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Abstract

Direct Preference Optimization (DPO) is a key framework for aligning text-to-
image models with human preferences, extended by Stepwise Preference Opti-
mization (SPO) to leverage intermediate steps for preference learning, generating
more aesthetically pleasing images with significantly less computational cost.
While effective, SPO’s underlying mechanisms remain underexplored. In light
of this, we critically re-examine SPO by formalizing its mechanism as gradient
guidance. This new lens shows that SPO uses biased temporal weighting, giv-
ing too little weight to later generative steps, and unlike likelihood centric views
it reveals substantial noise in the gradient estimates. Leveraging these insights,
our GradSPO algorithm introduces a simplified loss and a targeted, variance-
informed noise reduction strategy, enhancing training stability. Evaluations on SD
1.5 and SDXL show GradSPO substantially outperforms leading baselines in hu-
man preference, yielding images with markedly improved aesthetics and semantic
faithfulness, leading to more robust alignment. Code and models are available at
https://github.com/JoshuaTTJ/GradSPO.

1 Introduction

The rise of diffusion models has transformed the generation of high-quality images from textual
prompts, representing a major leap forward in generative artificial intelligence. Traditional text-to-
image (T2I) models [1H3]] typically rely on a single-stage training process, learning to synthesize
images directly from large-scale paired text-image datasets. While this approach has yielded im-
pressive results, it lacks an explicit mechanism to adapt outputs to align with user preferences or
specific application needs. In contrast, large language models (LLMs) have embraced a more nuanced
multi-stage training strategy. They undergo extensive pretraining on large, diverse, and sometimes
noisy datasets, followed by a fine-tuning stage on datasets annotated with human preferences [4}, 1]
This fine-tuning step is crucial for enhancing the models’ practical utility, safety, and responsiveness,
all while preserving their broad foundational knowledge. Applying this two-stage training approach
to text-to-image diffusion models presents a promising opportunity to better align generated images
with human preferences, resulting in outputs that more faithfully capture user intent.

Recent advances in language modeling have sparked increasing interest in incorporating human
preference feedback into the training of text-to-image diffusion models. This emerging area leverages
human judgments to refine model outputs, thereby enhancing both alignment with user intent and
overall visual fidelity. Prominent works in this field are mostly based on Reinforcement Learning
from Human Feedback (RLHF), which uses human comparisons to rank generated images for
guiding model training [6H9]. Among these, Diffusion DPO [6] adapts the Direct Preference
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Optimization (DPO) framework—initially introduced for Large Language Models (LLMs)—to the
unique characteristics of diffusion models. This specific adaptation enables the model to inherently
learn to favor higher-quality images, and consequently, this strategy has demonstrated notable
improvements in producing images that are both visually appealing and semantically aligned with user
prompts. Building on this foundation, a recent work, Stepwise Preference Optimization (SPO) [10]
introduces preference learning at intermediate diffusion steps, providing more precise reward signals
during the denoising process. This approach enhances training efficiency by improving the stepwise
likelihood of favorable transitions throughout the diffusion trajectory.

While effective, the SPO framework introduces a learning paradigm that diverges from traditional
diffusion training; the latter based on distribution matching, whereas SPO relying on maximizing
sample-wise likelihoods. This paper presents a critical re-examination of SPO, positing that its
mechanism can be more accurately and beneficially characterized as a form of Direct Preference
Optimization (DPO) with respect to score functions augmented by the gradients of reward models.
This novel theoretical lens is instrumental: firstly, it reveals an inherent bias in SPO’s implicit weight-
ing of generative timesteps, leading to an underemphasis on crucial final-stage details. Secondly,
by reframing the optimization from a likelihood-based perspective to a gradient-centric one, our
approach uniquely facilitates the quantification and analysis of noise inherent in the preference-guided
learning process, specifically through the variance of the guiding reward gradient approximations.

Our Contributions. Building upon the re-examination of SPO through a gradient guidance lens,
this paper introduces GradSPO and makes the following key contributions:

* Novel Theoretical Framework for SPO: We formally reinterpret SPO through the lens of guided
score matching. This perspective uncovers an inherent bias in SPO’s weighting of generative
timesteps and introduces a new method for quantifying learning noise via the variance of gradient
approximations.

* Principled Design of GradSPO: Building on this framework, we propose GradSPO, an algorithm
that incorporates: (1) a simplified loss objective with uniform timestep weighting and fixed guidance
scale to directly address the identified SPO from this new viewpoint, and (2) an integrated noise
reduction strategy grounded in the gradient perspective to improve training stability and enhance
preference fidelity.

* State-of-the-Art Preference Alignment: Through extensive experiments, we show that GradSPO
significantly outperforms existing preference learning baselines, achieving superior alignment with
fine-grained human preferences in text-to-image diffusion models, leading to notable gains in both
visual quality and semantic accuracy.

GradSPO

Figure 1: Qualitative comparison between vanilla SDXL, SPO, and GradSPO. GradSPO demonstrates superior
aesthetic quality and prompt alignment compared to both SDXL and SPO.
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2 Notations and Preliminaries

This section introduces the foundational concepts and notation for diffusion models and preference
optimization techniques relevant to our work.

2.1 Diffusion Models

Diffusion models define a forward noising process that gradually transforms a clean data sample
xo € R% into pure noise through a sequence of latent variables X, . . ., X7, where 7' denotes the total
number of timesteps. Each x; represents a progressively noisier version of x. The forward process
is defined as a Markov chain:

T

Q(XI:T|XO) = H Q(Xt|xt—1)> Q(Xt|Xt—1) = N(Xt; Vvi1i- Bixi—1, ﬁtI), (1

t=1

where ; € (0, 1) controls the noise variance at timestep ¢. A useful property of this process is that
x4 can also be sampled directly from xq via a closed-form expression:

q(x¢|x0) = N (x5 vauxo, (1 — a)1),

where oy = 1 — B and &y = Hizl a is the cumulative product of a5 up to timestep ¢.

The generative model seeks to reverse this process by learning a parameterized reverse distribution
po(Xt—1]X¢, €), where c denotes optional conditioning information (e.g., a text prompt). This reverse
process is modeled using a neural network €y (x¢, ¢, t), which predicts the noise component e that
was added to x to obtain x;. Following Ho et al. [[1 1], each reverse transition is defined as:

po(xe|xit1,€) = N (%45 po(xe41, ¢, t 4+ 1), 07, 1)

g Bi+1 2
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The model is trained by minimizing the variational bound, which reduces to a simplified objective
known as the denoising score matching loss:

= — 2
Lpppm = Exo,c,t,ENN(o,I) P\(t) HE —eg(vVauxo + V1 — aye,c, t)” } ) 3)
where ¢ is sampled uniformly from {1,...,T}, and A(¢) is a time-dependent weighting function.

The term inside the expectation represents the squared error between the true noise € and the model’s
prediction €y at timestep .

2.2 Stepwise Preference Optimization (SPO)

Among various preference alignment training schemes, many recent methods adopt a DPO-style
training framework [[12} |6, (8} [10, [13]]. Given a preference dataset D, these methods often aim to
minimize an objective related to the DPO loss. For Diffusion DPO [6], this can be framed as
minimizing an upper bound on the DPO loss [12], defined as:

Lpisippo = —E |:10g0'<_/8T(DKL (a(xpy | %, xE,¢) || po(xi” 1 | X1, )

— Dk (Q(X%Ufl ‘ X', %0 5 €) || Prer(x;21 | X;U7C)) )

—Dxo (a0 1 | x50, €) [ po(x; 1 | x1,¢))

+ Dkw (q(Xé,1 ‘ Xi,Xé,C) H pref(xff—l | Xé,C))))il,



where (x¥,x},¢) ~ D, t ~ U[0,T)], and samples x}’ and x} are drawn from ¢(x{ | x¥) and
q(x! | x)) respectively.

While the original Diffusion-DPO [6] formulation often utilizes clean preference pairs (x¥,x})
from offline datasets to approximate such objectives, the recently introduced Stepwise Preference
Optimization (SPO) [[10] approach leverages intermediate samples generated by an online model
as preference pairs. The SPO loss is typically expressed in a more direct log-likelihood ratio form,
analogous to the general DPO principle:

po(xi”q | €,%¢) pG(Xi—l | ¢, x¢) ))} ’ (5)

Lspo = —Ec x, ¢ [103;0 (5 <log —log

pref(X}tU—l ‘ C>Xt> pref(xifl | C,Xt)

The timestep ¢ is uniformly sampled as ¢ ~ U[1, T — x| for a fixed constant . Textual prompts ¢ are
drawn from a distribution p(c), and the initial latent state xr is sampled from N (0, I). Intermediate
latent states x; are obtained by applying the discrete reverse diffusion process (using Eq. 2]iteratively).
The winning x% , and losing x._, samples for the transition from x; to x; ; are determined by a
step-aware reward model (-, -):

xy ;= argmax 7r(X¢—1,t—1), x\ | = argmin r(x,_1,t—1), 6)

Xt—lE{XEQl Xt71€{x,(51>1

where {xg?l} are candidate samples generated from pg(x:—1 | ¢, X¢).

SPO contrasts with standard DPO applications by operating on preferences over intermediate tran-
sitions rather than only final outputs. By integrating feedback throughout the generation process,
SPO provides denser reward signals. This stepwise learning mechanism aims to enhance training
efficiency and offer finer-grained control for aligning the model’s generation trajectory with human
preferences while requiring significantly less computational cost.

3 GradSPO: A Gradient Guidance Perspective on Stepwise Preference
Optimization for Diffusion Models

Stepwise Preference Optimization (SPO) [10], as outlined in Section @], aligns diffusion models
by optimizing preferences at intermediate generative steps. Recall from Eq. [2] that the generation
of x;_1 from a given x; and context ¢ involves sampling noise z ~ N(0,I) such that x; 1 =
e (x¢, ¢, t) + oyz. Consequently, selecting x;—1 to maximize or minimize a step-aware reward
r(xq_1,t — 1) (Eq. E]) is equivalent to finding the optimal noise z for that step. This can be expressed
as:

2t = argmaxr(ug(x¢, ¢, t) + opz,t — 1),
z

(N

2z~ = argminr(ug(xs, ¢, t) + orz,t — 1).
z

A key insight from Huang et al. [[14] is the interpretation this argmax noise serves as an approximation
of a scaled, noisy gradient of the reward model:

2t T TBV w1 (x4) + 2, )

where 2z ~ A(0, I). This approximation motivates us to view SPO from a reward guided perspec-

tive. Within this view, an ideal reward-guided score function can be defined as s;jéi,(xt, c,t) =
so(x¢, €, t) £ 7V, 7(x¢, 1), where sg(x¢, ¢, t) = Vi, log pg(x¢|c) is the original model score and -y
is the guidance scale. From this point of view, SPO can be seen as approximating this ideal guidance
term £V, (X, ¢, ) relying on the connection between the gradient of the reward models and z*

~w,l

in Eq. |8} Specifically, we define our approximate guided scores 5, as:
567! (X1, €, t) 1= Vi, log py(x¢|c) + 772 * ©)

Here, 2T is defined in Eq.[7} and 7, is a time-dependent scaling factor related to . Drawing an
analogy to how Diffusion DPO handles preferred and rejected samples, we introduce GradSPO, a



method that performs model alignment by extending DPO principles to operate on guided scores:
LGradSPO(Qa 9ref§ Xt, Cs t) =-E |:10g o (_Bw(t) (H59 (Xt? c, t) - Sg(gg) (Xt7 C, t)) ||%

_Hsref(xta C,t) - Sg(ég(xta Cat))”%

~Ilso(xz, €, t) — sg(8p(xz, €, 0))|3

st 0, 2) — sg<§z<xt,c,t>>|%))],

where s¢(x¢, ¢, t) is the current model’s score prediction (e.g., related to €p), sy is the reference
model’s score, sg(-) denotes the stop-gradient operator (which prevents gradients from flowing
through its argument), and w(t) is a time-dependent weighting function. The stop-gradient operator
is essential for stable training, as it detaches the target scores, i.e., sg(sy ) and sg(s}, ), from gradient
updates. With these fixed targets, Eq. [10|trains the model by pulling the current score sg(x, c, t)
closer to the winning score sy’, while pushing it away from the losing score sle. Without this
detachment, the winning score would drift toward the current prediction (s§’ — sg), weakening the
supervision signal and destabilizing learning.

Theorem 1 (GradSPO Loss as Upper Bound). Let Lgaaspo (o, Srer; T, T') denote the GradSPO
loss functional as defined in Eq. where T and T" are the target winning and losing scores.
Let 8%, = 80 + YVx,7(Xt,t) and s'y,, = so — 7Vx,7(Xt,t) be the ideal target scores based on
true reward gradients. Let 55 and §le (as defined in Eq. I?l) be the target scores constructed using
the approximated, potentially noisy, gradient signal. Then, the GradSPO loss computed with the
approximated targets forms an upper bound on the loss computed with ideal targets:

(10)

L LW l w4l
L6raaspo(56, Srefs Sigeat> Sidgear) < LGraaspo (5, Srefi 34+ 89)- (11)

A detailed derivation of Theorem [I]is provided in Appendix [A] This theorem is significant as it
demonstrates that our practical GradSPO loss (the right-hand side, which we minimize) serves
as an upper bound on an idealized loss formulated with exact reward gradients. Analogous to
ELBO maximization in variational inference, minimizing this upper bound provides a principled
approach to optimizing for the underlying clean-gradient objective. This is particularly advantageous
in scenarios like latent diffusion models, where precise gradient computations V, r(x;,t) might
involve costly backpropagation through components like the VAE decoder. The GradSPO loss
objective from Eq. |10} when expressed in terms of noise predictions €y (x:, ¢, t) (where sp(x¢,c,t) =
—eg(x¢,c,t)/+/1 — @y can be written as:

Carso =~ logr (~Ba(t)(lea(x1,.6) ~ se(ealxi,c. ) ~ A
~llerer(xt, €, t) — sg(ea(xe. €, t) — Aeh)|3
~llea(xe, ¢, t) — sg(ea(xe,e,t) — AeT)|3
el e.0) = se(ealxi,e.) = A)B) )|

where Aet = ~,\/T — a;zF, a(t) is a time-dependent weighting function, and 3 is a scalar co-

efficient. Notably, the standard SPO loss can be interpreted within this guided noise prediction
framework by specific choices of a(t) and 7, (see Appendixfor details).

12)

This reinterpretation of SPO through a gradient guidance perspective offers critical insights into
its behavior and limitations. For instance, it reveals that SPO’s interval-based training [[10] can be
viewed as an application of the recently introduced interval guidance [[15], which has been shown to
improve sample quality and diversity.

More critically, this re-framing reveals that the effective weighting function a(t) in the original
SPO formulation (as shown in Figure[2) disproportionately underweights the later diffusion steps.
A similar pattern emerges when analyzing the Pick Score difference between the base model and
its SPO-finetuned counterpart: the improvement decays exponentially over time, even though later
steps are crucial for capturing fine-grained details. This suggests that SPO primarily enhances early
timesteps, with minimal gains in the later stages of the denoising process. To address this imbalance
and ensure more uniform supervision across timesteps, we adopt a simplified objective in which both
a(t) and ; are set to constant values.
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Figure 2: (a) Timestep weighting function a(¢) used in SPO. (b) Pick Score difference between SPO and the
base model across timesteps.

3.1 Noise Reduction Techniques

The z* values (Eq. , which serve as noisy reward gradient approximations also include an inherent
noise component z ~ A(0,I). This inherent noise in z* can introduce variance into the target
signals, potentially hindering training performance. To address this, we propose a technique to
reduce noise in the estimated gradient direction. Recall 2% ~ z 4+ /T 3;V,7(x;,t). The term
+1/T BV, (X, t) is the desired gradient signal. We define a noise-reduced estimate as:
+ —
o i = (13)

max-min 9

This estimator leverages the opposing nature of the target gradient components in z+ and z~.

Theorem 2 (Variance Reduction of Estimated Gradient Signal). Let z* = G + z; and 2~ =
—G + 29, where G = \/T3;Vx,7(X¢,t) is the true scaled gradient signal, and zy, zo ~ N (0, 1) are
independent noise terms. The noise-reduced estimate ==, . has variance half that of the original
estimation z*: N
Var(z: _ Yar(z7)

max-min ) - 2

(14)

A proof is provided in Appendix [B| This demonstrates that znilax_mm offers a more stable estimate

of the desired gradient signal, leading to a more stable training process that converges effectively,
resulting in the generation of better aligned images.

While noise reduction techniques are beneficial, noise cannot be entirely removed. The persistence of
this inherent noise in the gradient estimates necessitates the development of training algorithms that
are robust to its presence. Towards this end, to further enhance stability and promote convergence,
we employ an Exponential Moving Average (EMA) of the model parameters 6 during training and
online sampling. The EMA parameters fgya are updated as:

Oema  10ema + (1 — p)b, (15)

where p € [0,1) is a decay rate (e.g., 0.999). EMA parameters often provide a more stable
representation of the learned model particularly in noisy environments [[16} [17].

By incorporating these noise reduction strategies, we arrive at the final GradSPO framework. The
target noise predictions in the loss function are now constructed using the EMA model’s prediction

€0py, and the noise-reduced gradient signal ziax’mm. The resulting GradSPO loss is:

['GradSPO =-EK |:1Og o <_6a(t) (”69 (Xt’ ¢, t) - Sg(GQEMA (Xt’ <, t) - Aeljc_duced) ”%

- ||6ref(xt7 C, t) - Sg(EHEMA (Xt7 C, t) - Aer—z;duced) ||§

_”69 (Xt’ c, t) - Sg(GQEMA (Xt’ ¢, t) - Aer_educed) ||§

(e €, 1) — 5o (xer 1) Aereduce@n%))} ,

(16)

where Aerfduqed =Vl —ay P This changes brought about by this new viewpoint on SPO
substantially improves the alignment capabilities of stepwise preference optimization.



4 Experimental Results

4.1 Experimental Setup

Datasets and Models. We fine-tune both Stable Diffusion 1.5 [[L8] (Creativeml-openrail-m License)
and SDXL [19] (Openrail++ License) models using the GradSPO objective, as detailed in Section 3]
Following the SPO training scheme, we train the models on 4,000 randomly sampled prompts from
the Pick-a-Pic v1 dataset [20], which contains 580,000 pairs of image preference for each prompt.
For evaluation, unless stated otherwise, we used the test set consisting of 500 prompts sourced from
the Pick-a-Pic v2 dataset, similar to previous work in the field [12} [10].

Implementation Details. Since GradSPO builds upon the SPO framework [[10], we retain SPO’s
base hyperparameters to ensure a fair and direct comparison. Additionally, because we do not
modify the stepwise-aware preference model, we reuse the same reward model from SPO rather
than training a new one. However, GradSPO introduces several unique hyperparameters to optimize
performance: the time-dependent weight function ay is set to 1, the guidance scale v, is fixed at 0.5,
and the Exponential Moving Average (EMA) decay rate p is set to 0.9. These settings are applied
consistently across both SDXL [[19] and Stable Diffusion 1.5 [18]] models. A complete listing of all
hyperparameters used in our experiments can be found in Appendix [D|for reproducibility and further
reference.

Baselines. To evaluate the effectiveness of GradSPO in aligning with human preferences, we
benchmark its performance against several strong baselines. These include the original pre-trained
models, Stable Diffusion 1.5 [18] and SDXL [19], as well as several recent preference learning
methods: Direct Preference Optimization (DPO) [12]], Stepwise Preference Optimization (SPO)
[LO]], InPO [8]], and MaPO [13]]. For consistency across comparisons, we utilize publicly available
pretrained checkpoints for all baseline methods and apply identical evaluation protocols.

Evaluation. We assess model performance using four widely accepted metrics that quantify alignment
with human preferences: HPS v2 [21] (Apache-2.0 License), PickScore [22]] (MIT License), Aesthetic
score [23]] (MIT License), and Image Reward [24] (Apache-2.0 License). For each prompt in the
evaluation set, we compute and report the average scores across all compared models to provide a
comprehensive view of performance. In line with the evaluation procedure used in SPO [10], we
generate images for all models using DDIM sampling [25] with 20 diffusion steps and a classifier-free
guidance scale of 5.0 [26]. This consistent inference setup ensures fair comparisons of image quality
and alignment metrics across methods.

4.2 Quantitative Results

Table [I] presents quantitative comparisons of GradSPO against established baselines on both SD
1.5 and SDXL backbones. For the SD 1.5 backbone, GradSPO demonstrates strong performance,
surpassing most existing methods. While InPO achieves a marginally higher score on the Image
Reward metric, it is important to contextualize this: GradSPO builds upon the SPO framework, which
itself registers the lowest Image Reward among the compared alignment techniques. Despite this
foundational starting point, GradSPO substantially elevates SPO’s Image Reward score to 0.4747,
securing the second-highest position for this metric. Furthermore, GradSPO markedly improves
SPO’s aesthetic score, underscoring the significant advantages of reinterpreting SPO through our
gradient guidance perspective.

On the SDXL backbone, GradSPO’s performance is particularly compelling, demonstrating clear
superiority across all evaluated metrics. It achieves, for instance, a leading Aesthetic Score of 6.2985
and a Pick Score of 28.93. The improvement over its direct precursor, Stepwise Preference Optimiza-
tion (SPO), is significant—boosting the HPSv2 score from 28.27 (SPO) to 28.93 (GradSPO). These
outcomes strongly affirm the benefits of our gradient guidance reinterpretation of SPO, particularly
its advantages over conventional likelihood-based optimization strategies.

To further assess the effectiveness of our GradSPO training paradigm on SDXL, we conducted a user
study with five judges using 100 prompts randomly sampled from the HPSv2 benchmark [21]]. For
each prompt, participants were shown two images, one generated by GradSPO and the other by a
competing method, and asked to indicate a preference or select a tie if neither image was clearly
better. Judgments were based on three criteria: overall image quality, image—text alignment, and
aesthetic appeal.



Model ‘ Method HPSv2  Pick Score Aesthetic Score Image Reward
Baseline 26.26 20.62 5.2687 0.0741
DPO [6] 26.56 21.01 5.3704 0.2704

SD 1.5 [18]] | InPO [8] 26.86 21.21 5.4674 0.5135
SPO [10] 26.47 21.11 5.5898 0.1945
GradSPO (Ours) | 26.86 21.38 5.7651 0.4747
Baseline 27.06 21.85 5.8253 0.4749
DPO [6] 27.81 22.41 5.8412 0.7466
MaPO [13] 27.30 21.95 5.9684 0.5868

DXL [1

S 1] InPO [8] 28.07 22.46 5.9046 0.8546
SPO [10] 28.27 22.93 6.2236 0.9982
GradSPO (Ours) | 28.93 2345 6.2985 1.0861

Table 1: Comparison of GradSPO with baseline methods on SD 1.5 and SDXL backbones. GradSPO
attains the highest scores across most human preference metrics, demonstrating superior alignment and visual
quality. For each metric, the top-performing method is bolded, while the second-best is underlined.

General Preference 75.6 5.7 18.7
GradSPO Win
Visual Appeal 53.2 30.9 15.9 Tie
SDXL Win
Prompt Alignment 8l.1 4.0 14.9
0 50 100
Percentage (%)
General Preference 53.0 21.9 25.1
GradSPO Win
Visual Appeal 26.4 55.0 18.7 Tie
SPO Win
Prompt Alignment 56.2 21.1 22.6
0 50 100

Percentage (%)

Figure 3: User study results comparing GradSPO against two baselines. Top: comparison with SDXL. Bottom:
comparison with SPO.

As summarized in Figure[3] the results indicate a clear human preference for images generated by
GradSPO, reflecting a notable improvement in overall quality. GradSPO achieved a win rate of 75.6%
against SDXL and 53.0% against SPO. Notably, the strongest gains were observed in aesthetic quality,
where GradSPO attained win rates of 81.1% and 56.2% against SDXL and SPO, respectively.

4.3 Qualitative Results

Figure []illustrates the qualitative performance of our model, GradSPO (using the SDXL backbone),
compared to other Text-to-Image (T2I) methods. In the first row, for the prompt "The Best," GradSPO
successfully generates an image accurately containing the desired text, outperforming baseline
methods. Notably, while the InPO approach nearly generates the correct text, it includes visible
artifacts. For the second row, corresponding to the prompt "Buff Harry Potter," most baseline
methods (excluding InPO) fail to generate images following the provided textual prompt. However,
comparing GradSPO and InPO, GradSPO produces a more aesthetically pleasing image. Lastly, in
the final row, all baseline methods fail to effectively render the "A gorgeous queen" following the
textual prompt, whereas GradSPO reliably and accurately generates the image. Collectively, these
examples in Figure | qualitatively demonstrate GradSPO’s superior capability in prompt adherence,
text rendering, and aesthetic quality compared to baseline methods.

4.4 Ablation on EMA Momentum and Reward Guidance Scale

To better understand the performance and stability of GradSPO, we conduct ablations on two key
hyperparameters: the EMA momentum g and the reward guidance scale . All other settings are
fixed for SD 1.5, with results reported on the Pick-a-Pic v2 dataset. When varying u, we set v = 0.5,
and when varying ~, we fix u = 0.9. The results are summarized in Table [2]
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Figure 4: Side-by-side comparison of images generated by related methods using SDXL. GradSPO
demonstrates a significant improvement in terms of aesthetic appeal and fidelity to the caption.

¥ HSPv2 Pick Score Aesthetic ImageRwd n HSPv2 Pick Score Aesthetic ImageRwd

025 26.67 20.71 5.5278 0.452 090  26.86 21.38 5.7651 0.4747

0.50  26.86 21.38 5.7651 0.4747 095 2674 21.12 5.6352 0.4153

0.75  26.70 20.99 5.4630 0.3878 099  26.68 21.22 5.7591 0.3871
(a) (b)

Table 2: Ablation study of GradSPO on SD 1.5 (Pick-a-Pic v2). (a) Varying the reward guidance scale vy with
EMA momentum fixed at i = 0.9; (b) Varying the EMA momentum x with reward scale fixed at v = 0.5.

We observe that GradSPO is relatively robust to changes in the EMA momentum u, showing only
minor performance degradation at higher values. We attribute this to an oversmoothing effect, where
the EMA model lags behind the current model and adapts too slowly.

In contrast, the reward guidance scale y exerts a stronger influence. A large y increases the variance of
the reward signal, especially in noisy regions, leading to less stable convergence. Conversely, a very
small v weakens the learning signal, preventing the model from capturing meaningful preferences.
Empirically, we find v = 0.5 provides a good balance between stability and signal strength, and
adopt this setting across both SDXL and SD 1.5 experiments.

4.5 Effectiveness of Gradient-Guided Objectives and Noise Mitigation Strategies
'IlsPO [SPO+Simple '
- SPO+Simple+Maxmin [] GradSPO | !

To dissect the contributions of our gradient guidance
perspective on Stepwise Preference Optimization (SPO)
and to validate the efficacy of the proposed noise mit-
igation strategies, we conducted systematic ablation
experiments. The results for experiments conducted on
the SDXL backbone, presented in Figure 3] illustrate
the progressive performance enhancements (measured
by win-rates across diverse automated reward models)
as each component of GradSPO is incrementally intro-
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First, adopting the simplified objective derived from our
gradient-guided reinterpretation (denoted SPO+Simple)
led to improvements across most metrics, with only a
slight drop in aesthetic score. This highlights the advan-
tage of our reformulated objective, including uniform
timestep weighting.

Subsequently, integrating the max-min noise reduction technique for the gradient signal, z
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Figure 5: Win-rate comparisons across SPO-
Simple, SPO-Simple-Maxmin (zmax min)> and
GradSPO on popular reward metrics,

max min

(termed SPO+Simple+Maxmin), yielded a further discernible boost in performance, increasing the



average win rate across all 4 metrics. This gain is primarily attributed to the reduced variance in the
estimated reward gradients, demonstrating the effectiveness of this stabilization approach.

Finally, the incorporation of Exponential Moving Average (EMA) for model parameters during train-
ing (Eq. [15)), which constitutes the full GradSPO method, achieved the highest average performance
among all configurations. This result highlights EMA’s crucial role in further stabilizing the training
dynamics within the inherently stochastic preference learning landscape.

In summary, the ablation study (Figure [5)) demonstrates that each core component of GradSPO—the
simplified gradient-guided objective, max-min noise reduction, and EMA—makes a distinct and
measurable contribution to the overall performance

5 Related Works

5.1 Diffusion Models for Text-to-Image Generation

Denoising Diffusion Probabilistic Models (DDPMs) [[L1] are a class of powerful generative models
that have recently gained popularity for their ability to effectively model high-dimensional data. This
has led to their successful adoption across a range of applications, including image synthesis [2} 1}
19], video generation [27H29], and text-to-speech synthesis [30H32]. Among these, text-to-image
generation has been particularly impactful, enabling the creation of complex visuals directly from
textual descriptions [2} 3] and unlocking new possibilities in creative fields such as digital art and
design. Despite their ability to produce high-quality images after pretraining, these models often
struggle to capture nuanced human preferences, frequently resulting in visual artifacts such as poorly
rendered hands and faces [[7]. These limitations have spurred ongoing research into improving
sampling efficiency [33H35]] and enhancing alignment with textual inputs [6, |10} 8]

5.2 Human-Preference Alignment for Diffusion

Human preference alignment has long been recognized as beneficial in Large Language Models
(LLMs), where techniques like Reinforcement Learning from Human Feedback (RLHF) have substan-
tially improved performance, helpfulness, and safety [3 14, (12} 36} 37]. Inspired by these successes,
recent work has explored applying human preference learning to text-to-image generation [6,[7]. A
prominent example is Diffusion DPO [6], which adapts Direct Preference Optimization (DPO) for
diffusion models, steering the model toward preferred images and away from dispreferred ones using
an offline dataset. While Diffusion DPO significantly enhances text alignment and aesthetic quality,
generating high-quality images, it demands considerable computational resources. More recently,
Stepwise Preference Optimization (SPO) [10] was introduced, performing preference learning at
intermediate diffusion steps on a per-sample basis. This approach provides stronger learning signals,
greatly improving computational efficiency and text alignment.

Despite SPO’s success, its sample-wise formulation deviates markedly from the typical score matching
training paradigm used in diffusion models [[11]. In this work, we reinterpret SPO through a score
matching lens, showing that rather than maximizing sample-wise likelihoods, SPO effectively learns
to move towards preferred scores and away from dispreferred ones. This perspective exposes
limitations in the original SPO training framework. Building on this insight, we propose GradSPO, a
score matching—inspired approach that substantially enhances image generation quality.

6 Conclusion

In this paper, we revisit Stepwise Preference Optimization (SPO) through the lens of score matching.
We establish a novel theoretical connection, demonstrating that SPO is equivalent to Direct Preference
Optimization (DPO) when using winning and losing score functions derived from reward models with
added noise. Leveraging this perspective, we propose a simplified and more intuitive optimization
objective, alongside effective noise reduction techniques that significantly mitigate approximation
errors caused by such noise. Empirical evaluations demonstrate that our proposed method, GradSPO,
consistently outperforms existing preference learning approaches, highlighting its superior capability
in generating images that align closely with human preferences. Furthermore, this new interpretation
of SPO links gradient guidance to the SPO training objective allowing for the integration of improved
gradient guidance techniques for more user aligned images which we leave for future work.
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A Proof of Theorem 1

Theorem 1 (GradSPO Loss as Upper Bound). Let Lgaaspo (e, Srer; T, T') denote the GradSPO
loss functional as defined in Eq. where T and T" are the target winning and losing scores.
Let %, = 89 +7Vx,7(Xt,t) and sky,; = so — VVx,7(xt,t) be the ideal target scores based on
true reward gradients. Let 5) and §la (as defined in Eq. @) be the target scores constructed using
the approximated, potentially noisy, gradient signal. Then, the GradSPO loss computed with the

approximated targets forms an upper bound on the loss computed with ideal targets:

. 1 Caw Al
L6raaspo(56, Srefs Sigeat> Sidgear) < LiGraaspo (56, Srefs 34 5 39)- )

Proof. From Eq.[8] we have:
E(v,2F) = 47y Vg, r(x¢, 1),
(vfi) 7 Va, (X4, 1) (18)
Var(~z%) =1.
It follows that:
E(55"') = sigeas
l idea (19)
Var(s,") =1.

Next, consider the GradSPO loss in Eq. (where we omit the stop gradient operator sg(-) for
simplicity):

LGF&dSPO(597 Sref; sizgeah Sildeal) =-E [10g g (_Bw(t) (”39 (Xt7 c, t) - Sﬁeal(xtv c, t) ”3
- ”Sref(xtu C, t) - S;geal(xta C, t) H% (20)
—[Is0(%¢: €, 1) = Sigear (xe: €, 1|13
+||5ref(xta c, t) - Sildeal(xta c, t) %))] :
Using E(8Y) = s, and E(8}) = s!;.,;» we can rewrite the loss as:
LGrﬁdSPO(Sﬁa Sref) Sﬁl}ealv Sildeal) =-E IOg U(_ﬂw(t) (”89 (Xta C, t) - E[ég} (Xt7 C, t)} H%
“lswiCx e,6) ~ B G e, N5

_HSO(Xta Cvt) - E[glﬁ(xtacat)m%
+||sref(xt7 C, t) - E[§l0(xt, C, t)]||§)>‘| )

since
E[||8ref(xt7 C, t) - ég) (Xtv c, t)”%] = ||E[Sref(xtv c, t) - §51(Xt, c, t)]”g +n Va?"(ézj(xtv C, t))’

where n denotes the dimension of the variable S¢. Since the variance terms are equal, they cancel
each other out, allowing us to move the expectation out of the norm:

LGradSPO(897 Sref; Siqgeah sildeal) =-E {log g (7[311)(15) (E[”89 (Xta C, t) - égj (Xtv C, t) ”%}
— E|lsref(xt, €, 1) — 35 (x¢, ¢, 1) [3]
(22)
- E["‘S@(Xt’ I\ t) - §10(Xt7 C, t) H%]

+ Elllswr(xi, 0, 8) = Shixe,,)[3]) ) |



Finally, applying Jensen’s inequality to the convex function — log o (-) yields

LGradSPO(sﬁa Sref) siigealv Sildeal) S _]E IOg U<_/8w(t) (”89 (xt7 C, t) - «%ﬂ (Xtv C, t)”%

- ||5ref(xta C,t) - égj(xhcat)”%

= l[so(x¢, c,t) — §l€(xt7 C,t)”% (23)

+ ||3ref(xta Cat) - §l9(Xt,C,t)||g))‘|

Law  al
= LGraaspo(5, Sref; 5 » 5g)-

Thus, the approximate GradSPO loss serves as an upper bound on the exact variant. O

B Proof of Theorem 2

Theorem 2 (Variance Reduction of Estimated Gradient Signal). Let z* = G + z; and z~ =
—G + 23, where G = \/TB;Vx, (X4, 1) is the true scaled gradient signal, and z1, zo ~ N(0,1) are
independent noise terms. The noise-reduced estimate z,fax_min has variance half that of the original
estimation z*:

Ve +
V(=) = ) 24)
Proof. We are given two noisy estimates
2T =G+2 and 2z~ =—G+ 2,

where 21, 2o ~ N (0, 1) are independent. Consequently,
2~ N(G,I) and 2~ ~N(-G,I),

so Var(z1) = Var(z~) = L. We define the noise-reduced estimate

JF .
+ z —Z
Zmax-min iT
First, to see that this estimator is unbiased, note
JF —
+ 27—z 1 _ 1
Elmacminl = E[T} = +5 (BT -E[z7]) = +5(G - (=G)) = +G.
Next, to compute its variance, observe that z* and 2~ are independent, so
+ _ .= 1 1 1
VaI(ziax—min) = Var( + %) = Z (Var(z+) -+ Var(z*)) = Z (I -+ I) = 5 1.
Thus,
1 1
VaI(ZI::ax—min) = 5 Var(z+) = 5 V«':II‘(Z_)7
showing that the variance of ziax_min is exactly half the variance of the original noisy estimates 2™ or

+ - . . . . .
2~ . Therefore, &=*—*— is an unbiased estimator of =G whose variance is reduced by a factor of %
compared to the individual noisy vectors. O

C Link Between GradSPO and SPO

The Step-by-step Preference Optimization (SPO) framework utilizes the Denoising Diffusion Implicit
Models (DDIM) [23] transition probability. This probability, pg(x:—1|x¢), from x; to x;_1 is defined
as a Gaussian distribution:

po(xi—1]x) = N (x¢—1; po(xt, ¢, 1), 071) (25)



where

— V11— t
po(Xe,c,t) = /o1 <Xt a,teg(Xt’C’ )> + /1 — &1 — 0} €(x,c,t). (26)
V Qi

In this formulation, the terms af, a4, and €y follow the definitions provided in Section 2.1. Given
these definitions, the log-probability of a specific sample x;“_’ll can be expressed as:

logpe(x;ljlﬁl1|xt) = _72 ‘p’e(xhcat) Xylfu llH + Ca (27)

where the constant C'is given by C' = — % log (27mt ) with d being the dimensionality of the variable
X¢.

Rewriting the log-probability where xi“;ll is expressed using an auxiliary variable z:

w 2
Inge(Xt_JﬂXt) = - ‘IJ‘G(XD C, t) - IJJG(XD C, t) + Utzi’|2 + C (28)

1
202
This expression can be further reformulated in terms of the noise prediction €g(x¢, c, t):

_ 2
log pg(x; 1|Xt) =—A(t Heg X, C,t) — (eg(xt7c,t) — B(t)v/1 - atzi)HQ + C. (29)
The time-dependent coefficients A(t) and B(t) are defined as:

2
1 (Vaad—a)

B(t) :=

3D

By comparing the rewritten form of log pg (xtw;l1 |x;) with the objective function of GradSPO in Eq.
[12] it becomes evident that SPO can be viewed as a specific instance of GradSPO. The correspondence
is established by setting the GradSPO parameters a(t) and 7; as follows:

a(t) = A(t) and v, = B(t). (32)
This demonstrates that GradSPO can be considered a generalization of the original SPO method,
where SPO emerges under a particular choice for the functions a(t) and ;.

D Additional Experimental Details

Hyperparameters ‘ SD 1.5 SDXL
Learning rate 6e-5 le-5
# of epochs 10 10
Batch size 40 16
Iz 0.9 0.9
B8 10 10

K [0, 750] [0, 750]
LoRA rank 4 64
cfg during training 5.0 5.0

# of samples per step 4 4
Sampling steps during training 20 20
GPU Setup 4x NVIDIA A100 | 4x NVIDIA A100

Table 3: Hyperparameter settings used for SD 1.5 and SDXL backbones.

We generally adopted hyperparameters aligned with those used in SPO, training all models with
AdamW [38]] using a weight decay of le-4. Additional hyperparameter details are provided in Table[3]
For SDXL, however, we deviated from the standard multi-step preference optimization procedure of
SPO, instead employing a single-step approach analogous to the one utilized in SD1.5. Although
the multi-step preference optimization typically yields superior outcomes compared to the single-
step method within SPO, our single-step procedure for SDXL nonetheless achieved performance
surpassing that of SPO.



E Limitations

While GradSPO significantly improves upon the original SPO method, our current implementation
remains restricted to single-step preference optimization and has not yet been extended to multi-step
preference optimization. Nonetheless, GradSPO consistently outperforms SPO, even though SPO
employs multi-step preference optimization with models such as SDXL, underscoring the robustness
and effectiveness of GradSPO’s gradient-based viewpoint. Additionally, although GradSPO training
does not necessitate an explicit image dataset, it relies on a prompt dataset and a trained reward
model, rendering it susceptible to biases inherent in the training data. These biases can propagate
throughout the optimization process, potentially affecting the quality, fairness, and generalizability of
outcomes. Despite these limitations, GradSPO provides valuable theoretical insights by generalizing
and improving upon SPO, clarifying both the fundamental advantages and inherent challenges
associated with stepwise preference-based optimization techniques.

F Evaluations on Parti Prompts and HPDv2

This section presents additional comparative evaluations conducted using the Parti Prompts [39]]
consisting of over 1600 prompts and HPDv2 [21] datasets consisting of 400 prompts. The results,

Model ‘ Method ‘ HPSv2 Pickscore Aesthetic Score Image Reward
Baseline 26.29 20.63 5.2191 -0.2901
DPO [6] 26.71 21.22 5.4662 0.1179

SD 1.5 [18] | InPO [8] 27.60 21.62 5.6009 0.6178
SPO [[10] 27.25 21.65 5.8101 0.2975
GradSPO (Ours) | 27.70 21.93 5.8273 0.5325
Baseline 27.63 22.58 5.9639 0.6726
DPO [6] 28.28 23.03 6.0127 0.9613
MaPO [13]] 27.92 22.66 6.0699 0.7413

SDXL 9] InPO [8] 28.78 23.18 6.0504 0.9599
SPO [10] 29.00 23.75 6.1341 0.9441
GradSPO (Ours) | 29.55 24.26 6.3470 1.1498

Table 4: HPDv2 results. Results for GradSPO and preference alignment baselines on HPDv2. For each metric,
the top-performing method is bolded, while the second-best is underlined.

summarized in Table ] clearly illustrate the superior performance of GradSPO on the HPDv2
dataset across both SD1.5 and SDXL models. GradSPO significantly outperforms the baseline SPO
method, achieving notably higher average scores—29.55 for HPSv2 and 24.26 for PickScore—which
underscores its efficacy in enhancing alignment with human preferences.

Model ‘ Method ‘ HPSv2 Pickscore Aesthetic Score Image Reward
Baseline 26.50 21.27 5.1481 0.0505
DPO [6] 26.78 21.56 5.2137 0.2274

SD 1.5 [18]] | InPO [8] 27.62 21.85 5.4610 0.6067
SPO [10] 27.16 21.72 5.5289 0.3986
GradSPO (Ours) | 27.49 21.99 5.6794 0.5951
Baseline 27.38 22.24 5.5929 0.4864
DPO [6] 28.29 22.83 5.6826 0.9943
MaPO [13] 27.72 22.41 5.7819 0.6793

DXL [1

S L] InPO [8] 28.48 22.87 5.7093 0.9252
SPO [10] 28.78 23.32 6.0509 0.9762
GradSPO (Ours) | 29.35 23.80 6.1202 1.1005

Table 5: Parti prompt results. Comparison of GradSPO and preference alignment baselines evaluated on Parti
prompts. The best-performing method for each metric is highlighted in bold, and the runner-up is underlined.



As detailed in Table[5] GradSPO performs comparably to the leading method, InPO, when evaluated
with the SD1.5 model on the Parti Prompts dataset, showing only minor differences. Crucially,
GradSPO consistently outperforms SPO, highlighting the advantages of our proposed gradient-based
optimization approach. Furthermore, when using the SDXL model with the Parti Prompts dataset,
GradSPO surpasses all baseline methods, confirming its robust ability to generate visually appealing
images.

Overall, GradSPO achieves state-of-the-art or highly competitive results across various reward metrics
for both datasets. The consistent and significant improvements over the original SPO variant further
validate the effectiveness and practical benefits of viewing SPO from this gradient-based optimization
perspective.

G Comparisons with Clean Gradient

In this section, we present an ablation study comparing GradSPO to a variant trained with exact gradi-
ents, which we term "Clean Gradient." Unlike GradSPO, which uses a noisy gradient approximation,
Clean Gradient utilizes exact gradients obtained by backpropagating through the reward model. We
observed instability when training with gradients with respect to x; (i.e., Vy, ), consistent with prior
findings [40,41]]. Consequently, for our Clean Gradient experiments, we used gradients with respect
to the estimated clean latent, xg (i.e., V,), for the Clean Gradient experiments.

Method Comp. Cost Reward Metrics

GPU Mem. (GB) Time (s) HPSv2 Pickscore Aesthetic Score Image Reward
Clean Gradient 52 25 2711  21.67 5.7058 0.5211
GradSPO 28 17 26.86  21.38 5.7651 0.4747

Table 6: Comparison of computational costs and performance metrics for GradSPO and Clean Gradient on
Pick-a-Pic v2. Best results per metric are in bold. Computational costs per optimization step were measured
using a single NVIDIA A100 GPU with a batch size of 5.

Table [ demonstrates that Clean Gradients generally outperforms GradSPO across most metrics,
with the notable exception of the aesthetic score. We primarily attribute this performance gap
to the inherent noise in GradSPO’s gradient estimation. This highlights the critical role of noise
reduction strategies of GradSPO in narrowing this performance difference. Despite Clean Gradient’s
better performance, Clean Gradient incurs a higher memory cost, as it requires backpropagation
through both the VAE and the reward model (see Table [§]) In contrast, GradSPO offers a more
memory-efficient alternative that remains applicable even when the reward model isn’t explicitly
differentiable.

H Connection Between Maximal/Minimal Noise and Reward Gradient

This section briefly explains the connection between the maximal and minimal noise, 2%, and the
gradient of a reward model, V,,r(x;,t). From an energy-based perspective, the reward function
models the conditional likelihood:
e)\r(xt,t)
Pl x0) = (3)
where Z is the normalization factor and )\ serves as a guidance scale.

From an optimal control viewpoint, guiding the model to sample from p(y | x;) equates to sampling
from the augmented stochastic differential equation (SDE):

1
dx; = —iTﬂtxt — T3V, logp(xs) | dt + /TS (u*(x¢,t)dt + dw) , (34)

where u*(x¢,t) denotes the optimal control function minimizing a cost function (negative of the
terminal reward), and dw denotes standard Brownian motion.



As detailed in Huang et al. [[14] (Section 4.4), this optimal control function is connected to the reward
gradient:

u* (x4, t) = /TS Vx, logp(y | x¢)
= MTB Vi, (X, ).

Additionally, the noise maximizing this reward (Eq.[7), z + , provides an upper bound to this optimal
control function, u*(x¢,t). Hence, [[14]] employs it as an approximation for the sum of control and
Brownian increments (see Section 4.3 of [14]]):

(u*(x4,t) + 2)dt =~ 2t dt. (36)

(35)

A similar reasoning can be applied to noise minimizing the reward, approximating the negative
reward gradient Vy, r(x¢, t) with minimal noise z~.

I GenEval Results

To further assess the compositional and perceptual capabilities of our models, we evaluate them on the
GenEval benchmark using SDXL-based backbones. As shown in Table [/} GradSPO achieves notable
gains over SPO—not only in aesthetic quality but also in compositional fidelity—resulting in a higher
overall score. However, consistent with prior findings from the SPO study, GradSPO still falls short of
Diff-DPO in overall GenEval performance. This suggests that, like SPO, GradSPO tends to prioritize
aesthetic reward signals over fine-grained compositional alignment, despite outperforming Diff-DPO
on all individual image-level reward metrics.

Method Single Two Count Color Pos AttrBind Overall

SDXL 97.81 6843 40.62 86.70 12.00 23.00 54.76
Diff-DPO  99.69 81.06 48.44 89.63 13.25 27.75 59.84
SPO 97.81 73774 4125 86.44 13.00 20.25 55.41
GradSPO  99.06 77.78 47.50 88.03 13.00 22.25 57.07

Table 7: GenEval results for SDXL models. Each column reports accuracy (%) for a specific evaluation
dimension, and the final column shows the overall GenEval score.

J Effect of Timestep Weighting

To investigate the impact of different timestep weighting strategies on preference-based diffusion
training, we compare three commonly used schemes: min-SNR weighting [42], P2 weighting [43]], and
uniform weighting. Table [§|presents results for GradSPO trained on SD 1.5 using the Pick-a-Pic v2
dataset.

Unlike standard diffusion training—where non-uniform schemes such as min-SNR or P2 often
outperform uniform weighting—we observe that uniform weighting performs slightly better across
most preference-learning metrics. This indicates that, although these weighting schemes have been
widely adopted for diffusion model training, their effectiveness does not directly transfer to the
preference optimization setting.

We hypothesize that this discrepancy arises from the differing objectives of diffusion generation
and diffusion preference learning. While the former seeks to approximate a data distribution,
preference learning focuses on maximizing the margin between preferred and non-preferred samples.
Consequently, uniform weighting may provide a better inductive bias for stable optimization in
margin-based objectives.

K Additional Qualitative Results

Figure[6|and Figure[7) present additional image samples generated by GradSPO and various preference
alignment methods on SDXL for qualitative comparisons on Parti Prompts and HPDv2, respectively.



Weighting HSPv2 Pick Score Aesthetic Score Image Reward

Min-SNR 26.72 21.26 5.6590 0.5165
P2 [43] 26.79 21.25 5.6028 0.5318
Uniform 26.86 21.38 5.7651 0.4747

Table 8: Comparison of timestep weighting schemes for GradSPO trained on SD 1.5 with the Pick-a-Pic v2
dataset. The best result in each column is highlighted in bold.

SDXL Diff.-DPO MAPO SPO InPO GradSPO (Ours)

a top dowv view of a horse rumving v a field

Figure 6: Side-by-side comparison of images generated by related methods on Parti Prompts using SDXL.



A baseball plaer pitching a baseball on a field.
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Looking doww at a destroved city from a plave

Figure 7: Side-by-side comparison of images generated by related methods on HPDv2 using SDXL.
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