IMAGE REGISTRATION IS A GEOMETRIC DEEP LEARNING TASK

Anonymous authors

Paper under double-blind review

Abstract

011 Data-driven deformable image registration methods predominantly rely on opera-012 tions that process grid-like inputs. However, applying deformable transformations 013 to an image results in a warped space that deviates from a rigid grid structure. Consequently, data-driven approaches with sequential deformations have to apply 014 grid resampling operations between each deformation step. While artifacts caused 015 by resampling are negligible in high-resolution images, the resampling of sparse, 016 high-dimensional feature grids introduces errors that affect the deformation model-017 ing process. Taking inspiration from Lagrangian reference frames of deformation 018 fields, our work introduces a novel paradigm for data-driven deformable image 019 registration that utilizes geometric deep-learning principles to model deformations without grid requirements. Specifically, we model image features as a set of 021 nodes that freely move in Euclidean space, update their coordinates under graph operations, and dynamically readjust their local neighborhoods. We employ this formulation to construct a multi-resolution deformable registration model, where 024 deformation layers iteratively refine the overall transformation at each resolution without intermediate resampling operations on the feature grids. We investigate our 025 method's ability to fully deformably capture large deformations across a number of 026 medical imaging registration tasks. In particular, we apply our approach (GeoReg) 027 to the registration of inter-subject brain MR images and inhale-exhale lung CT 028 images, showing on par performance with the current state-of-the-art methods. We 029 believe our contribution open up avenues of research to reduce the black-box nature of current learned registration paradigms by explicitly modeling the transformation 031 within the architecture.

032

003 004

006

008 009

010

1 INTRODUCTION

Image registration is an indispensable tool in medical image analysis that aligns anatomically
 or functionally corresponding regions across images, often from different modalities and time
 points (Sotiras et al.) [2013). In particular, deformable registration aims to estimate a non-linear
 transformation that maps the *source* image to the coordinate space of the *target* image. Since the
 advent of deep learning, data-driven methods have been proposed (Haskins et al., 2020; Xiao et al.,
 to leverage learned transformation priors over an image cohort, reducing the search space of
 plausible transformations.

Single-stream approaches. Since images are usually represented as grids of pixels, data-driven approaches typically employ convolutional kernels to model transformations. Early works have commonly adopted a simplistic approach of concatenating the source and target images as input channels to a convolutional network (Balakrishnan et al., 2019; Dalca et al., 2018; Mok & Chung, 2020a; Qiu et al., 2021; Zhao et al., 2019). However, this concatenation produces different inputs to a network on every possible misalignment of the counterpart image. This subsequently causes the feature extraction to learn distinct representations throughout the network on each possible misalignment, increasing the task's complexity.

A common necessary preprocessing technique employed to mitigate this issue involves an exhaustive
 search for an initial affine alignment. This reduces the degrees of freedom in the transformation parameters by guaranteeing that similar features are captured in a consistent spatial context, thus reducing the range of representations experienced by the network. Recent works combat the misalignment-

054 $\mathbf{F}^l \circ \phi^l$ 055 ϕ_{final} ----060 061 Eulerian approach Lagrangian approach 062 **----**Source Features F ---- Original
 Resort h----k <u>_</u> **.** 063 ---Resampled 1 <u>____</u> 064 OR Target Features 065 Neighboring Non-neighboring 066 Forced resampling Discrete kernel Neighborhood Continuous kerne update to rigid grid operation operation 067 **Classical deep learning approach:** Geometric deep learning paradigm: 068 preservation of features via dynamic Feature deterioration due to 069 repeated resampling onto fixed grid neighborhood update 071 Figure 1: A classical deep learning setting operates on an Eulerian framework, where an implicit 072 grid is required to predict a transformation. After a deformation is applied, this forces resampling to

registration task as a grid-independent process using a Lagrangian reference frame.

074 075

073

dependent complexity by incorporating transformer layers throughout the network (Chen et al., 2022;
2023; Liu et al., 2022; Meng et al., 2022; Wang et al., 2023; Zhu & Lu, 2022). This enables greater
flexibility in the feature extraction process as the transformer layer's attention mechanism is able
to establish non-local spatial relationships at the cost of increased learnable parameters. Similarly,
cascading approaches have shown increased accuracy by recovering the misalignment progressively,
modeling the transformation as a sequence of deformations (Hu et al., 2022; Sandkühler et al., 2019;
Zhao et al., 2019).

perform subsequent predictions. Our approach employs geometric deep learning to formulate the

Dual-stream approaches. A commonly adopted technique to avoid concatenating the images at the input is using dual-stream encoders (Hu et al.) 2022; Wang et al., 2023; Kang et al., 2022; Liu
et al., 2022; Meng et al., 2022). This approach utilizes two separate encoders that individually extract features from source and target images, allowing for misalignment-independent representations throughout most of the network. Moreover, multi-resolution methods (Hu et al., 2022; Kang et al., 2022; Kang et al., 2022; Meng et al., 2022; Meng et al., 2022; Meng et al., 2022; Mok & Chung, 2020a; Wang et al., 2023) estimate the transformation at multiple levels during the decoding process in a coarse-to-fine fashion. This proves to be a strong architectural prior towards capturing large transformations in a parameter-efficient manner.

Despite their effectiveness, the layers of these architectures remain strictly confined to grid-structured features due to their dependence on discrete kernel operations. Consequently, as warping operations are applied to the feature grids in the decoding process, the space needs to be resampled to adhere to the fixed grid positions (Figure []). Although negligible on the pixel level, resampling operations become increasingly inaccurate on sparse, high-dimensional feature spaces. This issue, termed *the curse of dimensionality*, causes naive interpolation to deteriorate the quality of features being propagated to later sections of the prediction process Verleysen & François (2005).

098 **Reference frames.** Current data-driven registration methods predominantly rely on an Eule-099 rian (Batchelor, 1967) frame of reference for modeling deformation fields, whereby the deformation 100 field is observed at specific locations in space. Conversely, the Lagrangian (Batchelor, 1967) specifica-101 tion is an alternative choice of modeling motion that tracks the positions of infinitesimal parcels (Brun 102 et al., 2010; Lester et al., 1999; Thirion, 1998; Vercauteren et al., 2009). These concepts carry striking 103 similarities with recent research in the field of geometric deep learning, where the motion of sparse 104 point-like objects is modeled using learned functions (Farahani & Hamker, 2022; Fuchs et al., 2020; 105 Kashefi et al. 2021). This design choice obviates the aforementioned resampling issues by not being confined to a grid-based frame of reference, removing the costly memory requirement of tracking 106 an arbitrarily precise voxelized volume. While geometric deep learning has been used in certain 107 contexts for point cloud and cortical surface registration (Hansen & Heinrich, 2021a, b) Suliman et al.

2022; Shen et al., 2021; Hoopes et al., 2022), to the best of our knowledge, no previous work offers a framing of *deformable* image registration within the geometric deep learning paradigm.

Contributions. In this work, we propose a novel paradigm for data-driven image registration by viewing the deformation modeling process through the lens of geometric deep learning. We formulate the task as a multi-scale process of deformation operations, where feature grids are modeled under a Lagrangian framing of free-floating nodes influenced by neighborhood interactions. Unlike existing approaches, our method explicitly models coordinates and features independently, performing node-wise operations using continuous learnable kernels. This formulation enables us to completely avoid grid-based constraints on inter-node structure, removing the requirement for intermediate warping operations between transformations.

118 119 120

121

122

123

124

125

127

128 129

130 131

140 141

142

Our contributions can be summarized as follows:

- We establish a mathematical foundation to formulate deformable registration in a continuous domain, avoiding the need for interpolation in the feature space. We achieve this under a Lagrangian reference frame utilizing the geometric deep-learning paradigm.
 - We propose a data-driven form of interpolation demonstrating local support, which facilitates multi-scale deformation modeling by learning to propagate deformations across resolutions.
- We demonstrate the effectiveness of our formulation by reporting improvements over current state-of-the-art deformable registration in the context of medical imaging and showing our model's ability to recover large deformations. We make our code publicly available¹.

2 Method

In this section, we first formally establish the limitations imposed on deformable image registration 132 by the grid constraints of Eulerian frameworks. Afterwards, we establish a Lagrangian formulation 133 that does not make any grid assumptions (section 2.1). Within this context, we highlight the 134 advantages offered by geometric deep learning in modeling deformations as interactions between 135 free-floating features (section 2.2). Next, we propose a data-driven form of local interpolation, 136 which facilitates multi-scale deformation modeling by learning to propagate deformations across 137 resolutions (section 2.3). Finally, we combine these ideas to construct an end-to-end trainable neural 138 network capable of learning deformable registration in continuous domains in a coarse-to-fine fashion 139 (section 2.4).

2.1 DEFORMATION WITHOUT GRID CONSTRAINTS

An image *I* can be interpreted as a finite grid of measurements $I \in \mathbb{R}^{H \times W \times D}$ which represents a discrete subset of a continuous domain Ω , and where H, W, D are the spatial dimensions of the voxel grid in the 3-dimensional case.

Given a target T and a source S image, deformable image registration aims to find an optimal spatial deformation field $\phi^* = \arg \min_{\phi} \mathcal{J}(T, S, \phi)$, with $\phi : \mathbb{R}^n \to \mathbb{R}^n$, such that the transformed source image $S \circ \phi$ is most similar to the target image T. As such, the overall objective \mathcal{J} is defined as:

$$\mathcal{J}(T, S, \phi) = \mathcal{D}(T, S \circ \phi) + \lambda \mathcal{R}(\phi), \tag{1}$$

149 150 151

where
$$\mathcal{D}: \Omega \times \Omega \to \mathbb{R}^n$$
 is an image dissimilarity measure responsible for driving the deformation,
and \mathcal{R} is a smoothness regularization on the transformation whose magnitude is weighted by λ .

154 Data-driven methods implement learnable functions responsible for modeling a deformable trans-155 formation ϕ as a neural network $\tau_{\theta}(T, S)$ parametrized by a set of learnable weights θ . These 156 approaches model the transformation based on spatial features F^S and F^T extracted from S and T.

157 Images are usually represented as grids of nodes containing pixel information. By making relative 158 positions between neighboring nodes constant across the structure, grid representations carry implicit 159 assumptions about the homogeneity of the structure. As such, attempting to construct a neural 160 function τ by learning grid-based operations (such as convolutions with discrete kernels) on the

161

https://anonymous.4open.science/r/GeoReg-D567

features F of a given image may appear enticing. However, these grid-reliant architectures generally confine the transformation prediction to a grid, resulting in an Eulerian framework whereby the deformation field is only defined on the specific locations in space defined by the grid. As spatial transformations are applied to the source domain S, the rigid assumption on grid structure requires a resampling of the feature space to estimate the feature values at the grid positions, which may result in deteriorated features.

168 Instead of relying on grid representations, we propose to explicitly represent the source domain under 169 a Lagrangian framework via an unstructured set of feature-coordinate tuples $S = (\mathbf{F}^S, \mathbf{X}^S)$, where 170 $F^{S} \in \mathbb{R}^{|S| \times d}, X^{S} \in \mathbb{R}^{|S| \times n}$. Now, each node $s \in S$ can be regarded as a discrete observation of a 171 feature f^s embedded in Euclidean space at coordinate x^s . Here, the feature component f^s of a given 172 node s may represent anything from gray-scale intensities (d = 1) to higher dimensional feature 173 descriptors such as those extracted by a feature encoder. This formulation allows us to model the 174 deformation process as a function τ acting on the coordinate component \mathbf{x}^s of each $s \in S$ without requiring the feature f^s to be modified. This Lagrangian framework is especially enticing to coarse, 175 high-dimensional feature spaces that would otherwise suffer from the curse of dimensionality under 176 interpolation operations (Bronstein et al., 2021). 177

178 179

202 203

204 205

2.2 Deformation modeling function au

Formulating the source domain S as a set of nodes with real-valued coordinates, with no necessity of adhering to a rigid grid, requires a generalized form of learned functions that can handle continuous domains. Precisely, we need to define a deformation function $\tau(\cdot)$ that is able to act node-wise on the set of source nodes $s \in S$, while being capable of handling neighborhoods of target nodes $T_{N_s} \subset T$ with arbitrary real-valued coordinates relative to a given s. This formulation naturally leads us to the realm of geometric deep learning, where graph neural networks are leveraged to model learned functions on geometric graph structures.

188 We begin by using the previously introduced notation of feature-coordinate pairs for the nodes of the target domain $T = (\mathbf{F}^T, \mathbf{X}^T)$. Using the source S and target T sets, we define the domain of the deformation function τ as a directional graph $\mathcal{G}^{\tau} = (\mathbf{A}^{\tau}, [\mathbf{F}^T, \mathbf{F}^S], [\mathbf{X}^T, \mathbf{X}^S])$ describing how each 189 190 of the source nodes $s \in S$ interacts with the target domain T. The adjacency matrix $A^{\tau} \in \{0,1\}$ 191 describes the presence or absence of edges between all node pairs. In practice, since we only want to 192 model how a given source node s should deform given its local neighborhood in the target domain, 193 we only need to model one quadrant of the full adjacency matrix $A^{\tau} \in \{0,1\}^{T \times S}$. A row in A^{τ} 194 represents the neighborhood $T_{\mathcal{N}_s}$ of a source node s within the target domain T by defining which subset of target nodes contain directional edges to s, such that $T_{\mathcal{N}_s} = \{t \mid \forall t \in \mathbf{A}_{[s]}^{\tau}, \mathbf{A}_{[s,t]}^{\tau} = 1\}.$ 195 196 The values of a row $A_{[s]}^{\tau}$ are computed using k-nearest neighbors based on $|\mathbf{x}^t - \mathbf{x}^s|$ node distances. 197

Given a graph \mathcal{G}^{τ} , we can define a generalized framing of a convolution by modeling a learnable kernel as a continuous function ψ . This formulation can operate on both grid and non-grid layouts alike. When centered on a node s, the function ψ computes an activation to a set of neighboring target nodes $T_{\mathcal{N}_s}$ based on their features \mathbf{f}^t and relative coordinates to the source node $(\mathbf{x}^t - \mathbf{x}^s)$:

$$\mathbf{f}' = \frac{1}{|T_{\mathcal{N}_s}|} \sum_{t \in T_{\mathcal{N}_s}} \psi\left(\mathbf{f}^t, \mathbf{f}^s, \left(\mathbf{x}^t - \mathbf{x}^s\right)\right) \tag{2}$$

The function ψ is typically implemented as a learnable linear projection with a non-linearity. The output feature of this convolution operation can then be further projected into the vector of size n to predict a deformation $\phi \in \mathbb{R}^n$ for that given node. This establishes a basis for learning a continuous deformation model $\tau(\mathcal{G}^{\tau})$ that can be applied to a continuous domain in order to predict deformations ϕ for any node s.

This process can be iteratively performed, creating a chain of deformations $X^S \circ \tau(\mathcal{G}_1^\tau) \circ ... \circ \tau(\mathcal{G}_N^\tau)$ that refine the transformation prediction in a cascading fashion. As the source nodes are transformed relative to *T*, the graph \mathcal{G}^τ can simply be recomputed using the newly transformed coordinates (see Figure 2 (iv)). Unlike other state-of-the-art cascading approaches, our grid-independent formulation requires no intermediate resampling-to-a-grid operations, maintaining feature integrity along the deformation chain. We refer the reader to the pseudocode in Appendix BI for a detailed overview.

216 2.3 Multi-resolution interpolation function δ

The optimization process of real-world registration tasks is highly non-convex. A prevalent strategy in literature to overcome local minima when dealing with complex transformations is the usage of a multi-resolution strategy. In line with this established paradigm, we explore the application of τ deformation functions across entire feature pyramids in coarse-to-fine multi-resolution settings. In this section, we aim to define a function $\delta(\cdot)$ capable of chaining deformations in a coarse-to-fine fashion across resolutions without feature interpolation.

224 225

236

237

238 239

240

241

242 243

244

253 254 255

2.3.1 LOCALLY-WEIGHTED INTERPOLATION

A commonly adopted technique in parametric image registration involves predicting deformations at a coarse spacing and interpolating to the desired resolution via continuous mapping functions. Generally, these mappings are formulated in the context of a set of control points *C* exerting influences on the interpolation at a given point in space via local basis functions. Particularly in the case of b-spline basis functions, the interpolation process exhibits the property of local support, implying that a small, localized change has a restricted impact and does not influence the entire domain.

The transformation ϕ at an arbitrary point in space *i* with coordinates \mathbf{x}^i is the resulting interpolation of the transformation values ϕ^c of its neighboring control points $c \in \mathcal{N}^C$. This interpolation is weighted using basis functions *v*, based on relative positions between the given point *i* and each control point *c*:

 $\phi(\mathbf{x}^{i}) = \sum_{c \in C_{\mathcal{N}_{i}}} \underbrace{v\left(\mathbf{x}^{c} - \mathbf{x}^{i}\right)}_{v\left(\mathbf{x}^{c} - \mathbf{x}^{i}\right)} \phi^{c}$ (3)

This concept of locally weighting a transformation, based on relative location to control points, serves as a powerful heuristic for introducing local support. However, we argue that making the interpolation mechanism aware of image features is the key to building improved interpolation functions.

2.3.2 CROSS-ATTENTION AS DATA-DRIVEN INTERPOLATION

The attention mechanism has been applied to illustrate a more general version of the convolution operation (Bronstein et al., 2021) described in Eq. (2). In the context of registration, graph convolutions already display desired local properties by restricting message-passing within local neighborhoods. The attention operation extends this principle by dynamically "masking out" irrelevant neighboring nodes. Unlike the convolution's simple uniformly-weighted aggregation of neighbors' responses, the attention mechanism allows a node to compute a form of learned weighted averaging based on its neighbors' features and relative positions.

$$\mathbf{f}' = \sum_{c \in C_{\mathcal{N}_i}} \overbrace{a(\mathbf{f}^c, \mathbf{f}^i, (\mathbf{x}^c - \mathbf{x}^i))}^{\text{weight coefficient}} \psi\left(\mathbf{f}^c, \mathbf{f}^i, (\mathbf{x}^c - \mathbf{x}^i)\right)$$
(4)

256 where $C_{\mathcal{N}_i}$ is the neighborhood of control points to node i. When nodes i and c belong to different domains (e.g., different images or resolution levels), the operation described in Eq. (4) is referred to 257 as cross-attention. Here, the attention function a is constrained to be in the range [0, 1] by applying 258 a softmax operation over all neighboring control points such that $\sum_{c \in C_{N_i}} a(\cdot) = 1$. For further 259 implementation details, we refer the reader to section 2.4. The concept of attention as dynamically 260 weighting neighboring nodes as outlined in Eq. (4) offers strong similarities to the principles of 261 parametric registration methods outlined in Eq. (3). Similarly to how parametric interpolation 262 uses a preset weighting function $v(\mathbf{x}^c - \mathbf{x}^i)$ on neighboring control points, local attention uses a 263 learned weighting function $a(\mathbf{f}^i, \mathbf{f}^c, (\mathbf{x}^c - \mathbf{x}^i))$. In the local attention setting, since a given node only 264 interacts with its spatially restricted neighborhood (and not with the entire space), a localized change 265 does not affect the entire domain, effectively offering properties of local support. The benefit of the 266 attention mechanism here is the ability to condition the weighting coefficients not only on relative 267 coordinates but also on the learned features present in the operation. 268

269 While not a direct form of deformation interpolation, local cross-attention offers a way to refine a node's location given its current neighborhood of control points. By placing a node near a set of

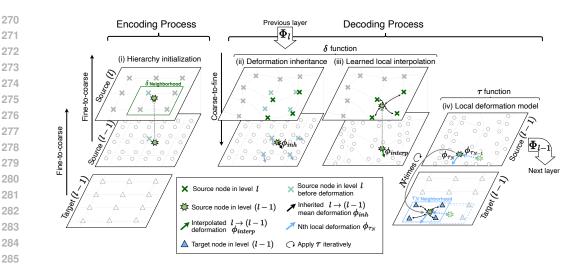


Figure 2: Architectural outline of a given resolution layer. (i) During feature extraction, pooling operations track cross-resolution hierarchies. (ii) During decoding, each child node inherits and further refines its transformation by performing local attention over its neighborhood of parents. (iii) Deformations are predicted by performing local attention over local target nodes. This operation can be iteratively performed an arbitrary number of times by dynamically updating a source node's current neighborhood in the target domain.

control points, the attention mechanism produces a weighted feature vector, which can be subsequently projected into the vector of size *n* to predict a learned deformation $\phi \in \mathbb{R}^n$. This gives us a building block to define a local function $\delta(\cdot)$ that interpolates a deformation through local cross-attention on a continuous domain.

As depicted in Figure 2(ii) & (iii), this component enables us to carry deformations across feature pyramid levels in the multi-scale decoding process, further circumventing the need for grid-based resampling operations.

301 302 303

304

286

287

288

289

290

291 292 293

2.3.3 HIERARCHY GRAPHS AS INTERPOLATION DOMAINS

Our aim is to define a hierarchical process by which a finer resolution level inherits and subsequently refines the transformation of a coarser level. As such, we refer to control nodes at level l as *parents* and the nodes at the following level l - 1 as *children*.

To define the domain of the cross-resolution interpolation function $\delta(\cdot)$, we need to establish a graph representing parent-child connections. Concretely, given a set of control nodes S^l at the *l*-th pyramid level and a set of children nodes S^{l-1} , we define a directional graph $\mathcal{G}^l =$ $(\mathbf{A}^l, [\mathbf{F}^l, \mathbf{F}^{l-1}], [\mathbf{X}^l, \mathbf{X}^{l-1}])$. Here, \mathbf{A}^l is a static matrix exclusively containing edges connecting children nodes to their k-nearest neighboring parent nodes.

Hierarchy graph initialization. As depicted in Figure 2 (i), we use the feature extraction process at the encoder to define parent-child hierarchies based on pooling operations. The feature extraction process establishes a hierarchy of children-parent nodes $S^{\{1,...,L\}}$, which all live in a combined Euclidean space across L resolution levels. A parent node at level l derived from a region of children nodes at level l - 1 has its position initialized at the center of the pooling window. This hierarchy establishes the cross-resolution neighborhoods that facilitate the interpolation operation of each given child node $s \in S^{l-1}$ during the decoding process.

Transformation inheritance. As depicted in Figure 2 (ii), an initial transformation is inherited by each child node at level l - 1 based on the average transformation of their neighborhoods at resolution *l*. This rough initial approximation significantly reduces the remaining transformation component left to be modeled by the feature-aware learned interpolation. We refer the reader to the pseudocode in Appendix B2 for a detailed overview of this process.

324 2.4 IMPLEMENTATION DETAILS 325

326

327 **Image encoder.** Since our approach requires the source and target features to interact, it is necessary 328 to implement a dual-stream encoder architecture. As a result, feature pyramids are extracted for the source S and target T images independently using the same set of weights. We refer the reader to Appendix A for a schematic of the overall model. The encoder consists of two convolutional residual 330 blocks per resolution followed by pooling layers. The encoder is composed of 6 layers, each made 331 up of two residual blocks, each with [16, 32, 32, 64, 64, 128] channels. Average pooling $[2 \times 2 \times 2]$ 332 operations are applied between each encoder layer. 333

334 **Deformation decoder.** The feature pyramid is then decoded in a coarse-to-fine fashion across the 6 resolutions. Across our experiments, we find that local deformations are sufficiently well-modeled at 335 coarser resolutions in the decoder. Estimating the majority of the transformation at coarser levels 336 reduces the registration burden of finer resolution layers, as only smaller local deformations are left 337 to be recovered (see Appendix F for further detail). These insights allow us to refrain from applying 338 τ at the finest layers where resolutions are the largest, massively decreasing our memory footprint. 339

Memory efficient neighborhood computation. While the methodology outlined in sections 2.2 340 341 and 2.3 are formalized using graph notation, the grid structure of our data allows us to design highly memory efficient implementations of τ and δ layers. Finding nearest neighbors in sparse data is the 342 biggest memory bottleneck due to having to compute $O(N^2)$ distance calculations relative to the 343 number of nodes N. Our convolutional encoder providing us with feature grids, lets us use grid-344 unfolding operations to find the nearest neighbors in a (k_x, k_y, k_z) kernel around a central node. The 345 au function's neighborhood computations are performed by first unfolding the target domain into all 346 its possible neighbourhoods. Then, we can index a source node's corresponding target neighborhood 347 by mapping the current source coordinates into the index space of the target grid and rounding to the 348 closest integer. Similarly, the δ function applies a repeated interleaving operation to upsample the 349 parent unfolded neighborhoods into the same dimensions as the children grid. This is all implemented 350 using standard built-in Pytorch functions that allow for efficient GPU parallelism. Wherever possible, 351 we make use of pointers to the original data structures for minimal memory footprints. We refer 352 readers to Appendix D for an overview on VRAM requirements of various registration baselines.

Attention layers. The attention mechanism described in Eq. (4) is implemented using standard transformer layers. The function takes the following matrix form:

355 356 357

353

354

359

$$\mathbf{f}' = \operatorname{softmax}\left(\frac{Q\left(\mathbf{f}^{i}\right) \cdot K(\mathbf{F}_{\mathcal{N}_{i}}, \left(\mathbf{X}_{\mathcal{N}_{i}} - \mathbf{x}^{i}\right)\right)^{\top}}{\sqrt{d}}\right) V(\mathbf{F}_{\mathcal{N}_{i}}, \left(\mathbf{X}_{\mathcal{N}_{i}} - \mathbf{x}^{i}\right))$$
(5)

360 361 362

Here, V is the value matrix, playing an equivalent role to the function ψ in Eq. (2) and (4). The 364 attention scores are computed by taking the dot product query Q and key K vectors. We represent Q, 365 K, and V as functions to indicate the presence of positional embedding steps, whereby information 366 about the relative locations of neighboring nodes is encoded into the node's feature vector. We use 367 Fourier features ((Tancik et al., 2020)) as our choice of embedding function. The concept of an input 368 set of nodes computing attention scores to a different set of nodes is referred to as cross-attention.

369 Hyperparameters. Tuning neighborhood sizes required striking a balance between receptive field 370 width and memory limitations. For τ , we selected neighborhoods of 5^3 for coarser resolutions (to 371 allow for wide receptive fields), while finer resolutions used 3³ neighborhoods to reduce memory 372 footprint. Neighborhoods in δ always used the closest 3³ neighboring parent nodes. To calculate 373 the loss at each resolution level, we employ normalized cross-correlation (NCC) as the dissimilarity 374 metric. Furthermore, we utilize bending energy (Rueckert et al., 1999) as a regularizer to ensure a 375 smooth final transformation at each resolution. The approach is trained end-to-end using the ADAM optimizer with a 10^{-4} learning rate for a maximum of 1000 epochs. Model training was carried out 376 on an NVIDIA A40 GPU with 40GB VRAM over the course of 3 days. For further parameter details, 377 we refer to our repository.

378 3 RESULTS AND DISCUSSION

3803813.1 DATASETS, BASELINES AND EVALUATION METRICS

We evaluate our work using the CamCAN T1w-T1w and T1w-T2w brain datasets (Shafto et al., 2014; Taylor et al., 2017) and the publicly available benchmark National Lung Screening Trial (NLST) dataset (team, 2011) from the Learn2Reg challenge 2022 (Hering et al., 2022). We refer the reader to section C of the Appendix for more information about the data, the pre-processing steps, the segmentation labels, and the key-point extraction.

387 We compare our method (GeoReg) against several conventional iterative methods and learning-based 388 image registration models. Regarding the iterative optimization methods, we choose from the Medical 389 Image Registration ToolKit (MIRTK) (Schuh et al., 2014), a widely-used free-form deformation 390 (FFD) iterative optimization method that supports multi-resolution and parametric b-spline-based registration. Additionally, we compare against the widely adopted symmetric diffeomorphic alorithm 391 SyN (Avants et al., 2008) from the ANTs (Avants et al., 2009) framework, as well as Large deforma-392 tion diffeomorphic metric mapping (LDDMM (Beg et al., 2005)).Our learning-based baselines are 393 comprised of Voxelmorph (Balakrishnan et al., 2019), a single-stage CNN, LapIRN (Mok & Chung, 394 2020b) a multi-resolution registration CNN that aims to capture large deformations in a coarse-to-fine 395 manner, Transmorph (Chen et al., 2022) that uses a SwinTransformer-based encoder, Recursive 396 Cascaded Networks (RCN) (Zhao et al., 2019) which estimates the deformation progressively using a 397 cascading CNN architecture, the dual-stream pyramid registration network (D-PRNet) (Kang et al.) 398 2022) that gradually refines the multi-level predicted deformation fields in a coarse-to-fine manner 399 via sequential warping, and FourierNet (Jia et al., 2023) that learns a low-representation displacement 400 filed in a band-limited Fourier domain and then uses a model-driven decoder to obtain the dense, 401 full-resolution displacement field. To ablate the contribution of the proposed interpolation mechanism (δ) on top of our multi-resolution τ design, we replace the proposed learned interpolation component 402 (δ) with bilinear feature warping. In the following, we denote this ablation baseline as "feat. warp". 403

The accuracy of the registration is evaluated using the segmentation metrics Dice Similarity Coefficient (DSC) and 95th percentile Hausdorff distance (HD95). For the NLST dataset, we additionally report the target registration error (TRE) between landmarks. In the synthetic deformation experiments, we also report the average end-point error (AEE) to the ground truth deformation. We calculate the percentage of points with a negative Jacobian determinant $|\nabla \phi| < 0$, indicating the extent of space folding, to measure the regularity of the transformation.

410 411

3.1.1 EXPERIMENT 1: LARGE INTRA-SUBJECT SYNTHETIC TRANSFORMATIONS

412 We begin by investigating varying kinds of large synthetic deformations without any form of affine 413 registration preprocessing. We create a dataset of intra-subject brain pairs with varying ranges of 414 non-rigid deformations comprised of a combination of an affine and Brownian noise components. 415 Although equivalent to real-world medical registration tasks, this experiment allows us to generate 416 ground-truth deformations serving as a useful proof-of-concept to better evaluate recovery of large 417 misalignments. First, a base component of fractal Brownian deformation is applied, followed by randomly uniformly sampled rotations, scaling, and translations along each dimension (see 418 displacement field in Figure 3). We used the obtained ground truth deformation fields to quantitatively 419 assess a method's ability to deformably recover large misalignments. The results reported in Table 1 420 demonstrate that our model consistently outperforms other baselines while producing the lowest 421 amount of spatial folding. While other models struggle with large deformations, our geometric 422 registration method is capable of fully deformably capturing the global transformation while still 423 being able to model local deformations (see Figure 3).

424 425 426

3.1.2 EXPERIMENT 2: DEFORMABLE TRANSFORMATIONS ON PRE-ALIGNED IMAGES

In practice, it is common practice to pre-align scans in roughly the same coordinate system using affine
 registration, targeting the larger components of the transformation. This initial alignment enables a
 more accurate recovery of the smaller, deformable components in a subsequent step. To assess the
 capability of our method to recover deformable transformations, we conduct a comparative evaluation
 against several baseline methods in three distinct tasks. First, we evaluate our method on inter-subject
 registration of T1w-T1w images and on multi-contrast inter-subject T1w-T2w MRI brain images

432

Table 1: Quantitative results for intra-subject deformable registration using non-rigid synthetic de-433 formations (multi-resolution Brownian) alongside varying degrees of uniformly-sampled rotations, 434 scalings, and translations. Lowest setting in Brownian experiment row is used as default across all 435 other rigid rows. Experiments consist of 100 subjects, each sampled using 10 different deformations. 436 The performance of GeoReg with bilinear feature warping instead of a learned interpolation compo-437 nent δ is shown under 'feat. warp'.

	# Param	HD95↓	$AEE_{\phi_{GT}} \downarrow$	Folding (%) ↓	HD95↓	$AEE_{\phi_{GT}} \downarrow$	Folding (%) ↓	HD95↓	$AEE_{\phi_{GT}}\downarrow$	Folding (%)
Brownian		Up to 16.41 pixels per axis (Default)			Up to 25.25 pixels per axis			Up to 33.98 pixels per axis		
Affine	-	4.695 ± 0.979	1.813 ± 0.316	-	4.821 ± 0.992	2.638 ± 0.452	-	8.188 ± 1.561	2.749 ± 0.472	-
MIRTK	-	1.940 ± 0.170	1.256 ± 0.154		1.117 ± 0.953	1.981 ± 0.232	0.013 ± 0.034	2.336 ± 3.243	2.635 ± 0.239	0.113 ± 0.14
ANTs	-	2.231 ± 0.473	2.996 ± 0.313		2.781 ± 0.815	4.162 ± 0.545	0.282 ± 0.065	4.785 ± 1.452	5.773 ± 0.552	0.533 ± 0.24
LDDMM	-	1.012 ± 0.104	1.597 ± 0.195	0.000 ± 0.000	1.053 ± 0.023	2.443 ± 0.238	0.000 ± 0.000	1.604 ± 0.935	4.976 ± 0.412	0.195 ± 0.02
VoxelMorph	320 k	1.656 ± 0.159	3.561 ± 0.245	0.003 ± 0.002	3.672 ± 0.791	8.323 ± 1.282	0.132 ± 0.161	6.199 ± 1.910	11.466 ± 1.502	
LapIRN	924 k	- ± -	- ± -	- ± -	- ± -	- ± -	- ± -	- ± -	- ± -	- ± -
TransMorph	46.8 M	1.010 ± 0.025		1.048 ± 0.165	1.085 ± 0.088	3.468 ± 0.109	1.998 ± 0.212	1.464 ± 0.204	3.960 ± 0.079	3.008 ± 0.32
D-PRNet	1.2 M	1.081 ± 0.097	2.411 ± 0.041	0.856 ± 0.166	1.424 ± 0.175	3.306 ± 0.100	1.645 ± 0.202	2.552 ± 0.476	3.915 ± 0.091	2.883 ± 0.24
RCN	282 M	1.002 ± 0.009	2.216 ± 0.045	1.134 ± 0.176	1.087 ± 0.074	2.960 ± 0.074	2.249 ± 0.213	2.818 ± 0.363	5.125 ± 0.102	1.655 ± 0.2
FourierNet	1.1 M	1.044 ± 0.050	2.444 ± 0.069	0.000 ± 0.000	1.350 ± 0.123	3.444 ± 0.098	0.001 ± 0.001	1.791 ± 0.127	4.669 ± 0.137	0.002 ± 0.0
Ours (feat. warp)	1.5 M	2.621 ± 0.502	1.637 ± 0.161	0.000 ± 0.000	3.923 ± 0.594	2.638 ± 0.452	0.000 ± 0.000	3.939 ± 1.150	2.801 ± 0.280	0.000 ± 0.0
Ours (GeoReg)	1.7 M	1.347 ± 0.397	1.328 ± 0.152	0.000 ± 0.000	1.763 ± 0.421	1.831 ± 0.193	0.000 ± 0.000	2.460 ± 0.591	2.580 ± 0.303	0.000 ± 0.0
Rotation + Brownian		$\pm 11.25^{\circ}$ per axis				$\pm 22.5^\circ$ per axis		$\pm 45.0^{\circ}$ per axis		
Affine	-	4.573 ± 0.291	3.686 ± 0.098	-	4.599 ± 0.331	3.682 ± 0.109	-	4.600 ± 0.369	3.809 ± 0.110	-
MIRTK	-	1.041 ± 0.124	3.685 ± 3.029	0.031 ± 0.082	3.515 ± 4.905	9.78 ± 9.292	0.265 ± 0.392	6.839 ± 8.975	8.851 ± 7.453	0.160 ± 0.2
ANTs	-	3.870 ± 1.491	7.011 ± 3.616	0.188 ± 0.077	8.813 ± 2.152	18.571 ± 3.813	0.215 ± 0.088	11.617 ± 5.625	30.327 ± 14.763	0.485 ± 0.3
LDDMM	-	1.150 ± 0.012	5.765 ± 3.619	0.000 ± 0.000	1.041 ± 0.124	13.301 ± 6.466	0.000 ± 0.000	5.843 ± 6.615	34.077 ± 7.573	0.013 ± 0.0
VoxelMorph	320 k	1.816 ± 0.298	6.673 ± 1.054	0.034 ± 0.020	3.474 ± 0.713	13.591 ± 2.318	0.097 ± 0.041	8.997 ± 2.353	27.090 ± 5.130	0.292 ± 0.0
LapIRN	924 k	- ± -	- ± -	- ± -	- ± -	- ± -	- ± -	- ± -	- ± -	- ± -
TransMorph	46.8 M	1.057 ± 0.073	5.087 ± 0.775	3.030 ± 0.514	1.420 ± 0.385	11.334 ± 2.999	3.560 ± 0.414	5.747 ± 2.289	26.394 ± 5.301	4.012 ± 0.3
D-PRNet	1.2 M	1.557 ± 0.367	7.002 ± 1.202	1.422 ± 0.188	3.580 ± 1.082	14.058 ± 2.896	1.629 ± 0.265	9.200 ± 2.444	28.278 ± 5.769	2.192 ± 0.3
RCN	282 M	1.364 ± 0.130	4.262 ± 0.518	3.640 ± 0.698	1.902 ± 0.218	11.082 ± 2.042	3.945 ± 0.558	4.951 ± 1.777	26.537 ± 6.120	4.029 ± 0.5
FourierNet	1.1 M	2.224 ± 1.205	8.804 ± 4.194	0.000 ± 0.000	4.875 ± 3.666	16.706 ± 8.034	0.000 ± 0.000	14.253 ± 5.661	36.493 ± 13.914	0.007 ± 0.0
Ours (feat. warp)	1.5 M	2.068 ± 0.484	1.585 ± 0.312	0.000 ± 0.000	2.620 ± 1.358	1.989 ± 0.753	0.000 ± 0.000	2.818 ± 0.546	2.477 ± 0.928	0.000 ± 0.0
Ours (GeoReg)	1.7 M	1.520 ± 0.332	1.511 ± 0.260	0.000 ± 0.000	1.630 ± 0.415	1.604 ± 0.363	0.000 ± 0.000	2.054 ± 0.385	1.951 ± 0.598	0.026 ± 0.1
Scaling + Brownian	1	$\pm 10\%$ of image size per axis			$\pm 30\%$ of image size per axis			$\pm 50\%$ of image size per axis		
Affine	-	4.529 ± 0.368	3.685 ± 0.101	-	4.891 ± 0.431	3.687 ± 0.113	-	5.138 ± 0.515	3.749 ± 0.116	
MIRTK	-	1.052 ± 0.127	1.462 ± 0.348	0.039 ± 0.002	4.545 ± 1.598	1.554 ± 0.284	0.398 ± 0.699	9.780 ± 11.523	13.425 ± 11.322	0.581 ± 0.8
ANTs	-	3.124 ± 0.584	0.584 ± 1.113	0.202 ± 0.117	9.343 ± 4.464	14.023 ± 4.234	0.242 ± 0.105	14.641 ± 4.983	20.269 ± 4.888	0.191 ± 0.0
LDDMM		1.563 ± 0.342	2.497 ± 0.700	0.000 ± 0.000	1.902 ± 0.235	4.765 ± 2.273	0.000 ± 0.000	1.883 ± 0.166	8.979 ± 4.21	0.000 ± 0.0
VoxelMorph	320 k	1.706 ± 0.167	3.542 ± 0.242	0.002 ± 0.002	3.389 ± 0.642	7.074 ± 1.045	0.122 ± 0.130	7.592 ± 2.113	12.287 ± 1.798	0.228 ± 0.1
LapIRN	924 k	- ± -	- ± -	- ± -	- ± -	- ± -	- ± -	- ± -	- ± -	- ± -
Transmorph	46.8 M	1.074 ± 0.079	3.308 ± 0.214	1.536 ± 0.213	1.370 ± 0.363	6.384 ± 0.635	3.753 ± 0.612	3.154 ± 1.531	10.307 ± 1.705	5.086 ± 0.6
D-PRNet	1.2 M	1.250 ± 0.137	3.598 ± 0.270	1.388 ± 0.318	2.225 ± 0.347	7.505 ± 1.028	3.200 ± 0.445	5.391 ± 2.160	11.986 ± 2.402	3.910 ± 0.4
RCN	282 M	1.337 ± 0.188	3.307 ± 0.181		2.593 ± 0.252	5.396 ± 0.586	4.642 ± 0.806	3.785 ± 0.661	7.834 ± 1.276	5.644 ± 0.6
FourierNet	1.1 M	1.307 ± 0.302	3.831 ± 0.601		5.068 ± 4.076	9.190 ± 3.395	0.062 ± 0.069	10.102 ± 4.565	20.638 ± 4.237	
Ours (feat. warp)	1.5 M	1.910 ± 0.355	1.490 ± 0.277	0.000 ± 0.000	2.566 ± 0.617	2.073 ± 0.925	0.000 ± 0.000	2.961 ± 0.796	2.400 ± 1.290	0.000 ± 0.000
Ours (GeoReg)	1.7 M	1.040 ± 0.122			1.274 ± 0.312	1.714 ± 0.904	0.000 ± 0.000	1.486 ± 0.523	2.234 ± 1.586	
Translation + Brownian		$\pm 10\%$ of image size per axis			$\pm 30\%$ of image size per axis			$\pm 50\%$ of image size per axis		
Affine	-	4.791 ± 1.106	2.092 ± 0.362	-	4.683 ± 1.241	2.076 ± 0.386	-	4.768 ± 1.088	2.025 ± 0.497	-
MIRTK	-	2.217 ± 0.256		0.030 ± 0.172	15.738 ± 9.906	15.912 ± 7.513	0.920 ± 0.549	31.954 ± 18.177	32.458 ± 18.79	0.557 ± 0.4
ANTs		2.641 ± 1.983	4.269 ± 1.888		20.516 ± 6.970	21.84 ± 7.159	0.206 ± 0.139		42.077 ± 14.147	
LDDMM	-	1.962 ± 0.310	3.195 ± 0.806			14.518 ± 6.879	0.000 ± 0.000		30.984 ± 13.721	
VoxelMorph	320 k	3.468 ± 0.529	5.436 ± 0.495	0.033 ± 0.034	18.075 ± 2.677	16.027 ± 1.977	0.628 ± 0.194	31.645 ± 4.145	26.826 ± 3.932	
	924 k	- ± -	- ± -	- ± -	- ± -	- ± -	- ± -	- ± -	- ± -	- ± -
LapIRN	46.8 M	1.641 ± 0.385	6.065 ± 0.634		17.865 ± 4.339	20.212 ± 3.201	4.378 ± 0.275	40.148 ± 7.138	37.221 ± 5.569	
LapIRN TransMorph										6.636 ± 0.3
LapIRN TransMorph D-PRNet	1.2 M	3.720 ± 0.879	6.045 ± 0.751	2.631 ± 0.483	5.477 ± 0.692	12.834 ± 1.757	5.556 ± 0.428	6.669 ± 0.833	17.522 ± 2.954	
TransMorph				2.631 ± 0.483	5.477 ± 0.692	12.834 ± 1.757	5.556 ± 0.428			
TransMorph D-PRNet RCN	1.2 M 282 M	2.217 ± 0.193	3.559 ± 0.163	$\begin{array}{c} 2.631 \pm 0.483 \\ 4.465 \pm 1.071 \end{array}$	$\begin{array}{c} 5.477 \pm 0.692 \\ 4.632 \pm 0.352 \end{array}$	$\begin{array}{c} 12.834 \pm 1.757 \\ 6.427 \pm 0.608 \end{array}$	$\begin{array}{c} 5.556 \pm 0.428 \\ 6.491 \pm 0.883 \end{array}$	5.123 ± 0.430	10.281 ± 1.381	7.166 ± 0.3
TransMorph D-PRNet	1.2 M	$\begin{array}{c} 2.217 \pm 0.193 \\ 1.790 \pm 0.139 \\ 2.193 \pm 0.334 \end{array}$	$\begin{array}{c} 3.559 \pm 0.163 \\ 2.920 \pm 0.062 \\ 1.474 \pm 0.156 \end{array}$	$\begin{array}{c} 2.631 \pm 0.483 \\ 4.465 \pm 1.071 \\ 0.019 \pm 0.029 \\ 0.000 \pm 0.000 \end{array}$	$\begin{array}{c} 5.477 \pm 0.692 \\ 4.632 \pm 0.352 \\ 4.762 \pm 0.325 \\ 3.397 \pm 0.446 \end{array}$	$\begin{array}{c} 12.834 \pm 1.757 \\ 6.427 \pm 0.608 \\ 3.737 \pm 0.116 \\ 1.949 \pm 0.189 \end{array}$	$\begin{array}{c} 5.556 \pm 0.428 \\ 6.491 \pm 0.883 \\ 0.146 \pm 0.109 \\ 0.000 \pm 0.000 \end{array}$	5.123 ± 0.430 4.664 ± 0.470 4.605 ± 2.827	10.281 ± 1.381 4.032 ± 0.177 3.279 ± 2.685	$7.166 \pm 0.000 \pm 0.0000 \pm 0.0000 \pm 0.0000 \pm 0.0000 \pm 0.00000 \pm 0.00000000$
TransMorph D-PRNet RCN FourierNet	1.2 M 282 M 1.1 M	$\begin{array}{c} 2.217 \pm 0.193 \\ 1.790 \pm 0.139 \end{array}$	$\begin{array}{c} 3.559 \pm 0.163 \\ 2.920 \pm 0.062 \\ 1.474 \pm 0.156 \end{array}$	$\begin{array}{c} 2.631 \pm 0.483 \\ 4.465 \pm 1.071 \\ 0.019 \pm 0.029 \\ 0.000 \pm 0.000 \end{array}$	5.477 ± 0.692 4.632 ± 0.352 4.762 ± 0.325	$\begin{array}{c} 12.834 \pm 1.757 \\ 6.427 \pm 0.608 \\ 3.737 \pm 0.116 \end{array}$	$\begin{array}{c} 5.556 \pm 0.428 \\ 6.491 \pm 0.883 \\ 0.146 \pm 0.109 \end{array}$	5.123 ± 0.430 4.664 ± 0.470	$\begin{array}{c} 10.281 \pm 1.381 \\ 4.032 \pm 0.177 \end{array}$	$7.166 \pm 0.$ $0.087 \pm 0.$ $0.000 \pm 0.$
TransMorph D-PRNet RCN FourierNet Ours (feat. warp)	1.2 M 282 M 1.1 M 1.5 M	$\begin{array}{c} 2.217 \pm 0.193 \\ 1.790 \pm 0.139 \\ 2.193 \pm 0.334 \\ \textbf{1.293} \pm \textbf{0.308} \end{array}$	$\begin{array}{c} 3.559 \pm 0.163 \\ 2.920 \pm 0.062 \\ 1.474 \pm 0.156 \end{array}$	$\begin{array}{c} 2.631 \pm 0.483 \\ 4.465 \pm 1.071 \\ 0.019 \pm 0.029 \\ 0.000 \pm 0.000 \\ 0.000 \pm 0.000 \end{array}$	$\begin{array}{c} 5.477 \pm 0.692 \\ 4.632 \pm 0.352 \\ 4.762 \pm 0.325 \\ 3.397 \pm 0.446 \\ \textbf{1.603} \pm \textbf{0.329} \end{array}$	$\begin{array}{c} 12.834 \pm 1.757 \\ 6.427 \pm 0.608 \\ 3.737 \pm 0.116 \\ 1.949 \pm 0.189 \end{array}$	$\begin{array}{c} 5.556 \pm 0.428 \\ 6.491 \pm 0.883 \\ 0.146 \pm 0.109 \\ 0.000 \pm 0.000 \\ 0.000 \pm 0.000 \end{array}$	$\begin{array}{c} 5.123 \pm 0.430 \\ 4.664 \pm 0.470 \\ 4.605 \pm 2.827 \\ \textbf{2.260} \pm \textbf{0.358} \end{array}$	10.281 ± 1.381 4.032 ± 0.177 3.279 ± 2.685	$\begin{array}{c} 7.166 \pm 0.\\ 0.087 \pm 0.\\ 0.000 \pm 0.\\ 0.000 \pm 0. \end{array}$
TransMorph D-PRNet RCN FourierNet Ours (feat. warp) Ours (GeoReg) Affine + Brownian Affine	1.2 M 282 M 1.1 M 1.5 M 1.7 M	$\begin{array}{c} 2.217 \pm 0.193 \\ 1.790 \pm 0.139 \\ 2.193 \pm 0.334 \\ \textbf{1.293} \pm \textbf{0.308} \\ \pm 11.25^{\circ} \operatorname{Rot} \\ 4.646 \pm 1.339 \end{array}$	$\begin{array}{c} 3.559 \pm 0.163 \\ 2.920 \pm 0.062 \\ 1.474 \pm 0.156 \\ \textbf{1.288} \pm \textbf{0.161} \\ \textbf{.}, \pm 10\% \text{ Scale}, \pm \\ 3.106 \pm 1.009 \end{array}$	$\begin{array}{c} 2.631 \pm 0.483 \\ 4.465 \pm 1.071 \\ 0.019 \pm 0.029 \\ 0.000 \pm 0.000 \\ 0.000 \pm 0.000 \\ \end{array}$	$\begin{array}{c} 5.477 \pm 0.692 \\ 4.632 \pm 0.352 \\ 4.762 \pm 0.325 \\ 3.397 \pm 0.446 \\ \textbf{1.603} \pm \textbf{0.329} \\ \hline \pm 22.5^\circ \operatorname{Rot} \\ 4.741 \pm 1.381 \end{array}$	$\begin{array}{c} 12.834 \pm 1.757 \\ 6.427 \pm 0.608 \\ 3.737 \pm 0.116 \\ 1.949 \pm 0.189 \\ \textbf{1.434 \pm 0.205} \ \pm 30\% \text{ Scale}, \pm \\ 4.612 \pm 0.294 \end{array}$	$\begin{array}{c} 5.556 \pm 0.428 \\ 6.491 \pm 0.883 \\ 0.146 \pm 0.109 \\ 0.000 \pm 0.000 \\ 0.000 \pm 0.000 \\ 30\% \text{ Transl.} \end{array}$	$ \begin{array}{c} 5.123 \pm 0.430 \\ 4.664 \pm 0.470 \\ 4.605 \pm 2.827 \\ \hline \textbf{2.260} \pm \textbf{0.358} \\ \hline \pm 45.0^{\circ} \text{ Rot.} \\ \hline 4.931 \pm 2.165 \end{array} $	$\begin{array}{c} 10.281 \pm 1.381 \\ 4.032 \pm 0.177 \\ 3.279 \pm 2.685 \\ \textbf{1.760} \pm \textbf{0.295} \\ , \pm 50\% \text{ Scale}, \pm 5 \\ \hline \textbf{6.388} \pm 3.766 \end{array}$	$7.166 \pm 0.$ $0.087 \pm 0.$ $0.000 \pm 0.$ $0.000 \pm 0.$ 0% Transl.
TransMorph D-PRNet RCN FourierNet Ours (feat. warp) Ours (GeoReg) Affine + Brownian Affine MIRTK	1.2 M 282 M 1.1 M 1.5 M 1.7 M	$\begin{array}{c} 2.217 \pm 0.193 \\ 1.790 \pm 0.139 \\ 2.193 \pm 0.334 \\ \textbf{1.293 \pm 0.308} \\ \pm 11.25^\circ \ \text{Rot} \\ 4.646 \pm 1.339 \\ 1.182 \pm 0.548 \end{array}$	$\begin{array}{c} 3.559 \pm 0.163 \\ 2.920 \pm 0.062 \\ 1.474 \pm 0.156 \\ \textbf{1.288} \pm \textbf{0.161} \\ \textbf{.}, \pm 10\% \text{ Scale}, \pm \\ 3.106 \pm 1.009 \\ 4.348 \pm 2.152 \end{array}$	$\begin{array}{c} 2.631 \pm 0.483 \\ 4.465 \pm 1.071 \\ 0.019 \pm 0.029 \\ 0.000 \pm 0.000 \\ 0.000 \pm 0.000 \\ \hline 10\% \text{ Transl.} \end{array}$	$5.477 \pm 0.692 \\ 4.632 \pm 0.352 \\ 4.762 \pm 0.325 \\ 3.397 \pm 0.446 \\ \textbf{1.603} \pm \textbf{0.329} \\ \hline \pm 22.5^{\circ} \text{ Rol} \\ 4.741 \pm 1.381 \\ 14.953 \pm 13.197 \\ \hline \end{cases}$	$\begin{array}{c} 12.834 \pm 1.757 \\ 6.427 \pm 0.608 \\ 3.737 \pm 0.116 \\ 1.949 \pm 0.189 \\ \textbf{1.434 \pm 0.205} \\ \textbf{., \pm 30\% Scale, \pm 3} \\ 4.612 \pm 0.294 \\ 17.389 \pm 10.896 \end{array}$	$5.556 \pm 0.428 \\ 6.491 \pm 0.883 \\ 0.146 \pm 0.109 \\ 0.000 \pm 0.000 \\ 0.000 \pm 0.000 \\ 30\% \text{ Transl.} $	$ \begin{array}{c} 5.123 \pm 0.430 \\ 4.664 \pm 0.470 \\ 4.605 \pm 2.827 \\ \textbf{2.260} \pm \textbf{0.358} \\ \hline \pm 45.0^\circ \text{ Rot.} \\ 4.931 \pm 2.165 \\ 54.075 \pm 13.242 \end{array} $	$\begin{array}{c} 10.281 \pm 1.381 \\ 4.032 \pm 0.177 \\ 3.279 \pm 2.685 \\ \textbf{1.760} \pm \textbf{0.295} \\ , \pm 50\% \text{ Scale}, \pm 5 \\ \hline 6.388 \pm 3.766 \\ 45.730 \pm 13.964 \end{array}$	7.166 ± 0.3 0.087 ± 0.3 0.000 ± 0.3 0.000 ± 0.3 0% Transl. - 1.188 ± 0.3
TransMorph D-PRNet RCN FourierNet Ours (Geat.warp) Ours (GeoReg) Affine + Brownian Affine MIRTK ANTS	1.2 M 282 M 1.1 M 1.5 M 1.7 M	$\begin{array}{c} 2.217 \pm 0.193 \\ 1.790 \pm 0.139 \\ 2.193 \pm 0.334 \\ 1.293 \pm 0.308 \\ \pm 11.25^{\circ} \ \mathrm{Rot} \\ 4.646 \pm 1.339 \\ 1.182 \pm 0.548 \\ 8.933 \pm 2.450 \end{array}$	$\begin{array}{c} 3.559 \pm 0.163 \\ 2.920 \pm 0.062 \\ 1.474 \pm 0.156 \\ \textbf{1.288 \pm 0.161} \\ \textbf{., \pm 10\% Scale, \pm} \\ 3.106 \pm 1.009 \\ 4.348 \pm 2.152 \\ 11.500 \pm 3.646 \end{array}$	$\begin{array}{c} 2.631 \pm 0.483 \\ 4.465 \pm 1.071 \\ 0.019 \pm 0.029 \\ 0.000 \pm 0.000 \\ 0.000 \pm 0.000 \\ \hline 10\% \ {\rm Transl.} \end{array}$	$\begin{array}{c} 5.477 \pm 0.692 \\ 4.632 \pm 0.352 \\ 4.762 \pm 0.325 \\ 3.397 \pm 0.446 \\ 1.603 \pm 0.329 \\ \hline \pm 22.5^\circ \ \text{Rot} \\ 4.741 \pm 1.381 \\ 14.953 \pm 13.197 \\ 22.646 \pm 6.038 \end{array}$	$\begin{array}{c} 12.834\pm1.757\\ 6.427\pm0.608\\ 3.737\pm0.116\\ 1.949\pm0.189\\ 1.434\pm0.205\\\pm30\% \ {\rm Scale},\pm1\\ 4.612\pm0.294\\ 17.389\pm10.896\\ 27.093\pm5.549\\ \end{array}$	$\begin{array}{c} 5.556 \pm 0.428 \\ 6.491 \pm 0.883 \\ 0.146 \pm 0.109 \\ 0.000 \pm 0.000 \\ 0.000 \pm 0.000 \\ \hline \end{array} \\ \hline \begin{array}{c} \\ 30\% \text{ Transl.} \\ \hline \\ \hline \\ 0.442 \pm 0.456 \\ 0.159 \pm 0.059 \\ \hline \end{array}$	$\begin{array}{c} 5.123 \pm 0.430 \\ 4.664 \pm 0.470 \\ 4.605 \pm 2.827 \\ \textbf{2.260} \pm 0.358 \\ \hline \pm 45.0^{\circ} \text{ Rot.} \\ 4.931 \pm 2.165 \\ 54.075 \pm 13.242 \\ 45.812 \pm 13.148 \end{array}$	$\begin{array}{c} 10.281\pm1.381\\ 4.032\pm0.177\\ 3.279\pm2.685\\ \textbf{1.760}\pm0.295\\ ,\pm50\% \text{ Scale},\pm5\\ 6.388\pm3.766\\ 45.730\pm13.964\\ 53.287\pm7.424 \end{array}$	$7.166 \pm 0.$ $0.087 \pm 0.$ $0.000 \pm 0.$ $0.000 \pm 0.$ 0% Transl. - $1.188 \pm 0.$ $0.523 \pm 0.$
TransMorph D-PRNet RCN FourierNet Ours (feat. warp) Ours (GeoReg) Affine + Brownian Affine MIRTK ANTIS LIDDMM	1.2 M 282 M 1.1 M 1.5 M 1.7 M	$\begin{array}{c} 2.217 \pm 0.193 \\ 1.790 \pm 0.139 \\ 2.193 \pm 0.334 \\ \hline \textbf{1.293 \pm 0.308} \\ \hline \textbf{1.293 \pm 0.308} \\ \hline \textbf{1.125^\circ Rot} \\ 4.646 \pm 1.339 \\ 1.182 \pm 0.548 \\ 8.933 \pm 2.450 \\ 1.885 \pm 2.655 \end{array}$	$\begin{array}{c} 3.559 \pm 0.163 \\ 2.920 \pm 0.062 \\ 1.474 \pm 0.156 \\ \hline \textbf{1.288} \pm \textbf{0.161} \\ \textbf{.,} \pm 10\% \text{ Scale, } \pm \\ 3.106 \pm 1.009 \\ 4.348 \pm 2.152 \\ 11.500 \pm 3.646 \\ 8.062 \pm 3.118 \end{array}$	$\begin{array}{c} 2.631 \pm 0.483 \\ 4.465 \pm 1.071 \\ 0.019 \pm 0.029 \\ 0.000 \pm 0.000 \\ 0.000 \pm 0.000 \\ \hline 10\% \ {\rm Transl.} \end{array}$	$\begin{array}{c} 5.477 \pm 0.692 \\ 4.632 \pm 0.352 \\ 4.762 \pm 0.325 \\ 3.397 \pm 0.446 \\ \hline \textbf{1.603} \pm \textbf{0.329} \\ \hline \pm 22.5^\circ \text{ Rot} \\ 4.741 \pm 1.381 \\ 14.953 \pm 13.197 \\ 22.646 \pm 6.038 \\ 16.810 \pm 10.331 \end{array}$	$\begin{array}{c} 12.834\pm1.757\\ 6.427\pm0.608\\ 3.737\pm0.116\\ 1.949\pm0.189\\ \textbf{1.434}\pm\textbf{0.205}\\ \textbf{.,\pm30\% Scale,\pm}\\ \hline 4.612\pm0.294\\ 17.389\pm10.896\\ 27.093\pm5.549\\ 21.628\pm7.729\\ \end{array}$	$\begin{array}{c} 5.556 \pm 0.428 \\ 6.491 \pm 0.883 \\ 0.146 \pm 0.109 \\ 0.000 \pm 0.000 \\ \hline 0.000 \pm 0.000 \\ \hline 30\% \mbox{ Transl.} \\ \hline \hline \\ 0.442 \pm 0.456 \\ 0.159 \pm 0.059 \\ 0.064 \pm 0.193 \\ \end{array}$	$\begin{array}{c} 5.123 \pm 0.430 \\ 4.664 \pm 0.470 \\ 4.605 \pm 2.827 \\ \textbf{2.260} \pm 0.358 \\ \hline \pm 45.0^{\circ} \text{ Rot.} \\ 4.931 \pm 2.165 \\ 54.075 \pm 13.242 \\ 45.812 \pm 13.148 \\ 39.410 \pm 16.364 \end{array}$	$\begin{array}{c} 10.281 \pm 1.381 \\ 4.032 \pm 0.177 \\ 3.279 \pm 2.685 \\ \hline \textbf{1.760} \pm \textbf{0.295} \\ , \pm 50\% \text{ Scale}, \pm 55 \\ \hline \textbf{6.388} \pm 3.766 \\ 45.730 \pm 13.964 \\ 53.287 \pm 7.424 \\ 51.512 \pm 12.734 \end{array}$	$\begin{array}{c} 7.166 \pm 0, \\ 0.087 \pm 0, \\ 0.000 \pm 0, \\ 0.000 \pm 0, \\ \hline 0\% \text{ Transl.} \end{array}$
TransMorph D-PRNet RCN FourierNet Ours (feat, warp) Ours (GeoReg) Affine + Brownian Affine MIRTK ANTs LDDMM VoxelMorph	1.2 M 282 M 1.1 M 1.5 M 1.7 M	$\begin{array}{c} 2.217\pm0.193\\ 1.790\pm0.139\\ 2.193\pm0.334\\ 1.293\pm0.308\\ \pm11.25^\circ\text{Rot}\\ 4.646\pm1.339\\ 1.182\pm0.548\\ 8.933\pm2.450\\ 1.885\pm2.655\\ 3.144\pm2.181\end{array}$	$\begin{array}{c} 3.559 \pm 0.163 \\ 2.920 \pm 0.062 \\ 1.474 \pm 0.156 \\ 1.288 \pm 0.161 \\ .,\pm 10\% \ {\rm Scale}, \pm \\ 3.106 \pm 1.009 \\ 4.348 \pm 2.152 \\ 11.500 \pm 3.646 \\ 8.062 \pm 3.118 \\ 4.464 \pm 1.065 \end{array}$	$\begin{array}{c} 2.631 \pm 0.483 \\ 4.465 \pm 1.071 \\ 0.019 \pm 0.029 \\ 0.000 \pm 0.000 \\ 0.000 \pm 0.000 \\ \hline 0.000 \pm 0.000 \\ \hline 0.003 \pm 0.102 \\ 0.170 \pm 0.071 \\ 0.000 \pm 0.000 \\ 0.034 \pm 0.061 \end{array}$	$\begin{array}{c} 5.477 \pm 0.692 \\ 4.632 \pm 0.352 \\ 4.762 \pm 0.325 \\ 3.397 \pm 0.446 \\ \hline 1.603 \pm 0.329 \\ \pm 22.5^\circ \mbox{Rot} \\ 4.741 \pm 1.381 \\ 14.953 \pm 13.197 \\ 22.646 \pm 6.038 \\ 16.810 \pm 10.331 \\ 23.367 \pm 12.870 \end{array}$	$\begin{array}{c} 12.834\pm1.757\\ 6.427\pm0.608\\ 3.737\pm0.116\\ 1.949\pm0.189\\ \textbf{1.434}\pm\textbf{0.205}\\ \textbf{.,\pm30\% Scale,\pm33}\\ 4.612\pm0.294\\ 17.389\pm10.896\\ 27.093\pm5.549\\ 21.628\pm7.729\\ 9.264\pm1.842\\ \end{array}$	$\begin{array}{c} 5.556\pm 0.428\\ 6.491\pm 0.883\\ 0.146\pm 0.109\\ 0.000\pm 0.000\\ 300\% \ Transl.\\\\\hline \\ \hline \\ 0.442\pm 0.456\\ 0.159\pm 0.059\\ 0.064\pm 0.193\\ 0.983\pm 0.714\\ \end{array}$	$\begin{array}{c} 5.123 \pm 0.430 \\ 4.664 \pm 0.470 \\ 4.605 \pm 2.827 \\ \textbf{2.260} \pm 0.358 \\ \hline \pm 45.0^\circ \text{Rot.} \\ 4.931 \pm 2.165 \\ 54.075 \pm 13.242 \\ 45.812 \pm 13.148 \\ 39.410 \pm 16.364 \\ 34.688 \pm 15.383 \end{array}$	$\begin{array}{c} 10.281\pm1.381\\ 4.032\pm0.177\\ 3.279\pm2.685\\ 1.760\pm0.295\\ ,\pm50\%~Scale,\pm5\\ 6.388\pm3.766\\ 45.730\pm13.964\\ 53.287\pm7.424\\ 51.512\pm12.734\\ 13.938\pm5.523\\ \end{array}$	$\begin{array}{c} 7.166 \pm 0.\\ 0.087 \pm 0.\\ 0.000 \pm 0.\\ 0.000 \pm 0.\\ 0.000 \pm 0.\\ 0\% \text{ Transl.} \end{array}$
TransMorph D-PRNet RCN FourierNet Ours (feat. warp) Ours (GeoReg) Affine + Brownian Affine MIRTK ANTs LDDMM VoxelMorph LapiRN	1.2 M 282 M 1.1 M 1.5 M 1.7 M	$\begin{array}{c} 2.217\pm0.193\\ 1.790\pm0.139\\ 2.193\pm0.334\\ 1.293\pm0.308\\ \pm11.25^\circ\mathrm{Rot}\\ 4.646\pm1.339\\ 1.182\pm0.548\\ 8.933\pm2.450\\ 1.885\pm2.655\\ 3.144\pm2.181\\ -\pm-\end{array}$	$\begin{array}{c} 3.559 \pm 0.163 \\ 2.920 \pm 0.062 \\ 1.474 \pm 0.156 \\ 1.288 \pm 0.161 \\ 3.106 \pm 1.009 \\ 4.348 \pm 2.152 \\ 11.500 \pm 3.646 \\ 8.062 \pm 3.118 \\ 4.464 \pm 1.065 \\ -\pm - \end{array}$	$\begin{array}{c} 2.631 \pm 0.483 \\ 4.465 \pm 1.071 \\ 0.019 \pm 0.029 \\ 0.000 \pm 0.000 \\ 0.000 \pm 0.000 \\ \hline 0.039 \pm 0.102 \\ 0.170 \pm 0.071 \\ 0.000 \pm 0.001 \\ 0.034 \pm 0.061 \\ -\pm - \end{array}$	$\begin{array}{c} 5.477 \pm 0.692 \\ 4.632 \pm 0.352 \\ 4.762 \pm 0.325 \\ 3.397 \pm 0.446 \\ \hline 1.603 \pm 0.329 \\ \pm 22.5^\circ \ Rot \\ 4.741 \pm 1.381 \\ 14.953 \pm 13.197 \\ 22.646 \pm 6.038 \\ 16.810 \pm 10.331 \\ 23.367 \pm 12.870 \\ -\pm - \end{array}$	$\begin{array}{c} 12.834\pm1.757\\ 6.427\pm0.608\\ 3.737\pm0.116\\ 1.949\pm0.189\\ \textbf{1.434}\pm\textbf{0.205}\\ \textbf{.},\pm30\%\text{Scale},\pm\\ 4.612\pm0.294\\ 17.389\pm10.896\\ 27.093\pm5.549\\ 21.628\pm7.729\\ 9.264\pm1.842\\ -\pm-\end{array}$	$\begin{array}{c} 5.556 \pm 0.428\\ 6.491 \pm 0.883\\ 0.146 \pm 0.109\\ 0.000 \pm 0.000\\ 30\% \mbox{ Transl.} \end{array}$	$\begin{array}{c} 5.123\pm0.430\\ 4.664\pm0.470\\ 4.605\pm2.827\\ \textbf{2.260}\pm0.358\\ \pm45.0^\circ\text{Rot.}\\ 4.931\pm2.165\\ 54.075\pm13.242\\ 45.812\pm13.148\\ 39.410\pm16.368\\ 43.688\pm15.383\\ -\pm-\end{array}$	$\begin{array}{c} 10.281\pm1.381\\ 4.032\pm0.177\\ 3.279\pm2.685\\ 1.760\pm0.295\\ ,\pm50\%~{\rm Scale},\pm5\\ 6.388\pm3.766\\ 45.730\pm13.964\\ 53.287\pm7.424\\ 51.512\pm12.734\\ 13.938\pm5.523\\ -\pm-\\ \end{array}$	$\begin{array}{c} 7.166 \pm 0.\\ 0.087 \pm 0.\\ 0.000 \pm 0.\\ 0.000 \pm 0.\\ \hline 0.000 \pm 0.\\ \hline 0.000 \pm 0.\\ \hline 0.000 \pm 0.\\ \hline 0.000 \pm 0.\\ 0.233 \pm 0.\\ 0.061 \pm 0.\\ 2.237 \pm 1.\\ -\pm -\\ \end{array}$
TransMorph D-PRNet RCN FourierNet Ours (feat, warp) Ours (GeoReg) Affine + Brownian Affine MIRTK ANTS LDDMM VoxelMorph LapIRN TransMorph	1.2 M 282 M 1.1 M 1.5 M 1.7 M	$\begin{array}{c} 2.217\pm 0.193\\ 1.790\pm 0.139\\ 2.193\pm 0.334\\ \hline 1.293\pm 0.308\\ \pm 11.25^\circ \ {\rm Rot}\\ 4.646\pm 1.339\\ 1.182\pm 0.548\\ 8.933\pm 2.450\\ 1.885\pm 2.655\\ 3.144\pm 2.181\\ -\pm -\\ 1.215\pm 0.459\\ \end{array}$	$\begin{array}{c} 3.559 \pm 0.163 \\ 2.920 \pm 0.062 \\ 1.474 \pm 0.156 \\ \hline 1.288 \pm 0.161 \\\pm10\% \ {\rm Scale}, \pm \\ 3.106 \pm 1.009 \\ 4.348 \pm 2.152 \\ 11.500 \pm 3.646 \\ 8.062 \pm 3.118 \\ 4.464 \pm 1.065 \\ -\pm - \\ 6.221 \pm 1.813 \end{array}$	$\begin{array}{c} 2.631 \pm 0.483 \\ 4.465 \pm 1.071 \\ 0.019 \pm 0.029 \\ 0.000 \pm 0.000 \\ 0.000 \pm 0.000 \\ 10\% \text{ Transl.} \\ \hline \\ \hline \\ 0.39 \pm 0.102 \\ 0.170 \pm 0.071 \\ 0.000 \pm 0.000 \\ 0.034 \pm 0.061 \\ -\pm - \\ 4.738 \pm 0.926 \end{array}$	$\begin{array}{c} 5.477 \pm 0.692 \\ 4.632 \pm 0.352 \\ 4.762 \pm 0.325 \\ 3.397 \pm 0.446 \\ 1.603 \pm 0.329 \\ \hline 4.741 \pm 1.381 \\ 14.953 \pm 13.197 \\ 22.646 \pm 6.038 \\ 16.810 \pm 10.331 \\ 23.367 \pm 12.870 \\ -\pm - \\ -4.89 \pm 3.174 \end{array}$	$\begin{array}{l} 12.834\pm1.757\\ 6.427\pm0.608\\ 3.737\pm0.116\\ 1.949\pm0.189\\ \textbf{1.434\pm0.205}\\ \textbf{.,\pm30\% Scale,\pm1}\\ 4.612\pm0.294\\ 17.389\pm10.896\\ 27.093\pm5.549\\ 21.628\pm7.729\\ 9.264\pm1.842\\ -\pm-\\ -\pm-\\ 15.329\pm6.015 \end{array}$	$\begin{array}{c} 5.556 \pm 0.428 \\ 6.491 \pm 0.883 \\ 0.146 \pm 0.109 \\ 0.000 \pm 0.000 \\ 0.000 \pm 0.000 \\ 30\% \mbox{ Transl.} \\ \hline \\ \hline \\ 0.442 \pm 0.456 \\ 0.159 \pm 0.059 \\ 0.064 \pm 0.193 \\ 0.983 \pm 0.714 \\ - \pm - \\ 0.046 \pm 16.595 \\ \end{array}$	$\begin{array}{c} 5.123\pm0.430\\ 4.664\pm0.470\\ 4.605\pm2.827\\ \textbf{2.260}\pm\textbf{0.358}\\ \hline \pm45.0^\circ\text{Rot.}\\ 4.931\pm2.165\\ 54.075\pm13.242\\ 45.812\pm13.148\\ 39.410\pm16.364\\ 34.688\pm15.383\\ -\pm-\\ 39.186\pm15.634\\ \end{array}$	$\begin{array}{c} 10.281 \pm 1.381 \\ 4.032 \pm 0.177 \\ 3.279 \pm 2.685 \\ \hline 1.760 \pm 0.295 \\ , \pm 50\% \ {\rm Scale}, \pm 5 \\ \hline 6.388 \pm 3.766 \\ 45.730 \pm 13.964 \\ 53.287 \pm 7.424 \\ 51.512 \pm 12.734 \\ 13.938 \pm 5.523 \\ -\pm - \\ 30.938 \pm 11.596 \end{array}$	$\begin{array}{c} 7.166 \pm 0. \\ 0.087 \pm 0. \\ 0.000 \pm 0. \\ 0.000 \pm 0. \\ 00\% \ {\rm Transl.} \end{array}$
TransMorph D-PRNet D-PRNet RCN FourierNet Ours (feat. warp) Ours (feoReg) Affine + Brownian Affine MIRTK ANTS LDDMM VoxelMorph LapIRN TransMorph D-PRNet	1.2 M 282 M 1.1 M 1.5 M 1.7 M	$\begin{array}{c} 2.217\pm0.193\\ 1.790\pm0.139\\ 2.193\pm0.334\\ 1.293\pm0.304\\ 1.293\pm0.308\\ \pm11.25^\circ\mathrm{Rot}\\ 4.646\pm1.339\\ 1.182\pm0.548\\ 8.933\pm2.450\\ 1.885\pm2.655\\ 3.144\pm2.181\\ -\pm-\\ 1.215\pm0.459\\ 4.081\pm1.298\end{array}$	$\begin{array}{c} 3.559 \pm 0.163 \\ 2.920 \pm 0.062 \\ 1.474 \pm 0.156 \\ \textbf{1.288} \pm \textbf{0.161} \\ \textbf{.,\pm10\% Scale, \pm} \\ 3.106 \pm 1.009 \\ 4.348 \pm 2.152 \\ 11.500 \pm 3.646 \\ 8.062 \pm 3.118 \\ 4.464 \pm 1.065 \\ -\pm - \\ 6.221 \pm 1.813 \\ 9.402 \pm 0.039 \end{array}$	$\begin{array}{c} 2.631 \pm 0.483 \\ 4.465 \pm 1.071 \\ 0.019 \pm 0.029 \\ 0.000 \pm 0.000 \\ 0.000 \pm 0.000 \\ 10\% \text{ Transl.} \end{array}$	$\begin{array}{c} 5.477 \pm 0.692 \\ 4.632 \pm 0.352 \\ 4.762 \pm 0.325 \\ 3.397 \pm 0.446 \\ 1.603 \pm 0.329 \\ \pm 22.5^\circ \operatorname{Rot} \\ 4.741 \pm 1.381 \\ 14.953 \pm 13.197 \\ 22.646 \pm 6.038 \\ 16.810 \pm 10.331 \\ 23.367 \pm 12.870 \\ -\pm - \\ 3.489 \pm 3.174 \\ 11.621 \pm 2.591 \end{array}$	$\begin{array}{c} 12.834\pm1.757\\ 6.427\pm0.608\\ 3.737\pm0.116\\ 1.949\pm0.189\\ 1.434\pm0.205\\pm300\% \mbox{ Scale},\pm\\ 4.612\pm0.294\\ 4.612\pm0.294\\ 4.612\pm0.294\\ 27.093\pm5.549\\ 21.628\pm7.729\\ 9.264\pm1.842\\ -\pm\\ 15.329\pm6.015\\ 19.445\pm3.051\end{array}$	$\begin{array}{c} 5.556\pm 0.428\\ 6.491\pm 0.883\\ 0.146\pm 0.109\\ 0.000\pm 0.000\\ 300\% \mbox{ Transl.}\\ \hline \\ 0.442\pm 0.456\\ 0.159\pm 0.059\\ 0.064\pm 0.193\\ 0.983\pm 0.714\\ -\pm -\\ 20.046\pm 16.595\\ 6.128\pm 0.506\\ \end{array}$	$\begin{array}{c} 5.123\pm0.430\\ 4.664\pm0.470\\ 4.605\pm2.827\\ \textbf{2.260}\pm\textbf{0.358}\\ \hline \textbf{4.931}\pm2.165\\ 54.075\pm13.242\\ 45.812\pm13.148\\ 39.410\pm16.364\\ 4.688\pm15.383\\ -\pm-\\ 39.186\pm15.634\\ 27.491\pm5.632\end{array}$	$\begin{array}{c} 10.281\pm1.381\\ 4.032\pm0.177\\ 3.279\pm2.685\\ \textbf{1.760}\pm0.295\\ ,\pm50\%\text{ Scale},\pm5\\ 6.388\pm3.766\\ 45.730\pm13.964\\ 53.287\pm7.424\\ 51.512\pm12.734\\ 1.3938\pm5.523\\ -\pm-\\ 30.938\pm11.596\\ 41.544\pm5.765\\ \end{array}$	$\begin{array}{c} 7.166 \pm 0.\\ 0.087 \pm 0.\\ 0.000 \pm 0.\\ 0.000 \pm 0.\\ 0.000 \pm 0.\\ 0\% \ {\rm Transl.}\\ \hline \\ 1.188 \pm 0.\\ 0.523 \pm 0.\\ 0.061 \pm 0.\\ 2.237 \pm 1.\\ -\pm -\\ 7.950 \pm 1.\\ 6.709 \pm 0.\\ \end{array}$
TransMorph D-PRNet RCN FourierNet Gurs (GeoReg) Affine + Brownian Affine + Brownian ARTs ANTs LDDMM VoxelMorph LapiRN TransMorph D-PRNet RCN	1.2 M 282 M 1.1 M 1.5 M 1.7 M 320 k 924 k 46.8 M 1.2 M 282 M	$\begin{array}{c} 2.217 \pm 0.193 \\ 1.790 \pm 0.139 \\ 2.193 \pm 0.334 \\ \hline 1.293 \pm 0.334 \\ 1.293 \pm 0.308 \\ \hline 1.182 \pm 0.548 \\ 8.933 \pm 2.450 \\ 1.885 \pm 2.655 \\ 3.144 \pm 2.181 \\ -\pm - \\ 1.215 \pm 0.459 \\ 4.081 \pm 1.298 \\ 1.023 \pm 0.034 \end{array}$	$\begin{array}{c} 3.559 \pm 0.163 \\ 2.920 \pm 0.062 \\ 1.474 \pm 0.156 \\ \textbf{1.288} \pm 0.161 \\ \pm 10\% \text{ Scale}, \pm \\ 3.106 \pm 1.009 \\ 4.348 \pm 2.152 \\ 4.348 \pm 2.152 \\ \pm 1.500 \pm 3.646 \\ 8.062 \pm 3.118 \\ 4.464 \pm 1.065 \\ -\pm - \\ 6.221 \pm 1.813 \\ 9.402 \pm 0.399 \\ 9.402 \pm 0.297 \end{array}$	$\begin{array}{c} 2.631\pm 0.483\\ 4.465\pm 1.071\\ 0.019\pm 0.029\\ 0.000\pm 0.000\\ 0.000\pm 0.000\\ 10\% \ {\rm Transl.}\\ \hline \\ 0.039\pm 0.102\\ 0.170\pm 0.071\\ 0.000\pm 0.000\\ 0.34\pm 0.061\\ -\pm -\\ 4.738\pm 0.926\\ 0.258\pm 0.262\\ 5.368\pm 0.355 \end{array}$	$\begin{array}{c} 5.477\pm0.692\\ 4.632\pm0.352\\ 3.397\pm0.446\\ 1.603\pm0.329\\ \pm22.5^\circ \operatorname{Rot}\\ 4.741\pm1.381\\ 14.953\pm1.3197\\ 22.646\pm6.038\\ 23.646\pm6.038\\ 23.646\pm1.0331\\ 23.367\pm12.870\\ -\pm-\\ 3.489\pm3.174\\ 11.621\pm2.591\\ 2.006\pm0.160\\ \end{array}$	$\begin{array}{l} 12.834\pm1.757\\ 6.427\pm0.608\\ 3.737\pm0.116\\ 1.949\pm0.189\\ 1.434\pm0.205\\pm30\%$ Scale, $\pm\\ 4.612\pm0.294\\ 17.389\pm0.806\\ 27.093\pm5.549\\ 21.628\pm7.729\\ 9.264\pm1.842\\ -\pm-\\ 15.329\pm6.015\\ 19.445\pm3.051\\ 9.279\pm0.932\end{array}$	$\begin{array}{l} 5.556\pm0.428\\ 6.491\pm0.883\\ 0.146\pm0.109\\ 0.000\pm0.000\\ 0.000\pm0.000\\ 30\%\ {\rm Transl.}\\ \hline \\ \hline \\ 0.42\pm0.456\\ 0.159\pm0.059\\ 0.064\pm0.193\\ 0.983\pm0.714\\ -\pm2\\ 0.046\pm16.595\\ 6.128\pm0.506\\ 7.120\pm0.305\\ \end{array}$	$\begin{array}{c} 5.123\pm0.430\\ 4.664\pm0.470\\ 4.605\pm2.827\\ \textbf{2.260}\pm0.358\\ \pm45.0^\circ \text{ Rot.}\\ 4.931\pm2.165\\ 54.075\pm13.242\\ 45.812\pm13.148\\ 39.410\pm16.364\\ 39.410\pm16.364\\ 39.416\pm15.634\\ 27.491\pm5.682\\ 25.014\pm1.692\end{array}$	$\begin{array}{c} 10.281\pm1.381\\ 4.032\pm0.177\\ 3.279\pm2.685\\ \textbf{1.760}\pm0.295\\ \textbf{5.760}\ \text{Scale},\pm5\\ 6.388\pm3.766\\ 45.730\pm13.964\\ 53.287\pm7.424\\ 13.938\pm5.523\\ -\pm-\\ 30.938\pm11.596\\ 41.544\pm5.769\\ 23.953\pm4.785\\ \end{array}$	$\begin{array}{c} 7.166 \pm 0.\\ 0.087 \pm 0.\\ 0.000 \pm 0.\\ 0.000 \pm 0.\\ \hline 0.000 \pm 0.\\ \hline 0.000 \pm 0.\\ \hline 0.001 \pm 0.\\ 0.2523 \pm 0.\\ 0.061 \pm 0.\\ 0.2237 \pm 1.\\ -\pm -\\ 7.950 \pm 1.\\ 6.709 \pm 0.\\ 6.709 \pm 0.\\ 7.563 \pm 0.\\ \end{array}$
TransMorph D-PRNet D-PRNet COURS (feat. warp) Ours (feat. warp) Ours (feat. warp) Affine MIRTK ANTS LDDMM VoxelMorph LapIRN TransMorph D-PRNet RCN FourierNet	1.2 M 282 M 1.1 M 1.5 M 1.7 M - - - - - - - - - - - - - - - - - - -	$\begin{array}{c} 2.21\pm 0.193\\ 1.790\pm 0.139\\ 2.193\pm 0.334\\ \textbf{1.293}\pm 0.338\\ \textbf{\pm 11.25^\circRot}\\ 4.646\pm 1.339\\ 1.182\pm 0.548\\ 8.933\pm 2.450\\ 1.885\pm 2.655\\ 3.144\pm 2.181\\ -\pm\\ .1215\pm 0.459\\ 4.081\pm 1.298\\ \textbf{1.023}\pm 0.034\\ \textbf{1.469}\pm 0.096\\ \end{array}$	$\begin{array}{c} 3.559\pm 0.163\\ 2.920\pm 0.062\\ 1.474\pm 0.156\\ \textbf{1.288}\pm \textbf{0.161}\\ \textbf{3.106}\pm 1.009\\ \textbf{3.106}\pm 1.009\\ \textbf{4.348}\pm 2.152\\ 11.500\pm 3.646\\ \textbf{8.062}\pm 3.118\\ \textbf{4.464}\pm 1.065\\ -\pm-\\ \textbf{6.221}\pm 1.813\\ 9.402\pm 0.339\\ \textbf{3.749}\pm 0.297\\ \textbf{2.825}\pm 0.070 \end{array}$	$\begin{array}{c} 2.631\pm 0.483\\ 4.465\pm 1.071\\ 0.019\pm 0.029\\ 0.000\pm 0.000\\ 0.000\pm 0.000\\ 100\% \ {\rm Transl.} \end{array}$	$\begin{array}{c} 5.477\pm0.692\\ 4.632\pm0.352\\ 4.632\pm0.352\\ 3.397\pm0.446\\ 1.603\pm0.329\\ \pm22.5^\circ\text{Rol}\\ 4.741\pm1.381\\ 14.953\pm13.197\\ 22.646\pm0.6038\\ 16.810\pm10.331\\ 23.367\pm12.870\\ -\pm\\ 3.489\pm3.174\\ 11.621\pm2.591\\ 1.0621\pm2.591\\ 2.049\pm0.203\end{array}$	$\begin{array}{c} 12.834\pm 1.757\\ 6.427\pm 0.608\\ 7.37\pm 0.116\\ 1.949\pm 0.189\\ 1.434\pm 0.205\\ 1.434\pm 0.549\\ 9.264\pm 1.842\\ -\pm\\ 1.529\pm 6.015\\ 19.445\pm 3.051\\ 9.279\pm 0.932\\ 3.561\pm 0.115 \end{array}$	$\begin{array}{c} 5.556 \pm 0.428 \\ 6.491 \pm 0.883 \\ 0.146 \pm 0.109 \\ 0.000 \pm 0.000 \\ 0.000 \pm 0.000 \\ 0.000 \pm 0.000 \\ 30\% \ {\rm Transl.} \end{array}$	$\begin{array}{c} 5.123\pm 0.430\\ 4.664\pm 0.470\\ 4.605\pm 2.827\\ \textbf{2.260}\pm 0.358\\ \pm 45.0^\circ \text{Rot.}\\ 4.931\pm 2.165\\ 54.075\pm 13.242\\ 45.812\pm 13.148\\ 39.410\pm 16.364\\ 34.688\pm 15.383\\ -\pm\\ 39.186\pm 15.632\\ 25.014\pm 1.692\\ 5.014\pm 1.692\\ 4.221\pm 0.234\\ \end{array}$	$\begin{array}{l} 10.281\pm1.381\\ 4.032\pm0.177\\ 3.279\pm2.685\\ 1.760\pm0.295\\ \pm50\%Scale,\pm5\\ 6.388\pm3.766\\ 53.287\pm7.424\\ 51.512\pm12.734\\ 13.938\pm5.523\\ -\pm\\ 3.038\pm11.596\\ 41.544\pm5.765\\ 23.953\pm4.785\\ 4.005\pm0.100 \end{array}$	$\begin{array}{c} 7.166 \pm 0.\\ 0.087 \pm 0.\\ 0.000 \pm 0.\\ 0.000 \pm 0.\\ \hline \end{array}$
TransMorph D-PRNet RCN FourierNet Gurs (GeoReg) Affine + Brownian Affine + Brownian ARTs ANTs LDDMM VoxelMorph LapiRN TransMorph D-PRNet RCN	1.2 M 282 M 1.1 M 1.5 M 1.7 M 320 k 924 k 46.8 M 1.2 M 282 M	$\begin{array}{c} 2.217\pm 0.193\\ 1.790\pm 0.139\\ 2.193\pm 0.334\\ \pm 11.25^{\circ} {\rm kot}\\ 4.646\pm 1.339\\ 1.185\pm 2.655\\ 3.144\pm 2.181\\ -\pm -\\ 1.215\pm 0.459\\ 4.081\pm 1.298\\ 1.023\pm 0.034\\ 1.29\\ 1.023\pm 0.034\\ 1.29\\ 1.023\pm 0.034\\ 1.238\pm 0.491\\ 1.39\pm 0.036\\ 1.238\pm 0.491\\ 1.39\pm 0.491\\ 1.39$	$\begin{array}{c} 3.559 \pm 0.163 \\ 2.920 \pm 0.062 \\ 1.474 \pm 0.156 \\ \textbf{1.288} \pm 0.161 \\ \pm 10\% \text{ Scale}, \pm \\ 3.106 \pm 1.009 \\ 4.348 \pm 2.152 \\ 4.348 \pm 2.152 \\ \pm 1.500 \pm 3.646 \\ 8.062 \pm 3.118 \\ 4.464 \pm 1.065 \\ -\pm - \\ 6.221 \pm 1.813 \\ 9.402 \pm 0.399 \\ 9.402 \pm 0.297 \end{array}$	$\begin{array}{c} 2.631\pm 0.483\\ 4.465\pm 1.071\\ 0.019\pm 0.029\\ 0.000\pm 0.000\\ 10.000\pm 0.000\\ 10.000\pm 0.000\\ 10\% \ {\rm Transl.}\\ \hline \\ \hline \\ 0.170\pm 0.071\\ 0.000\pm 0.000\\ 0.034\pm 0.061\\ -\pm -\\ 4.738\pm 0.926\\ 5.368\pm 0.355\\ 0.001\pm 0.001\\ 0.000\pm 0.000\\ \end{array}$	$\begin{array}{c} 5.477\pm0.692\\ 4.632\pm0.352\\ 4.762\pm0.325\\ 3.397\pm0.446\\ 1.603\pm0.329\\ \pm22.5^{\circ}\ {\rm Rot}\\ 4.741\pm1.381\\ 1.4953\pm13.197\\ 22.646\pm0.338\\ 1.4953\pm13.197\\ 22.646\pm0.348\\ 1.4953\pm13.197\\ 22.646\pm0.348\\ 1.4953\pm13.197\\ 1.4953\pm13.197\\ 2.049\pm0.1031\\ 2.006\pm0.1031\\ 2.006\pm0.108\\ 2.982\pm1.088\\ 1.089\\ 1.089\\ 1.081\\$	$\begin{array}{l} 12.834\pm1.757\\ 6.427\pm0.608\\ 3.737\pm0.116\\ 1.949\pm0.189\\ 1.434\pm0.205\\pm30\%$ Scale, $\pm\\ 4.612\pm0.294\\ 17.389\pm0.806\\ 27.093\pm5.549\\ 21.628\pm7.729\\ 9.264\pm1.842\\ -\pm-\\ 15.329\pm6.015\\ 19.445\pm3.051\\ 9.279\pm0.932\end{array}$	$\begin{array}{l} 5.556\pm0.428\\ 6.491\pm0.883\\ 0.146\pm0.109\\ 0.000\pm0.000\\ 0.000\pm0.000\\ 30\%\ {\rm Transl.}\\ \hline \\ \hline \\ 0.42\pm0.456\\ 0.159\pm0.059\\ 0.064\pm0.193\\ 0.983\pm0.714\\ -\pm2\\ 0.046\pm16.595\\ 6.128\pm0.506\\ 7.120\pm0.305\\ \end{array}$	$\begin{array}{c} 5.123\pm0.430\\ 4.664\pm0.470\\ 4.605\pm2.827\\ \textbf{2.260}\pm0.358\\ \pm45.0^\circ \text{ Rot.}\\ 4.931\pm2.165\\ 54.075\pm13.242\\ 45.812\pm13.148\\ 39.410\pm16.364\\ 39.410\pm16.364\\ 39.416\pm15.634\\ 27.491\pm5.682\\ 25.014\pm1.692\end{array}$	$\begin{array}{c} 10.281\pm1.381\\ 4.032\pm0.177\\ 3.279\pm2.685\\ \textbf{1.760}\pm0.295\\ \textbf{5.760}\ \text{Scale},\pm5\\ 6.388\pm3.766\\ 45.730\pm13.964\\ 53.287\pm7.424\\ 13.938\pm5.523\\ -\pm-\\ 30.938\pm11.596\\ 41.544\pm5.769\\ 23.953\pm4.785\\ \end{array}$	$\begin{array}{c} 7.166 \pm 0.3 \\ 0.087 \pm 0.6 \\ 0.000 \pm 0.6 \\ 0.000 \pm 0.6 \\ \hline \end{array}$

470 471

472

473 474

475

476

477 478

3.2 DISCUSSION AND FUTURE WORK

479 In the absence of ground truth deformation fields, registration algorithms are evaluated using surrogate 480 measures of accuracy that compete against transformation regularity. As a result, one has to resort 481 to inspecting the registration results qualitatively. This can be observed in Table Π in the rotation 482 experiments, where Transmorph demonstrates high HD95 performance while suffering from a high 483 folding ratio. The inadequacy of the transformation becomes prominent in Figure 3, where Transmorph displays a poor qualitative registration result. On the other hand, we believe our approaches' 484 top-down composition of the transformation by predicting hierarchical refinements provides a strong 485 architectural prior to regularizing a registration task. This also explains our method's high perfor-

from the CamCAN dataset. Next, we recover intra-subject inhale-exhale motion using the National

Lung Screening Trial (NLST) dataset. Results outlined in Table 2 show our model demonstrates

accuracy on par with the state-of-the-art across all registration tasks using fewer learnable parameters.

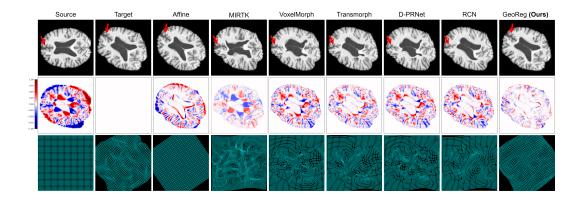


Figure 3: Qualitative results for an intra-subject $(45^\circ, 0^\circ, 0^\circ)$ rotation experiment with added random Brownian noise deformation. Red arrows indicate the same structure across all methods. Our method is able to recover affine and deformable components despite modeling the transformation fully deformably.

Table 2: Quantitative results measuring the accuracy and regularity of different registration methods on brain T1w inter-subject (CamCAN) and inhale-exhale lung CT (NLST) registration. The performance of GeoReg with bilinear feature warping instead of a learned interpolation component δ is shown under 'feat. warp'. The asterisk * denotes non statistically significant results of GeoReg over a given baseline (p > 0.05).

	Brain CamCAN				Brain CamCAN T1T2			Lung NLST				
	# Param.	DSC \uparrow	HD95 \downarrow	Folding (%) \downarrow	DSC \uparrow	HD95 \downarrow	Folding (%) \downarrow	DSC ↑	HD95 \downarrow	TRE↓	Folding (%) \downarrow	
Affine		0.604 ± 0.04	4.12 ± 0.07	-	0.604 ± 0.04	4.12 ± 0.07	-	0.928 ± 0.09	4.24 ± 0.05	9.07 ± 0.12	-	
MIRTK [FFD]	-	$0.836 \pm 0.03^*$	2.65 ± 0.48	0.10 ± 0.08	0.721 ± 0.06	3.65 ± 1.22	0.05 ± 0.03	$0.971 \pm 0.02^*$	1.31 ± 0.68	2.76 ± 0.05	0.03 ± 0.01	
ANTs [SyN]	-	0.808 ± 0.06	$2.55 \pm 0.08^{*}$	0.15 ± 0.05	$0.767 \pm 0.02^*$	$3.05 \pm 0.90^{*}$	0.10 ± 0.01	$0.973 \pm 0.02^{*}$	$1.09 \pm 0.12^{*}$	3.15 ± 1.05	0.02 ± 0.01	
LDDMM	- 1	0.820 ± 0.06	$2.85 \pm 0.88^{*}$	0.12 ± 0.01	0.752 ± 0.06	$3.21 \pm 0.95^{*}$	0.08 ± 0.01	$0.984 \pm 0.02^{*}$	$1.25 \pm 0.97^{*}$	3.06 ± 1.15	0.02 ± 0.03	
VoxelMorph	320 k	0.806 ± 0.02	3.60 ± 0.93	0.32 ± 0.05	0.753 ± 0.03	3.88 ± 2.01	0.23 ± 0.03	$0.971 \pm 0.05^{*}$	2.01 ± 1.30	5.46 ± 0.66	0.13 ± 0.10	
LapIRN	924 k	0.820 ± 0.04	3.06 ± 1.40	0.31 ± 0.02	0.758 ± 0.04	3.57 ± 2.27	0.33 ± 0.02	0.976 ± 0.02	1.12 ± 0.56	3.12 ± 1.01	0.12 ± 0.05	
Transmorph	46.8 M	0.826 ± 0.01	2.75 ± 0.81	0.45 ± 0.02	$0.768 \pm 0.04^{*}$	$3.04 \pm 0.23^{*}$	0.32 ± 0.06	$0.975 \pm 0.04^*$	1.45 ± 0.53	4.59 ± 0.60	0.20 ± 0.16	
D-PRNet	1.2 M	0.828 ± 0.02	2.89 ± 0.94	0.47 ± 0.04	0.733 ± 0.04	4.63 ± 1.98	0.28 ± 0.03	0.970 ± 0.05	1.92 ± 1.00	4.76 ± 0.62	0.19 ± 0.12	
RCN	282 M	0.814 ± 0.01	$2.63 \pm 0.58^{*}$	0.17 ± 0.02	$0.763 \pm 0.28^{*}$	$3.21 \pm 1.65^{*}$	0.25 ± 0.05	$0.965 \pm 0.08^*$	2.56 ± 1.54	4.60 ± 0.64	0.11 ± 0.09	
FourierNet	1.1 M	0.821 ± 0.06	$2.52 \pm 0.57^{*}$	0.18 ± 0.01	$0.767 \pm 0.18^{*}$	$3.01 \pm 1.60^{*}$	0.25 ± 0.05	0.973 ± 0.02	1.14 ± 0.12	3.15 ± 1.24	0.22 ± 0.01	
Ours (feat. warp)	657 k	0.812 ± 0.07	$2.51\pm0.95^*$	0.13 ± 0.09	0.727 ± 0.07	$2.95 \pm 1.16^{*}$	0.27 ± 0.03	$0.962 \pm 0.09^*$	1.38 ± 0.41	5.32 ± 2.20	0.32 ± 0.02	
Ours (GeoReg)	741 k	0.838 ± 0.06	2.45 ± 0.82	0.42 ± 0.06	0.778 ± 0.09	2.98 ± 0.89	0.16 ± 0.04	0.972 ± 0.03	1.08 ± 0.16	3.62 ± 0.63	0.23 ± 0.09	

mance despite its comparatively low number of learnable parameters. Despite optimizations on many aspects of the graph represented in memory, our method has a substantially larger memory footprint than its grid-based counterparts due to having to store explicit intermediate coordinates. Nonetheless, our layers' ability to directly incorporate volume spacing into the deformation prediction could present an interesting avenue to overcome the limitations of current registration approaches in anisotropic tasks. Finally, this work has only explored large deformations under synthetically transformed intra-subject brain data. However, these synthetic deformations might not capture all the intricate differences of inter-subject registration scenarios. We plan to explore this in future work.

- 4 Conc

CONCLUSION

In this work, we introduce a novel formulation of deformable image registration by using geometric deep-learning principles. We discuss the benefits of estimating deformations on non-fixed grid locations by defining data-driven functions on continuous domains. We outline the need for two types of learned graph operations: A deformation modeling function τ and a cross-resolution interpolation function δ . Our multi-resolution architecture shows the ability to fully deformably capture a wide range of rotations, translations, and scalings without explicitly modeling an affine component.

535 We believe that even though our work provides competitive results with state-of-the-art methods, 536 the main contribution of our manuscript lies in establishing a theoretical foundation by which 537 transformations can be explicitly propagated through a deep learning architecture. We think that 538 this contribution opens up avenues of research to reduce the black-box nature of current learned 539 registration paradigms, incorporate ideas from conventional image registration into deep learning 539 architectures, and tackle known data issues such as anisotropicity.

540 REFERENCES 541

547

551

552

553

554 555

556

559

560 561

562

563

564

565

566 567

570

571

572

573

576

577

578

579

580

584

585

586

- B. B. Avants, C. L. Epstein, M. Grossman, and J. C. Gee. Symmetric diffeomorphic image registration 542 with cross-correlation: evaluating automated labeling of elderly and neurodegenerative brain. 543 *Medical image analysis*, 12(1):26–41, 2008. 544
- B. B. Avants, N. Tustison, G. Song, et al. Advanced normalization tools (ants). Insight j, 2(365): 546 1-35, 2009.
- G. Balakrishnan, A. Zhao, M. R. Sabuncu, J. Guttag, and A. V. Dalca. Voxelmorph: a learning 548 framework for deformable medical image registration. IEEE Transactions on Medical Imaging, 38 549 (8):1788-1800, 2019.550
 - G. K. Batchelor. An introduction to fluid dynamics. Cambridge university press, 1967.
 - M. F. Beg, M. I Miller, A. Trouvé, and L. Younes. Computing large deformation metric mappings via geodesic flows of diffeomorphisms. International journal of computer vision, 61:139–157, 2005.
 - M. M. Bronstein, J. Bruna, T. Cohen, and P. Veličković. Geometric deep learning: Grids, groups, graphs, geodesics, and gauges. arXiv preprint arXiv:2104.13478, 2021.
- C. C. Brun, N. Leporé, X. Pennec, Y. Chou, A. D. Lee, G. De Zubicaray, K. L. McMahon, M. J. 558 Wright, J. C. Gee, and P. M. Thompson. A nonconservative lagrangian framework for statistical fluid registration—safira. *IEEE transactions on medical imaging*, 30(2):184–202, 2010.
 - J. Chen, E. C. Frey, Y. He, W. P. Segars, Y. Li, and Y. Du. Transmorph: Transformer for unsupervised medical image registration. Medical image analysis, 82:102615, 2022.
 - Z. Chen, Y. Zheng, and J. C. Gee. Transmatch: a transformer-based multilevel dual-stream feature matching network for unsupervised deformable image registration. IEEE Transactions on Medical Imaging, 2023.
- A. V. Dalca, G. Balakrishnan, J. V. Guttag, and M. R. Sabuncu. Unsupervised learning for fast 568 probabilistic diffeomorphic registration. In International Conference on Medical Image Computing 569 and Computer-Assisted Intervention, 2018.
 - J. Farahani, A.and Vitay and F. H. Hamker. Deep neural networks for geometric shape deformation. In German Conference on Artificial Intelligence (Künstliche Intelligenz), pp. 90–95. Springer, 2022.
- 574 F. Fuchs, D. Worrall, V. Fischer, and M. Welling. Se (3)-transformers: 3d roto-translation equivariant 575 attention networks. Advances in neural information processing systems, 33:1970–1981, 2020.
 - L. Hansen and M. P. Heinrich. Deep learning based geometric registration for medical images: How accurate can we get without visual features? In Information Processing in Medical Imaging: 27th International Conference, IPMI 2021, Virtual Event, June 28–June 30, 2021, Proceedings 27, pp. 18-30. Springer, 2021a.
- L. Hansen and M. P. Heinrich. Graphregnet: Deep graph regularisation networks on sparse keypoints 581 for dense registration of 3d lung cts. IEEE Transactions on Medical Imaging, 40(9):2246–2257, 582 2021b. 583
 - G. Haskins, U. Kruger, and P. Yan. Deep learning in medical image registration: a survey. Machine Vision and Applications, 31:1–18, 2020.
- A. Hering, L. Hansen, T. CW Mok, A. CS Chung, H. Siebert, S. Häger, A. Lange, S. Kuckertz, 587 S. Heldmann, W. Shao, et al. Learn2reg: comprehensive multi-task medical image registration 588 challenge, dataset and evaluation in the era of deep learning. IEEE Transactions on Medical 589 Imaging, 2022. 590
- A. Hoopes, J. E. Iglesias, B. Fischl, D. Greve, and A. V. Dalca. Topofit: rapid reconstruction of 592 topologically-correct cortical surfaces. Proceedings of machine learning research, 172:508, 2022.
- 593

A. Horn. MNI T1 6thGen NLIN to MNI 2009b NLIN ANTs transform. 7 2016.

597

604

605 606

607

608

612

623

631

635

636

637

638

639

640

641

- 594 B. Hu, S. Zhou, Z. Xiong, and F. Wu. Recursive decomposition network for deformable image registration. IEEE Journal of Biomedical and Health Informatics, 26(10):5130–5141, 2022. 596
- J. Iglesias, C. Liu, P. Thompson, and Z. Tu. Robust brain extraction across datasets and comparison with publicly available methods. IEEE Transactions on Medical Imaging, 30(9):1617–1634, 11 598 2011.
- 600 X. Jia, J. Bartlett, W. Chen, S. Song, T. Zhang, X. Cheng, W. Lu, Z. Qiu, and J. Duan. Fourier-net: 601 Fast image registration with band-limited deformation. In Proceedings of the AAAI Conference on 602 Artificial Intelligence, volume 37, pp. 1015–1023, 2023. 603
 - M. Kang, X. Hu, W. Huang, M. R. Scott, and M. Reyes. Dual-stream pyramid registration network. Medical image analysis, 78:102379, 2022.
 - A. Kashefi, D. Rempe, and L.s J. Guibas. A point-cloud deep learning framework for prediction of fluid flow fields on irregular geometries. *Physics of Fluids*, 33(2), 2021.
- 609 C. Ledig, R. Heckemann, A. Hammers, J. López, V. Newcombe, A. Makropoulos, J. Lötjönen, 610 D. Menon, and D. Rueckert. Robust whole-brain segmentation: Application to traumatic brain 611 injury. *Medical image analysis*, 21 1:40–58, 2015.
- H. Lester, S. R. Arridge, K. M. Jansons, L. Lemieux, J. V. Hajnal, and A. Oatridge. Non-linear 613 registration with the variable viscosity fluid algorithm. In Information Processing in Medical 614 Imaging: 16th International Conference, IPMI'99 Visegrád, Hungary, June 28–July 2, 1999 615 Proceedings 16, pp. 238-251. Springer, 1999. 616
- 617 Y. Liu, L. Zuo, S. Han, Y. Xue, J. L. Prince, and A. Carass. Coordinate translator for learning deformable medical image registration. In International Workshop on Multiscale Multimodal 618 Medical Imaging, pp. 98–109. Springer, 2022. 619
- 620 B. Lowekamp, D. Chen, L. Ibáñez, and D. Blezek. The design of simpleitk. Frontiers in Neuroinfor-621 matics, 7, 2013. 622
- M. Meng, L. Bi, D. Feng, and J. Kim. Non-iterative coarse-to-fine registration based on single-624 pass deep cumulative learning. In International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 88–97. Springer, 2022. 625
- 626 T. C. W. Mok and A. C. S. Chung. Large deformation diffeomorphic image registration with laplacian 627 pyramid networks. In Medical Image Computing and Computer Assisted Intervention–MICCAI 628 2020: 23rd International Conference, Lima, Peru, October 4–8, 2020, Proceedings, Part III 23, pp. 629 211-221. Springer, 2020a. 630
- T. C.W. Mok and A. C.S. Chung. Large deformation diffeomorphic image registration with laplacian pyramid networks. In Medical Image Computing and Computer Assisted Intervention–MICCAI 632 2020: 23rd International Conference, Lima, Peru, October 4–8, 2020, Proceedings, Part III 23, pp. 633 211-221. Springer, 2020b. 634
 - H. Qiu, C. Qin, A. Schuh, K. Hammernik, and D. Rueckert. Learning diffeomorphic and modalityinvariant registration using b-splines. In International Conference on Medical Imaging with Deep Learning, 2021.
 - D. Rueckert, L. I. Sonoda, C. Hayes, D. L. G. Hill, M. O. Leach, and D. J. Hawkes. Nonrigid registration using free-form deformations: application to breast mr images. IEEE Transactions on Medical Imaging, 18:712–721, 1999.
- 642 R. Sandkühler, S. Andermatt, G. Bauman, S. Nyilas, C. Jud, and P. C. Cattin. Recurrent registration 643 neural networks for deformable image registration. Advances in Neural Information Processing 644 Systems, 32, 2019. 645
- A. Schuh, M. Murgasova, A. Makropoulos, C. Ledig, S. Counsell, J. Hajnal, P. Aljabar, and D. Rueck-646 ert. Construction of a 4d brain atlas and growth model using diffeomorphic registration. In STIA, 647 2014.

- 648 M. Shafto, L. Tyler, M. Dixon, Jason R. Taylor, J. Rowe, R. Cusack, A. Calder, W. D. Marslen-649 Wilson, J. Duncan, T. Dalgleish, R. Henson, C. Brayne, and F. Matthews. The cambridge centre for 650 ageing and neuroscience (cam-can) study protocol: a cross-sectional, lifespan, multidisciplinary 651 examination of healthy cognitive ageing. BMC Neurology, 14, 2014. 652 Z. Shen, J. Feydy, P. Liu, A. H. Curiale, R. San Jose Estepar, R. San Jose Estepar, and M. Niethammer. 653 Accurate point cloud registration with robust optimal transport. Advances in Neural Information 654 Processing Systems, 34:5373–5389, 2021. 655 656 A. Sotiras, C. Davatzikos, and N. Paragios. Deformable medical image registration: A survey. IEEE 657 Transactions on Medical Imaging, 32:1153–1190, 2013. 658 M. A. Suliman, L. Z. J. Williams, A. Fawaz, and E. C. Robinson. Geomorph: Geometric deep 659 learning for cortical surface registration. In Geometric Deep Learning in Medical Image Analysis, 660 2022. 661 662 M. Tancik, P. Srinivasan, B. Mildenhall, S. Fridovich-Keil, N. Raghavan, U. Singhal, R. Ramamoorthi, J. Barron, and R. Ng. Fourier features let networks learn high frequency functions in low 663 dimensional domains. NeurIPS, 2020. 664 665 J. Taylor, N. Williams, R. Cusack, T. Auer, M. Shafto, M. Dixon, L. Tyler, Cam-CAN Group, 666 and R. Henson. The cambridge centre for ageing and neuroscience (cam-can) data repository: 667 Structural and functional mri, meg, and cognitive data from a cross-sectional adult lifespan sample. 668 Neuroimage, 144:262 - 269, 2017. 669 NLST team. The national lung screening trial: overview and study design. Radiology, 258(1): 670 243-253, 2011. 671 672 J. P. Thirion. Image matching as a diffusion process: an analogy with maxwell's demons. Medical 673 image analysis, 2(3):243-260, 1998. 674 T. Vercauteren, X. Pennec, A. Perchant, and N. Ayache. Diffeomorphic demons: Efficient non-675 parametric image registration. *NeuroImage*, 45(1):S61–S72, 2009. 676 677 M. Verleysen and D. François. The curse of dimensionality in data mining and time series prediction. 678 In International work-conference on artificial neural networks, pp. 758–770. Springer, 2005. 679 H. Wang, D. Ni, and Y. Wang. Modet: Learning deformable image registration via motion decomposi-680 tion transformer. In International Conference on Medical Image Computing and Computer-Assisted 681 Intervention, pp. 740-749. Springer, 2023. 682 683 H. Xiao, X. Teng, C. Liu, T. Li, G. Ren, R. Yang, D. Shen, and J. Cai. A review of deep learning-based 684 three-dimensional medical image registration methods. Quantitative Imaging in Medicine and 685 Surgery, 11(12):4895, 2021. 686 S. Zhao, Y. Dong, E. I. Chang, Y. Xu, et al. Recursive cascaded networks for unsupervised medical 687 image registration. In Proceedings of the IEEE/CVF international conference on computer vision, 688 pp. 10600-10610, 2019. 689 690 Y. Zhu and S. Lu. Swin-voxelmorph: A symmetric unsupervised learning model for deformable medical image registration using swin transformer. In International Conference on Medical Image 691 Computing and Computer-Assisted Intervention, pp. 78–87. Springer, 2022. 692 693 694 696 697 699
- 700
- 701