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ABSTRACT

Data-driven deformable image registration methods predominantly rely on opera-
tions that process grid-like inputs. However, applying deformable transformations
to an image results in a warped space that deviates from a rigid grid structure.
Consequently, data-driven approaches with sequential deformations have to apply
grid resampling operations between each deformation step. While artifacts caused
by resampling are negligible in high-resolution images, the resampling of sparse,
high-dimensional feature grids introduces errors that affect the deformation model-
ing process. Taking inspiration from Lagrangian reference frames of deformation
fields, our work introduces a novel paradigm for data-driven deformable image
registration that utilizes geometric deep-learning principles to model deforma-
tions without grid requirements. Specifically, we model image features as a set of
nodes that freely move in Euclidean space, update their coordinates under graph
operations, and dynamically readjust their local neighborhoods. We employ this
formulation to construct a multi-resolution deformable registration model, where
deformation layers iteratively refine the overall transformation at each resolution
without intermediate resampling operations on the feature grids. We investigate our
method’s ability to fully deformably capture large deformations across a number of
medical imaging registration tasks. In particular, we apply our approach (GeoReg)
to the registration of inter-subject brain MR images and inhale-exhale lung CT
images, showing on par performance with the current state-of-the-art methods. We
believe our contribution open up avenues of research to reduce the black-box nature
of current learned registration paradigms by explicitly modeling the transformation
within the architecture.

1 INTRODUCTION

Image registration is an indispensable tool in medical image analysis that aligns anatomically
or functionally corresponding regions across images, often from different modalities and time
points (Sotiras et al., 2013). In particular, deformable registration aims to estimate a non-linear
transformation that maps the source image to the coordinate space of the target image. Since the
advent of deep learning, data-driven methods have been proposed (Haskins et al., 2020; Xiao et al.,
2021) to leverage learned transformation priors over an image cohort, reducing the search space of
plausible transformations.

Single-stream approaches. Since images are usually represented as grids of pixels, data-driven
approaches typically employ convolutional kernels to model transformations. Early works have
commonly adopted a simplistic approach of concatenating the source and target images as input
channels to a convolutional network (Balakrishnan et al., 2019; Dalca et al., 2018; Mok & Chung,
2020a; Qiu et al., 2021; Zhao et al., 2019). However, this concatenation produces different inputs
to a network on every possible misalignment of the counterpart image. This subsequently causes
the feature extraction to learn distinct representations throughout the network on each possible
misalignment, increasing the task’s complexity.

A common necessary preprocessing technique employed to mitigate this issue involves an exhaustive
search for an initial affine alignment. This reduces the degrees of freedom in the transformation param-
eters by guaranteeing that similar features are captured in a consistent spatial context, thus reducing
the range of representations experienced by the network. Recent works combat the misalignment-
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Figure 1: A classical deep learning setting operates on an Eulerian framework, where an implicit
grid is required to predict a transformation. After a deformation is applied, this forces resampling to
perform subsequent predictions. Our approach employs geometric deep learning to formulate the
registration task as a grid-independent process using a Lagrangian reference frame.

dependent complexity by incorporating transformer layers throughout the network (Chen et al., 2022;
2023; Liu et al., 2022; Meng et al., 2022; Wang et al., 2023; Zhu & Lu, 2022). This enables greater
flexibility in the feature extraction process as the transformer layer’s attention mechanism is able
to establish non-local spatial relationships at the cost of increased learnable parameters. Similarly,
cascading approaches have shown increased accuracy by recovering the misalignment progressively,
modeling the transformation as a sequence of deformations (Hu et al., 2022; Sandkühler et al., 2019;
Zhao et al., 2019).

Dual-stream approaches. A commonly adopted technique to avoid concatenating the images at
the input is using dual-stream encoders (Hu et al., 2022; Wang et al., 2023; Kang et al., 2022; Liu
et al., 2022; Meng et al., 2022). This approach utilizes two separate encoders that individually extract
features from source and target images, allowing for misalignment-independent representations
throughout most of the network. Moreover, multi-resolution methods (Hu et al., 2022; Kang et al.,
2022; Meng et al., 2022; Mok & Chung, 2020a; Wang et al., 2023) estimate the transformation at
multiple levels during the decoding process in a coarse-to-fine fashion. This proves to be a strong
architectural prior towards capturing large transformations in a parameter-efficient manner.

Despite their effectiveness, the layers of these architectures remain strictly confined to grid-structured
features due to their dependence on discrete kernel operations. Consequently, as warping operations
are applied to the feature grids in the decoding process, the space needs to be resampled to adhere
to the fixed grid positions (Figure 1). Although negligible on the pixel level, resampling operations
become increasingly inaccurate on sparse, high-dimensional feature spaces. This issue, termed
the curse of dimensionality, causes naive interpolation to deteriorate the quality of features being
propagated to later sections of the prediction process Verleysen & François (2005).

Reference frames. Current data-driven registration methods predominantly rely on an Eule-
rian (Batchelor, 1967) frame of reference for modeling deformation fields, whereby the deformation
field is observed at specific locations in space. Conversely, the Lagrangian (Batchelor, 1967) specifica-
tion is an alternative choice of modeling motion that tracks the positions of infinitesimal parcels (Brun
et al., 2010; Lester et al., 1999; Thirion, 1998; Vercauteren et al., 2009). These concepts carry striking
similarities with recent research in the field of geometric deep learning, where the motion of sparse
point-like objects is modeled using learned functions (Farahani & Hamker, 2022; Fuchs et al., 2020;
Kashefi et al., 2021). This design choice obviates the aforementioned resampling issues by not being
confined to a grid-based frame of reference, removing the costly memory requirement of tracking
an arbitrarily precise voxelized volume. While geometric deep learning has been used in certain
contexts for point cloud and cortical surface registration (Hansen & Heinrich, 2021a;b; Suliman et al.,
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2022; Shen et al., 2021; Hoopes et al., 2022), to the best of our knowledge, no previous work offers a
framing of deformable image registration within the geometric deep learning paradigm.

Contributions. In this work, we propose a novel paradigm for data-driven image registration by
viewing the deformation modeling process through the lens of geometric deep learning. We formulate
the task as a multi-scale process of deformation operations, where feature grids are modeled under a
Lagrangian framing of free-floating nodes influenced by neighborhood interactions. Unlike existing
approaches, our method explicitly models coordinates and features independently, performing node-
wise operations using continuous learnable kernels. This formulation enables us to completely avoid
grid-based constraints on inter-node structure, removing the requirement for intermediate warping
operations between transformations.

Our contributions can be summarized as follows:

• We establish a mathematical foundation to formulate deformable registration in a continuous
domain, avoiding the need for interpolation in the feature space. We achieve this under a
Lagrangian reference frame utilizing the geometric deep-learning paradigm.

• We propose a data-driven form of interpolation demonstrating local support, which facilitates
multi-scale deformation modeling by learning to propagate deformations across resolutions.

• We demonstrate the effectiveness of our formulation by reporting improvements over current
state-of-the-art deformable registration in the context of medical imaging and showing our
model’s ability to recover large deformations. We make our code publicly available1.

2 METHOD

In this section, we first formally establish the limitations imposed on deformable image registration
by the grid constraints of Eulerian frameworks. Afterwards, we establish a Lagrangian formulation
that does not make any grid assumptions (section 2.1). Within this context, we highlight the
advantages offered by geometric deep learning in modeling deformations as interactions between
free-floating features (section 2.2). Next, we propose a data-driven form of local interpolation,
which facilitates multi-scale deformation modeling by learning to propagate deformations across
resolutions (section 2.3). Finally, we combine these ideas to construct an end-to-end trainable neural
network capable of learning deformable registration in continuous domains in a coarse-to-fine fashion
(section 2.4).

2.1 DEFORMATION WITHOUT GRID CONSTRAINTS

An image I can be interpreted as a finite grid of measurements I → H→W→D which represents a
discrete subset of a continuous domain !, and where H,W,D are the spatial dimensions of the voxel
grid in the 3-dimensional case.

Given a target T and a source S image, deformable image registration aims to find an optimal spatial
deformation field ω↑ = argminω J (T, S,ω), with ω : n ↑ n, such that the transformed source
image S ↓ ω is most similar to the target image T . As such, the overall objective J is defined as:

J (T, S,ω) = D(T, S ↓ ω) + εR(ω), (1)

where D : !↔ ! ↑ n is an image dissimilarity measure responsible for driving the deformation,
and R is a smoothness regularization on the transformation whose magnitude is weighted by ε.

Data-driven methods implement learnable functions responsible for modeling a deformable trans-
formation ω as a neural network ϑε (T, S) parametrized by a set of learnable weights ϖ. These
approaches model the transformation based on spatial features F S and F T extracted from S and T .

Images are usually represented as grids of nodes containing pixel information. By making relative
positions between neighboring nodes constant across the structure, grid representations carry implicit
assumptions about the homogeneity of the structure. As such, attempting to construct a neural
function ϑ by learning grid-based operations (such as convolutions with discrete kernels) on the

1https://anonymous.4open.science/r/GeoReg-D567
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features F of a given image may appear enticing. However, these grid-reliant architectures generally
confine the transformation prediction to a grid, resulting in an Eulerian framework whereby the
deformation field is only defined on the specific locations in space defined by the grid. As spatial
transformations are applied to the source domain S, the rigid assumption on grid structure requires a
resampling of the feature space to estimate the feature values at the grid positions, which may result
in deteriorated features.

Instead of relying on grid representations, we propose to explicitly represent the source domain under
a Lagrangian framework via an unstructured set of feature-coordinate tuples S = (F S ,XS), where
F S → |S|→d,XS → |S|→n. Now, each node s → S can be regarded as a discrete observation of a
feature fs embedded in Euclidean space at coordinate xs. Here, the feature component fs of a given
node s may represent anything from gray-scale intensities (d = 1) to higher dimensional feature
descriptors such as those extracted by a feature encoder. This formulation allows us to model the
deformation process as a function ϑ acting on the coordinate component xs of each s → S without
requiring the feature fs to be modified. This Lagrangian framework is especially enticing to coarse,
high-dimensional feature spaces that would otherwise suffer from the curse of dimensionality under
interpolation operations (Bronstein et al., 2021).

2.2 DEFORMATION MODELING FUNCTION ω

Formulating the source domain S as a set of nodes with real-valued coordinates, with no necessity of
adhering to a rigid grid, requires a generalized form of learned functions that can handle continuous
domains. Precisely, we need to define a deformation function ϑ(·) that is able to act node-wise on the
set of source nodes s → S, while being capable of handling neighborhoods of target nodes TNs ↗ T
with arbitrary real-valued coordinates relative to a given s. This formulation naturally leads us to
the realm of geometric deep learning, where graph neural networks are leveraged to model learned
functions on geometric graph structures.

We begin by using the previously introduced notation of feature-coordinate pairs for the nodes of the
target domain T = (F T ,XT ). Using the source S and target T sets, we define the domain of the
deformation function ϑ as a directional graph Gϑ = (Aϑ , [F T ,F S ], [XT ,XS ]) describing how each
of the source nodes s → S interacts with the target domain T . The adjacency matrix Aϑ → {0, 1}
describes the presence or absence of edges between all node pairs. In practice, since we only want to
model how a given source node s should deform given its local neighborhood in the target domain,
we only need to model one quadrant of the full adjacency matrix Aϑ → {0, 1}T→S . A row in Aϑ

represents the neighborhood TNs of a source node s within the target domain T by defining which
subset of target nodes contain directional edges to s, such that TNs = {t | ↘t → Aϑ

[s],A
ϑ

[s,t] = 1}.
The values of a row Aϑ

[s] are computed using k-nearest neighbors based on |xt ≃ xs| node distances.

Given a graph Gϑ , we can define a generalized framing of a convolution by modeling a learnable
kernel as a continuous function ϱ. This formulation can operate on both grid and non-grid layouts
alike. When centered on a node s, the function ϱ computes an activation to a set of neighboring
target nodes TNs based on their features f t and relative coordinates to the source node (xt ≃ xs):

f ↓ =
1

|TNs |
∑

t↔TNs

ϱ
(
f t, fs,

(
xt ≃ xs

))
(2)

The function ϱ is typically implemented as a learnable linear projection with a non-linearity. The
output feature of this convolution operation can then be further projected into the vector of size n to
predict a deformation ω → n for that given node. This establishes a basis for learning a continuous
deformation model ϑ(Gϑ ) that can be applied to a continuous domain in order to predict deformations
ω for any node s.

This process can be iteratively performed, creating a chain of deformations XS ↓ ϑ(Gϑ

1 ) ↓ ... ↓ ϑ(Gϑ

N
)

that refine the transformation prediction in a cascading fashion. As the source nodes are transformed
relative to T , the graph Gϑ can simply be recomputed using the newly transformed coordinates (see
Figure 2 (iv)). Unlike other state-of-the-art cascading approaches, our grid-independent formulation
requires no intermediate resampling-to-a-grid operations, maintaining feature integrity along the
deformation chain. We refer the reader to the pseudocode in Appendix B1 for a detailed overview.
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2.3 MULTI-RESOLUTION INTERPOLATION FUNCTION ε

The optimization process of real-world registration tasks is highly non-convex. A prevalent strategy
in literature to overcome local minima when dealing with complex transformations is the usage of
a multi-resolution strategy. In line with this established paradigm, we explore the application of ϑ
deformation functions across entire feature pyramids in coarse-to-fine multi-resolution settings. In
this section, we aim to define a function ς(·) capable of chaining deformations in a coarse-to-fine
fashion across resolutions without feature interpolation.

2.3.1 LOCALLY-WEIGHTED INTERPOLATION

A commonly adopted technique in parametric image registration involves predicting deformations
at a coarse spacing and interpolating to the desired resolution via continuous mapping functions.
Generally, these mappings are formulated in the context of a set of control points C exerting influences
on the interpolation at a given point in space via local basis functions. Particularly in the case of
b-spline basis functions, the interpolation process exhibits the property of local support, implying
that a small, localized change has a restricted impact and does not influence the entire domain.

The transformation ω at an arbitrary point in space i with coordinates xi is the resulting interpolation
of the transformation values ωc of its neighboring control points c → NC . This interpolation is
weighted using basis functions v, based on relative positions between the given point i and each
control point c:

ω(xi) =
∑

c↔CNi

weight coefficient︷ ︸︸ ︷
v
(
xc ≃ xi

)
ωc (3)

This concept of locally weighting a transformation, based on relative location to control points, serves
as a powerful heuristic for introducing local support. However, we argue that making the interpolation
mechanism aware of image features is the key to building improved interpolation functions.

2.3.2 CROSS-ATTENTION AS DATA-DRIVEN INTERPOLATION

The attention mechanism has been applied to illustrate a more general version of the convolution op-
eration (Bronstein et al., 2021) described in Eq. (2). In the context of registration, graph convolutions
already display desired local properties by restricting message-passing within local neighborhoods.
The attention operation extends this principle by dynamically “masking out” irrelevant neighboring
nodes. Unlike the convolution’s simple uniformly-weighted aggregation of neighbors’ responses, the
attention mechanism allows a node to compute a form of learned weighted averaging based on its
neighbors’ features and relative positions.

f ↓ =
∑

c↔CNi

weight coefficient︷ ︸︸ ︷
a(f c, f i,

(
xc ≃ xi

)
) ϱ

(
f c, f i,

(
xc ≃ xi

))
(4)

where CNi is the neighborhood of control points to node i. When nodes i and c belong to different
domains (e.g., different images or resolution levels), the operation described in Eq. (4) is referred to
as cross-attention. Here, the attention function a is constrained to be in the range [0, 1] by applying
a softmax operation over all neighboring control points such that

∑
c↔CNi

a(·) = 1. For further
implementation details, we refer the reader to section 2.4. The concept of attention as dynamically
weighting neighboring nodes as outlined in Eq. (4) offers strong similarities to the principles of
parametric registration methods outlined in Eq. (3). Similarly to how parametric interpolation
uses a preset weighting function v

(
xc ≃ xi

)
on neighboring control points, local attention uses a

learned weighting function a(f i, f c,
(
xc ≃ xi

)
). In the local attention setting, since a given node only

interacts with its spatially restricted neighborhood (and not with the entire space), a localized change
does not affect the entire domain, effectively offering properties of local support. The benefit of the
attention mechanism here is the ability to condition the weighting coefficients not only on relative
coordinates but also on the learned features present in the operation.

While not a direct form of deformation interpolation, local cross-attention offers a way to refine a
node’s location given its current neighborhood of control points. By placing a node near a set of

5
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Figure 2: Architectural outline of a given resolution layer. (i) During feature extraction, pooling
operations track cross-resolution hierarchies. (ii) During decoding, each child node inherits and
further refines its transformation by performing local attention over its neighborhood of parents. (iii)
Deformations are predicted by performing local attention over local target nodes. This operation
can be iteratively performed an arbitrary number of times by dynamically updating a source node’s
current neighborhood in the target domain.

control points, the attention mechanism produces a weighted feature vector, which can be subsequently
projected into the vector of size n to predict a learned deformation ω → n. This gives us a building
block to define a local function ς(·) that interpolates a deformation through local cross-attention on a
continuous domain.

As depicted in Figure 2 (ii) & (iii), this component enables us to carry deformations across feature
pyramid levels in the multi-scale decoding process, further circumventing the need for grid-based
resampling operations.

2.3.3 HIERARCHY GRAPHS AS INTERPOLATION DOMAINS

Our aim is to define a hierarchical process by which a finer resolution level inherits and subsequently
refines the transformation of a coarser level. As such, we refer to control nodes at level l as parents
and the nodes at the following level l ≃ 1 as children.

To define the domain of the cross-resolution interpolation function ς(·), we need to establish
a graph representing parent-child connections. Concretely, given a set of control nodes Sl at
the l-th pyramid level and a set of children nodes Sl↗1, we define a directional graph Gl =
(Al, [F l,F l↗1], [X l,X l↗1]). Here, Al is a static matrix exclusively containing edges connect-
ing children nodes to their k-nearest neighboring parent nodes.

Hierarchy graph initialization. As depicted in Figure 2 (i), we use the feature extraction process at
the encoder to define parent-child hierarchies based on pooling operations. The feature extraction
process establishes a hierarchy of children-parent nodes S{1,...,L}, which all live in a combined
Euclidean space across L resolution levels. A parent node at level l derived from a region of children
nodes at level l ≃ 1 has its position initialized at the center of the pooling window. This hierarchy
establishes the cross-resolution neighborhoods that facilitate the interpolation operation of each given
child node s → Sl↗1 during the decoding process.

Transformation inheritance. As depicted in Figure 2 (ii), an initial transformation is inherited by
each child node at level l≃1 based on the average transformation of their neighborhoods at resolution
l. This rough initial approximation significantly reduces the remaining transformation component left
to be modeled by the feature-aware learned interpolation. We refer the reader to the pseudocode in
Appendix B2 for a detailed overview of this process.
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2.4 IMPLEMENTATION DETAILS

Image encoder. Since our approach requires the source and target features to interact, it is necessary
to implement a dual-stream encoder architecture. As a result, feature pyramids are extracted for the
source S and target T images independently using the same set of weights. We refer the reader to
Appendix A for a schematic of the overall model. The encoder consists of two convolutional residual
blocks per resolution followed by pooling layers. The encoder is composed of 6 layers, each made
up of two residual blocks, each with [16, 32, 32, 64, 64, 128] channels. Average pooling [2↔ 2↔ 2]
operations are applied between each encoder layer.

Deformation decoder. The feature pyramid is then decoded in a coarse-to-fine fashion across the 6
resolutions. Across our experiments, we find that local deformations are sufficiently well-modeled at
coarser resolutions in the decoder. Estimating the majority of the transformation at coarser levels
reduces the registration burden of finer resolution layers, as only smaller local deformations are left
to be recovered (see Appendix F for further detail). These insights allow us to refrain from applying
ϑ at the finest layers where resolutions are the largest, massively decreasing our memory footprint.

Memory efficient neighborhood computation. While the methodology outlined in sections 2.2
and 2.3 are formalized using graph notation, the grid structure of our data allows us to design highly
memory efficient implementations of ϑ and ς layers. Finding nearest neighbors in sparse data is the
biggest memory bottleneck due to having to compute O(N2) distance calculations relative to the
number of nodes N . Our convolutional encoder providing us with feature grids, lets us use grid-
unfolding operations to find the nearest neighbors in a (kx, ky, kz) kernel around a central node. The
ϑ function’s neighborhood computations are performed by first unfolding the target domain into all
its possible neighbourhoods. Then, we can index a source node’s corresponding target neighborhood
by mapping the current source coordinates into the index space of the target grid and rounding to the
closest integer. Similarly, the ς function applies a repeated interleaving operation to upsample the
parent unfolded neighborhoods into the same dimensions as the children grid. This is all implemented
using standard built-in Pytorch functions that allow for efficient GPU parallelism. Wherever possible,
we make use of pointers to the original data structures for minimal memory footprints. We refer
readers to Appendix D for an overview on VRAM requirements of various registration baselines.

Attention layers. The attention mechanism described in Eq. (4) is implemented using standard
transformer layers. The function takes the following matrix form:

f ↓ = softmax

(
Q
(
f i
)
·K(FNi ,

(
XNi ≃ xi

)
)↘

⇐
d

)
V (FNi ,

(
XNi ≃ xi

)
) (5)

Here, V is the value matrix, playing an equivalent role to the function ϱ in Eq. (2) and (4). The
attention scores are computed by taking the dot product query Q and key K vectors. We represent Q,
K, and V as functions to indicate the presence of positional embedding steps, whereby information
about the relative locations of neighboring nodes is encoded into the node’s feature vector. We use
Fourier features ((Tancik et al., 2020)) as our choice of embedding function. The concept of an input
set of nodes computing attention scores to a different set of nodes is referred to as cross-attention.

Hyperparameters. Tuning neighborhood sizes required striking a balance between receptive field
width and memory limitations. For ϑ , we selected neighborhoods of 53 for coarser resolutions (to
allow for wide receptive fields), while finer resolutions used 33 neighborhoods to reduce memory
footprint. Neighborhoods in ς always used the closest 33 neighboring parent nodes. To calculate
the loss at each resolution level, we employ normalized cross-correlation (NCC) as the dissimilarity
metric. Furthermore, we utilize bending energy (Rueckert et al., 1999) as a regularizer to ensure a
smooth final transformation at each resolution. The approach is trained end-to-end using the ADAM
optimizer with a 10↗4 learning rate for a maximum of 1000 epochs. Model training was carried out
on an NVIDIA A40 GPU with 40GB VRAM over the course of 3 days. For further parameter details,
we refer to our repository.
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3 RESULTS AND DISCUSSION

3.1 DATASETS, BASELINES AND EVALUATION METRICS

We evaluate our work using the CamCAN T1w-T1w and T1w-T2w brain datasets (Shafto et al., 2014;
Taylor et al., 2017) and the publicly available benchmark National Lung Screening Trial (NLST)
dataset (team, 2011) from the Learn2Reg challenge 2022 (Hering et al., 2022). We refer the reader
to section C of the Appendix for more information about the data, the pre-processing steps, the
segmentation labels, and the key-point extraction.

We compare our method (GeoReg) against several conventional iterative methods and learning-based
image registration models. Regarding the iterative optimization methods, we choose from the Medical
Image Registration ToolKit (MIRTK) (Schuh et al., 2014), a widely-used free-form deformation
(FFD) iterative optimization method that supports multi-resolution and parametric b-spline-based
registration. Additionally, we compare against the widely adopted symmetric diffeomorphic alorithm
SyN (Avants et al., 2008) from the ANTs (Avants et al., 2009) framework, as well as Large deforma-
tion diffeomorphic metric mapping (LDDMM (Beg et al., 2005)).Our learning-based baselines are
comprised of Voxelmorph (Balakrishnan et al., 2019), a single-stage CNN, LapIRN (Mok & Chung,
2020b) a multi-resolution registration CNN that aims to capture large deformations in a coarse-to-fine
manner, Transmorph (Chen et al., 2022) that uses a SwinTransformer-based encoder, Recursive
Cascaded Networks (RCN) (Zhao et al., 2019) which estimates the deformation progressively using a
cascading CNN architecture, the dual-stream pyramid registration network (D-PRNet) (Kang et al.,
2022) that gradually refines the multi-level predicted deformation fields in a coarse-to-fine manner
via sequential warping, and FourierNet (Jia et al., 2023) that learns a low-representation displacement
filed in a band-limited Fourier domain and then uses a model-driven decoder to obtain the dense,
full-resolution displacement field. To ablate the contribution of the proposed interpolation mechanism
(ς) on top of our multi-resolution ϑ design, we replace the proposed learned interpolation component
(ς) with bilinear feature warping. In the following, we denote this ablation baseline as “feat. warp”.

The accuracy of the registration is evaluated using the segmentation metrics Dice Similarity Coeffi-
cient (DSC) and 95th percentile Hausdorff distance (HD95). For the NLST dataset, we additionally
report the target registration error (TRE) between landmarks. In the synthetic deformation experi-
ments, we also report the average end-point error (AEE) to the ground truth deformation. We calculate
the percentage of points with a negative Jacobian determinant |⇒ω| < 0, indicating the extent of
space folding, to measure the regularity of the transformation.

3.1.1 EXPERIMENT 1: LARGE INTRA-SUBJECT SYNTHETIC TRANSFORMATIONS

We begin by investigating varying kinds of large synthetic deformations without any form of affine
registration preprocessing. We create a dataset of intra-subject brain pairs with varying ranges of
non-rigid deformations comprised of a combination of an affine and Brownian noise components.
Although equivalent to real-world medical registration tasks, this experiment allows us to generate
ground-truth deformations serving as a useful proof-of-concept to better evaluate recovery of large
misalignments. First, a base component of fractal Brownian deformation is applied, followed
by randomly uniformly sampled rotations, scaling, and translations along each dimension (see
displacement field in Figure 3). We used the obtained ground truth deformation fields to quantitatively
assess a method’s ability to deformably recover large misalignments. The results reported in Table 1
demonstrate that our model consistently outperforms other baselines while producing the lowest
amount of spatial folding. While other models struggle with large deformations, our geometric
registration method is capable of fully deformably capturing the global transformation while still
being able to model local deformations (see Figure 3).

3.1.2 EXPERIMENT 2: DEFORMABLE TRANSFORMATIONS ON PRE-ALIGNED IMAGES

In practice, it is common practice to pre-align scans in roughly the same coordinate system using affine
registration, targeting the larger components of the transformation. This initial alignment enables a
more accurate recovery of the smaller, deformable components in a subsequent step. To assess the
capability of our method to recover deformable transformations, we conduct a comparative evaluation
against several baseline methods in three distinct tasks. First, we evaluate our method on inter-subject
registration of T1w-T1w images and on multi-contrast inter-subject T1w-T2w MRI brain images
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Table 1: Quantitative results for intra-subject deformable registration using non-rigid synthetic de-
formations (multi-resolution Brownian) alongside varying degrees of uniformly-sampled rotations,
scalings, and translations. Lowest setting in Brownian experiment row is used as default across all
other rigid rows. Experiments consist of 100 subjects, each sampled using 10 different deformations.
The performance of GeoReg with bilinear feature warping instead of a learned interpolation compo-
nent ς is shown under ‘feat. warp’.

# Param HD95 → AEEωGT → Folding (%) → HD95 → AEEωGT → Folding (%) → HD95 → AEEωGT → Folding (%) →
Brownian Up to 16.41 pixels per axis (Default) Up to 25.25 pixels per axis Up to 33.98 pixels per axis

Affine - 4.695± 0.979 1.813± 0.316 - 4.821± 0.992 2.638± 0.452 - 8.188± 1.561 2.749± 0.472 -
MIRTK - 1.940± 0.170 1.256± 0.154 0.000± 0.000 1.117± 0.953 1.981± 0.232 0.013± 0.034 2.336± 3.243 2.635± 0.239 0.113± 0.148
ANTs - 2.231± 0.473 2.996± 0.313 0.163± 0.081 2.781± 0.815 4.162± 0.545 0.282± 0.065 4.785± 1.452 5.773± 0.552 0.533± 0.249
LDDMM - 1.012± 0.104 1.597± 0.195 0.000± 0.000 1.053± 0.023 2.443± 0.238 0.000± 0.000 1.604± 0.935 4.976± 0.412 0.195± 0.015
VoxelMorph 320 k 1.656± 0.159 3.561± 0.245 0.003± 0.002 3.672± 0.791 8.323± 1.282 0.132± 0.161 6.199± 1.910 11.466± 1.502 0.249± 0.203
LapIRN 924 k ↑±↑ ↑±↑ ↑±↑ ↑±↑ ↑±↑ ↑±↑ ↑±↑ ↑±↑ ↑±↑
TransMorph 46.8 M 1.010± 0.025 2.247± 0.049 1.048± 0.165 1.085± 0.088 3.468± 0.109 1.998± 0.212 1.464± 0.204 3.960± 0.079 3.008± 0.328
D-PRNet 1.2 M 1.081± 0.097 2.411± 0.041 0.856± 0.166 1.424± 0.175 3.306± 0.100 1.645± 0.202 2.552± 0.476 3.915± 0.091 2.883± 0.247
RCN 282 M 1.002± 0.009 2.216± 0.045 1.134± 0.176 1.087± 0.074 2.960± 0.074 2.249± 0.213 2.818± 0.363 5.125± 0.102 1.655± 0.228
FourierNet 1.1 M 1.044± 0.050 2.444± 0.069 0.000± 0.000 1.350± 0.123 3.444± 0.098 0.001± 0.001 1.791± 0.127 4.669± 0.137 0.002± 0.003
Ours (feat. warp) 1.5 M 2.621± 0.502 1.637± 0.161 0.000± 0.000 3.923± 0.594 2.638± 0.452 0.000± 0.000 3.939± 1.150 2.801± 0.280 0.000± 0.000
Ours (GeoReg) 1.7 M 1.347± 0.397 1.328± 0.152 0.000± 0.000 1.763± 0.421 1.831± 0.193 0.000± 0.000 2.460± 0.591 2.580± 0.303 0.000± 0.000

Rotation + Brownian ±11.25→ per axis ±22.5→ per axis ±45.0→ per axis

Affine - 4.573± 0.291 3.686± 0.098 - 4.599± 0.331 3.682± 0.109 - 4.600± 0.369 3.809± 0.110 -
MIRTK - 1.041± 0.124 3.685± 3.029 0.031± 0.082 3.515± 4.905 9.78± 9.292 0.265± 0.392 6.839± 8.975 8.851± 7.453 0.160± 0.204
ANTs - 3.870± 1.491 7.011± 3.616 0.188± 0.077 8.813± 2.152 18.571± 3.813 0.215± 0.088 11.617± 5.625 30.327± 14.763 0.485± 0.368
LDDMM - 1.150± 0.012 5.765± 3.619 0.000± 0.000 1.041± 0.124 13.301± 6.466 0.000± 0.000 5.843± 6.615 34.077± 7.573 0.013± 0.049
VoxelMorph 320 k 1.816± 0.298 6.673± 1.054 0.034± 0.020 3.474± 0.713 13.591± 2.318 0.097± 0.041 8.997± 2.353 27.090± 5.130 0.292± 0.077
LapIRN 924 k ↑±↑ ↑±↑ ↑±↑ ↑±↑ ↑±↑ ↑±↑ ↑±↑ ↑±↑ ↑±↑
TransMorph 46.8 M 1.057± 0.073 5.087± 0.775 3.030± 0.514 1.420± 0.385 11.334± 2.999 3.560± 0.414 5.747± 2.289 26.394± 5.301 4.012± 0.329
D-PRNet 1.2 M 1.557± 0.367 7.002± 1.202 1.422± 0.188 3.580± 1.082 14.058± 2.896 1.629± 0.265 9.200± 2.444 28.278± 5.769 2.192± 0.313
RCN 282 M 1.364± 0.130 4.262± 0.518 3.640± 0.698 1.902± 0.218 11.082± 2.042 3.945± 0.558 4.951± 1.777 26.537± 6.120 4.029± 0.505
FourierNet 1.1 M 2.224± 1.205 8.804± 4.194 0.000± 0.000 4.875± 3.666 16.706± 8.034 0.000± 0.000 14.253± 5.661 36.493± 13.914 0.007± 0.016
Ours (feat. warp) 1.5 M 2.068± 0.484 1.585± 0.312 0.000± 0.000 2.620± 1.358 1.989± 0.753 0.000± 0.000 2.818± 0.546 2.477± 0.928 0.000± 0.000
Ours (GeoReg) 1.7 M 1.520± 0.332 1.511± 0.260 0.000± 0.000 1.630± 0.415 1.604± 0.363 0.000± 0.000 2.054± 0.385 1.951± 0.598 0.026± 0.145

Scaling + Brownian ±10% of image size per axis ±30% of image size per axis ±50% of image size per axis

Affine - 4.529± 0.368 3.685± 0.101 - 4.891± 0.431 3.687± 0.113 - 5.138± 0.515 3.749± 0.116 -
MIRTK - 1.052± 0.127 1.462± 0.348 0.039± 0.002 4.545± 1.598 1.554± 0.284 0.398± 0.699 9.780± 11.523 13.425± 11.322 0.581± 0.838
ANTs - 3.124± 0.584 0.584± 1.113 0.202± 0.117 9.343± 4.464 14.023± 4.234 0.242± 0.105 14.641± 4.983 20.269± 4.888 0.191± 0.097
LDDMM - 1.563± 0.342 2.497± 0.700 0.000± 0.000 1.902± 0.235 4.765± 2.273 0.000± 0.000 1.883± 0.166 8.979± 4.21 0.000± 0.000
VoxelMorph 320 k 1.706± 0.167 3.542± 0.242 0.002± 0.002 3.389± 0.642 7.074± 1.045 0.122± 0.130 7.592± 2.113 12.287± 1.798 0.228± 0.116
LapIRN 924 k ↑±↑ ↑±↑ ↑±↑ ↑±↑ ↑±↑ ↑±↑ ↑±↑ ↑±↑ ↑±↑
Transmorph 46.8 M 1.074± 0.079 3.308± 0.214 1.536± 0.213 1.370± 0.363 6.384± 0.635 3.753± 0.612 3.154± 1.531 10.307± 1.705 5.086± 0.621
D-PRNet 1.2 M 1.250± 0.137 3.598± 0.270 1.388± 0.318 2.225± 0.347 7.505± 1.028 3.200± 0.445 5.391± 2.160 11.986± 2.402 3.910± 0.465
RCN 282 M 1.337± 0.188 3.307± 0.181 1.600± 0.370 2.593± 0.252 5.396± 0.586 4.642± 0.806 3.785± 0.661 7.834± 1.276 5.644± 0.687
FourierNet 1.1 M 1.307± 0.302 3.831± 0.601 0.000± 0.000 5.068± 4.076 9.190± 3.395 0.062± 0.069 10.102± 4.565 20.638± 4.237 0.114± 0.123
Ours (feat. warp) 1.5 M 1.910± 0.355 1.490± 0.277 0.000± 0.000 2.566± 0.617 2.073± 0.925 0.000± 0.000 2.961± 0.796 2.400± 1.290 0.000± 0.000
Ours (GeoReg) 1.7 M 1.040± 0.122 1.375± 0.357 0.000± 0.000 1.274± 0.312 1.714± 0.904 0.000± 0.000 1.486± 0.523 2.234± 1.586 0.000± 0.000

Translation + Brownian ±10% of image size per axis ±30% of image size per axis ±50% of image size per axis

Affine - 4.791± 1.106 2.092± 0.362 - 4.683± 1.241 2.076± 0.386 - 4.768± 1.088 2.025± 0.497 -
MIRTK - 2.217± 0.256 1.583± 0.418 0.030± 0.172 15.738± 9.906 15.912± 7.513 0.920± 0.549 31.954± 18.177 32.458± 18.79 0.557± 0.413
ANTs - 2.641± 1.983 4.269± 1.888 0.191± 0.097 20.516± 6.970 21.84± 7.159 0.206± 0.139 39.502± 13.644 42.077± 14.147 0.139± 0.053
LDDMM - 1.962± 0.310 3.195± 0.806 0.000± 0.000 15.476± 10.564 14.518± 6.879 0.000± 0.000 31.702± 17.558 30.984± 13.721 0.549± 1.403
VoxelMorph 320 k 3.468± 0.529 5.436± 0.495 0.033± 0.034 18.075± 2.677 16.027± 1.977 0.628± 0.194 31.645± 4.145 26.826± 3.932 1.479± 0.395
LapIRN 924 k ↑±↑ ↑±↑ ↑±↑ ↑±↑ ↑±↑ ↑±↑ ↑±↑ ↑±↑ ↑±↑
TransMorph 46.8 M 1.641± 0.385 6.065± 0.634 2.601± 0.421 17.865± 4.339 20.212± 3.201 4.378± 0.275 40.148± 7.138 37.221± 5.569 5.920± 0.147
D-PRNet 1.2 M 3.720± 0.879 6.045± 0.751 2.631± 0.483 5.477± 0.692 12.834± 1.757 5.556± 0.428 6.669± 0.833 17.522± 2.954 6.636± 0.509
RCN 282 M 2.217± 0.193 3.559± 0.163 4.465± 1.071 4.632± 0.352 6.427± 0.608 6.491± 0.883 5.123± 0.430 10.281± 1.381 7.166± 0.565
FourierNet 1.1 M 1.790± 0.139 2.920± 0.062 0.019± 0.029 4.762± 0.325 3.737± 0.116 0.146± 0.109 4.664± 0.470 4.032± 0.177 0.087± 0.074
Ours (feat. warp) 1.5 M 2.193± 0.334 1.474± 0.156 0.000± 0.000 3.397± 0.446 1.949± 0.189 0.000± 0.000 4.605± 2.827 3.279± 2.685 0.000± 0.000
Ours (GeoReg) 1.7 M 1.293± 0.308 1.288± 0.161 0.000± 0.000 1.603± 0.329 1.434± 0.205 0.000± 0.000 2.260± 0.358 1.760± 0.295 0.000± 0.000

Affine + Brownian ±11.25→ Rot., ±10% Scale, ±10% Transl. ±22.5→ Rot., ±30% Scale, ±30% Transl. ±45.0→ Rot., ±50% Scale, ±50% Transl.

Affine - 4.646± 1.339 3.106± 1.009 - 4.741± 1.381 4.612± 0.294 - 4.931± 2.165 6.388± 3.766 -
MIRTK - 1.182± 0.548 4.348± 2.152 0.039± 0.102 14.953± 13.197 17.389± 10.896 0.442± 0.456 54.075± 13.242 45.730± 13.964 1.188± 0.882
ANTs - 8.933± 2.450 11.500± 3.646 0.170± 0.071 22.646± 6.038 27.093± 5.549 0.159± 0.059 45.812± 13.148 53.287± 7.424 0.523± 0.535
LDDMM - 1.885± 2.655 8.062± 3.118 0.000± 0.000 16.810± 10.331 21.628± 7.729 0.064± 0.193 39.410± 16.364 51.512± 12.734 0.061± 0.139
VoxelMorph 320 k 3.144± 2.181 4.464± 1.065 0.034± 0.061 23.367± 12.870 9.264± 1.842 0.983± 0.714 34.688± 15.383 13.938± 5.523 2.237± 1.810
LapIRN 924 k ↑±↑ ↑±↑ ↑±↑ ↑±↑ ↑±↑ ↑±↑ ↑±↑ ↑±↑ ↑±↑
TransMorph 46.8 M 1.215± 0.459 6.221± 1.813 4.738± 0.926 3.489± 3.174 15.329± 6.015 20.046± 16.595 39.186± 15.634 30.938± 11.596 7.950± 1.028
D-PRNet 1.2 M 4.081± 1.298 9.402± 0.939 0.258± 0.262 11.621± 2.591 19.445± 3.051 6.128± 0.506 27.491± 5.682 41.544± 5.765 6.709± 0.318
RCN 282 M 1.023± 0.034 3.749± 0.297 5.368± 0.355 2.006± 0.160 9.279± 0.932 7.120± 0.305 5.014± 1.692 23.953± 4.785 7.563± 0.510
FourierNet 1.1 M 1.469± 0.096 2.825± 0.070 0.001± 0.001 2.496± 0.203 3.561± 0.115 0.003± 0.005 4.221± 0.234 4.005± 0.100 0.004± 0.006
Ours (feat. warp) 1.5 M 2.384± 0.491 1.854± 0.369 0.000± 0.000 2.982± 1.089 3.031± 1.016 0.000± 0.000 4.109± 2.371 6.436± 3.811 0.001± 0.001
Ours (GeoReg) 1.7 M 1.880± 0.431 1.614± 0.239 0.000± 0.000 3.567± 0.960 2.576± 0.703 0.000± 0.000 6.275± 3.026 4.437± 2.774 0.063± 0.347

from the CamCAN dataset. Next, we recover intra-subject inhale-exhale motion using the National
Lung Screening Trial (NLST) dataset. Results outlined in Table 2 show our model demonstrates
accuracy on par with the state-of-the-art across all registration tasks using fewer learnable parameters.

3.2 DISCUSSION AND FUTURE WORK

In the absence of ground truth deformation fields, registration algorithms are evaluated using surrogate
measures of accuracy that compete against transformation regularity. As a result, one has to resort
to inspecting the registration results qualitatively. This can be observed in Table 1 in the rotation
experiments, where Transmorph demonstrates high HD95 performance while suffering from a high
folding ratio. The inadequacy of the transformation becomes prominent in Figure 3, where Trans-
morph displays a poor qualitative registration result. On the other hand, we believe our approaches’
top-down composition of the transformation by predicting hierarchical refinements provides a strong
architectural prior to regularizing a registration task. This also explains our method’s high perfor-
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Figure 3: Qualitative results for an intra-subject (45≃, 0≃, 0≃) rotation experiment with added random
Brownian noise deformation. Red arrows indicate the same structure across all methods. Our method
is able to recover affine and deformable components despite modeling the transformation fully
deformably.

Table 2: Quantitative results measuring the accuracy and regularity of different registration methods on
brain T1w inter-subject (CamCAN) and inhale-exhale lung CT (NLST) registration. The performance
of GeoReg with bilinear feature warping instead of a learned interpolation component ς is shown
under ‘feat. warp’. The asterisk * denotes non statistically significant results of GeoReg over a given
baseline (p > 0.05).

Brain CamCAN Brain CamCAN T1T2 Lung NLST
# Param. DSC ↓ HD95 → Folding (%) → DSC ↓ HD95 → Folding (%) → DSC ↓ HD95 → TRE→ Folding (%) →

Affine - 0.604± 0.04 4.12± 0.07 - 0.604± 0.04 4.12± 0.07 - 0.928± 0.09 4.24± 0.05 9.07± 0.12 -
MIRTK [FFD] - 0.836± 0.03↑ 2.65± 0.48 0.10± 0.08 0.721± 0.06 3.65± 1.22 0.05± 0.03 0.971± 0.02↑ 1.31± 0.68 2.76± 0.05 0.03± 0.01
ANTs [SyN] - 0.808± 0.06 2.55± 0.08↑ 0.15± 0.05 0.767± 0.02↑ 3.05± 0.90↑ 0.10± 0.01 0.973± 0.02↑ 1.09± 0.12↑ 3.15± 1.05 0.02± 0.01
LDDMM - 0.820± 0.06 2.85± 0.88↑ 0.12± 0.01 0.752± 0.06 3.21± 0.95↑ 0.08± 0.01 0.984± 0.02↑ 1.25± 0.97↑ 3.06± 1.15 0.02± 0.03
VoxelMorph 320 k 0.806± 0.02 3.60± 0.93 0.32± 0.05 0.753± 0.03 3.88± 2.01 0.23± 0.03 0.971± 0.05↑ 2.01± 1.30 5.46± 0.66 0.13± 0.10
LapIRN 924 k 0.820± 0.04 3.06± 1.40 0.31± 0.02 0.758± 0.04 3.57± 2.27 0.33± 0.02 0.976± 0.02 1.12± 0.56 3.12± 1.01 0.12± 0.05
Transmorph 46.8 M 0.826± 0.01 2.75± 0.81 0.45± 0.02 0.768± 0.04↑ 3.04± 0.23↑ 0.32± 0.06 0.975± 0.04↑ 1.45± 0.53 4.59± 0.60 0.20± 0.16
D-PRNet 1.2 M 0.828± 0.02 2.89± 0.94 0.47± 0.04 0.733± 0.04 4.63± 1.98 0.28± 0.03 0.970± 0.05 1.92± 1.00 4.76± 0.62 0.19± 0.12
RCN 282 M 0.814± 0.01 2.63± 0.58↑ 0.17± 0.02 0.763± 0.28↑ 3.21± 1.65↑ 0.25± 0.05 0.965± 0.08↑ 2.56± 1.54 4.60± 0.64 0.11± 0.09
FourierNet 1.1 M 0.821± 0.06 2.52± 0.57↑ 0.18± 0.01 0.767± 0.18↑ 3.01± 1.60↑ 0.25± 0.05 0.973± 0.02 1.14± 0.12 3.15± 1.24 0.22± 0.01
Ours (feat. warp) 657 k 0.812± 0.07 2.51± 0.95↑ 0.13± 0.09 0.727± 0.07 2.95± 1.16↑ 0.27± 0.03 0.962± 0.09↑ 1.38± 0.41 5.32± 2.20 0.32± 0.02

Ours (GeoReg) 741 k 0.838± 0.06 2.45± 0.82 0.42± 0.06 0.778± 0.09 2.98± 0.89 0.16± 0.04 0.972± 0.03 1.08± 0.16 3.62± 0.63 0.23± 0.09

mance despite its comparatively low number of learnable parameters. Despite optimizations on
many aspects of the graph represented in memory, our method has a substantially larger memory
footprint than its grid-based counterparts due to having to store explicit intermediate coordinates.
Nonetheless, our layers’ ability to directly incorporate volume spacing into the deformation prediction
could present an interesting avenue to overcome the limitations of current registration approaches
in anisotropic tasks. Finally, this work has only explored large deformations under synthetically
transformed intra-subject brain data. However, these synthetic deformations might not capture all the
intricate differences of inter-subject registration scenarios. We plan to explore this in future work.

4 CONCLUSION

In this work, we introduce a novel formulation of deformable image registration by using geometric
deep-learning principles. We discuss the benefits of estimating deformations on non-fixed grid
locations by defining data-driven functions on continuous domains. We outline the need for two types
of learned graph operations: A deformation modeling function ϑ and a cross-resolution interpolation
function ς. Our multi-resolution architecture shows the ability to fully deformably capture a wide
range of rotations, translations, and scalings without explicitly modeling an affine component.

We believe that even though our work provides competitive results with state-of-the-art methods,
the main contribution of our manuscript lies in establishing a theoretical foundation by which
transformations can be explicitly propagated through a deep learning architecture. We think that
this contribution opens up avenues of research to reduce the black-box nature of current learned
registration paradigms, incorporate ideas from conventional image registration into deep learning
architectures, and tackle known data issues such as anisotropicity.
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