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Abstract

In this paper, we establish global non-asymptotic convergence guarantees for the
BFGS quasi-Newton method without requiring strong convexity or the Lipschitz
continuity of the gradient or Hessian. Instead, we consider the setting where the
objective function is strictly convex and strongly self-concordant. For an arbitrary
initial point and any arbitrary positive-definite initial Hessian approximation, we
prove global linear and superlinear convergence guarantees for BFGS when the step
size is determined using a line search scheme satisfying the weak Wolfe conditions.
Moreover, all our global guarantees are affine-invariant, with the convergence rates
depending solely on the initial error and the strongly self-concordant constant.
Our results extend the global non-asymptotic convergence theory of BFGS beyond
traditional assumptions and, for the first time, establish affine-invariant convergence
guarantees—aligning with the inherent affine invariance of the BFGS method.

1 Introduction

In this paper, we consider the convex optimization problem

min
x∈Rd

f(x), (1)

where the function f is twice differentiable and strictly convex. We focus on quasi-Newton meth-
ods—iterative optimization algorithms that approximate the Hessian and its inverse using gradient
information, making them efficient for large-scale problems where computing the Hessian is costly.
Different variants update the Hessian approximation in distinct ways. The most famous quasi-Newton
methods include the Davidon-Fletcher-Powell (DFP) method [1, 2], the Broyden-Fletcher-Goldfarb-
Shanno (BFGS) method [3–6], the Symmetric Rank-One (SR1) method [7, 8], and the Broyden
method [9]. There are also variants of these methods, including limited memory BFGS [10, 11],
randomized quasi-Newton methods [12–16], and greedy quasi-Newton methods [15–18].

In this paper, we focus exclusively on the BFGS method, one of the most widely used and well-
regarded quasi-Newton algorithms. Specifically, we analyze its convergence guarantees in the setting
where the objective function is strictly convex and self-concordant and establish non-asymptotic
guarantees for this case. Before highlighting our contributions, we first provide a summary of the
existing convergence guarantees for BFGS as established in prior work.

Classic asymptotic guarantees. The local asymptotic superlinear convergence of quasi-Newton
methods, including BFGS, has been established in several works [19–28]. Similarly, their global
convergence under globalization strategies like line search and trust-region methods has been ana-
lyzed [8, 29–34]. However, these results are asymptotic and lack showing explicit rates.

Non-asymptotic guarantees under stronger assumptions. Recently, there were several break-
throughs regarding the non-asymptotic local superlinear convergence analysis of BFGS including [35–
38] for the case that the objective function is strongly convex. More precisely, these works established
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an explicit superlinear rate of O(1/
√
t)t under the assumptions of strong convexity and Lipschitz

continuity of the gradient and Hessian, given that the initial point is within a local neighborhood of the
optimum and the initial Hessian approximation satisfies certain conditions. Later, these local analyses
were extended and non-asymptotic global convergence rates of BFGS were established in [39–42]
under similar assumptions on the objective function. In particular, [41] established global explicit
superlinear convergence guarantees of the whole convex class of Broyden’s family of quasi-Newton
methods including both BFGS and DFP with step size satisfying the exact line search schemes. In a
follow up work [42], the explicit global convergence rates for BFGS was established when deployed
with an inexact line search satisfying the Armijo-Wolfe conditions. Specifically, these works show
that when the objective is µ-strongly convex, its gradient is L-Lipschitz smooth, and its Hessian is
K-Lipschitz continuous, a global linear convergence rate of (1− 1/κ)t can be achieved—matching
that of gradient descent, where κ = L/µ is the condition number. Moreover, global superlinear
convergence rates of ((dκ+ C0κ)/t)

t and ((C0d log κ+ C0κ)/t)
t were established under specific

choices of the initial Hessian approximation, where d is the problem dimension, and C0 is the initial
function value gap between the initial iterate x0 and the unique optimal solution x∗.

While these results represent significant progress in studying quasi-Newton methods, the established
non-asymptotic guarantees for BFGS, and most quasi-Newton methods in general, have two major
limitations. First, these results rely on relatively strong assumptions that may not hold in many
practical settings. For instance, in the case of logistic regression, the loss is strictly convex but not
necessarily strongly convex. Similarly, a log-barrier function does not satisfy the global Lipschitz
condition for gradient. Second, all previously established non-asymptotic convergence rates for BFGS
are not affine invariant, as they depend on parameters such as the strong convexity constant µ, gradient
Lipschitz constant L, and Hessian Lipschitz constant K, all of which vary under a change of basis or
coordinate system in Rd. In contrast, BFGS is affine invariant with respect to linear transformations
of the variables. This means that the convergence behavior of BFGS remains unaffected by the choice
of coordinate system and instead depends solely on the topological structure of f .

Contributions: We aim to address the discussed issues, and our main contributions are as follows:

• We establish global non-asymptotic linear and superlinear convergence rates for BFGS
without requiring strong convexity or Lipschitz continuity of the gradient or Hessian. Instead,
we consider functions that are strictly convex and strongly self-concordant. Our analysis
provides explicit global convergence guarantees for BFGS when the step size is selected via
a line search satisfying the weak Wolfe conditions. These guarantees hold for any initial
point x0 and any positive-definite initial Hessian approximation B0.

• We derive explicit convergence rates for the BFGS method that are affine invariant. Specif-
ically, our results show that both global linear and superlinear convergence rates depend
solely on the strongly self-concordant constant, which remains invariant under linear trans-
formations of the variables. To the best of our knowledge, these are the first theoretical
convergence rates consistent with the affine invariance property of the BFGS method,
reflecting its independence from the choice of coordinate system.

Notation. We denote the l2-norm by ∥ · ∥ and the set of d× d symmetric positive definite matrices
by Sd++. We write A ⪯ B if B −A is positive semi-definite, and A ≺ B if it is positive definite. The
trace and determinant of matrix A are represented as Tr(A) and Det(A), respectively. For function
f that is strictly convex, we define the weighted norm ∥.∥x as ∥u∥x :=

√
u⊤∇2f(x)u

2 Background and Preliminaries

In this section, we provide a brief overview of the BFGS quasi-Newton method. At iteration t, xt

denotes the current iterate, gt = ∇f(xt) the gradient of the objective function, and Bt the Hessian
approximation matrix. The general template of quasi-Newton methods update is given by

xt+1 = xt + ηtdt, dt = −B−1
t gt, (2)

where ηt > 0 is the step size. By defining the variable difference and the gradient difference as

st := xt+1 − xt, yt := ∇f(xt+1)−∇f(xt), (3)
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we can present the Hessian approximation matrix update for BFGS as follows:

Bt+1 := Bt −
Btsts

⊤
t Bt

s⊤t Btst
+

yty
⊤
t

s⊤t yt
. (4)

Further, if we define the inverse of Hessian approximation as Ht := B−1
t , using the Sherman-

Morrison-Woodbury formula, we have Ht+1 = (I − sty
⊤
t

y⊤
t st

)Ht(I − yts
⊤
t

s⊤t yt
) +

sts
⊤
t

y⊤
t st

. Note that if the
function f is strictly convex – as considered in this paper – and the initial Hessian approximation
matrix is positive definite, then Bt ∈ Sd++ for any iterations t > 0 (Chapter 6 [43]). In this paper, we
focus on the analysis of BFGS when ηt is selected based on the Armijo-Wolfe conditions, given by

f(xt + ηtdt) ≤ f(xt) + αηt∇f(xt)
⊤
dt, (5)

∇f(xt + ηtdt)
⊤
dt ≥ β∇f(xt)

⊤
dt, (6)

where α and β are the line search parameters, satisfying 0 < α < β < 1 and 0 < α < 1/2.

Affine Invariance property of BFGS. From [44, 45], it is known that the iterates of BFGS are affine
invariant. This property underscores the necessity of an analysis framework aligned with affine
invariance, which is the main focus of our paper. We state the following proposition for completeness.
Proposition 2.1. Let the iterations {xt}+∞

t=0 be generated by the BFGS algorithm applied to the
objective function f(x), as defined in (2)-(4). Consider the iterates {ẋt}+∞

t=0 produced by applying
BFGS to the transformed function ϕ(x) = f(Ax), where A ∈ Rd×d is a non-singular matrix. Assume
that the initializations satisfy ẋ0 = A−1x0 and Ḃ0 = A⊤B0A. Then, for any t ≥ 0, the following
relationships hold: ẋt = A−1xt, Ḃt = A⊤BtA and ϕ(ẋt) = f(xt).

2.1 Assumptions

Next, we state our assumptions and compare them with those used in prior work.
Assumption 2.2. The function f satisfies the following conditions: (i) it is twice differentiable and
strictly convex, and (ii) it is strongly self-concordant with parameter M > 0, i.e., for any x, y, z ∈ Rd

∇2f(x)−∇2f(y) ⪯ M∥x− y∥z∇2f(y). (7)

Our first assumption requires the objective function to be strictly convex, i.e., ∇2f(x) ≻ 0. This is
indeed a weaker condition than the strong convexity assumptions used in prior works that establish
non-asymptotic guarantees for BFGS, such as [35–42]. The second condition concerns strong self-
concordance, which defines a subclass of self-concordant functions. Specifically, if f is M -strongly
self-concordant, then it is also M/2-self-concordant. To see this, fix x ∈ Rd and u ∈ Rd. The
inequality u⊤(∇2f(x+ tu)−∇2f(x))u ≤ tM∥u∥3x holds, and dividing by t and taking the limit
as t → 0 yields D3f(x)[u, u, u] ≤ M∥u∥3x. A symmetric argument shows |D3f(x)[u, u, u]| ≤
M∥u∥3x, implying that f is self-concordant with parameter M/2. Moreover, Theorem 5.1.2 of
[46] shows that the strong self-concordance parameter M is affine invariant: for any non-singular
A ∈ Rd×d, the function ϕ(x) = f(Ax) remains M -strongly self-concordant.

Next, we explain why our assumptions are strictly weaker than the more common conditions of strong
convexity, Lipschitz gradient, and Lipschitz Hessian. Prior work (e.g., Example 4.1 in [17]) shows
that if a function is strongly convex and its Hessian is Lipschitz with respect to a matrix B ⪰ 0, then
it is also strongly self-concordant. However, the converse does not hold: strong self-concordance
does not imply strong convexity, gradient smoothness, or Lipschitz Hessian continuity.

As a concrete example, we can consider the log-sum-exp function formally defined as f(x) =
log (

∑n
i=1 exp(c

⊤
i x− bi)) +

∑n
i=1(c

⊤
i x)

2, where {ci}ni=1 ∈ Rd and {bi}ni=1 ∈ R. This function
is not strongly convex with respect to the identity matrix I , due to the absence of explicit ℓ2
regularization. However, it can be shown to be strongly convex and have Lipschitz Hessian with
respect to the matrix B =

∑n
i=1 cic

⊤
i (Note that this matrix could be possibly singular). As a

result, it is strongly self-concordant but not strongly convex in the standard sense; check Appendix F.
Other examples include the hard cubic function and the logistic regression objective discussed in
Section 6. Another illustrative case is the log-barrier function f(x) = − log(1 − x2), which is
strongly self-concordant with M = 4 for |x−y| ≤ 1/2, yet its gradient and Hessian are not Lipschitz
continuous. Full detailed discussion for these examples is provided in Appendix F.
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2.2 Definitions

Next, we state our definitions and notations. For any A ∈ Sd++, we define Ψ(A) as

Ψ(A) := Tr(A)− d− logDet(A). (8)

This function characterizes the distance between matrix A and the identity matrix I . Note that
Ψ(A) ≥ 0 for any A ∈ Sd++ and Ψ(A) = 0 if and only if A = I .

A common technique in the analysis of quasi-Newton methods involves the use of a reweighting
matrix; see, e.g., [29]. We also use this approach in our analysis. Specifically, given any weight
matrix P ∈ Sd++, we define the weighted versions of the vectors gt, st, yt, dt and the matrix Bt as

ĝt :=P− 1
2 gt, ŝt :=P

1
2 st, ŷt :=P− 1

2 yt, d̂t :=P
1
2 dt, B̂t := P− 1

2BtP
− 1

2 . (9)

The weight matrix P plays fundamental role in our proof and the global linear and superlinear
convergence rates are based on different choices of P . Note that the update rule for the weighted
version of Hessian approximation matrices B̂t is similar to the update rule of the unweighted Bt, i.e.,
B̂t+1 = B̂t − B̂tŝtŝ

⊤
t B̂t

ŝ⊤t B̂tŝt
+

ŷtŷ
⊤
t

ŝ⊤t ŷt
. We next introduce a common function in self-concordant analysis:

ω(x) := x− log (x+ 1). (10)

As shown in Lemma B.3, ω(x) is strictly increasing for x > 0. Hence, we can define its inverse
function ω−1(.) such that ω−1(ω(x)) = x for x > 0. It can be verified that ω−1(x) is also strictly
increasing for x > 0. Further, since ω(x) is a convex function, ω−1(x) is concave. We use ω−1 to
measure suboptimality of the iterates {xt}+∞

t=0 and define the sequences {Ct}+∞
t=0 and {Dt}+∞

t=0 as

Ct := f(xt)− f(x∗), Dt := 2ω−1
(
M2Ct/4

)
, (11)

Indeed, both of the above sequences are always non-negative.
Remark 2.3. The expression ω−1(.) frequently appears in our complexity bounds. To better under-
stand this function and its approximation, as shown in Lemma B.3, we can use the approximation
ω−1(a) ≈ (a+

√
2a). Consequently, if a < 1, ω−1(a) = O(

√
a), and if a > 1, ω−1(a) = O(a).

With these preliminaries, the next two sections prove global linear and superlinear convergence rates
of BFGS for strictly convex, strongly self-concordant functions—rates that remain invariant under
linear transformations, consistent with BFGS’s affine invariance.

3 Global Linear Convergence Rates

In this section, we present the global linear convergence results of BFGS when the step size is selected
based on the weak Wolfe conditions introduced in (5) and (6). Before we begin, we need to define
the following weighted versions of the initial Hessian approximation matrix B0:

B̄0 =
∇2f(x∗)

− 1
2B0∇2f(x∗)

− 1
2

1 +D0
, B̃0 = ∇2f(x∗)

− 1
2B0∇2f(x∗)

− 1
2 . (12)

These two weighted versions of B0 correspond to the weight matrices P = (1 +D0)∇2f(x∗) and
P = ∇2f(x∗), respectively. They play a key role in the non-asymptotic analysis of BFGS for
self-concordant functions. Next, we present our first global explicit linear convergence rate of BFGS
for any initial point x0 and any initial Hessian approximation matrix B0 ∈ Sd++.
Theorem 3.1. Suppose Assumption 2.2 holds. Let {xt}t≥0 be the iterates generated by BFGS, where
the step size satisfies the Armijo-Wolfe conditions in (5) and (6). Recall Ψ(·) in (8), D0 in (11) and
B̄0 in (12). For any initial point x0 ∈ Rd and any initial Hessian approximation B0 ∈ Sd++, we have

f(xt)− f(x∗)

f(x0)− f(x∗)
≤

(
1− α(1− β)e−

Ψ(B̄0)
t

(1 +D0)2

)t

. (13)

Moreover, when t ≥ Ψ(B̄0), we obtain that

f(xt)− f(x∗)

f(x0)− f(x∗)
≤
(
1− α(1− β)

3(1 +D0)2

)t

. (14)
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Theorem 3.1 states that BFGS converges globally at a linear rate, influenced by the line search
parameters (as expected), the term Ψ(B̄0), which quantifies the discrepancy between the initial
Hessian approximation and the optimal one, and D0, which depends on the suboptimality of the
initial function value and the strongly self-concordance parameter. To further simplify the expression,
as shown in the second result, when t ≥ Ψ(B̄0), the linear convergence rate can be further simplified
as O(1− 1/(1 +D0)

2). Hence, D0 = 2ω−1(M2(f(x0)− f(x∗)/4) indicates the rate.

Two remarks follow the above result. First, our global linear convergence rate does not require
assuming strong convexity or gradient Lipschitz-ness. Second, the linear convergence rate is affine
invariant across different linear systems, consistent with the affine invariance property of BFGS.

We emphasize that the proof of Theorem 3.1 for showing global linear convergence rate is fundamen-
tally different from the analyses in prior work. Specifically, the results in [41, 38, 42] heavily depend
on the strong convexity and gradient Lipschitz-ness assumptions to showcase a linear convergence
rate: they use the Lipschitz continuity of the gradient to upper bound ∥yt∥2/s⊤t yt by L, and use
µ-strong convexity to establish the following lower bound ∥gt∥2/(f(xt) − f(x∗)) ≥ 2µ. These
bounds are key to establishing the global linear rate of BFGS in prior work. In our setting such
bounds do not hold and we do not have a universal upper bound on ∥yt∥2/s⊤t yt and a lower bound on
∥gt∥2/(f(xt)− f(x∗)). Instead, for the first bound, we transfer the inequality to the norm induced
by the weight matrix P = (1 +D0)∇2f(x∗) and show under this norm and strong self-concordance
assumption we have ∥ŷt∥2/ŝ⊤t ŷt ≤ 1. For the lower bound on ∥gt∥2/(f(xt) − f(x∗)), instead of
a uniform lower bound, we show that it can be bounded below by 1/(1 +Dt), which is dependent
on xt, but we show that even this time-dependent lower bound is sufficient to establish a linear
convergence rate for BFGS. For more details check the proofs of Lemma B.7 and Section C.2 in the
Appendix.

The linear convergence result depends on Ψ(B̄0), and hence the choice of B0 affects the convergence
rate. In practice, it is often a scaled identity and a common choice is B0 = cI , where c = (s⊤y)/∥s∥2,
with s = x2 − x1, y = ∇f(x2)−∇f(x1), and x1, x2 as two randomly selected vectors. In the next
corollary, we present our global linear rate when B0 = aI where a > 0 is an arbitrary constant.
Corollary 3.2. Suppose Assumptions 2.2 holds, {xt}t≥0 are generated by BFGS with step size
satisfying the Armijo-Wolfe conditions in (5) and (6), and x0 ∈ Rd is an arbitrary initial point. If the
initial Hessian approximation matrix is set as B0 = aI for any a > 0, then we have that

f(xt)− f(x∗)

f(x0)− f(x∗)
≤

(
1− α(1− β)e−

∆1
t

(1 +D0)2

)t

, (15)

where ∆1 := Ψ(a∇
2f(x∗)

−1

1+D0
) can be written as

∆1 = Tr

[
a∇2f(x∗)

−1

1 +D0

]
− d− logDet

[
a∇2f(x∗)

−1

1 +D0

]
. (16)

Moreover, when t ≥ ∆1, we obtain that

f(xt)− f(x∗)

f(x0)− f(x∗)
≤
(
1− α(1− β)

3(1 +D0)2

)t

. (17)

Note that the proof of this corollary simply follows by setting B0 = aI in Theorem 3.1. The above
result shows that by selecting B0 = aI , the linear convergence rates of the BFGS method is totally
determined by the initial suboptimality D0 and the trace and determinant of the inverse matrix of the
Hessian at x∗, which are also consistent with the affine invariance property of BFGS.

Next, we proceed to present an improved version of the result in Theorem 3.1, showing that after a
sufficient number of iterations, the linear rate of BFGS becomes independent of D0 and B0.
Theorem 3.3. Suppose Assumptions 2.2 holds, and let {xt}t≥0 be the iterates generated by the BFGS
method with the Armijo-Wolfe line search in (5) and (6). Recall the definition of Ψ(·) in (8), D0 in
(11) and B̄0, B̃0 in (12). Then, for any initial point x0 ∈ Rd and any initial Hessian approximation
matrix B0 ∈ Sd++, when t ≥ Ψ(B̃0) + 3D0(Ψ(B̄0) +

3(1+D0)
2

α(1−β) ), we have

f(xt)− f(x∗)

f(x0)− f(x∗)
≤
(
1− 2α(1− β)

3

)t

. (18)
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This theorem demonstrates that when the number of iterations is larger than Ψ(B̃0) + 3D0(Ψ(B̄0) +
3(1+D0)

2

α(1−β) ), BFGS with stepsize satisfying the Armijo-Wolfe conditions achieves an explicit linear
convergence rate that is independent of the initial suboptimality D0 and only determined by the line
search parameters α and β defined in (5) and (6). That said, the point that transition to this fast rate
happens still depends on the choice of x0 and B0, as stated in Theorem 3.3. Similar to Corollary 3.2,
next we present the special case of Theorem 3.3 of B0 = aI for any a > 0.
Corollary 3.4. Suppose Assumptions 2.2 holds, {xt}t≥0 are generated by BFGS with step size
satisfying the Armijo-Wolfe conditions in (5) and (6), and x0 ∈ Rd is an arbitrary initial point. If the
initial Hessian approximation matrix is set as B0 = aI for any a > 0, then the following rate holds

f(xt)− f(x∗)

f(x0)− f(x∗)
≤
(
1− 2α(1− β)

3

)t

, (19)

for all iterates satisfying t ≥ ∆2 + 3D0

(
∆1 +

3(1+D0)
2

α(1−β)

)
, where ∆1 is defined in (16) and

∆2 = Tr(a∇2f(x∗)
−1)− d− logDet(a∇2f(x∗)

−1). (20)

Note that both ∆1 and ∆2 are determined by the Hessian at the optimal solution x∗, while ∆1 also
depends on the initial suboptimality error through D0. In general, we do expect the convergence rates
of BFGS to depend on the distance between x0 and x∗, which is characterized by D0 defined in (11)
as well as the distance between the initial Hessian approximation matrix B0 and the exact Hessian at
optimal solution x∗, which is characterized by ∆1 and ∆2 when B0 = αI .

4 Global Superlinear Convergence Rates

Building on the established linear convergence results, we next establish our global superlinear
convergence rate of BFGS. A key point in our analysis is that to reach the superlinear convergence
stage, the unit step size must be chosen after some iterations. This is a necessary condition, as noted
in several prior works [30–32, 29]. The fundamental methodology is to first establish the sufficient
conditions of when the unit step size can be selected, i.e., when ηt = 1 satisfies the conditions in
(5) and (6). Then, based on these conditions, we can prove that after some specific iterations t0, the
unit step size ηt = 1 is admissible for the inexact line search scheme except for a finite number of
iterations, which leads to the final proof of the global non-asymptotic superlinear convergence rate.

Next, we proceed to establish under what conditions η = 1 is admissible. First, define ρt as

ρt :=
−g⊤t dt

∥d̃t∥2
, d̃t := ∇2f(x∗)

1
2 dt, ∀t ≥ 0. (21)

In the following lemma, we demonstrate that when Ct = f(xt)− f(x∗) is small enough and ρt is
close enough to 1, the unit step size ηt = 1 is admissible and meets the Armijo-Wolfe conditions.
Lemma 4.1. Suppose Assumption 2.2 holds and define

δ1 := min

{
1

16
,

4

M2
ω

(
1

32

)
,

4

M2
ω

(√
2(1− α)− 1

2

)
,

4

M2
ω

(
1

2

(
1√

1− β
−1

))}
,

δ2 := max

{
15

16
,

1√
2(1− α)

}
, δ3 :=

1√
1− β

,

(22)

which satisfy 0 < δ1 < δ2 < 1 < δ3. If Ct ≤ δ1 and δ2 ≤ ρt ≤ δ3, then ηt = 1 satisfies (5) and (6).

First, we highlight the key difference between Lemma 4.1 and prior results in [38, 42, 41]. The proof
of Lemma 4.1 hinges on ensuring f(xt+dt) ≤ f(xt), i.e., that a unit step yields a decrease in function
value. Under Lipschitz continuity of the Hessian with constant K, the error of approximating f(y)
by its second-order Taylor expansion at x is bounded by K

6 ∥y − x∥3. Without this assumption, and
under M -strongly self-concordant assumption, we instead use the bound f(y) ≤ f(x) + g(x)⊤(y −
x)+ 4

M2ω∗
(
M
2 ∥y − x∥x

)
for ∥y−x∥x < 2

M , where ω∗(x) = −x− log(1−x) is defined for x < 1.
As a result, the error is no longer cubic in ∥y − x∥, making it more challenging to ensure a function
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decrease. Nevertheless, we can still guarantee this property, with the main difference being that the
error bound δ1 now depends on ω(x) defined above. See Lemma B.9 and Section C.4 for details.

The result in Lemma 4.1 shows that when Ct ≤ δ1 and ρt ∈ [δ2, δ3], we can choose the step size
ηt = 1 at iteration t of BFGS, as it satisfies the weak Wolfe conditions. Moreover, from the global
non-asymptotic linear convergence rates of the last section, we can specify the t0 such that for any
t ≥ t0, the first condition Ct ≤ δ1 always holds. Moreover, we can demonstrate that the second
condition on ρt is violated only for a finite number of iterations, i.e., the set of the indices that
ρt /∈ [δ2, δ3] can be upper bounded by some constants. We formally present these results in the
following lemma and the proofs are available in Appendix C.5.

Lemma 4.2. Suppose Assumptions 2.2 holds and {xt}t≥0 are generated by BFGS with step size
satisfying the Armijo-Wolfe conditions in (5)-(6). Recall the definition of Ct in (11), Dt in (11), Ψ(·)
in (8), {δi}3i=1 in (22), and B̄0, B̃0 in (12). We have Ct ≤ δ1 when t ≥ t0, where t0 is defined as

t0 := max

{
Ψ(B̄0),

3(1 +D0)
2

α(1− β)
log

C0

δ1

}
. (23)

Moreover, the size of the set I = {t0 ≤ i ≤ t− 1 : ρt /∈ [δ2, δ3]} is at most

|I| ≤ δ4

(
Ψ(B̃0) + 2D0

(
Ψ(B̄0) +

3(1 +D0)
2

α(1− β)

))
, where δ4 :=

1

min{ω(δ2 − 1), ω(δ3 − 1)}
.

(24)

The above lemma specifies the time instance t0 for which Ct ≤ δ1 is satisfied for any t ≥ t0 and for
only a finite number of indices, the condition ρt ∈ [δ2, δ3] does not hold. In practice, we always start
with the unit step size when we implement the inexact line search scheme at iteration t to check if
ηt = 1 satisfies the Armijo-Wolfe conditions in (5) and (6). Hence, when t ≥ t0, only for a finite
number of iterations that ρt /∈ [δ2, δ3], the unit step size is not selected. With all these points, we
present the global superlinear convergence rate of BFGS for self-concordant functions.

Theorem 4.3. Suppose Assumptions 2.2 holds and the iterates {xt}t≥0 are generated by BFGS with
step size satisfying the Armijo-Wolfe conditions in (5) and (6). Recall the definition of Dt in (11),
Ψ(·) in (8), B̄0, B̃0 in (12), and {δi}4i=1 in (22), (24). Then, for any initial point x0 ∈ Rd and any
initial Hessian approximation matrix B0 ∈ Sd++, the following global superlinear result holds:

f(xt)− f(x∗)

f(x0)− f(x∗)
≤

δ6t0 + δ7Ψ(B̃0) + δ8D0(Ψ(B̄0) +
3(1+D0)

2

α(1−β) )

t

t

,

where t0 is defined in (23), {δi}8i=5 defined below only depend on line search parameters α and β,

δ5 := max

{
2 + (2/δ2)

2δ2 − 17/16
,

4δ3
2δ2 − 17/16

}
, δ6 := log

1

2α(1− β)
,

δ7 := 1 + δ4δ6 + δ5, δ8 := 2 + 2δ4δ6 + 2δ5 +
2δ2 − 1/16− log δ2

2δ2 − 17/16
.

(25)

Theorem 4.3 shows that the superlinear convergence rate of BFGS for a self-concordant function
is of the form (C/t)t for some constant C > 0. Notice that from the definition of t0 in (23), we
know that t0 = O(Ψ(B̄0) + (1 + D0)

2 logD0). Hence, the superlinear convergence rate is of
the order O((Ψ(B̃0)+D0(Ψ(B̄0)+(1+D0)

2)
t )t), and we reach the superlinear convergence stage when

t ≥ Ω(Ψ(B̃0) +D0(Ψ(B̄0) + (1 +D0)
2)), which depends on the initial suboptimality D0 and the

initial Hessian approximation matrix B0. To our knowledge, this is the first non-asymptotic global
superlinear convergence rate of a quasi-Newton method without the assumption of strong convexity.
Moreover, the superlinear rate in Theorem 4.3 is independent of the linear system chosen for the
variables, and, hence, it is consistent with the affine invariance property of BFGS. Next, we present
the superlinear convergence rate of BFGS for the special case of B0 = aI , where a > 0.

Corollary 4.4. Suppose Assumptions 2.2 holds, {xt}t≥0 are generated by BFGS with step size
satisfying the Armijo-Wolfe conditions in (5) and (6), and x0 ∈ Rd is an arbitrary initial point. If the
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initial Hessian approximation matrix is B0 = aI where a > 0, the following result holds:

f(xt)−f(x∗)

f(x0)−f(x∗)
≤

δ6t0+δ7∆2+δ8D0(∆1+
3(1+D0)

2

α(1−β) )

t

t,
where t0 is defined in (23), {δi}8i=5 are defined in (25) and ∆1, ∆2 are defined in (16), (20).

5 Complexity Analysis

Iteration Complexity. Using Theorems 3.1, 3.3, and 4.3, we characterize the global iteration complex-
ity of BFGS with inexact line search on self-concordant functions. These three results provide upper
bounds, and the smallest of these bounds determines the complexity of BFGS. The smallest bound de-
pends on the required accuracy relative to the problem and algorithm parameters. Specifically, for any
initial point x0 ∈ Rd and initial Hessian approximation matrix B0 ∈ Sd++, to achieve a function value
accuracy of ϵ > 0, i.e., f(xT )− f(x∗) ≤ ϵ, the number of iterations required, as per Theorem 3.1, is
at most T1 = O

(
Ψ(B̄0) + (1 +D0)

2 log 1
ϵ

)
. The result in Theorem 4.3 eliminates the multiplicative

factor in the log(1/ϵ) term but requires a possibly larger additive constant, resulting in a complexity
of T2 = O(Ψ(B̃0)+(Ψ(B̄0)+(1+D0)

2)D0+log 1
ϵ ) Indeed, T2 is smaller than T1 when ϵ is small

and log 1
ϵ becomes the dominant term. When ϵ is very small, the superlinear bound from Theorem 4.3

provides the best complexity, which is T3 = O
(
(log 1

ϵ )/log
(

1
2+

√
1
4+

1
Ψ(B̃0)+(Ψ(B̄0)+(1+D0)2)D0

log 1
ϵ

))
.

Given these three bounds the overall iteration complexity of BFGS for the considered setting is
T = min{T1, T2, T3}. Note that, for the special case of B0 = aI where a > 0 is an arbitrary positive
constant, the complexity bounds denoted by T1, T2, T3 can be further simplified as

T1 = O
(
∆1+(1+D0)

2 log
1

ϵ

)
, T2 = O

(
C1+log

1

ϵ

)
, T3 = O

 log 1
ϵ

log
(

1
2+
√

1
4+

1
C1

log 1
ϵ

)
,

where ∆1,∆2 are defined in (16), (20), and C1 := ∆2 + (∆1 + (1 +D0)
2)D0. For full iteration

complexity details, see Appendix D.

Line Search Complexity. While the previous section characterized the complexity of BFGS under
Assumption 2.2, analyzing its gradient complexity requires determining the number of gradient
queries needed per iteration to obtain an admissible step size. In [42], the authors proposed an
efficient log-bisection approach for step size selection in BFGS, satisfying the line search conditions
in (5) and (6), and provided a complexity analysis. However, their results apply only to strongly
convex functions with Lipschitz-continuous gradients and Hessians. In this section, we examine the
line-search complexity of the log-bisection approach from [42] when the objective function is strictly
convex and strongly self-concordant. Let Λt denote the average number of iterations in Algorithm 1
required to terminate after t iterations. The following proposition provides an upper bound for Λt.

Proposition 5.1. Suppose Assumptions 2.2 holds. Let {xt}t≥0 be generated by BFGS with step size
satisfying the Armijo-Wolfe conditions in (5) and (6) and is chosen by Algorithm 1. Let Λt be the
average number of the function value and gradient evaluations per iteration in Algorithm 1 after t
iterations. For any initial point x0∈Rd and initial Hessian approximation B0∈Sd++, we have that

Λt = O

(
1 + log

(
1 +

Γ

t

)
+ log

(
1 + log(1 +

Ψ(B̃0) + Γ

t
)

))
,

where Γ = O(D0(Ψ(B̄0)+(1+D0)
2)). As a corollary, for the special case of B0 = aI where a > 0,

we have Λt = O(1+ log(1+ Γ̃
t )+ log(1+ log(1+ ∆2+Γ̃

t ))), where Γ̃ = O
(
D0(∆1 + (1 +D0)

2)
)
.

This proposition implies the average number of iterations in Algorithm 1 is at most O(log (1 + Γ)),
which is a constant depending on the initial suboptimality D0 and the initial matrix B0. Moreover,
when the number of iterations T exceeds Ω(Ψ(B̃0)+Γ), the average number of function and gradient
evaluations per iteration for Algorithm 1 is an absolute constant of O(1). Thus, even in the worst
case, the gradient and iteration complexities remain of the same order, up to logarithmic factors.
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Figure 1: Convergence rates of BFGS with different B0, gradient descent and accelerated gradient
descent for solving the hard cubic function with different dimensions.
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(b) d = 1000.
Figure 2: Convergence rates of BFGS with different B0, gradient descent and accelerated gradient
descent for solving the logistic regression function with different dimensions.

6 Numerical Experiments

Next, we present numerical experiments applying BFGS to two functions satisfying Assumptions 2.2.
We report our results using two different choices of initial Hessian approximation B0: (i) B0 = I , and
(ii) B0 = cI , where c = s⊤y

∥s∥2 , with s = x2−x1, y = ∇f(x2)−∇f(x1), where x1, x2 are randomly
selected. The line search parameters are also set as α = 0.1 and β = 0.9. In our experiments, we
also report the convergence paths of gradient descent (GD) and accelerated gradient descent (AGD),
with step sizes determined using backtracking line search.

The first function that we study is the cubic function from [47]

f(x) =
ω1

12

[
d−1∑
i=1

g(v⊤i x− v⊤i+1x)− ω2v
⊤
1 x

]
, where g(x) =

{
1
3 |x|

3 |x| ≤ ∆,

∆x2 −∆2|x|+ 1
3∆

3 |x| > ∆.

Note that g : R → R. We set the hypermeters of the objective function as ω1 = 4, ω2 = 3,∆ = 1
and the vectors {vi}ni=1 are set to be the orthogonal unit basis vectors of Rd. We study this function
as it serves as a benchmark for establishing lower bounds for second-order methods. The second
loss is the logistic regression: f(x) = 1

N

∑N
i=1 ln (1 + e−yiz

⊤
i x), where {zi}Ni=1 are the data points

and {yi}Ni=1 are their corresponding labels. We assume that zi ∈ Rd generated with standard normal
distribution and yi ∈ {−1, 1} generated with uniform distribution for all 1 ≤ i ≤ N . We choose the
number of data points as N = d. Note that both the hard cubic function and the logistic regression
function are strictly convex and strongly self-concordant; see Appendix F.

The convergence paths for the cubic problem are shown in Figure 1 for various problem dimensions
d. Initially, the performance of BFGS is worse than that of the first-order gradient descent and
accelerated gradient descent methods. However, after approximately d iterations, BFGS significantly
outperforms the first-order methods. Notably, for this problem, the performance of BFGS with
B0 = I and B0 = cI are nearly identical. Figure 2 shows the convergence paths for the logistic loss
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Figure 3: Step size of BFGS with different B0 using inexact line search for solving the hard cubic
function with different dimensions.
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Figure 4: Convergence rates of BFGS with different B0, gradient descent and accelerated gradient
descent for solving the hard cubic function with transformation matrix A.

across different problem dimensions d. Initially, BFGS performs similarly to first-order methods,
but after several iterations, it outperforms them. Notably, in this experiment, BFGS with B0 = cI
outperforms BFGS with B0 = I . We also compared the performance of these different optimization
methods with respect to the number of gradient evaluations and the time in seconds. Please check
Figure 7 and Figure 8 in Appendix G and any other additional numerical experiments.

Moreover, we display the step sizes selected at each iteration by the inexact line search in the BFGS
method in Figure 3. We observe that the step sizes are initially very small, then gradually increase,
and after approximately d iterations, they stabilize at 1 for nearly all subsequent iterations. This
confirms our theoretical analysis: BEGS enters the superlinear convergence phase after about d
iterations, and there are only limited iterations where the unit step size didn’t satisfy the weak Wolfe
condition as proved in Lemma 4.2.

Finally, in Figure 4, we compare the performance of BFGS, GD, and AGD under a transformation
matrix A chosen to be a non-singular ill-conditioned matrix. We observe that the convergence
trajectory of BFGS with this transformation is identical to that of the vanilla BFGS method, consistent
with the affine invariance of quasi-Newton methods proved in Proposition 2.1. In contrast, the
performance of GD and AGD degrades significantly under the transformation matrix, since first-order
methods do not possess the affine-invariance property.

7 Conclusions

We established non-asymptotic global linear and superlinear convergence rates for the BFGS method
on strictly convex and strongly self-concordant functions, using Wolfe step sizes. Our guarantees
hold for any initial point x0 ∈ Rd and any positive-definite initial Hessian approximation B0 ∈ Sd++.
Our analysis also respects the affine invariance of BFGS. A limitation is the reliance on strong
self-concordance; extending results to standard self-concordance is a potential future direction.
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made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We have discussed the limitations and drawbacks of this paper in the paragraph
of Section 7.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

14



Answer: [Yes]
Justification: All the theorems, formulas, and proofs in the paper are numbered and cross-
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to reproduce that algorithm.
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the architecture clearly and fully.
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either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
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should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We have specified how our algorithms and baselines are initialized and how
the hyperparameters are selected. Please check details in 6.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [NA]
Justification: This paper focuses on a deterministic optimization problem and the algorithms
considered do not have any source of randomness. The objective loss function used in the
numerical experiments requires random matrices and random vectors. The initial vectors
are also generated randomly. We have presented all the details of the random generations
of these matrices and vectors. However, all the optimization methods presented in our
experiments are deterministic algorithms. There is no need to report the corresponding error
bars. Please check details in 6.
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Guidelines:
• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We only need to install the Matlab software on our personal computer with
normal CPU to run our codes and reproduce the experiments, as we do not run any form of
large-scale training.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research conducted in the paper conform with the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
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Answer: [NA]
Justification: There is no societal impact of the work performed.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [NA]
Justification: The paper does not use existing assets.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
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• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The paper does not use any new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The paper does not involve any uages of LLM.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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