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Abstract

Biological circuits have evolved to incorporate multiple modules that perform
similar functions. In the fly olfactory circuit, both lateral inhibition (LI) and
neuronal spike frequency adaptation (SFA) are thought to enhance pattern sepa-
ration for odor learning. However, it remains unclear whether these mechanisms
play redundant or distinct roles in this process. In this study, we present a com-
putational model of the fly olfactory circuit to investigate odor discrimination
under varying noise conditions that simulate complex environments. Our results
show that LI primarily enhances odor discrimination in low- and medium-noise
scenarios, but this benefit diminishes and may reverse under higher-noise condi-
tions. In contrast, SFA consistently improves discrimination across all noise levels.
LI is preferentially engaged in low- and medium-noise environments, whereas
SFA dominates in high-noise settings. When combined, these two sparsification
mechanisms enable optimal discrimination performance. This work demonstrates
that seemingly redundant modules in biological circuits can, in fact, be essential
for achieving optimal learning in complex contexts. The code is available at:
https://github.com/L-0cean/Fly-SNN.

1 Introduction

Biological redundancy is commonly observed in the brain, where different regions, pathways, or
mechanisms can perform similar functions [1–4]. Different motifs of biological redundancy may
exist; for instance, different modules may have evolved to fulfill similar roles, ensuring robust neural
functions under pathological conditions [5–8]. Alternatively, these mechanisms may be required to
achieve near-optimal learning in more complex environments. Comparative analyses of the roles
of putatively redundant modules in learning can clarify how the brain adapts and, in turn, inform
theories that guide neuromorphic design [9, 10]. For instance, core computational features of the fly
olfactory circuit have motivated the FlyLoRA architecture [11], which enhances task decoupling and
parameter efficiency.

The fly olfactory system, a canonical cerebellum-like circuit, is a tractable model for dissecting
neural computation owing to its relative simplicity and well-characterized anatomy and function
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[12–18]. Two motifs—lateral inhibition (LI) and spike-frequency adaptation (SFA)—are prominent
in the mushroom body and related circuits and both are known to shape neuronal responses [19–
21]. LI is mediated by inhibitory interneurons that constrain the spatial spread of excitation and
sharpen population representations [22, 23]. SFA reflects spike-triggered neuronal adaptation currents
that accumulate during sustained stimulation, producing a progressive reduction in firing rate and
emphasizing stimulus onsets and changes [24, 25].

Prior work has extensively characterized the roles of LI and SFA in neural information processing. LI
drives competition and winner-take-all dynamics [26], increases population sparseness [27], enhances
input contrast [28], and decorrelates activity patterns [29], it also facilitates subtractive or divisive
gain modulation and strengthens regularization [30]. SFA functions as a nonlinear high-pass filter
[31], promoting intensity-invariant coding [32], encoding changes in input statistics [33], sparsifying
temporal responses, and forming short-term memory with non-stored retrieval (distinct from synaptic
memory) [25].

Although the roles of LI and SFA in sparsifying neuronal responses are well documented, their relative
contributions to learning—particularly under naturalistic conditions—remain less well characterized.
Both mechanisms are expected to transform odor inputs into spatially and temporally sparse codes,
attenuate noise, and enhance pattern separation [34–38](Figure 1). However, how they shape noisy
odor representations and support discrimination learning across different noise regimes is not well
understood. From an AI perspective, designing noise-robust classifiers is a classical challenge;
elucidating how a fly learns to classify noisy odors may inform the development of robust, biologically
inspired algorithms [39].

In this work, we developed a fly olfactory circuit model to investigate the roles of LI and SFA in
odor discrimination tasks under varying noise conditions that simulate complex environments. Our
main finding is that LI enhances learning performance in low- and medium-noise conditions, but
this benefit gradually diminishes and may reverse when odors become noisier. In contrast, SFA
consistently improves odor learning regardless of noise levels. LI tends to be more effective in low-
and medium-noise environments, while SFA shows superior performance under high-noise conditions.
When combined, the enhancement effects of these two mechanisms can be added up to achieve the
optimal performance. These results suggest that seemingly redundant modules may be selectively
recruited to optimize learning under different noisy conditions.

2 Method Overview

We developed a spiking neural network model of the fly olfactory circuit. The input layer consists of
50 olfactory receptor neurons (ORNs) that transduce odor stimuli into spikes. Each ORN projects
to a corresponding projection neuron (PN), yielding 50 PNs. We also included local interneurons
(LNs), which receive excitatory input from ORNs and provide lateral inhibition onto PNs. PN
activity is relayed to 2,000 Kenyon cells (KCs) in the mushroom body; each KC samples inputs
from approximately six PNs on average. Finally, KCs converge onto mushroom body output neurons
(MBONs), which serve as readout units; in our task configuration, each MBON corresponds to an
odor class being learned [40, 41].

The fly olfactory pathway exhibits three canonical features that are critical for discrimination [42]:
large expansion (PN → KC), sparse connectivity, and sparse coding. Here, we focus on the role
of spatiotemporally sparse spike coding, which conventional ANN models cannot capture; other
architectural and connectivity parameters were constrained to experimentally observed values.

A schematic of the network and its putative role in odor discrimination is shown in Figure 1. After
the KC stage, the sparsification mechanisms can transform odor responses in ways that facilitate odor
discrimination. For example, they may preserve the original inter-class separability while increasing
intra-class compactness (top), increase inter-class separation while keeping intra-class compactness
unchanged (middle), or simultaneously achieve high intra-class compactness and improved inter-class
separability (bottom). Regardless of the specific transformation, these changes are supposed to
enhance the decision boundaries for odor discrimination.

Synaptic plasticity was restricted to the KC→MBON connections; all other synapses were fixed.
Details of the training procedure and plasticity rule are provided in the Learning Algorithm section.
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Figure 1: Schematic of the fly olfactory circuit model. Odor inputs are sensed and encoded by
ORNs. After passing through the ORNs, odor-triggered spikes in PNs can be shaped by two factors:
LI caused by LNs and SFA by inherent adaptation currents. Neuronal spikes in KCs may subsequently
show different variation patterns to favor odor discrimination in MBONs.

Input Data. We adapted the odor-discrimination dataset from [43]. For each odor class i, we
define a prototype ORN response vector Ii ∈ R50. Its components are independently sampled from a
uniform distribution: Ii,j ∼ U(0, 1) for j = 1, . . . , 50. An individual sample from class i, denoted
I
(k)
i , is generated by adding an additive noise vector to the prototype: I(k)i = Ii +Y(k), where every

component of the noise vector Y(k) ∈ R50 is independently sampled from a zero-mean Gaussian
distribution, Y (k)

j ∼ N (0, σ2
noise). In accordance with the non-negativity of ORN firing rates, we

applied element-wise clipping so that I(k)i ≥ 0.

Neuron Model. All neurons were modeled as leaky integrate-and-fire (LIF) units with a soft reset.
The membrane potential of neuron j in the layer X evolves according to:

τXm
dV X

j (t)

dt
= −V X

j (t) + IXinput,j(t) + IXbias,j + IXSFA,j(t) + IXLI,j(t) (1)

Where τXm is the membrane time constant. IXinput,j(t) denotes the input current to neuron j in layer X ,
arising from odor-evoked stimulation or synaptic drive from presynaptic neurons; IXbias,j is a constant
bias that sets a baseline drive (used primarily in PNs and LNs to provide a small excitatory input);
IXSFA,j(t) is a spike-triggered adaptation current that depends on the neuron’s recent spiking history
and typically exerts a net inhibitory effect; and IXLI,j(t) is the lateral inhibitory current from LNs onto
PNs, scaled by LN spiking activity.

In the model, a spike is emitted when V X
j (t) reaches the threshold V X

th . Upon spiking, the membrane
potential undergoes a soft reset: V X

j (t+) = V X
j (t) − V X

th . For simplicity, we used the same
membrane time constant and threshold across layers (τXm = τm, V

X
th = Vth), except in the readout

(MBON) layer, where the threshold was set to 1.5 times higher. Given the dense KC → MBON
connectivity, this higher threshold mitigates excessive spiking driven by the convergence of inputs
from thousands of KCs.

LI Mechanism. LI onto PNs is mediated by LNs and modeled as an inhibitory current driven by an
exponentially decaying trace of LN spiking. The inhibitory current onto PN j is:

IPN
LI,j(t) =

∑
k

wLN→PN,jkT
LN
k (t) (2)

3



Where wLN→PN,jk ≤ 0 are inhibitory synaptic weights, and T LN
k (t) is the spike-triggered trace of LN

k that integrates recent activity and decays over time:

τtrace_LN
dT LN

k (t)

dt
= −T LN

k (t) + SLN
k (t) (3)

SLN
k (t) =

∑
l

δ(t− tLN
kl ) (4)

with τtrace_LN the decay time constant, SLN
k (t) the spike train of LN k, and tLN

kl the l-th spike time. To
compensate for the added inhibition and maintain comparable PN firing rates across conditions, we
apply a modest increase in PN input drive when LI is enabled.

SFA Mechanism. SFA was implemented in PNs, LNs, and KCs as an inhibitory, spike-triggered
current driven by an exponentially decaying state variable. For neuron j in layer X ,

IXSFA,j(t) = wX
SFAA

X
j (t) (5)

τXSFA
dAX

j (t)

dt
= −AX

j (t) + SX
j (t) (6)

SX
j (t) =

∑
l

δ(t− tXj,l) (7)

where AX
j (t) integrates the recent spiking history and decays with time constant τXSFA; wX

SFA ≤ 0 sets
the strength (sign) of the inhibitory adaptation current; SX

j (t) is the spike train of neuron j (Dirac
delta representation), and tXj,l denotes the l-th spike time.

To maintain comparable firing rates across conditions when SFA is enabled, we applied a small
positive bias current to PNs and LNs.

Learning Algorithm. In our model, classification is based on the average membrane potential of
the MBONs over a fixed evaluation window rather than on spike counts. Membrane potentials vary
more smoothly than discrete spike trains and thus provide a more stable signal for gradient-based
optimization [44, 45]. The complete training procedure is outlined in Algorithm 1.

Algorithm 1 Simplified SNN Training with Adaptive Mechanisms for Olfactory Tasks

1: Input: Training dataset Dtrain, Learnable weights WKC→MBON, Non-learnable parameters P .
2: for epoch = 1, 2, ..., num_epochs do
3: for each batch (xbatch, ybatch) in Dtrain do
4: Phase 1: Temporal Forward Simulation
5: Initialize all SNN states H0. Set Hhist = [].
6: for step t = 0 to num_steps - 1 do
7: It = Input(xbatch, step) ▷ Get input current
8: Ht+1 = F (It, Ht, P ) ▷ SNN forward pass and state update
9: Record MBON membrane potentials in Hhist.

10: end for
11: Phase 2: Backpropagation and Weight Update
12: Ŷbatch = G(Hhist) ▷ Process MBON output
13: loss = L(Ŷbatch, ybatch) ▷ Cross-Entropy Loss
14: loss.backward() ▷ Perform Backpropagation Through Time
15: Optimizer.step() ▷ Update WKC→MBON
16: end for
17: end for

For input sample i, we recorded each MBON’s membrane potential over the evaluation window
[ts, te] and computed its time average. Let NMBON be the number of MBONs. The mean potential for
MBON j and the corresponding vector across MBONs are

V̄ j
m,i =

1

te − ts

∫ te

ts

Vj(t) dt, V̄m,i ∈ RNMBON (8)
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We convert V̄m,i to class probabilities using a softmax function and train the network with a
cross-entropy loss:

pji = softmax(V̄m,i)j (9)

Li = −
NMBON∑

j

yji log(p
j
i ) (10)

Where yji is the one-hot target for sample i.

We optimized the learnable KC → MBON synaptic weights WKC→MBON using backpropagation
through time (BPTT), unrolling the network over the evaluation window. Because LIF spikes arise
from a step nonlinearity with zero derivative almost everywhere, we used a surrogate gradient
during the backward pass. Specifically, we replaced the derivative of the Heaviside with a smooth
arctan-based surrogate:

σ′(u) ≈ k1
1 + (k2u)2

(11)

where k1, k2 > 0 are scaling constants.

Training uses Adam with L2 weight decay (weight regularization) to improve generalization. We
also employed a ReduceLROnPlateau scheduler that monitors classification accuracy on a held-out
set and reduced the learning rate by a factor α = 0.2 if accuracy did not improve for n = 10 epochs.

Each model was trained for 100 epochs using mini-batches of size 256. After each batch, the loss
was computed, gradients were backpropagated through time, and parameters were updated using the
optimizer.

3 Experiments

Dataset and models: We generated an odor dataset comprising 30,000 training samples and 10,000
test samples, each drawn at random as described above. For most simulations, we evaluated three
network configurations: (i) the Baseline model, which includes neither LI nor SFA; (ii) the LI model,
which adds LI onto PNs; and (iii) the SFA model, which implements SFA in PNs, LNs, and KCs. In
Figure 4, we also simulated the full model with both LI and SFA.

Experimental settings: Simulations were implemented in Python (snnTorch) and run on an
NVIDIA A800 GPU. Network dynamics were simulated with a 1-ms time step; each trial com-
prised a 10-ms pre-stimulus baseline followed by a 30-ms odor presentation. All neurons shared a
membrane time constant of 10 ms. Firing thresholds were 0.8 for PNs, LNs, and KCs, and 1.2 for
MBONs. Connectivity featured sparse PN → KC projections (each KC received inputs from 6 PNs;
fixed weight 0.3) and fully connected KC → MBON synapses initialized uniformly in [0, 0.08]. LI
used a 5-ms LN trace time constant, and SFA used a 50-ms adaptation time constant. Models were
trained for 100 epochs (batch size 256) with Adam (initial learning rate 1.0× 10−4). Performance
was evaluated from the time-averaged MBON membrane potentials over the stimulus window.

4 Results

We evaluated our fly olfactory network model on a noisy odor discrimination task by incorporat-
ing LI and SFA mechanisms. The results show that these two seemingly redundant mechanisms
play complementary roles in learning across varying noise conditions, thereby optimizing odor
discrimination.

4.1 Odor discrimination in noise-free conditions

Our results show that the fly olfactory circuit model learns odor discrimination effectively (Figure
2). We first examined discrimination in noise-free conditions. In the baseline model—without LI
or SFA—the discrimination accuracy reaches 91.7% for 1, 000 odor classes. Although accuracy
decreases as the number of classes increases, it remains 74.72% for 10, 000 odor classes. These
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Figure 2: Odor discrimination accuracy for fly olfactory circuit variants in a noise-free setting.
Performance is shown for three configurations—–Baseline, LI, and SFA models—–as a function of
the number of odor classes (1,000–10,000).

findings indicate that the circuit’s other features confer strong pattern-classification capacity even
without explicit sparsifying mechanisms in the circuit [42, 46].

Both LI and SFA improve odor discrimination relative to the Baseline model across all tested numbers
of classes. By comparison, the LI model achieves significantly higher accuracy than the SFA model
under the same conditions.

4.2 Odor discrimination in noisy conditions

Table 1 presents a comparative analysis of discrimination performance under varying noise intensities
for the Baseline, LI, and SFA models, with odor classes ranging from 1, 000 to 5, 000. At low-
and medium-noise levels—defined as noise intensity (N.I.) < 0.20 for 1, 000- and 2, 000-class odor
discrimination, and N.I. < 0.15 for 5, 000-class odor discrimination—the results are consistent with
the noise-free context (LI model > SFA model > Baseline model), although overall test accuracy
decreases. These findings indicate that sparsification of neuronal spikes in KCs via LI is more effective
than SFA in enhancing odor discrimination under no- and low-noise conditions. However, when
odor inputs become noisier (N.I. ≥ 0.20 for 1, 000- and 2, 000-class discrimination, and N.I. ≥ 0.15
for 5, 000-class discrimination), the SFA model consistently achieves the highest discrimination
accuracy.

Table 1: Comparative performance of the Baseline, SFA, and LI models for 1,000-, 2,000-, and
5,000-class odor discrimination under different noise ntensities. Magenta values indicate the
highest performance under each condition, violet values represent the second-best performance, and
blue values denote the lowest performance.

Acc.
(%)

N.I.

1000 classes 2000 classes 5000 classes

Baseline LI SFA Baseline LI SFA Baseline LI SFA

0 91.70 98.30 93.50 88.85 96.85 90.90 82.00 92.15 85.06
0.05 78.46 96.35 82.78 68.62 92.47 74.81 52.22 77.47 58.93
0.1 74.61 91.85 78.26 61.70 83.07 67.87 38.65 57.83 45.18
0.15 74.04 83.63 79.94 61.14 71.52 68.54 34.47 42.15 43.89
0.2 72.64 74.78 78.77 58.80 58.87 67.34 32.70 31.91 43.04
0.25 67.32 62.63 74.34 52.26 45.84 61.55 27.74 22.26 36.94
0.3 59.03 53.82 69.34 43.34 37.50 55.78 20.26 16.55 30.38

We systematically analyzed the impact of the strength of each sparsification mechanism—LI and
SFA—on discrimination performance (Figure 3). The simulation results indicate that both facilitation
effects depend on noise levels, but in distinct ways. For LI, discrimination accuracy initially improves
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as N.I. increases, but then gradually diminishes and can even reverse at higher noise levels. Across
most of the tested N.I. range, stronger inhibition promotes discrimination accuracy. Compared to the
Baseline model, strong inhibition improves accuracy by 6.80% when N.I. = 0.0 and 18.52% when
N.I. = 0.1. Notably, although LI impairs discrimination at high N.I., (−4.5% when N.I. = 0.30), the
reduction is still less pronounced for stronger inhibition.

In contrast to LI, SFA consistently facilitates odor discrimination across all tested N.I. ranges. As
with LI, greater SFA strength generally yields higher accuracy, with improvements of 1.80% when
N.I. = 0.0, 3.65% when N.I. = 0.1, and 11.56% when N.I. = 0.30.

0.00 0.05 0.10 0.15 0.20 0.25 0.30
Noise Intensity

−10

−5

0

5

10

15

20

25

A
cc

ur
ac

y 
D

iff
er

en
ce

 (%
)

LI model

0.00 0.05 0.10 0.15 0.20 0.25 0.30
Noise intensities

SFA model

Low Medium High

Figure 3: Changes in discrimination performance of the SFA and LI models relative to the
Baseline model across varying degrees of inhibition and adaptation under different noise
intensities. Results are shown for 1,000-class odor discrimination only. The “Low,” “Medium,”
and “High” conditions (distinguished by color) represent increasing strengths of the respective
mechanisms, achieved by systematically adjusting the relevant synaptic weights: wLN→PN in Eq. 2
for LI, and wSFA,X in Eq. 5 for SFA. For both mechanisms, “Low,” “Medium,” and “High” correspond
to weight increases in an approximate 1:2:3 ratio.
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Figure 4: Discrimination performance of the SFA model, LI model, Full (SFA + LI) model, and
Baseline model under different noise intensities. The models were tested on odor discrimination
tasks with 1,000, 2,000, and 5,000 odor classes.

In addition, we investigated whether LI and SFA could be dynamically combined to achieve optimal
odor discrimination learning (Figure 4). Our results show that orchestrating these two mechanisms
produces higher discrimination accuracy than using either mechanism alone under low- and medium-
noise levels. Only under high-noise conditions does the SFA model outperform all other models. The
benefits of these two mechanisms are additive. These findings suggest that, although each mechanism
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is most effective within specific noise regimes, LI and SFA can work together in a complementary
manner, combining their individual effects to optimize the learning process.

4.3 Learning speed
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Figure 5: Impacts of LI and SFA on model convergence speed. The top (bottom) panel shows the
number of training epochs required for convergence (the accuracy gain per epoch) for the Baseline, LI,
and SFA models, plotted against noise intensity for different odor category sizes: 1,000, 2,000, and
5,000 classes. To avoid potential misinterpretations from relying solely on maximum accuracy and to
objectively assess learning progress, convergence is defined as the point at which model accuracy
growth plateaus. Specifically, a model is considered converged when the average improvement in
accuracy over n = 10 consecutive epochs falls below a predefined threshold (threshold = 0.003).

To further assess the impacts of LI and SFA on learning efficiency, we provide a quantitative analysis
of how these two sparsification mechanisms shape the time course of odor discrimination learning.
As shown in Figure 5 (top), similar to the final discrimination accuracy values (Table 1), the number
of training epochs required for convergence depends on noise level. In the low-noise range, the LI
model requires more epochs to reach the defined converged state, regardless of odor category size.
SFA follows LI, while the Baseline model reaches convergence fastest. The convergence speed can be
explained by combining the final discrimination accuracy (Table 1) with the accuracy gain per epoch
(Figure 5, bottom). In the low-noise range, both LI and SFA require higher final accuracy thresholds
to converge, but their per-epoch gains show no advantage over the Baseline model, resulting in slower
convergence.

In higher-noise ranges, however, the LI model exhibits the fastest convergence, followed by the
Baseline model, with the SFA model consistently the slowest. In this regime, the LI model generally
maintains an advantage over the Baseline model in per-epoch accuracy gain, explaining its faster
convergence (Figure 5, top). When N.I. = 0.3, the per-epoch accuracy gain is similar across models;
however, SFA requires a higher final accuracy threshold to reach convergence compared to both the
Baseline and LI models (Table 1). Consequently, LI reaches the converged state first, the Baseline
model second, and the SFA model last.

These results suggest that, depending on the noise level, learning speed—alongside discrimination
accuracy—may be an important factor in determining which sparsification mechanism is recruited
during noisy odor discrimination learning.

8



4.4 Sensitivity analysis

4.4.1 Sensitivity to noise types

The previous results were obtained by simulating the odor discrimination task with Gaussian noise. To
assess the generalizability of our findings, we evaluated the effects of the sparsification mechanisms
under different noise environments. In addition to Gaussian noise, we simulated noise generated by
an Ornstein–Uhlenbeck (OU) process, which captures the temporal correlations often observed in
natural odors. Odor samples with OU noise were generated using a procedure analogous to that used
for Gaussian noise.

The results, summarized in Table 2, show that the effects of LI and SFA on discrimination performance
with OU noise are generally consistent with those observed using Gaussian noise. LI achieves the
highest discrimination accuracy at low- and medium-noise levels, whereas SFA is most effective
at higher noise intensities. The main difference is that, within the tested noise range, LI—like
SFA—consistently improves the discrimination of noisy odors compared to the Baseline model,
rather than impairing performance at high noise levels, although its benefit gradually diminishes.
Overall, these findings confirm that the complementary effects of LI and SFA are robust across the
tested noise types.

Table 2: Comparative performance of the Baseline, LI, and SFA models for 1,000-class odor
discrimination under different OU noise intensities.

N.I. Baseline LI SFA

Acc.
(%)

0.1 86.02 97.98 88.66
0.3 78.66 96.43 82.55
0.5 76.01 93.10 78.85
0.9 74.54 87.84 78.50
1.5 67.55 69.72 77.49

4.4.2 Parameter sensitivity analysis

To further verify the reliability of our simulation results, we conducted a comprehensive parameter
sensitivity analysis. Three key hyperparameters—random seed, learning rate, and batch size—were
varied while keeping all other experimental conditions fixed to assess their impacts on odor discrimi-
nation.

Our tests reveal that:

• Varying the random seed typically changed accuracy by less than 1.3%.

• Adjusting the learning rate to 0.5–2.0 of its default value resulted in accuracy changes
generally under 1.6%.

• Scaling the batch size to 0.5–2.0 of its standard value produced accuracy differences typically
below 3.0%.

These results demonstrate that, within reasonable variation ranges, model performance is highly robust
to hyperparameter choices. Importantly, across all parameter variations, our core conclusions remain
unchanged: the LI model achieves optimal performance in low- and medium-noise environments,
whereas the SFA model performs best under high-noise conditions. This analysis confirms that our
main findings are reliable and independent of specific hyperparameter settings, providing a strong
foundation for the interpretations presented in this study.

5 Conclusion

In this paper, we present a computational demonstration of how two distinct neural sparsification
mechanisms—circuit-level LI and neuronal-level SFA—provide complementary advantages for noisy
odor discrimination. Both mechanisms, well-documented in biological neural systems, actively
shape and refine spatiotemporal neuronal responses. Our simulation results reveal a noise-dependent
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recruitment pattern: LI is preferentially engaged under low-noise conditions, whereas SFA dominates
in high-noise environments. The fly can orchestrate these two sparsification mechanisms to achieve
optimal discrimination performance. These findings illustrate how seemingly redundant circuit
modules in biological systems may, in fact, represent an optimized strategy for maintaining robust
learning performance across diverse environmental conditions. This study sits at the interface of
computational neuroscience and spiking neural networks, leveraging AI methods to investigate
learning processes in the fly olfactory circuit. While this interdisciplinary approach is enriching, it
also carries several limitations, as discussed below.

6 Limitations

We present a computational model of the fly olfactory circuit and investigate the roles of LI and SFA
in odor discrimination learning. While our findings offer valuable insights, several limitations point
to promising directions for future research.

First, regarding the training and test datasets, our simulations used artificially generated odors
[43]. Although the odor generation method was experimentally inspired and provided a controlled
environment, future work should validate odor discrimination performance using more naturalistic
and physiologically realistic odor stimuli.

Second, our current model assumes that plasticity is confined to synaptic connections between KCs
and MBONs. The synaptic update rule follows backpropagation through time, which is generally
considered biologically implausible. While we believe this does not alter our conclusions, future stud-
ies should explore biologically plausible learning algorithms. Moreover, as in most cerebellum-like
circuit models, the synaptic weights between the input and hidden layers (ORN–KC synapses) are
fixed [18, 47]. These connections may also undergo other forms of plasticity, such as unsupervised
learning via Oja’s rule [48]. Exploring these possibilities would provide a more comprehensive
understanding of how learning unfolds across the entire circuit.

Finally, although our parameter robustness analysis and exploration of different noise types support
the generalizability of our findings, the parameter ranges and noise characteristics examined remain
limited. Broader investigations into diverse environmental conditions and increased model complexity
could further strengthen the conclusions.
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• The answer NA means that the paper does not include experiments.
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Answer: [Yes]
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• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
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Answer: [Yes]
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Guidelines:

• The answer NA means that there is no societal impact of the work performed.
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11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our work poses no such risks.
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• The answer NA means that the paper poses no such risks.
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properly respected?
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• The answer NA means that the paper does not use existing assets.
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• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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the derived asset (if it has changed) should be provided.
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only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
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A Discrimination Accuracy over Training Epochs under Different Noise
Intensities

The main text primarily presents the final discrimination accuracy values under specific experimental
conditions. To better illustrate the learning dynamics, this section includes results showing the time
course of recognition accuracy for the three models (Baseline, LI, and SFA models) as they learn to
discriminate 1,000 odor classes under varying noise intensities (N.I. = 0.1, 0.2, and 0.3), as shown in
Figure 6.
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Figure 6: Evolution of discrimination accuracy over training epochs under different noise
intensities. The subfigures show results for: (A) N.I. = 0.1, (B) N.I. = 0.2, and (C) N.I. = 0.3.

B Model Performance with Enhanced Strength of Input Signal

The experiments described in the main text imposed certain limits on the strength of the input odor
signals to better isolate performance differences attributable to the LI and SFA mechanisms. Under
conditions with a large number of odor categories and substantial noise interference, this constraint
led to relatively low absolute accuracy values across all models. In this section, we demonstrate
that a moderate increase in input signal strength can significantly enhance overall discrimination
performance.

Table 3: Comparative performance of the Baseline, SFA, and LI models for 10,000-class odor
discrimination under different noise intensities with enhanced strength of input signal.

N.I. Baseline LI SFA

Acc.
(%)

0 99.82 99.99 99.97
0.05 98.46 99.90 99.45
0.1 96.87 98.59 98.14
0.15 90.13 86.58 93.27
0.2 69.80 60.79 81.31
0.25 45.21 34.17 60.07
0.3 25.94 18.40 37.45

Table 3 summarizes the final discrimination accuracy of the Baseline, LI, and SFA models after
increasing the input signal strength. Enhancing the input signal strength led to substantial accuracy
improvements for all models across the tested conditions. For example, with 10,000 odor classes and
noise = 0.1, the accuracy of the Baseline model rose from 21.80% to 96.87%.
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