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Abstract
We study the fair allocation of indivisible items for1

groups of agents from the perspectives of the agents2

and a centralized allocator. In our setting, the cen-3

tralized allocator is interested in ensuring the allo-4

cation is fair among the groups and between agents.5

This setting applies to many real-world scenarios,6

including when a school administrator wants to al-7

locate resources (e.g., office spaces and supplies)8

to staff members in departments and when a city9

council allocates limited housing units to various10

families in need across different communities. To11

ensure fair allocation between agents, we consider12

the classical envy-freeness (EF) notion. To ensure13

fairness among the groups, we define the notion14

of centralized group equitability (CGEQ) to cap-15

ture the fairness for the groups from the allocator’s16

perspective. Because an EF or CGEQ allocation17

does not always exist in general, we consider their18

corresponding natural relaxations of envy-freeness19

to one item (EF1) and centralized group equitabil-20

ity up to one item (CGEQ1). For different classes21

of valuation functions of the agents and the cen-22

tralized allocator, we show that allocations satis-23

fying both EF1 and CGEQ1 always exist and de-24

sign efficient algorithms to compute these alloca-25

tions. We also consider the centralized group max-26

imin share (CGMMS) from the centralized alloca-27

tor’s perspective as a group-level fairness objective28

with EF1 for agents and present several results.29

1 Introduction30

Fair division of indivisible items often deals with fairly allo-31

cating a set of (discrete or indivisible) items to a set of agents32

who have preferences over the items. Due to both practical33

and theoretical interests, fair division of indivisible items has34

received considerable attention in various research communi-35

ties, such as economics, mathematics, and computer science,36

for much of the past century [Moulin, 2004; Amanatidis et al.,37

2023]. In practice, fair division of indivisible items has many38

real-world applications ranging from course allocation (i.e.,39

for allocating schedules of courses to students) to goods divi-40

sion (i.e., dividing artworks or furniture among individuals),41

in which the Course Match [Budish et al., 2017] mechanism 42

and the Spliddit [Goldman and Procaccia, 2015] online plat- 43

form have been developed, to provide fair allocations subject 44

to agent preferences and appropriate fairness notions (e.g., 45

envy-freeness and their relaxations) for the respective appli- 46

cations. In theory, fair division of indivisible items has led to 47

the development of numerous notions such as envy-freeness 48

up to one/any item, proportionality up to one/any item, and 49

maximin share fair for quantifying fairness, algorithms (e.g., 50

round-robin or envy-graph procedure [Lipton et al., 2004]) 51

for providing (approximately) fair allocations, and techniques 52

for (partially) characterizing the existence of fair allocation. 53

[Amanatidis et al., 2023]. 54

Allocator’s Preference. A main drawback of existing studies 55

of fair division of indivisible items is the lack of considera- 56

tion from the allocator’s perspective, who is responsible for 57

implementing the allocation and has preferences on how the 58

items should be allocated to the set of agents [Bu et al., 2023]. 59

As a result, [Bu et al., 2023] initiated the study of fair division 60

of indivisible items from both the allocator’s and agents’ per- 61

spectives, where each agent has a valuation preference over 62

the items, and the allocator has a separate valuation prefer- 63

ence for each agent over the items (specifying their internal 64

values for the agent receiving the items). Moreover, they fo- 65

cus on allocations that satisfy relaxations of envy-freeness 66

between agents under both the allocator’s valuation for each 67

agent and agent valuations. 68

As a motivating example, [Bu et al., 2023] discussed the 69

situations where the government (as the allocator) needs to 70

distribute education resources (e.g., funding and staff mem- 71

bers) to different schools (as agents) in which the schools 72

and the government have separate preferences over the ed- 73

ucation resources based on their needs and macroeconomic 74

policy for schools, respectively. In addition, the work of [Bu 75

et al., 2023] provided examples where a company allocates 76

resources to different departments, an advisor allocates tasks 77

or projects to students, and conference organizers allocate pa- 78

pers to reviewers that require the consideration of both the 79

allocator’s and agents’ preferences. 80

Our Study: Centralized Allocator’s Preference. Building 81

on the work of [Bu et al., 2023], we introduce a centralized 82

allocator who is interested in ensuring fairness at a group 83

level, where each agent naturally belongs to different prede- 84



Centralized
allocator’s valuation

Agents’
valuations EF1+CGEQ1

Arbitrary Identical ✓ (Poly time)
(Thm 1)

Ordered ✓ (Poly time)
(Thm 2)

Binary Arbitrary ✓ (Poly time)
(Thm 3)

Table 1: Summary of our main results.

fined groups in the fair allocation. For instance, building on85

the above-mentioned example, a school administrator, tasked86

with allocating limited resources (e.g., office spaces and sup-87

plies) to staff members from departments within the school88

[Perez, 2022], needs to ensure that the allocation is also fair89

at the department (group) level. A city council, tasked with90

allocating limited housing units to various neighborhoods in91

need across different communities [Gray, 1976], needs to en-92

sure the allocation is fair with respect to different communi-93

ties. Finally, a government distributing resources to different94

schools needs to ensure that the allocation is fair with respect95

to the schools. Therefore, in this paper, our goal is to explore96

the fair division of indivisible items, which not only provides97

fairness for the agents but also guarantees fairness for the cen-98

tralized allocator.99

1.1 Our Contribution100

We study the fair division of indivisible items for groups of101

agents from the perspectives of the agents and the centralized102

allocator. Each agent belongs to one of the groups (e.g., based103

on their associations) and has an additive valuation function104

over the items. The centralized allocator has a common ad-105

ditive valuation function indicating their values for the items106

measured in standardized units (e.g., investment value, mon-107

etary amount, and space).108

To ensure fair allocation among agents, we consider the109

classical envy-freeness (EF) notion. To ensure fairness110

among the groups, we define the notion of centralized group111

equitability (CGEQ) to capture the fairness for the groups112

from the centralized allocator’s perspective that compares the113

weighted proportion of values received by each group. Be-114

cause an EF or CGEQ allocation does not always exist in gen-115

eral, we consider their corresponding natural relaxations of116

envy-freeness up to one item (EF1) and centralized group eq-117

uitability up to one item (CGEQ1). Following the idea from118

[Bu et al., 2023], we strive to answer the following questions.119

Under which conditions can we guarantee the ex-120

istence of EF1+CGEQ1 allocations? If so, can we121

design algorithms to compute them efficiently?122

To address the above questions, we examine different123

classes of valuation functions of the agents/allocator. The124

presence of the centralized allocator introduces a fundamen-125

tal shift in both the fairness notions and the algorithmic chal-126

lenges involved. The techniques we develop, though some-127

times inspired by classic methods such as round-robin, are128

nontrivial extensions that integrate allocator-aware priorities 129

and group-level proportionality. Specifically, our key contri- 130

butions are as follows (summarized in Table 1): 131

• When each agent has an identical valuation function. 132

Even though agents are indistinguishable in terms of 133

preferences, the allocator’s independent valuation in- 134

troduces nontrivial global constraints. Our DM Algo- 135

rithm (Algorithm 1) constructs a temporary allocation 136

satisfying EF1 for both agents and allocator, using a 137

match-based process guided by the allocator’s prefer- 138

ences. Then, it reallocates bundles to achieve CGEQ1 139

while preserving agent-level EF1. This dynamic reas- 140

signment highlights the allocator’s role in determining 141

group-level equity even under agent homogeneity. 142

• When all agents and the allocator share the same ordinal 143

ranking of items, we propose the SPS Algorithm (Algo- 144

rithm 2) that simultaneously addresses item distribution 145

across groups and within groups. Despite the aligned 146

ordering, the absolute values may differ significantly un- 147

der separate allocator’s and agents’ valuation functions. 148

The allocator’s proportional fairness criteria — consid- 149

ering each group’s value-to-size ratio — guide item as- 150

signment to balance CGEQ1 and agent-level EF1. This 151

synchronization of dual fairness notions introduces de- 152

pendencies absent in standard ordinal settings. 153

• When the allocator classifies items into two types. 154

Our GDRR Algorithm (Algorithm 3) innovatively ex- 155

tends Round-Robin by introducing a reverse RR phase. 156

This two-phase procedure ensures EF1 for agents while 157

achieving CGEQ1, and cannot be reduced to standard 158

round-robin without losing group fairness. 159

• We also propose the Centralized Group Maximin 160

Share (CGMMS) as an allocator-centric optimization 161

benchmark and seek allocations that satisfy CGMMS for 162

the centralized allocator and EF1 for agents. 163

The remainder of the paper is organized as follows. In Sec- 164

tion 2, we formally define the notations and fairness notions 165

considered in our paper. In Sections 3, 4, and 5, we study 166

EF1+CGEQ1 allocations in identical valuations, ordered val- 167

uations, and binary valuations settings, respectively. In Sec- 168

tion 6, we discuss EF1+CGMMS allocations. In Section 7, 169

we conclude the paper and provide future research directions. 170

Due to space constraints, we refer readers to the appendix for 171

the missing proofs. 172

1.2 Related Work 173

There is an extensive line of work in the fair division of indi- 174

visible items. We refer readers to the survey [Amanatidis et 175

al., 2023] for an overview. Below, we review studies focusing 176

on allocations that consider group fairness and fairness from 177

the agents’ and allocator’s perspectives. 178

Fairness from the Agents’ and Allocator’s Perspectives. 179

As discussed earlier, the most relevant work is [Bu et al., 180

2023], where they initiated the study of fair division of in- 181

divisible items from the perspectives of the agents and the 182

allocator. Unlike our setting, their allocator is not centralized 183



— does not consider groups of agents and aims to ensure (al-184

most) envy-freeness between agents based on the allocator’s185

own valuations of the agents, in addition to the agents’ valu-186

ations.187

Group Fairness. Existing studies have examined group-fair188

division of indivisible items from only the agent perspec-189

tive. Some works focus on the predefined group. For ex-190

ample, [Aleksandrov and Walsh, 2018] defined group envy-191

freeness and group Pareto optimality, and studied the price192

of group envy-freeness. [Benabbou et al., 2019] considered193

the fair matching among different groups where each agent194

can pick at most one item. They studied the fairness crite-195

ria named typewise envy-freeness up to one item (TEF1), and196

showed that when agents have binary valuations, TEF1 al-197

locations can be computed in polynomial time. [Feige and198

Tahan, 2022] studied the notion of group proportional share199

fairness and group any price share fairness in different groups200

that may have different structures like laminar. [Manurangsi201

and Suksompong, 2024] studied the ordinal maximin share202

fairness among groups. There are other works that did not203

consider the predefined group. For example, [Conitzer et204

al., 2019] studied the group fairness among agents, where205

they considered any partition of agents, and showed that local206

optimal Nash welfare allocations satisfy two different relax-207

ations of group fairness that they defined. Later, [Aziz and208

Rey, 2021] extended it to the setting where items include both209

goods and chores. The survey of [Amanatidis et al., 2023] of-210

fers a comprehensive view of recent progress and open prob-211

lems in this field.212

The most related setting to the proposed study is the work213

of Scarlett et al. [2023], where they studied the compatibil-214

ity of individual envy-freeness and group envy-freeness from215

the agent perspective only. Moreover, they did not consider216

the centralized allocator and defined the group utility based217

on the agent’s valuation function instead of the centralized218

allocator’s valuation.219

2 Preliminaries220

In this section, we present notations and fairness notions for221

the considered setting of fair division of indivisible items with222

a set of agents and a centralized allocator.223

2.1 Notations224

For r ∈ N, let [r] = {1,2, . . . , r}. Let O = {o1, o2, . . . , om}225

be a set of m indivisible items, and N = [n] be a set of n226

agents. The set of n agents is partitioned into k ∈ N groups227

denoted by G = (G1, . . . ,Gk). Each agent belongs to exactly228

one group, i.e., Gp ∩Gq = ∅ for any p, q ∈ [k]. Additionally,229

our setting includes a centralized allocator.230

Each agent i ∈ N has an additive valuation function vi ∶231

2O → R≥0, i.e., for any S ⊆ O, vi(S) = ∑o∈S vi({o}).232

Specifically, we assume that vi(∅) = 0. The centralized allo-233

cator has her own preferences and is endowed with an addi-234

tive valuation function u: 2O → R≥0, i.e., for any S ⊆ O,235

u(S) = ∑o∈S u({o}) indicating their values for the items236

measured in standardized units (e.g., investment value, mon-237

etary amount, and space). Additionally, we assume that238

u(∅) = 0.239

For simplicity, we use vi(o) and u(o) instead of vi({o}) 240

and u({o}), respectively. Let Π(n,O) denote all n-partitions 241

of O. An allocation A = (A1, . . . ,An) ∈ Π(n,O), in which 242

Ai is the bundle allocated to agent i, is an n-partition of O 243

among n agents, i.e., ⋃i∈N Ai = O and Ai ∩ Aj = ∅ for 244

any two agents i ≠ j. A fair allocation instance is denoted 245

as I = ⟨O,N ,G,v, u⟩, where v = (v1, . . . , vn). Next, we 246

provide the formal definitions of the fairness notions for the 247

agents and the centralized allocator. 248

2.2 Fairness and Efficiency Notions 249

To ensure fair allocation between agents, we consider the 250

classical envy-freeness (EF) notion from the agent perspec- 251

tive. 252

Definition 1 (Envy-Freeness). An allocation A is envy-free 253

(EF), if for any two distinct agents i, j ∈ N , we have vi(Ai) ≥ 254

vi(Aj). 255

However, EF allocations do not always exist. Therefore, 256

we consider a natural and commonly studied relaxation of 257

EF, named envy-free up to one item. 258

Definition 2 (Envy-Freeness up to One Item). An allocation 259

A is envy-free up to one item (EF1) if, for any two agents 260

i, j ∈ N , vi(Ai) ≥ vi(Aj ∖ {o}) holds for some o ∈ Aj . 261

Next, we introduce our fairness notion from the central- 262

ized allocator’s perspective, which is called centralized group 263

equitability (CGEQ). 264

Definition 3 (Centralized Group Equitability). An alloca- 265

tion A is centralized group equitable (CGEQ) if for any two 266

groups Gp,Gq ∈ G,
u(⋃i∈Gp

Ai)

∣Gp∣
= u(⋃j∈Gq

Aj)

∣Gq ∣
holds. 267

This definition reflects an equitable view from the central- 268

ized allocator’s perspective, where the utility function u(⋅) 269

represents the authority’s valuation over bundles allocated to 270

different groups. CGEQ thus requires that each group re- 271

ceives, on average, the same utility as any other group, when 272

judged by the central authority. 273

Our definition is inspired by the concept of group envy- 274

freeness (GEF) introduced by Conitzer et al. [2019], which 275

evaluates group-level fairness using the same valuation func- 276

tion as the one used when computing EF1. However, unlike 277

their setting, where the same function governs both agents’ 278

and allocator’s evaluations, we follow the framework of Bu et 279

al. [2023] to consider separate valuation functions and focus 280

on group-level fairness from the centralized allocator’s stand- 281

point. In this way, our model synthesizes the two approaches, 282

applying Conitzer et al.’s group fairness structure to a setting 283

with heterogeneous valuations. 284

It is well-known that exact fairness conditions (like EQ) are 285

often too strong to satisfy with indivisible items. Similarly, 286

CGEQ allocations do not always exist. For example, consider 287

an instance with only one indivisible item and two groups 288

of equal size: any allocation gives utility to only one group, 289

making CGEQ impossible. 290

Motivated by the success of EF1 as a relaxation of envy- 291

freeness in the indivisible goods setting Lipton et al. [2004], 292

we propose the following relaxation notion. 293



Definition 4 (Centralized Group Equitability up to One Item).294

An allocation A is said to be centralized group equitable295

up to one item (CGEQ1) if, for any two groups Gp,Gq ∈296

G,
u(⋃i∈Gp

Ai)

∣Gp∣
≥ u(⋃j∈Gq

Aj∖{o})

∣Gq ∣
holds for some item o ∈297

⋃j∈Gq
Aj .298

We are interested in allocations that satisfy EF1 from299

the agent’s perspective and CGEQ1 from the centralized al-300

locator’s perspective. In particular, we study computing301

EF1+CGEQ1 allocations in various scenarios, including dif-302

ferent classes of valuation functions of the agents and the cen-303

tralized allocator. If the size of any group is one, i.e., ∣Gp∣ = 1304

for any Gp ∈ G, CGEQ1 degenerates into EF1. In this case,305

our setting reduces to a special case in Bu et al. [2023], where306

they showed that an EF1+EF1 allocation can be computed in307

polynomial time. Therefore, we consider the case where the308

size of some group is not one in Sections 3, 4, 5 and 6.309

3 Identical Valuations310

In this section, we first consider the case where the valuations311

of each agent and the centralized allocator are the same, i.e.,312

v1 = ⋯ = vn = u. In that case, our setting degenerates to that313

in Scarlett et al. [2023], where they study the combination314

of group and individual fairness and define the group utility315

based on one set of valuations (i.e., the agents’ valuations).316

Next, we consider the case where only the valuation of317

each agent is the same, i.e., v1 = ⋯ = vn, while the cen-318

tralized allocator’s valuation is arbitrary. For simplicity, let v319

denote the valuation of each agent. In that case, the algorithm320

in Scarlett et al. [2023] does apply directly since its technique321

heavily depends on the fact that the group utility is computed322

by using the agents’ valuations. However, the centralized al-323

locator’s valuation can be different from the agents’ valua-324

tions in our setting. Therefore, we propose a new algorithm325

named Draft-and-Match (DM), as described in Algorithm 1.326

The whole algorithm includes two phases. In Phase 1, the in-327

tuition of our algorithm is to partition the items into a tempo-328

rary allocation A′ by allocating the item that has the highest329

value to the agent whose bundle has the lowest value in each330

iteration. This approach ensures that the allocation is envy-331

free up to one item (EF1) with respect to both the agents’ and332

the centralized allocator’s valuation functions. In Phase 2,333

given the temporary allocation, we then follow specific rules334

to match and reallocate these bundles to the agents, which335

ensures the final allocation is CGEQ1 for the centralized al-336

locator. Since we consider identical agents’ valuations, this337

reallocation does not violate the EF1 property of each agent338

in A′, and the returned allocation is EF1+CGEQ1.339

Theorem 1. Given an instance where the valuation of each340

agent is the same, the Draft-and-Match Algorithm (Algorithm341

1) computes an EF1+CGEQ1 allocation in polynomial time.342

Before proving Theorem 1, we first give the following lem-343

mas. In Lemma 1, we show that the temporary allocation A′344

is EF1 with respect to both the agents’ and the centralized al-345

locator’s valuation functions. Then in Lemma 2, we show that346

after the reallocation of bundles inA′, the returned allocation347

A is CGEQ1.348

Algorithm 1: Draft-and-Match (DM)
Input: An instance I = ⟨O,N ,G,v, u⟩ with identical

agents’ valuation functions
Output: An EF1+CGEQ1 allocation A

1 Let A′ = (∅, . . . ,∅) and A = (∅, . . . ,∅);
2 - - - - - Phase 1: Partition O into allocation A′ - - - - -
3 Add n − (m mod n) dummy items where each agent

and the centralized allocator have the valuation of
zero to O;

4 Let Os be the array of sorted goods with respect to u
in non-increasing order;

5 Let N ′ = N ;
6 while Os ≠ ∅ do
7 Let On be the first n items in Os and

Os ← Os ∖On;
8 while On ≠ ∅ do
9 A

′

imin
← A

′

imin
∪ {omax}, where

imin ∈ argmini∈N ′ v(A′i) and
omax ∈ argmaxo∈On v(o) (breaking ties
arbitrarily);

10 N ′ = N ∖ {imin} and On ← On ∖ {omax};

11 - - - - Phase 2: Match the bundles in A′ to agents - - - -
12 Assume that the groups are in non-decreasing order of

size, i.e., ∣G1∣≤ . . . ≤ ∣Gk ∣;
13 tp ← 0, ∀p ∈ [k], tp is the total number of times that

Gp has been picked so far;
14 while A′ ≠ (∅, . . . ,∅) do
15 if ∃tp = 0 then
16 p∗ ←min{p∣p ∈ [k] and tp = 0};
17 else
18 p∗ ← argminp∈[k]

tp
∣Gp∣

(breaking ties by

selecting p that reaches minp∈[k]
tp
∣Gp∣

the
latest);

19 Arbitrarily choose one agent i∗ ∈ Gp∗ , where
Ai∗ = ∅;

20 Ai∗ ← A′imax
, where

A′imax
∈ argmaxA′i∈A′ u(A

′

i);
21 tp∗ ← tp∗ + 1;
22 A

′

imax
← ∅;

23 return A

Lemma 1. The allocationA′ (computed in Phase 1) in Algo- 349

rithm 1 is EF1 with respect to both the agents’ and the cen- 350

tralized allocator’s valuation functions. That is, for any i, j ∈ 351

[n], we have v(A′i) ≥ v(A′j ∖{o}) and u(A′i) ≥ u(A′j ∖{o′}) 352

for some o, o′ ∈ A′j . 353

Since the agents’ valuation functions are identical, EF1 al- 354

lows us to rearrange the bundles without violating fairness at 355

the individual level. Leveraging this flexibility, we aim to re- 356

arrange the bundles to meet the group-level fairness criterion 357

(CGEQ1) while preserving EF1 for the agents, as any agent’s 358

bundle is already “close” in value to others up to one item. 359



B1
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q B3

q B2
p B4
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time

Figure 1: Example where ∣Gp∣ = 2 and ∣Gq ∣ = 5, with Gq receiving
the first bundle during the re-allocation process. We denote Bi

z as
the bundle received by Gz in the i-th allocation. The red squares
represent bundles received by Gq , and the blue squares represent
bundles received by Gp.

Lemma 2. In Algorithm 1, the returned allocation A is360

CGEQ1.361

Proof Sketch. To prove that the allocation is CGEQ1, we362

need to show that for any two groups Gp and Gq , Gp will363

not envy Gq . Let B1
p ,B

2
p , . . . ,B

∣Gp∣

p and B1
q ,B

2
q , . . . ,B

∣Gq ∣

q364

represent the bundles allocated to agents in Gp and Gq , re-365

spectively, during the reallocation process (see Figure 1 for an366

example). We remove the most valuable item in the central-367

ized allocator’s perspective from B1
q , the first bundle received368

by Gq . After removing this item, B1
q becomes the least valu-369

able among all bundles (from both Gp and Gq).370

Next, we duplicate each bundle received by Gp ∣Gq ∣ times371

and each bundle received by Gq ∣Gp∣ times, ordering all du-372

plicated bundles in non-decreasing order of value. In this373

sequence, ∣Gp∣ copies of B1
q (with one item removed) now374

become the least valuable. This duplication transforms the375

problem of comparing the average values of the bundles into376

comparing the sum of the values of all duplicated bundles.377

We then perform a pairwise comparison between the du-378

plicated bundles from both groups. In this comparison, each379

duplicated bundle from Gp is at least as valuable as the corre-380

sponding duplicated bundle from Gq . Therefore, Gp will not381

envy Gq , and the allocation satisfies CGEQ1.382

Proof of Theorem 1. By Lemmas 1 and 2, and the fact that383

each agent has the same valuation, it can be concluded that384

the final allocation is EF1+CGEQ1. Next, let us consider the385

time complexity. Without loss of generality, we assume that386

m ≥ n. In the first part of our algorithm, it takes O(m logm)387

to sort the items, and then for each iteration, selecting an388

agent takes O(n) time, and choosing their favorite item takes389

O(m) time. Note that there are O(⌈m
n
⌉) iterations. In the390

second part of our algorithm, there are O(n) iterations in391

the while loop. For each iteration, selecting the target group392

and agent takes O(nk) time, and choosing the bundle with393

the highest value from the centralized allocator’s perspective394

takes O(n) time. Therefore, the total running time of our395

algorithm is O(m2 +m logm + n2k).396

4 Ordered Valuations397

In this section, we consider the instance I with ordered valu-398

ations, where each agent i ∈ N and the centralized allocator399

share the same ranking or preference for all items. Specifi-400

cally, vi(o1) ≥ ⋯ ≥ vi(om) and u(o1) ≥ ⋯ ≥ u(om). The401

challenge in our setting arises when certain items are valued402

oppositely by the agents and the centralized allocator. In such403

cases, ordered valuations may help us circumvent this issue.404

o1
o2

o3

o4
o5

o6
o7

o8
o9

o10
o11

o12

G1 G2 G3

1
2
3

4
5
6
7
8
9
10
11
12

Figure 2: An illustration of the allocation process of the first twelve
items. Assume that there are three groups G1, G2, and G3, where
each group has 3, 4, and 5 agents respectively. The arrow means the
sequence of the allocation of these twelve items. For example, in
G1, agent 1 with ℓ1 = 0 picks o1, agent 6 with ℓ6 = 2 picks o6, and
agent 10 with ℓ10 = 3 picks o10. Then, in the following iterations, if
G1 receives some item, the algorithm will follow the order to select
the target agent.

Inspired by the algorithm that computes a weighted EF1 405

allocation in Chakraborty et al. [2021], we propose the Syn- 406

chronous Picking Sequence Algorithm, detailed in Algorithm 407

2. Our algorithm operates by allocating a set of items in sev- 408

eral batches, where each batch has n items. If there are less 409

than n items left, we can add some dummy items that have 410

a zero value for the agents and the centralized allocator. For 411

each item within a batch, there are two phases of allocation. 412

In the first phase, the algorithm assigns the item to a group. 413

In the second phase, the item is allocated to a specific agent 414

within that group. Every agent receives exactly one item per 415

batch. By structuring the allocation in this way, the algo- 416

rithm mirrors a specialized round-robin algorithm. Figure 2 417

illustrates the allocation process of the first batch (first twelve 418

items) for an instance where there are three groups that have 419

3, 4, and 5 agents, respectively, as computed by Algorithm 2. 420

Theorem 2. Given an instance with ordered valuations, the 421

Synchronous Picking Sequence (Algorithm 2) computes an 422

EF1+CGEQ1 allocation in polynomial time. 423

5 Binary Allocator Valuations 424

In this section, we consider the instance I where the cen- 425

tralized allocator has a binary valuation function, i.e., for 426

each item o, either u(o) = 0 or u(o) = 1 holds. We show 427

that an EF1+CGEQ1 allocation always exists, which can be 428

computed by the Group-Decided Round-Robin Algorithm 429

(GDRR, Algorithm 3) in polynomial time. 430

The idea behind Algorithm 3 is as follows: First, we fig- 431

ure out a special order for agents. This order is designed 432

so that when we allocate items valued at 1 (from the allo- 433

cator’s perspective) using a round-robin approach, it satisfies 434

the CGEQ1 property. Once the allocation of items with a 435

value of 1 is completed, we proceed to allocate items with a 436

value of 0 from the allocator’s perspective. These items do 437

not affect the CGEQ1 property. For this allocation, we use 438



Algorithm 2: Synchronous Picking Sequence (SPS)
Input: An instance I = ⟨O,N ,G,v, u⟩ with ordered

valuation functions
Output: An EF1+CGEQ1 allocation A

1 Let A = (∅, . . . ,∅);
2 Add n − (m mod n) dummy items whose value is

zero for the agents and the centralized allocator to O;
3 Assume that the groups are ordered in non-decreasing

order of size, i.e., ∣G1∣≤ . . . ≤ ∣Gk ∣;
4 Set tp ← 0, ∀p ∈ [k] and ℓi ← 0, ∀i ∈ N ;
5 while O ≠ ∅ do
6 Let On be the first n items in O and O ← O ∖On;
7 while On ≠ ∅ do
8 Let omax ∈ argmaxo∈On u(o);
9 - Phase 1: Decide which group receives this

item -
10 if ∃tp = 0 then
11 p∗ ←min{p∣p ∈ [k] and tp = 0};
12 else
13 p∗ ← argminp∈[k]

tp
∣Gp∣

(breaking ties by

selecting p that reaches minp∈[k]
tp
∣Gp∣

the
latest);

14 - Phase 2: Decide which agent picks this item -

15 if ∃i∗ ∈ Gp∗ such that Ai∗ = ∅ then
16 Ai∗ ← {omax} and ℓi∗ ← tp∗ ;
17 else
18 Find the agent i∗ whose label ℓi∗ equals

tp∗ mod ∣Gp∣, and Ai∗ ← Ai∗ ∪ {omax};
19 tp∗ ← tp∗ + 1 and On ← On ∖ {omax};

20 return A

the reverse of the previously determined sequence and per-439

form another round-robin distribution based on the agents’440

valuation functions.441

Theorem 3. Given an instance where the centralized al-442

locator has the binary valuation function, the Group-443

Decided Round Robin Algorithm (Algorithm 3) computes an444

EF1+CGEQ1 allocation in polynomial time.445

We divide the proof of Theorem 3 into two parts, corre-446

sponding to the two properties of the allocation computed by447

Algorithm 3: CGEQ1 and EF1. These properties are estab-448

lished in the following lemmas.449

Lemma 3. The output allocation in Algorithm 3 is CGEQ1.450

Proof. It suffices to show that at any point during the al-451

location process of the first bundle, the partial allocation452

is CGEQ1. We prove the statement by induction. Be-453

fore allocating any item, the allocation is trivially CGEQ1.454

Fix two groups p and q. Suppose that after allocating k455

items, Gp and Gq receive c1 and c2 items, respectively, and456

c1/∣Gp∣ ≤ c2/∣Gq ∣. If the (k + 1)-th item is not allocated to457

Algorithm 3: Group-Decided Round-Robin (GDRR)
Input: An instance I = ⟨O,N ,G,v, u⟩ with binary

allocator valuation functions
Output: An EF1+CGEQ1 allocation A

1 Let A = (∅, . . . ,∅);
2 Denote the collection of items with u(o) = 1 as O1

and the collection of items with u(o) = 0 as O2;
3 Set tp ← 0, ∀p ∈ [k] and ℓi ← 0, ∀i ∈ N ;
4 Set t← 0;
5 while O1 ≠ ∅ do
6 if ∃i such that Ai = ∅ then
7 if ∃tp = 0 then
8 p∗ ←min{p∣p ∈ [k] and tp = 0};
9 else

10 p∗ ← argminp∈[k]
tp
∣Gp∣

(breaking ties by

selecting p that reaches minp∈[k]
tp
∣Gp∣

the
latest);

11 Find agent i∗ ∈ Gp∗ with Ai∗ = ∅;
12 Ai∗ ← {omax} where

omax ∈ argmaxo∈O1 vi∗(o);
13 ℓi∗ ← t;
14 tp∗ ← tp∗ + 1;
15 else
16 Find agent i∗ whose label ℓi∗ equals t
17 Ai∗ ← Ai∗ ∪ {omax} where

omax ∈ argmaxo∈O1 vi∗(o);
18 t← (t + 1) mod n;
19 O1 ← O1 ∖ {omax};
20 t← n − 1;
21 while O2 ≠ ∅ do
22 Find agent i∗ with ℓi∗ equals t;
23 Ai∗ ← Ai∗ ∪ {omax} where

omax ∈ argmaxo∈O2 vi∗(o);
24 O2 ← O2 ∖ {omax};
25 t← (t − 1) mod n;
26 return A

Gp or Gq , then Gp and Gq will not envy each other. Oth- 458

erwise, the (k + 1)-th item must go to Gp. Thus, we have 459

c′1/∣Gp∣ > c1/∣Gp∣ ≥ (c2 − 1)/∣Gq ∣, and c2/∣Gq ∣ ≥ c1/∣Gp∣ = 460

(c′1 − 1)/∣Gp∣. 461

Lemma 4. The allocation computed by Algorithm 3 is EF1. 462

Proof. We assume that ∣O1∣ = k1n and ∣O2∣ = k2n, as we 463

can always achieve this by adding dummy items with value 0 464

from all agents’ perspectives. 465

Fix two agents i and j with i < j. Denote i’s items as 466

oi,1, . . . , oi,k1+k2 and j’s items as oj,1, . . . , oj,k1+k2 . We have 467

vi(oi,k) ≥ vi(oj,k) for 1 ≤ k ≤ k1 and vj(oj,k) ≥ vj(oi,k+1) 468

for 1 ≤ k < k1. Similarly, we have vj(oj,k) ≥ vj(oi,k) for 469

k1 +1 ≤ k ≤ k1 +k2 and vi(oi,k) ≥ vi(oj,k+1) for k1 +1 ≤ k < 470

k1 + k2. 471



Thus, we have
k1+k2

∑
k=1

vi(oi,k) ≥
k1

∑
k=1

vi(oi,k) +
k1+k2−1

∑
k=k1+1

vi(oi,k)

≥
k1

∑
k=1

vi(oj,k) +
k1+k2

∑
k=k1+2

vi(oj,k)

= (
k1+k2

∑
k=1

vi(oj,k)) − vi(oj,k1+1),

and
k1+k2

∑
k=1

vj(oj,k) ≥
k1−1

∑
k=1

vj(oj,k) +
k1+k2

∑
k=k1+1

vj(oj,k)

≥
k1

∑
k=2

vj(oi,k) +
k1+k2

∑
k=k1+1

vj(oi,k)

= (
k1+k2

∑
k=1

vj(oi,k)) − vj(oi,1),

implying that agents i and j will not envy each other up to472

one item.473

6 Centralized Group Maximin Share474

In the previous discussion, the allocator achieves group-level475

fairness among agents through an additional fairness require-476

ment (CGEQ1). Now, we shift our focus to optimizing group-477

level fairness objectives directly, aiming to achieve fairness478

from a centralized perspective while still maintaining EF1 for479

the agents. This can be understood as the allocator striving to480

find the “best” fair allocation.481

In this case, the utilitarian social welfare (∑n
i=1 u(Ai)) is482

not suitable to be the optimization objective since it not only483

remains invariant regardless of the allocation computed but484

also fails to reflect group-level fairness. Instead, we focus on485

the share-based fairness objective from the centralized allo-486

cator’s perspective, which is called centralized group max-487

imin share (CGMMS). This definition is motivated by the488

well-study notion – maximin share fairness (MMS) [Budish,489

2011]. Our main goal is to find an allocation that satisfies CG-490

MMS and EF1 from the agents’ perspective simultaneously.491

Definition 5 (Centralized Group Maximin Share). Let O be492

the set of items and Πn(O) be the set of n-partitions of O493

(which may be subject to some constraints). The centralized494

group maximin share CGMMS is defined as:495

CGMMS = max
A∈Πn(O)

min
Gp∈G

u(∪i∈GpAi)
∣Gp∣

.

An allocationA is centralized group maximin share fair (CG-496

MMS) if it holds that minGp∈G

u(∪i∈GpAi)

∣Gp∣
= CGMMS.497

However, for the most general case, computing a CGMMS498

allocation is strongly NP-hard, which can be reduced from499

the 3-partition problem. Thus, we directly have the following500

proposition.501

Proposition 1. Computing a CGMMS allocation subject to502

EF1 for agents is strongly NP-hard.503

We notice that when agents have identical valuation func- 504

tions or for instances with ordered valuations, computing an 505

EF1+CGMMS allocation is still strongly NP-hard. However, 506

when the centralized allocator has a binary valuation func- 507

tion, it can be solved efficiently. 508

Theorem 4. When the centralized allocator has a binary val- 509

uation function, computing a CGMMS allocation subject to 510

EF1 for agents can be achieved in polynomial time. 511

Proof. We first notice that CGMMS (without considering 512

EF1) can be computed in polynomial time. Since each 513

item’s value (from the allocator’s perspective) is either 1 514

or 0, there are only polynomially many possible values for 515

u(∪i∈GpAi)/∣Gp∣. Denote this set by S. Thus, we can enu- 516

merate values x ∈ S and check whether CGMMS ≥ x holds. 517

The constraints are that each group should receive at least a 518

certain number of items valued at 1, and the total number of 519

items with value 1 should be sufficient to meet the require- 520

ments of all agents. 521

Let r = ⌊CGMMS⌋. Define O1 (resp. O2) as the set of 522

items valued at 1 (resp. 0) from the allocator’s perspective. 523

There exists an allocation where each agent receives r items, 524

and additionally, some agents in each group may receive an 525

extra item to ensure the allocation achieves CGMMS. For 526

these agents receiving extra items, we label them sequentially 527

as 1,2, . . . , (∣O1∣ − n ⋅ r). For the remaining agents, we label 528

them as (∣O1∣ − n ⋅ r + 1), . . . , n. 529

Next, we show that there is an EF1 allocation that achieves 530

CGMMS. We apply a method similar to Algorithm 3. Using 531

the computed order, we perform a forward round-robin allo- 532

cation of O1, followed by a reverse round-robin allocation of 533

O2. By Lemma 4, the allocation computed is EF1, and it also 534

achieves CGMMS. 535

7 Conclusion 536

In this paper, we study the fair division of indivisible items 537

from the perspectives of agents and a centralized allocator. 538

We propose to use EF1 and CGEQ1 to measure the fairness 539

from the agents’ and the centralized allocator’s perspectives, 540

respectively, and aim to compute allocations that satisfy EF1 541

and CGEQ1 simultaneously. We show that EF1+CGEQ1 542

allocations always exist for different classes of agents’ and 543

the centralized allocator’s valuation functions, which can be 544

computed in polynomial time. As for optimizing group-level 545

fairness objectives, we show that, in general, finding a CG- 546

MMS allocation is hard, but an EF1+CGMMS allocation can 547

be computed within polynomial time when the centralized al- 548

locator has a binary valuation function. 549

For future work, a natural direction is to determine whether 550

an allocation satisfying the above two fairness notions ex- 551

ists in more general settings. We have searched for a non- 552

existence counterexample with the aid of computer programs, 553

but it seems to be hard to find such an instance. Further, we 554

can explore the setting where the agents and the centralized 555

allocator have beyond additive valuation functions like sub- 556

modular or subadditive valuation functions and design algo- 557

rithms that efficiently return EF1+CGEQ1 allocations. For 558

the group-level fairness objective, we can approximately op- 559

timize CGMMS subject to EF1 for agents. 560
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A Missing proofs627

A.1 Proof of Lemma 1628

Proof. We use mathematical induction to show that for each629

agent i ∈ N and the centralized allocator, the temporary al-630

location A′ is EF1 with respect to their valuation functions.631

Since all agents have the same valuation function, no envy632

cycle occurs in any allocation. Hence, there is no need to633

eliminate envy cycles during the iteration. This claim also634

holds for the centralized allocator.635

For the base case, it is clear that the empty bundle is EF1636

with respect to the agents’ valuation functions and the cen-637

tralized allocator’s valuation function.638

Next, for the induction step, we assume that in the639

kth iteration, any bundle in the partial allocation A′(k) =640

(A′(k)1 , . . . ,A
′(k)
n ) is EF1 with respect to the agents’ val-641

uation functions and the centralized allocator’s valuation642

function, i.e., for any two bundles A
′(k)
i and A

′(k)
j , both643

v(A′(k)i ) ≥ v(A′(k)j ∖ {o}) and u(A′(k)i ) ≥ u(A′(k)j ∖ {o})644

hold for some o ∈ A
′(k)
j . We now show that this property645

continues to hold after the (k + 1)th iteration.646

Fix two arbitrary agents i, j ∈ N . Let o(k+1)i and o
(k+1)
j647

denote the items allocated to agent i and j, respectively.648

Without loss of generality, assume that agent j picks o
(k+1)
j649

first, which implies that v(A′(k)i ) ≥ v(A′(k)j ), v(o(k+1)j ) ≥650

v(o(k+1)i ), and u(o(k+1)j ) ≥ u(o(k+1)i ). For agent i, we have651

v(A′(k+1)i ) ≥ v(A′(k)i ) ≥ v(A′(k)j ) = v(A′(k+1)j ∖ {ok+1j }),

and for agent j, we have652

v(A′(k+1)j ) = v(A′(k)j ) + v(o(k+1)j )

≥ v(A′(k)i ∖ {o}) + v(o(k+1)i ) = v(A′(k+1)i ∖ {o})

for some o ∈ A
′(k)
i . Therefore, after the (k + 1)th itera-653

tion, any bundle in the partial allocation is still EF1 to each654

agent’s valuation function. Since the items are indexed in655

non-increasing order of the centralized allocator’s valuation,656

and the first n items from the remaining items are allocated to657

agents in each iteration, we get u(o(ℓ)j ) ≥ u(o(ℓ+1)i ) for any658

two agents i, j ∈ N , and any ℓ ∈ [k].659

Then, for the centralized allocator, it holds that ∀i, j ∈ N660

u(A′(k+1)i ) =
k+1

∑
s=1

u(o(s)i ) ≥
k+1

∑
s=2

u(o(s)j ) = u(A
′(k+1)
j ∖{o(1)j })

Thus, after the (k + 1)th iteration, any bundle in A′(k+1) is661

still EF1 under the centralized allocator’s valuation function.662

This completes the induction and establishes the correctness663

of our proof.664

A.2 Proof of Lemma 2665

Proof. It suffices to show that for any two groups Gp and666

Gq ,
u(⋃i∈Gp

Ai)

∣Gp∣
≥ u(⋃i∈Gq

Ai∖{o})

∣Gq ∣
holds for some item o ∈667

⋃i∈Gq
Ai. Gp and Gq will obtain bundles alternatively ac- 668

cording to Algorithm 1. Without loss of generality, we as- 669

sume that ∣Gp∣ ≥ ∣Gq ∣. Notice that at any point during the 670

allocation process, the values tp
∣Gp∣

and tq
∣Gq ∣

differ by at most 671

1
∣Gq ∣

. This is because when Gq receives a new bundle, its allo- 672

cation ratio tq
∣Gq ∣

is less than or equal to that of Gp, and receiv- 673

ing one more bundle increases this ratio by 1
∣Gq ∣

. Similarly, if 674

Gp receives a new bundle, its allocation ratio increases by 675
1
∣Gp∣

. 676

Let r1, r2, . . . , r∣Gp∣ represent the first, second, ..., (ti + 677

1)th pick of some agent in Gp, where the bundle 678

B0,B1, . . . ,B∣Gp∣ from A′ is allocated to some agent in Gp, 679

respectively. Let the number of bundles that Gq receives 680

during the time intervals (r1, r2), (r2, r3), . . . , (rti , rti+1) be 681

denoted by f1, f2, . . . , fti , respectively. Define f0 as the num- 682

ber of bundles received by Gq before r1, and f∣Gp∣+1 as the 683

number of bundles received after r∣Gp∣+1. 684

We first prove the desired inequality: 685

u (⋃i∈Gp
Ai)

∣Gp∣
≥
u (⋃i∈Gq

Aj ∖ {o})
∣Gq ∣

(1)

for some item o ∈ ⋃i∈Gq
Aj , and the proof of the reverse di- 686

rection is similar. To prove Inequality (1), it is sufficient to 687

show that 688

u
⎛
⎝ ⋃i∈Gp

Ai

⎞
⎠
⋅ ∣Gq ∣ ≥ u

⎛
⎝ ⋃j∈Gq

Aj ∖ {o}
⎞
⎠
⋅ ∣Gp∣.

Given the EFI property established previously, for any bun- 689

dle, removing its most valuable item results in a lower value 690

than any other bundle. Thus, we can prove a stronger condi- 691

tion: we always remove the most valuable item from the first 692

bundle received by Gq and then compare the average values 693

of the received by both groups. Equivalently, we construct the 694

following strategy to compare the two sides of the inequality: 695

• For each bundle received by Gp, duplicate it ∣Gq ∣ times. 696

• For each bundle received by Gq , duplicate it ∣Gp∣ times. 697

This results in a total of ∣Gp∣ × ∣Gq ∣ bundles for each group. 698

We will now compare the total value of these duplicated bun- 699

dles. 700

Note that every time right before Gp receives a new bundle, 701

the following inequality holds: 702

∑k
i=0 fi
∣Gq ∣

≤ k

∣Gp∣
+ 1

∣Gq ∣
.

This is due to the previously mentioned property that the 703

difference between the allocation ratios of any two groups is 704

bounded by 1
∣Gq ∣

. Rearranging this inequality, we obtain 705

(
k

∑
i=0

fi) ⋅ ∣Gp∣ ≤ k ⋅ ∣Gq ∣ + ∣Gp∣. (2)

Next, consider the order of the duplicated bundles for 706

both groups. For Gq , the value of the duplicated bun- 707

dles is arranged in descending order as follows: first 708



B2
q ,B

3
q , . . . ,B

∣Gq ∣

q , each repeated ∣Gp∣ times. Finally, B1
q ,709

with its most valuable item removed, is repeated ∣Gp∣ times.710

Similarly, for Gp, the value of its duplicated bundles is ar-711

ranged in descending order as B1
p ,B

2
p , . . . ,B

∣Gp∣

p , each re-712

peated ∣Gq ∣ times.713

We can perform a pairwise comparison of the total val-714

ues of corresponding duplicated bundles from both groups.715

Specifically, we compare the ith highest value bundle in Gp716

with the ith highest value bundle in Gq . For the bundles re-717

ceived by Gp, consider the ((k − 1)∣Gq ∣ + 1)th to (k ⋅ ∣Gq ∣)th718

bundles, for 1 ≤ k ≤ ∣Gp∣. These bundles have the value of719

u(Bk
p), which is smaller than the values of bundles received720

by Gq (in the duplicated scenario) at most721

k−1

∑
i=0

fi ⋅ ∣Gp∣ − ∣Gp∣.

By Inequality (2),∑k−1
i=0 fi ⋅ ∣Gp∣− ∣Gp∣ is at most (k−1) ⋅ ∣Gq ∣.722

Hence, when performing the pairwise comparison between723

the ith highest value bundle in Gp and the ith highest value724

bundle in Gq , the value of the bundles in Gp is always greater725

than or equal to the value of the corresponding bundles in Gq .726

Therefore, Inequality (1) holds, implying the desired condi-727

tion728

u (⋃i∈Gp
Ai)

∣Gp∣
≥
u (⋃j∈Gq

Aj ∖ {o})
∣Gq ∣

for some item o ∈ ⋃j∈Gq
Aj .729

A.3 Proof of Theorem 2730

Proof. For the centralized allocator, the notion of CGEQ1731

can be seen as the variant of the notion of weighted EF1. In732

Chakraborty et al. [2021], they showed that a weighted EF1733

allocation can be computed in polynomial time, so it is not734

hard to see that the final allocation is CGEQ1. For agents,735

the whole algorithm has two phases. In the first phase, each736

agent is relabelled in her group. In the second phase, if one737

group receives one item, following the rule of the label, the738

agent who has the smallest number picks this item. If there739

is a tie, the agent with the lowest index is selected. Besides740

that, each agent and the centralized allocator have the same741

preference, which means the item chosen by the centralized742

allocator in each iteration is also every agent’s favorite item.743

Therefore, the whole allocation process for agents can be re-744

garded as the round-robin protocol, and the final allocation is745

EF1 to agents.746
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