest integer.

A.2.7 Cryogenic electron microscopy (cryo-EM)

Pertezumab, WT TZ, and TZ variants were digested into Fab and Fc using 1% w/w activated
papain for 5 hours at 37°C. CaptureSelect IgG-Fc (multispecies) affinity matrix was added
to digested antibodies to bind undigested IgG and Fc. The remaining Fab was purified
through size exclusion chromatography with a GE S200i column. HER2 was incubated with
a combination of TZ variant Fab or IgG and Pertezumab Fab or IgG overnight at 4°C.
Cryo-EM grids were frozen on a Vitrobot IV (Thermo Scientific) with UltraAuFoil 1.2/1.3
Au 300, Quantifoil 1.2/1.3 Cu 300, or 1.2/1.3 Au 400 graphene oxide grids using 0.01 mM
LMNG mixed in immediately before loading onto the grid. Complexes were collected on a
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Glacios 1 equipped with a Falcon 4 CCD or a Glacios 2 equipped with a Falcon 4i CCD.
Micrographs were collected using EPU and initially processed in Cryopsparc Live. 3D maps
were generated in Cryosparc using non-uniform refinement.

A.2.8 Preprocessing of structures

We utilized the Cryo-EM structure of the WT HER2-trastuzumab complex (PDB ID:
6OGE) for in silico analysis, given its resolved binding interface and reliable resolution
of 4.36 Å Hao et al., 2019. The structure was further cleaned in PyMOL by removing
the heteroatoms, pertuzumab Fab chains and constant regions in TZ chains. The missing
residues (residue 127-129) in HER2 chain were modeled using MODELLER Eswar et al.,
2007 and hydrogen atoms were added using Reduce Word et al., 1999. For consistency,
we have used chain H, L and A for heavy chain, light chain and antigen (HER2) chain,
respectively. The HER2 chain was extracted from the complex to be used as antigen for
docking.

A.2.9 Computational mutagenesis

The same 6OGE structure was used as a starting point for molecular modeling. We mutated
the WT TZ-HER2 complex using FoldX 5.0 Delgado et al., 2019 to generate the variant
complex structures Barnes et al., 2022. The PDB file was first corrected using the ”Repair-
PDB” command and mutant structures were generated using ”BuildModel” command. In
addition, we also calculated the interaction energies of the new HER2-trastuzumab variant
complexes using the ”AnalyseComplex” command. The change in interaction energy upon
point mutation was calculated using following formula:

∆∆Gmutant = ∆Gmutant −∆GWT (2)

A.2.10 Computational mutagenesis

Due to imperfections of computational models and unknown binding interface of the mutated
TZ variants, we decided to apply several docking tools after the FoldX mutagenesis to test
the antibody-antigen orientation from different perspectives and verify the limitations of
each individual tool. Out of all available docking tools we selected two specific docking
methods due to their distinct (yet similar) algorithmic approaches and they previously
showed reasonable results in antibody-antigen tasks (referred to as ”ClusPro” or ”zdock”
respectively). The first docking tool, zdock 3.0.2 Pierce et al., 2014, is a Fast Fourier
Transform (FFT) based protein docking program, which utilizes an empirical energy-based
scoring function to evaluate each pose. The second docking tool, ClusPro 2.0 Comeau et al.,
2004, is also based on FFT and energy scoring function, however, selected poses are further
processed by identification of few low energy clusters and energy minimization of the cluster
centers with CHARMM Brooks et al., 2004. The binding interface for the WT complex was
delineated by considering a contact distance of 4.5 Å between heavy atoms. These identified
residue positions were further utilized in information-driven docking as potential binding
regions. In ZDOCK 3.0.2, we specified both paratope and epitope residues for docking
and generated 20 docked structures. Similarly, the docked structures were generated using
antibody mode in ClusPro 2.0 online server, where only epitope residues were provided
for docking in ”attraction and repulsion section” and ”mask non-CDR regions” was kept
true to avoid docking to non-CDR regions. The top docked structures obtained from the
ZDOCK 3.0.2 and ClusPro 2.0 were further analyzed to determine the best docking pose. We
calculated the interaction energies for all docked structures using FoldX 5.0 and fnat score
Schneider et al., 2021 as described previously Rawat et al., 2021. In summary, The docked
structure with highest fnat score was selected as the final docked structure. However, if there
were multiple structure with the same fnat score, then the structure with best interaction
energy was selected as the final docked structure. The final complex structure for each
TZ variant was selected from the docked structures generated by each method based on
two filtering criteria: 1) fnat score (see Methods for more detail) and 2) interaction energies
calculated using FoldX 5.0, if necessary. All 3 types of the final variant complexes (”FoldX”,
”ClusPro”, ”zdock”) fit into the cryo-EM density maps with ChimeraX.
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A.2.11 Molecular dynamics (MD)

Hydrogens were added to initial antibody structures using Reduce Word et al., 1999. All MD
steps were performed in GROMACS v.2022.4 Bekker et al., 1993. We used AMBER99SB-
ILDN force field and TIP3P water model for MD system preparation. The simulation box
was defined as a cube centered around the antibody placed at the 2 nm distance between
the solute and the box. All systems contained both Na and Cl ions at 0.1 mol/liter salt
concentration. We minimized the energy of each initial system with the steepest descent
algorithm for 20000 steps. For the equilibration, we first considered constant volume simu-
lations (NVT) at 300 K for 100 ps and followed up by constant pressure simulations (NPT)
at 1 bar for another 10 ns. During these equilibration simulations (NVT and NPT), where
applicable, we used the Parrinello-Rahman barostat and V-rescale thermostat with velocity
rescaling using 0.1 ps and 0.1 ps time constants, respectively. During all the simulations, we
constrained the length of all bonds using the linear constraint solver (LINCS) algorithm and
kept the water molecules rigid via the SETTLE algorithm. We used particle mesh Ewald
(PME) for treating the electrostatic interactions with a real-space cutoff of 1.0 nm. We
simulated 3 repetitions of 300 ns independent production runs with 2 fs time step for each
system, all continued from the last step of the NPT simulations at 300 K and 1 bar using a
2 fs time step.

A.2.12 Postprocessing of MD simulations

MD trajectories were processed using GROMACS Bekker et al., 1993. Systems were cen-
tered inside the simulation box. We disabled the use of periodic boundary conditions (PBC)
during frames extraction and prevented atoms from jumping across the box boundaries. It
made all molecules (both antibody and antigen) ”whole” through the simulations. We
skipped every 100th frame during the trajectory conversion and saved the remaining pro-
tonated protein conformations in separate PDB files. We applied the same approach to all
systems.

A.2.13 MD convergence calculations

We used MDAnalysis to calculate RMSD-based convergence of each trajectory. The distance
was calculated in Aangstrom between each conformation through the 300 ns (15000 frames)
MD simulation and its first frame. We analyzed the distances obtained in comparison of
both antibody and antibody-antigen backbones. All MD simulations converged starting
from 100 ns based on the visual analysis of the convergence plots. The ab-ag convergence
exhibits higher fluctuations but ultimately converges similarly to only the ab one. Hence
for the data analysis we decided to use 100 ns (frame 5000) onwards. RMSD values for all
runs and systems were averaged across 3 runs and plotted with seaborn.

A.2.14 Co-solvent paratope characterization

To characterize the effect of mutations on the paratope, we applied the recently developed
CosolvKit Bruciaferri et al., 2024 using a predefined minimal set of fragments designed to
mimic the key features of standard amino acid side chains. This set includes hydropho-
bic, hydrogen bond donors, hydrogen bond acceptors, aromatic, positively charged, and
negatively charged probes. The starting structures for the simulations were prepared and
protonated in MOE (Molecular Operating Environment). We soaked the protein into a
cubic water box, using TIP3P-FB water molecules Sengupta et al., 2021, applying a wall
distance of 12 Å around each structure and including a mixture of amino acid-mimicking
probes, set to a concentration of 0.1 M each. Sufficient NaCl was added to neutralize the
systems Eastman et al., 2013. Each investigated Fv variant was simulated for 200 ns using
OpenMM Eastman et al., 2013. All other simulation parameters were set according to stan-
dard protocols Bruciaferri et al., 2024. For the analysis of the simulations, the CosolvKit
post-processing pipeline was used to generate density maps for each individual probe. The
resulting density was then localized onto the protein surface using gisttools Waibl et al.,
2022.

15



Published at the GEM workshop, ICLR 2025

A.2.15 Root mean squared fluctuations (RMSF)

RMSF measures the flexibility of atoms or residues in MD simulations. We used MDanalysis
to compute RMSF for all MD trajectories. The data was plotted with seaborn.

A.2.16 Solvent-accessible surface area (SASA)

SASA was calculated separately for bound and unbound complexes of HER2 and TZWT and
TZ variants. We subtracted the unbound SASA values from the bound values to investigate
only the binding-caused differences in contacts. The data was plotted with seaborn.

A.2.17 Interatomic contacts

Processed frames in PDB format were converted into CIF using the MAXIT program. Then,
we used pdbe-arpeggio Jubb et al. (2016) to extract all the interatomic interactions. Next we
applied custom Python scripts to get the only selected contacts (key residues) and the parts
of the structure we are interested in (antibody, antigen, paratope, epitope). The choice of
the parameters were made based on general biochemical understanding of antibody-antigen
interactions and their use for orthogonal antibody-antigen design (nonredundant normally
distributed interactions that have low pairwise correlation).

A.3 Data availability

Experimental and computational data, along with related scripts and pipelines, will be
released upon formal publication through Zenodo, GitHub, and similar platforms.
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