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Abstract

Oncologists are increasingly relying on multiple modalities to model the complexity1

of diseases. Within this landscape, transcriptomic and epigenetic data have proven2

to be particularly instrumental. However, their integration into multimodal models3

remains a challenge, especially considering their high dimensionality. In this work,4

we present a novel bimodal model, MOJO, that jointly learns representations of5

bulk RNA-seq and DNA methylation leveraging self-supervision from Masked6

Language Modeling. We use an architecture that reduces the memory footprint7

usually attributed to purely transformer-based models when dealing with long8

sequences. We demonstrate that the obtained bimodal embeddings can be used to9

fine-tune cancer-type classification and survival models that achieve state-of-the-art10

performance compared to unimodal models. Furthermore, we introduce a robust11

learning framework that maintains downstream task performance despite missing12

modalities, enhancing the model’s applicability in real-world clinical settings.13

1 Introduction14

The growing availability of high-throughput technologies has revolutionized molecular research,15

generating extensive genomic, transcriptomic, and epigenomic data that hold immense potential16

for personalized medicine [18, 35, 12]. The integration of these diverse data sources remains a17

significant challenge, especially when modalities may be missing in clinical applications. The high18

dimensionality of each modality makes classic machine learning ineffective. Consequently, there is a19

growing tendency to first learn data representations using self-supervised approaches. Foundation20

models have emerged as powerful tools to learn effective embeddings for biological and clinical21

tasks [13, 6]. These models often leverage the transformer architecture [40], which is limited by the22

quadratic memory scaling of its attention mechanism. To handle long-range sequences, recent models23

have integrated convolutional blocks [3] or state-space models [30]. In this paper, we introduce MOJO24

(Multi-Omics Joint representation learning), a model that learns joint embeddings of bulk RNA-seq25

and DNA methylation from The Cancer Genome Atlas (TCGA, https://portal.gdc.cancer.26

gov/)) through bimodal masked language modeling. We show that MOJO’s embeddings lead to27

state-of-the-art performance in pan-cancer classification, survival analysis, and subtype clustering.28

We also present a framework that uses an auxiliary mutual information loss to preserve performance29

when a modality is absent at test time. Code will be made available upon acceptance.30

2 Related Works31

Omics representation learning has evolved from statistical methods like PCA [19] to deep learning32

architectures such as Masked Auto-Encoders [16] and Mixture-of-Experts [28]. In line with foun-33

dation models for single-cell transcriptomics [11], [15] developed a transformer-based model for34
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Figure 1: MOJO pipeline. (a) RNA-seq and DNA methylation are processed and tokenized. (b) MOJO,
a hybrid convolution-transformer model, is pre-trained via bimodal masked language modeling. (c)
The learned embeddings are used to fine-tune downstream models.

bulk RNA-seq. Multi-modal integration is often performed using late integration, where sources35

are encoded separately before being aggregated via concatenation, element-wise operations [38],36

or cross-attention [14]. Variational auto-encoders [22] have also been widely used for multi-omics37

integration, either for single-cell omics [7, 2, 37] or bulk omics [4].38

Handling missing modalities is crucial for clinical applicability. Common approaches include data-39

level imputation [8] and model-level adjustments like fusion or knowledge distillation [32]. Training40

strategies such as modality dropout [23] are also employed to simulate missing data scenarios. Our41

work adapts a test-time-adaptation technique from [31] that uses mutual information to improve the42

robustness of their model to missing modalities.43

3 Multi-Omics Joint Representation Learning44

Modalities Alignment Bulk RNA-seq provides gene expression estimates (Xrna ∈ RNgenes , with45

typically Ngenes ∼ 104), to which we apply an x 7→ log10(1 + x) transformation. DNA methylation46

data consists of beta values for numerous CpG sites (Xsites_meth ∈ [0, 1]Nsites), obtained through47

the Illumina Infinium HumanMethylation450 (450K) BeadChip array [5] (so Nsites ∼ 450, 000).48

We align these modalities by averaging the methylation beta values of all sites associated with a given49

gene (e.g., within its promoter region or gene body) to obtain a single methylation value per gene,50

Xmeth ∈ RNgenes . A bimodal sample is thus a vector X = (Xrna, Xmeth) ∈ R2Ngenes .51

Tokenization We tokenize each component of the feature vector X by binning its values on linear52

scales. The token ID for a given value is its corresponding bin ID. After tokenization, a sample is53

represented as a vector of integers X̃ = (X̃rna, X̃meth).54

Model Architecture and Pre-training To learn representations, we propose a model combining55

convolution and transformer blocks, inspired by architectures for long-range genomic dependencies56

[3, 25]. As shown in Figure 1, each omic token is passed through embedding layers and summed57

with a shared gene embedding (initialized with the Gene2Vec method [43]), which acts as a positional58

encoding. This bimodal embedding is downsampled by a convolutional tower before being fed to a59

transformer block, significantly reducing computational cost. The original sequence length is restored60

using a deconvolutional tower with residual connections. Separate language modeling heads predict61

the binned gene expression and methylation values. The model is pre-trained through self-supervision62

using multimodal masked language modeling. For each sequence, 15% of tokens are corrupted (80%63

masked, 10% randomized, 10% unchanged). We optimize a multimodal negative log-likelihood64

loss, Lmultimodal MLM = −
∑

m∈M
∑

i∈Mm
log(pm(i)X̄m(i)), whereMm is the set of masked token65
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indices for modality m. We pre-trained MOJO on 9,252 paired samples from TCGA over 17,11666

genes. Further pre-training details are in Appendix A.67

4 Evaluation on Downstream Tasks68

We evaluate MOJO’s representations on cancer-type classification and survival analysis, comparing69

against unimodal models (BulkRNABert [15] for bulk RNA-seq and its counterpart for DNA methyla-70

tion that we developed in our work and called MethFormer), late integration schemes (aggregating71

embeddings of two aforementioned encoders, see figure in Appendix B for more details), CustOmics72

[4] (two models are considered: CustOmics(end-to-end) that trains the VAEs and the task heads73

jointly, and CustOmics(probing) that first learns the unsupervised representation with VAEs and74

then uses the encoded features as input to task heads), and MOFA [1]. The quality of MOJO’s75

embeddings is further confirmed in zero-shot classification and clustering tasks especially on breast76

cancer sub-typing (see Appendix C.4).77

4.1 Cancer-Type Classification78 Table 1: Cancer type classification

Model Test weighted-F1

BulkRNABert 0.943 ± 0.004
MethFormer 0.931 ± 0.006
MOFA 0.852 ± 0.007

Late integration (concatenation) 0.945 ± 0.007
Late integration (cross-attention) 0.945 ± 0.002
CustOmics (probing) 0.911 ± 0.088
MOJO (probing) 0.945 ± 0.006

CustOmics (end-to-end) 0.946 ± 0.006
MOJO (no pre-training) 0.891 ± 0.006
MOJO 0.952 ± 0.006

We fine-tune MOJO’s embeddings (ex-79

tracted from the last attention layer and80

averaged across the sequence dimension)81

with a small MLP for 33-way pan-cancer82

classification. BulkRNABert, MethFormer,83

and MOJO are further fine-tuned in ad-84

dition to training the MLPs using the85

parameter-efficient method IA3 [26]. Ta-86

ble 1 presents the cancer-type classification87

results on the pan-cancer TCGA dataset,88

split into 80% for training and 20% for89

testing (averaged over 5 seeds). MOJO90

achieves state-of-the-art results with both91

modalities, outperforming CustOmics and Late Integration methods. MOJO also exceeds unimodal92

transformers (BulkRNABert and MethFormer). Furthermore, probing MOJO’s last attention layer with93

an SVM (MOJO (probing)) shows a clear performance increase over CustOmics(probing), indicating94

stronger predictive capacity from its masked language modeling representations.95

4.2 Survival Analysis96

Table 2: Pan-cancer survival
analysis

Model C-index

BulkRNABert 0.749 ± 0.003
MethFormer 0.736 ± 0.006
MOFA 0.648 ± 0.037

CustOmics 0.686 ± 0.018
Late integration 0.756 ± 0.004
MOJO 0.771 ± 0.006

We then evaluate omics embeddings on a pan-cancer survival97

task, also known as time-to-event prediction. This task in-98

volves predicting the survival time for individuals who have99

cancer, specifically the time from diagnosis until death from100

right-censored datasets. We use adaptations of Cox propor-101

tional model [10] to the deep learning setting [21, 9] and thus102

employ negative partial Cox-log-likelihood as loss for model103

training. Table 2 reports the test C-indexes [17] of the bench-104

marked models and shows that MOJO outperforms other meth-105

ods, demonstrating the strength of its learned representations for106

prognosis. Kaplan-Meier curves are also provided in Appendix107

C.5, showing better patient stratification with MOJO.108

5 Robustness to Missing Modalities109

In clinical settings, modalities can be missing. MOJO can inherently handle missing data by replacing110

a modality’s input with <MASK> tokens.111

Missing modalities: fine-tuning In the context of Ovarian (OV) cancer-subtyping in TCGA112

(4 classes: differentiated, immunoreactive, mesenchymal, and proliferative [41]), one only gets113

access to RNA-seq samples. A bimodal pre-trained MOJO model is thus fine-tuned on this task114
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with (Xrna,None) as input and gets better performance than BulkRNABert while being faster to115

train (Figure 2). We also conduct this experiment by pre-training another MOJO model by incor-116

porating samples from the TCGA dataset that are missing one of the two considered modalities,117

thus extending the initial pre-training dataset composed of 9,252 pairs (Xrna, Xmeth) with 2,022118

pairs (Xrna, None) and 560 pairs (None,Xmeth) with None indicating a missing modality. We119

will refer to this model as MOJO-MMO (MMO = Missing MOdalities). This further improves the120

performance on OV sub-typing.121

Missing modalities: test-time We aim for a model trained on bimodal data to maintain performance122

when one modality is absent at test time (we simulate the absence of either RNA-seq or methylation123

by dropping it from x% of test pairs). To improve robustness, we adapt a technique from [31]124

and incorporate an auxiliary mutual information (MI) loss during fine-tuning. The goal is to make125

the model’s prediction fθ(x;m) for an input x with modality m independent of the modality m ∈126

Dmodality = {rna+meth, rna,meth} seen as a random variable. We achieve this by minimizing127

the MI between the model’s output and the modality set: Laux = Em∈Dmodality
[MI(fθ(x,m),m)].128

The total loss becomes L = Ltask + λLaux (a detailed algorithm is available in Appendix D). Results129

when RNA-seq is dropped are provided in Figure 3 (similar results when dropping DNA methylation130

are provided in Appendix D). When tested on the cancer-type classification task, a standard MOJO131

model’s performance drops significantly when a modality is removed from 100% of the test samples132

(e.g., weighted-F1 from 0.952 to 0.538 when RNA-seq is dropped). Fine-tuning with the MI auxiliary133

loss largely mitigates this drop (recovering to 0.916), achieving performance close to that of a134

unimodal model trained only on the available data (0.943), without sacrificing performance in the135

bimodal case.136

Figure 2: Ovarian cancer sub-typing: MOJO
outperforms BulkRNABert while being faster to
fine-tune. (BulkRNABert models bars from left
to right: same fine-tuning budget as MOJO, ×2
fine-tuning steps, and until convergence).

Figure 3: Performance when dropping RNA-seq.
Test weighted-F1 score is reported as a function
of the percentage of dropped RNA-seq samples
in the test set.

6 Conclusion137

We introduced MOJO, a novel architecture for learning joint representations of bulk RNA-seq and138

DNA methylation via bimodal masked language modeling. Its hybrid convolution-attention design139

efficiently handles high-dimensional omics data. The learned embeddings achieve state-of-the-art140

performance on cancer-type classification and survival analysis, outperforming unimodal and late-141

integration approaches. Furthermore, by incorporating a mutual information-based auxiliary loss142

during fine-tuning, we demonstrate that our model can maintain robust performance even when a143

modality is missing at test time, enhancing its clinical applicability.144
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A MOJO pre-training275

A.1 Hyperparameters276

Table 3: MOJO model and pre-training hyperparameters
Model Hyperparameters

Number of downsamples 8
Kernel size 5
Embedding dimension 512
Number of transformer layers 8
Feed forward dimension 1,024
Number of attention heads 16

Training Hyperparameters
Batch size 128
Gradient accumulation 4
Learning rate 5× 10−5

Masking ratio 15%

A.2 Pre-training learning curves277

Figure 4: Bimodal masked language modeling pre-training curves of the MOJO architecture. The
training reconstruction accuracy is represented of each omic separately as well as the average
reconstruction accuracy among the different omics.
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B Late integration278

We refer to Late integration as the bimodal integration resulting from the fusion of embeddings279

extracted from unimodal models. More precisely, we refer to Late Integration (concatenation) as280

the concatenation of the embeddings from BulkRNABert (for RNA-seq) and MethFormer (for DNA281

methylation) which have been pre-trained beforehand. Late integration (cross-attention) corresponds282

to an integration of the two embeddings with a two-step cross-attention followed by a concatenation,283

allowing for interaction between the two modalities. The different cross-attention modules are only284

trained when fitting the downstream tasks. An illustration of the late integration is provided in Figure285

5.286

Figure 5: Late integration architecture. RNA-seq and Methylation embeddings are obtained from
pre-trained transformer based encoders (respectively BulkRNABert and MethFormer) and are fused
either by concatenation or by a two-steps cross-attention mechanism.
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C Downstream tasks dataset and benchmarks287

C.1 Pan-cancer classification dataset288

Figure 6: Pan-cancer classification label distribution.

C.2 Classification and survival analysis exhaustive benchmarks289

In addition to Table 1 (cancer-type classification) and Table 2, a more exhaustive benchmark including290

other representation models for RNA-seq and DNA methylation has been performed:291

• Multiple Factor Analysis (MFA) [33], using a latent space of dimension 256.292

• Non-negative Matrix Factorization (NMF) [24], with the same latent space dimension as for293

MFA.294

• OmiEmbed [42]: a unified multi-task deep learning framework for multi-omics data based295

on Variational Auto-Encoders [22] from early integrated omics.296

• IntegrAO [27]: an unsupervised framework based on Graph Neural Networks [34] for297

integrating incomplete multi-omics data, tailored for classification and survival task.298

Multiple Factor Analysis and Non-negative Matrix Factorization features are then fed to a Support299

Vector Machine (SVM) for the cancer-type classification task and to a Cox proportional model for300

the survival analysis task. The results are presented in Table 4 and Table 5.301

For the classification task, in addition to the weighted F1 score, we also report the macro F1 score.302

For the survival analysis task, in order to make sure that a pan-cancer model is able to predict303

survival within cohorts correctly, and not just to differentiate survival chances between cancer types, a304

"Weighted C-index" is also reported. This corresponds to a weighted sum of the C-indexes computed305

per cohort on the pan-cancer test set, with weights corresponding to the number of samples of each306

cohort in the test set.307

C.3 Fine-tuning training times308

We report in Table 6 the time required by different models (BulkRNABert, Late integration (cross-309

attention), Late integration (concatenation), and MOJO) to perform a full update step (forward and310

backward pass) when training a pan-cancer classification model. While supporting substantially311

larger batch sizes compared to purely transformer-based models or late integration mechanisms,312

MOJO achieves approximately a 100× speedup over other benchmarked models. This highlights313

the computational efficiency of our hybrid architecture that combines convolutional and transformer314

layers, offering a more scalable alternative to fully transformer-based approaches.315
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Table 4: Full benchmark on cancer-type classification

Model Modality test macro-F1 test weighted-F1

BulkRNABert RNA-seq 0.918 ± 0.008 0.943 ± 0.004
MethFormer Methylation 0.917 ± 0.008 0.931 ± 0.006

MFA Bimodal 0.753 ± 0.013 0.848 ± 0.008
NMF Bimodal 0.725 ± 0.011 0.827 ± 0.006
MOFA Bimodal 0.789 ± 0.012 0.852 ± 0.007

Late integration (concatenation) Bimodal 0.928 ± 0.008 0.945 ± 0.007
Late integration (cross-attention) Bimodal 0.929 ± 0.005 0.945 ± 0.002
CustOmics (probing) Bimodal 0.887 ± 0.065 0.911 ± 0.088
MOJO (probing) Bimodal 0.928 ± 0.009 0.945 ± 0.006

IntegrAO Bimodal 0.912 ± 0.005 0.911 ± 0.015
OmiEmbed Bimodal 0.919 ± 0.004 0.922 ± 0.016
CustOmics (end-to-end) Bimodal 0.922 ± 0.006 0.946 ± 0.006
MOJO (no pre-training) Bimodal 0.835 ± 0.015 0.891 ± 0.006
MOJO Bimodal 0.935 ± 0.007 0.952 ± 0.006

Table 5: Full benchmark on pan-cancer survival analysis

Model Modality C-index Weighted C-index

BulkRNABert RNA-seq 0.750 ± 0.004 0.657 ± 0.011
MethFormer Methylation 0.735 ± 0.006 0.618 ± 0.017

MFA Bimodal 0.616 ± 0.033 0.593 ± 0.016
NMF Bimodal 0.616 ± 0.040 0.591 ± 0.025
MOFA Bimodal 0.648 ± 0.037 0.601 ± 0.022

IntegrAO Bimodal 0.710 ± 0.008 0.624 ± 0.006
OmiEmbed Bimodal 0.736 ± 0.006 0.631 ± 0.007

CustOmics Bimodal 0.686 ± 0.018 0.639 ± 0.099
Late integration Bimodal 0.756 ± 0.004 0.653 ± 0.011
MOJO Bimodal 0.771 ± 0.006 0.670 ± 0.009

Table 6: Average time per update step (forward + backward pass) during training of classification
models on a TPU v4-8. All models are evaluated with an effective batch size of 64, achieved via
gradient accumulation when necessary. For each model, we additionally report the maximum batch
size supported by the model. As in classification benchmarks, parameter efficient fine-tuning is
applied to MOJO and BulkRNABert.

Model
Update time

(seconds)
Maximum
batch size

Late integration (cross-attention) 5.819 ± 0.006 4
BulkRNABert 4.462 ± 0.006 8

Late integration (concatenation) 2.205 ± 0.004 16
MOJO 0.059 ± 0.009 1,024

C.4 Zero-shot pan-cancer and breast cancer sub-typing and clustering316

To further evaluate MOJO’s learned embeddings in a fully unsupervised manner, we assess their317

zero-shot classification and clustering capabilities on PAM50 breast cancer sub-typing (Luminal318

A, Luminal B, Basal, and HER2) [29] and the Pan-cancer dataset from section ??. First, zero-shot319

classification uses a k-nearest neighbors model (k = 5), evaluated by accuracy, to assess embedding320

quality without fine-tuning, inspired by [20]. Second, Leiden clustering [36] is performed in the321

embedding space, with Normalized Mutual Information (NMI) and Adjusted Rand Index (ARI) as322
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metrics. We primarily compare the effectiveness of MOJO’s joint modeling against late integration323

embeddings for bimodal data.324

Results Zero-shot classification and clustering results are shown in Table 7, showing better325

performance when using MOJO embedding than late integration and CustOmics. We present in326

Figure 7 t-SNE [39] plots of both embeddings in the pan-cancer setting, reflecting that MOJO327

embeddings more effectively separate the cohorts.328

Table 7: Full benchmark on zero-shot classification and clustering results on pan-cancer and PAM50
tasks. (Acc. = Accuracy, NMI = Normalized Mutual Infomation, ARI = Ajusted Rank Index).

Task Metric MOJO Late integration CustOmics

PAM50
Acc. 0.777 0.763 0.765
NMI 0.345 0.291 0.311
ARI 0.213 0.154 0.176

Pan-cancer
Acc. 0.928 0.870 0.905
NMI 0.862 0.771 0.830
ARI 0.756 0.620 0.699

Figure 7: Pan-cancer version of the t-SNE representation of MOJO and Late integration embeddings,
colored by cancer-type.
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C.5 Kaplan-Meier curves329

Figure 8: Kaplan-Meier curve for pan-cancer survival models for four models: MOJO, CustOmics,
BulkRNABert, MethFormer.
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D Missing modalities experiments330

Figure 9: Missing modalities experimental results. Test weighted-F1 score for the pan-cancer
classification is reported for different methods to handle the absence of a modality in x% of the
samples (left: RNA-seq, right: Methylation). Unimodal models are respectively MethFormer and
BulkRNABert when RNA-seq or Methylation is missing.

Algorithm 1 Mutual information auxiliary (MI) loss

Input: Omics tokens X = {rnaseq : xrnaseq,meth : xmeth}, true class label y, sequence length
N , mask token <MASK>, mutual information coefficient λ, classification model fθ
Output: single example loss
if noMissingModality(X) then
modalities = [rna+meth, rnaseq,meth]
output = [fθ(X)]
for m ∈ [rnaseq,meth] do
X ′ ← copy(X)
X ′[m]← [<MASK>] ∗N
output.append(fθ(X

′))
end for
MILoss = MI(output,modalities)

else
MILoss = 0.0

end if
Loss = CrossEntropy(fθ(X), y) + λ ∗MILoss
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Table 8: Missing modalities experiment: cancer type classification

Model Add mutual information Drop modality (test time) test macro-F1 test weighted-F1

BulkRNABert ✗ - 0.918 ± 0.008 0.943 ± 0.004
MethFormer ✗ - 0.917 ± 0.008 0.931 ± 0.006

MOJO ✗ - 0.935 ± 0.007 0.952 ± 0.006
MOJO ✗ Drop 100% of RNASeq 0.422 ± 0.022 0.538 ± 0.025
MOJO ✗ Drop 100% of Methylation 0.764 ± 0.024 0.854 ± 0.011

MOJO ✓ - 0.930 ± 0.007 0.949 ± 0.004
MOJO ✓ Drop 100% of RNASeq 0.895 ± 0.008 0.916 ± 0.007
MOJO ✓ Drop 100% of Methylation 0.911 ± 0.012 0.937 ± 0.008

MOJO-MMO ✗ - 0.933 ± 0.006 0.952 ± 0.003
MOJO-MMO ✗ Drop 100% of RNASeq 0.653 ± 0.013 0.769 ± 0.004
MOJO-MMO ✗ Drop 100% of Methylation 0.903 ± 0.010 0.932 ± 0.005

MOJO-MMO ✓ - 0.929 ± 0.006 0.949 ± 0.005
MOJO-MMO ✓ Drop 100% of RNASeq 0.883 ± 0.005 0.911 ± 0.004
MOJO-MMO ✓ Drop 100% of Methylation 0.911 ± 0.010 0.937 ± 0.006
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NeurIPS Paper Checklist331

1. Claims332

Question: Do the main claims made in the abstract and introduction accurately reflect the333

paper’s contributions and scope?334

Answer: [Yes]335

Justification: The abstract introduces our model MOJO for RNA-seq and DNA methylation336

representation learning which is then benchmarked against other models on various tasks,337

showing SOTA performance.338

Guidelines:339

• The answer NA means that the abstract and introduction do not include the claims340

made in the paper.341

• The abstract and/or introduction should clearly state the claims made, including the342

contributions made in the paper and important assumptions and limitations. A No or343

NA answer to this question will not be perceived well by the reviewers.344

• The claims made should match theoretical and experimental results, and reflect how345

much the results can be expected to generalize to other settings.346

• It is fine to include aspirational goals as motivation as long as it is clear that these goals347

are not attained by the paper.348

2. Limitations349

Question: Does the paper discuss the limitations of the work performed by the authors?350

Answer: [Yes]351

Justification: Although the papers discusses clinical applicability through the problem of352

missing modalities, further validation on external datasets (other than TCGA), could also353

help validating the model for clinical applications.354

Guidelines:355

• The answer NA means that the paper has no limitation while the answer No means that356

the paper has limitations, but those are not discussed in the paper.357

• The authors are encouraged to create a separate "Limitations" section in their paper.358

• The paper should point out any strong assumptions and how robust the results are to359

violations of these assumptions (e.g., independence assumptions, noiseless settings,360

model well-specification, asymptotic approximations only holding locally). The authors361

should reflect on how these assumptions might be violated in practice and what the362

implications would be.363

• The authors should reflect on the scope of the claims made, e.g., if the approach was364

only tested on a few datasets or with a few runs. In general, empirical results often365

depend on implicit assumptions, which should be articulated.366

• The authors should reflect on the factors that influence the performance of the approach.367

For example, a facial recognition algorithm may perform poorly when image resolution368

is low or images are taken in low lighting. Or a speech-to-text system might not be369

used reliably to provide closed captions for online lectures because it fails to handle370

technical jargon.371

• The authors should discuss the computational efficiency of the proposed algorithms372

and how they scale with dataset size.373

• If applicable, the authors should discuss possible limitations of their approach to374

address problems of privacy and fairness.375

• While the authors might fear that complete honesty about limitations might be used by376

reviewers as grounds for rejection, a worse outcome might be that reviewers discover377

limitations that aren’t acknowledged in the paper. The authors should use their best378

judgment and recognize that individual actions in favor of transparency play an impor-379

tant role in developing norms that preserve the integrity of the community. Reviewers380

will be specifically instructed to not penalize honesty concerning limitations.381

3. Theory assumptions and proofs382
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Question: For each theoretical result, does the paper provide the full set of assumptions and383

a complete (and correct) proof?384

Answer: [Yes]385

Justification: Even though the paper tackles the clinical applicability of the model consider-386

ing possible missing modalities, no external dataset other than TCGA has been used to fully387

validate its clinical relevance.388

Guidelines:389

• The answer NA means that the paper does not include theoretical results.390

• All the theorems, formulas, and proofs in the paper should be numbered and cross-391

referenced.392

• All assumptions should be clearly stated or referenced in the statement of any theorems.393

• The proofs can either appear in the main paper or the supplemental material, but if394

they appear in the supplemental material, the authors are encouraged to provide a short395

proof sketch to provide intuition.396

• Inversely, any informal proof provided in the core of the paper should be complemented397

by formal proofs provided in appendix or supplemental material.398

• Theorems and Lemmas that the proof relies upon should be properly referenced.399

4. Experimental result reproducibility400

Question: Does the paper fully disclose all the information needed to reproduce the main ex-401

perimental results of the paper to the extent that it affects the main claims and/or conclusions402

of the paper (regardless of whether the code and data are provided or not)?403

Answer: [Yes]404

Justification: The model and training hyperparameters are provided either in the main body405

of the paper or in the appendix. The dataset (TCGA) is open-access and thus allows for406

reproducibility.407

Guidelines:408

• The answer NA means that the paper does not include experiments.409

• If the paper includes experiments, a No answer to this question will not be perceived410

well by the reviewers: Making the paper reproducible is important, regardless of411

whether the code and data are provided or not.412

• If the contribution is a dataset and/or model, the authors should describe the steps taken413

to make their results reproducible or verifiable.414

• Depending on the contribution, reproducibility can be accomplished in various ways.415

For example, if the contribution is a novel architecture, describing the architecture fully416

might suffice, or if the contribution is a specific model and empirical evaluation, it may417

be necessary to either make it possible for others to replicate the model with the same418

dataset, or provide access to the model. In general. releasing code and data is often419

one good way to accomplish this, but reproducibility can also be provided via detailed420

instructions for how to replicate the results, access to a hosted model (e.g., in the case421

of a large language model), releasing of a model checkpoint, or other means that are422

appropriate to the research performed.423

• While NeurIPS does not require releasing code, the conference does require all submis-424

sions to provide some reasonable avenue for reproducibility, which may depend on the425

nature of the contribution. For example426

(a) If the contribution is primarily a new algorithm, the paper should make it clear how427

to reproduce that algorithm.428

(b) If the contribution is primarily a new model architecture, the paper should describe429

the architecture clearly and fully.430

(c) If the contribution is a new model (e.g., a large language model), then there should431

either be a way to access this model for reproducing the results or a way to reproduce432

the model (e.g., with an open-source dataset or instructions for how to construct433

the dataset).434
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(d) We recognize that reproducibility may be tricky in some cases, in which case435

authors are welcome to describe the particular way they provide for reproducibility.436

In the case of closed-source models, it may be that access to the model is limited in437

some way (e.g., to registered users), but it should be possible for other researchers438

to have some path to reproducing or verifying the results.439

5. Open access to data and code440

Question: Does the paper provide open access to the data and code, with sufficient instruc-441

tions to faithfully reproduce the main experimental results, as described in supplemental442

material?443

Answer: [Yes]444

Justification: Code will be made available upond acceptance.445

Guidelines:446

• The answer NA means that paper does not include experiments requiring code.447

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/448

public/guides/CodeSubmissionPolicy) for more details.449

• While we encourage the release of code and data, we understand that this might not be450

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not451

including code, unless this is central to the contribution (e.g., for a new open-source452

benchmark).453

• The instructions should contain the exact command and environment needed to run to454

reproduce the results. See the NeurIPS code and data submission guidelines (https:455

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.456

• The authors should provide instructions on data access and preparation, including how457

to access the raw data, preprocessed data, intermediate data, and generated data, etc.458

• The authors should provide scripts to reproduce all experimental results for the new459

proposed method and baselines. If only a subset of experiments are reproducible, they460

should state which ones are omitted from the script and why.461

• At submission time, to preserve anonymity, the authors should release anonymized462

versions (if applicable).463

• Providing as much information as possible in supplemental material (appended to the464

paper) is recommended, but including URLs to data and code is permitted.465

6. Experimental setting/details466

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-467

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the468

results?469

Answer: [Yes]470

Justification: We provide MOJO hyperparatemers as well as pre-training setting. For471

fine-tuning, we detail how the dataset is split and how the metrics are computed for each472

task.473

Guidelines:474

• The answer NA means that the paper does not include experiments.475

• The experimental setting should be presented in the core of the paper to a level of detail476

that is necessary to appreciate the results and make sense of them.477

• The full details can be provided either with the code, in appendix, or as supplemental478

material.479

7. Experiment statistical significance480

Question: Does the paper report error bars suitably and correctly defined or other appropriate481

information about the statistical significance of the experiments?482

Answer: [Yes]483

Justification: For each downstream task, we randomly split the dataset 5 different times and484

report the mean test metric as well as the standard deviation.485

Guidelines:486
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• The answer NA means that the paper does not include experiments.487

• The authors should answer "Yes" if the results are accompanied by error bars, confi-488

dence intervals, or statistical significance tests, at least for the experiments that support489

the main claims of the paper.490

• The factors of variability that the error bars are capturing should be clearly stated (for491

example, train/test split, initialization, random drawing of some parameter, or overall492

run with given experimental conditions).493

• The method for calculating the error bars should be explained (closed form formula,494

call to a library function, bootstrap, etc.)495

• The assumptions made should be given (e.g., Normally distributed errors).496

• It should be clear whether the error bar is the standard deviation or the standard error497

of the mean.498

• It is OK to report 1-sigma error bars, but one should state it. The authors should499

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis500

of Normality of errors is not verified.501

• For asymmetric distributions, the authors should be careful not to show in tables or502

figures symmetric error bars that would yield results that are out of range (e.g. negative503

error rates).504

• If error bars are reported in tables or plots, The authors should explain in the text how505

they were calculated and reference the corresponding figures or tables in the text.506

8. Experiments compute resources507

Question: For each experiment, does the paper provide sufficient information on the com-508

puter resources (type of compute workers, memory, time of execution) needed to reproduce509

the experiments?510

Answer: [Yes]511

Justification: As stated in the pre-training paragraph of the paper, we used a TPU v4-8512

for our experiments. Also, training times and maximum batch sizes are reported in the513

Appendix in the case of classification models.514

Guidelines:515

• The answer NA means that the paper does not include experiments.516

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,517

or cloud provider, including relevant memory and storage.518

• The paper should provide the amount of compute required for each of the individual519

experimental runs as well as estimate the total compute.520

• The paper should disclose whether the full research project required more compute521

than the experiments reported in the paper (e.g., preliminary or failed experiments that522

didn’t make it into the paper).523

9. Code of ethics524

Question: Does the research conducted in the paper conform, in every respect, with the525

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?526

Answer: [Yes]527

Justification: No deviation from the Code of Ethics.528

Guidelines:529

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.530

• If the authors answer No, they should explain the special circumstances that require a531

deviation from the Code of Ethics.532

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-533

eration due to laws or regulations in their jurisdiction).534

10. Broader impacts535

Question: Does the paper discuss both potential positive societal impacts and negative536

societal impacts of the work performed?537

Answer: [Yes]538
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Justification: We discussed the application of the model in real clinical applications when539

considering the possibility of missing modalities.540

Guidelines:541

• The answer NA means that there is no societal impact of the work performed.542

• If the authors answer NA or No, they should explain why their work has no societal543

impact or why the paper does not address societal impact.544

• Examples of negative societal impacts include potential malicious or unintended uses545

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations546

(e.g., deployment of technologies that could make decisions that unfairly impact specific547

groups), privacy considerations, and security considerations.548

• The conference expects that many papers will be foundational research and not tied549

to particular applications, let alone deployments. However, if there is a direct path to550

any negative applications, the authors should point it out. For example, it is legitimate551

to point out that an improvement in the quality of generative models could be used to552

generate deepfakes for disinformation. On the other hand, it is not needed to point out553

that a generic algorithm for optimizing neural networks could enable people to train554

models that generate Deepfakes faster.555

• The authors should consider possible harms that could arise when the technology is556

being used as intended and functioning correctly, harms that could arise when the557

technology is being used as intended but gives incorrect results, and harms following558

from (intentional or unintentional) misuse of the technology.559

• If there are negative societal impacts, the authors could also discuss possible mitigation560

strategies (e.g., gated release of models, providing defenses in addition to attacks,561

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from562

feedback over time, improving the efficiency and accessibility of ML).563

11. Safeguards564

Question: Does the paper describe safeguards that have been put in place for responsible565

release of data or models that have a high risk for misuse (e.g., pretrained language models,566

image generators, or scraped datasets)?567

Answer: [NA]568

Justification: [NA]569

Guidelines:570

• The answer NA means that the paper poses no such risks.571

• Released models that have a high risk for misuse or dual-use should be released with572

necessary safeguards to allow for controlled use of the model, for example by requiring573

that users adhere to usage guidelines or restrictions to access the model or implementing574

safety filters.575

• Datasets that have been scraped from the Internet could pose safety risks. The authors576

should describe how they avoided releasing unsafe images.577

• We recognize that providing effective safeguards is challenging, and many papers do578

not require this, but we encourage authors to take this into account and make a best579

faith effort.580

12. Licenses for existing assets581

Question: Are the creators or original owners of assets (e.g., code, data, models), used in582

the paper, properly credited and are the license and terms of use explicitly mentioned and583

properly respected?584

Answer: [Yes]585

Justification: All assets are credited in this manuscript586

Guidelines:587

• The answer NA means that the paper does not use existing assets.588

• The authors should cite the original paper that produced the code package or dataset.589

• The authors should state which version of the asset is used and, if possible, include a590

URL.591
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• The name of the license (e.g., CC-BY 4.0) should be included for each asset.592

• For scraped data from a particular source (e.g., website), the copyright and terms of593

service of that source should be provided.594

• If assets are released, the license, copyright information, and terms of use in the595

package should be provided. For popular datasets, paperswithcode.com/datasets596

has curated licenses for some datasets. Their licensing guide can help determine the597

license of a dataset.598

• For existing datasets that are re-packaged, both the original license and the license of599

the derived asset (if it has changed) should be provided.600

• If this information is not available online, the authors are encouraged to reach out to601

the asset’s creators.602

13. New assets603

Question: Are new assets introduced in the paper well documented and is the documentation604

provided alongside the assets?605

Answer: [NA]606

Justification: [NA]607

Guidelines:608

• The answer NA means that the paper does not release new assets.609

• Researchers should communicate the details of the dataset/code/model as part of their610

submissions via structured templates. This includes details about training, license,611

limitations, etc.612

• The paper should discuss whether and how consent was obtained from people whose613

asset is used.614

• At submission time, remember to anonymize your assets (if applicable). You can either615

create an anonymized URL or include an anonymized zip file.616

14. Crowdsourcing and research with human subjects617

Question: For crowdsourcing experiments and research with human subjects, does the paper618

include the full text of instructions given to participants and screenshots, if applicable, as619

well as details about compensation (if any)?620

Answer: [NA]621

Justification: [NA]622

Guidelines:623

• The answer NA means that the paper does not involve crowdsourcing nor research with624

human subjects.625

• Including this information in the supplemental material is fine, but if the main contribu-626

tion of the paper involves human subjects, then as much detail as possible should be627

included in the main paper.628

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,629

or other labor should be paid at least the minimum wage in the country of the data630

collector.631

15. Institutional review board (IRB) approvals or equivalent for research with human632

subjects633

Question: Does the paper describe potential risks incurred by study participants, whether634

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)635

approvals (or an equivalent approval/review based on the requirements of your country or636

institution) were obtained?637

Answer: [NA]638

Justification: [NA]639

Guidelines:640

• The answer NA means that the paper does not involve crowdsourcing nor research with641

human subjects.642
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• Depending on the country in which research is conducted, IRB approval (or equivalent)643

may be required for any human subjects research. If you obtained IRB approval, you644

should clearly state this in the paper.645

• We recognize that the procedures for this may vary significantly between institutions646

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the647

guidelines for their institution.648

• For initial submissions, do not include any information that would break anonymity (if649

applicable), such as the institution conducting the review.650

16. Declaration of LLM usage651

Question: Does the paper describe the usage of LLMs if it is an important, original, or652

non-standard component of the core methods in this research? Note that if the LLM is used653

only for writing, editing, or formatting purposes and does not impact the core methodology,654

scientific rigorousness, or originality of the research, declaration is not required.655

Answer: [NA]656

Justification: [NA]657

Guidelines:658

• The answer NA means that the core method development in this research does not659

involve LLMs as any important, original, or non-standard components.660

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)661

for what should or should not be described.662
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