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Abstract

Direct Preference Optimization (DPO) is a key framework for aligning text-to-
image models with human preferences, extended by Stepwise Preference Opti-
mization (SPO) to leverage intermediate steps for preference learning, generating
more aesthetically pleasing images with significantly less computational cost.
While effective, SPO’s underlying mechanisms remain underexplored. In light
of this, we critically re-examine SPO by formalizing its mechanism as gradient
guidance. This new lens shows that SPO uses biased temporal weighting, giv-
ing too little weight to later generative steps, and unlike likelihood centric views
it reveals substantial noise in the gradient estimates. Leveraging these insights,
our GradSPO algorithm introduces a simplified loss and a targeted, variance-
informed noise reduction strategy, enhancing training stability. Evaluations on SD
1.5 and SDXL show GradSPO substantially outperforms leading baselines in hu-
man preference, yielding images with markedly improved aesthetics and semantic
faithfulness, leading to more robust alignment. Code and models are available at
https://github.com/JoshuaTTJ/GradSPO.

1 Introduction

The rise of diffusion models has transformed the generation of high-quality images from textual
prompts, representing a major leap forward in generative artificial intelligence. Traditional text-to-
image (T2I) models [1–3] typically rely on a single-stage training process, learning to synthesize
images directly from large-scale paired text-image datasets. While this approach has yielded im-
pressive results, it lacks an explicit mechanism to adapt outputs to align with user preferences or
specific application needs. In contrast, large language models (LLMs) have embraced a more nuanced
multi-stage training strategy. They undergo extensive pretraining on large, diverse, and sometimes
noisy datasets, followed by a fine-tuning stage on datasets annotated with human preferences [4, 5].
This fine-tuning step is crucial for enhancing the models’ practical utility, safety, and responsiveness,
all while preserving their broad foundational knowledge. Applying this two-stage training approach
to text-to-image diffusion models presents a promising opportunity to better align generated images
with human preferences, resulting in outputs that more faithfully capture user intent.

Recent advances in language modeling have sparked increasing interest in incorporating human
preference feedback into the training of text-to-image diffusion models. This emerging area leverages
human judgments to refine model outputs, thereby enhancing both alignment with user intent and
overall visual fidelity. Prominent works in this field are mostly based on Reinforcement Learning
from Human Feedback (RLHF), which uses human comparisons to rank generated images for
guiding model training [6–9]. Among these, Diffusion DPO [6] adapts the Direct Preference
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Optimization (DPO) framework—initially introduced for Large Language Models (LLMs)—to the
unique characteristics of diffusion models. This specific adaptation enables the model to inherently
learn to favor higher-quality images, and consequently, this strategy has demonstrated notable
improvements in producing images that are both visually appealing and semantically aligned with user
prompts. Building on this foundation, a recent work, Stepwise Preference Optimization (SPO) [10]
introduces preference learning at intermediate diffusion steps, providing more precise reward signals
during the denoising process. This approach enhances training efficiency by improving the stepwise
likelihood of favorable transitions throughout the diffusion trajectory.

While effective, the SPO framework introduces a learning paradigm that diverges from traditional
diffusion training; the latter based on distribution matching, whereas SPO relying on maximizing
sample-wise likelihoods. This paper presents a critical re-examination of SPO, positing that its
mechanism can be more accurately and beneficially characterized as a form of Direct Preference
Optimization (DPO) with respect to score functions augmented by the gradients of reward models.
This novel theoretical lens is instrumental: firstly, it reveals an inherent bias in SPO’s implicit weight-
ing of generative timesteps, leading to an underemphasis on crucial final-stage details. Secondly,
by reframing the optimization from a likelihood-based perspective to a gradient-centric one, our
approach uniquely facilitates the quantification and analysis of noise inherent in the preference-guided
learning process, specifically through the variance of the guiding reward gradient approximations.

Our Contributions. Building upon the re-examination of SPO through a gradient guidance lens,
this paper introduces GradSPO and makes the following key contributions:

• Novel Theoretical Framework for SPO: We formally reinterpret SPO through the lens of guided
score matching. This perspective uncovers an inherent bias in SPO’s weighting of generative
timesteps and introduces a new method for quantifying learning noise via the variance of gradient
approximations.

• Principled Design of GradSPO: Building on this framework, we propose GradSPO, an algorithm
that incorporates: (1) a simplified loss objective with uniform timestep weighting and fixed guidance
scale to directly address the identified SPO from this new viewpoint, and (2) an integrated noise
reduction strategy grounded in the gradient perspective to improve training stability and enhance
preference fidelity.

• State-of-the-Art Preference Alignment: Through extensive experiments, we show that GradSPO
significantly outperforms existing preference learning baselines, achieving superior alignment with
fine-grained human preferences in text-to-image diffusion models, leading to notable gains in both
visual quality and semantic accuracy.
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Figure 1: Qualitative comparison between vanilla SDXL, SPO, and GradSPO. GradSPO demonstrates superior
aesthetic quality and prompt alignment compared to both SDXL and SPO.
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2 Notations and Preliminaries

This section introduces the foundational concepts and notation for diffusion models and preference
optimization techniques relevant to our work.

2.1 Diffusion Models

Diffusion models define a forward noising process that gradually transforms a clean data sample
x0 ∈ R

d into pure noise through a sequence of latent variables x1, . . . ,xT , where T denotes the total
number of timesteps. Each xt represents a progressively noisier version of x0. The forward process
is defined as a Markov chain:

q(x1:T |x0) :=

T
∏

t=1

q(xt|xt−1), q(xt|xt−1) := N (xt;
√

1− βtxt−1, βtI), (1)

where βt ∈ (0, 1) controls the noise variance at timestep t. A useful property of this process is that
xt can also be sampled directly from x0 via a closed-form expression:

q(xt|x0) = N (xt;
√
ᾱtx0, (1− ᾱt)I),

where αt = 1− βt and ᾱt =
∏t

s=1 αs is the cumulative product of αs up to timestep t.

The generative model seeks to reverse this process by learning a parameterized reverse distribution
pθ(xt−1|xt, c), where c denotes optional conditioning information (e.g., a text prompt). This reverse
process is modeled using a neural network ϵθ(xt, c, t), which predicts the noise component ϵ that
was added to x0 to obtain xt. Following Ho et al. [11], each reverse transition is defined as:

pθ(xt|xt+1, c) = N
(

xt;µθ(xt+1, c, t+ 1), σ2
t+1I

)

,

where µθ =

√

αt

αt+1

(

xt+1 −
βt+1√
1− ᾱt+1

ϵθ(xt+1, c, t+ 1)

)

, σ2
t+1 =

1− ᾱt

1− ᾱt+1
βt+1.

(2)

The model is trained by minimizing the variational bound, which reduces to a simplified objective
known as the denoising score matching loss:

LDDPM = Ex0,c,t,ϵ∼N (0,I)

[

λ(t)
∥

∥ϵ− ϵθ(
√
ᾱtx0 +

√
1− ᾱtϵ, c, t)

∥

∥

2
]

, (3)

where t is sampled uniformly from {1, . . . , T}, and λ(t) is a time-dependent weighting function.
The term inside the expectation represents the squared error between the true noise ϵ and the model’s
prediction ϵθ at timestep t.

2.2 Stepwise Preference Optimization (SPO)

Among various preference alignment training schemes, many recent methods adopt a DPO-style
training framework [12, 6, 8, 10, 13]. Given a preference dataset D, these methods often aim to
minimize an objective related to the DPO loss. For Diffusion DPO [6], this can be framed as
minimizing an upper bound on the DPO loss [12], defined as:

LDiffDPO = −E
[

log σ

(

−βT
(

DKL

(

q(xw
t−1 | xw

t ,x
w
0 , c) ∥ pθ(xw

t−1 | xw
t , c)

)

− DKL

(

q(xw
t−1 | xw

t ,x
w
0 , c) ∥ pref(x

w
t−1 | xw

t , c)
)

− DKL

(

q(xl
t−1 | xl

t,x
l
0, c) ∥ pθ(xl

t−1 | xl
t, c)

)

+ DKL

(

q(xl
t−1 | xl

t,x
l
0, c) ∥ pref(x

l
t−1 | xl

t, c)
))

)]

,

(4)
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where (xw
0 ,x

l
0, c) ∼ D, t ∼ U [0, T ], and samples x

w
t and x

l
t are drawn from q(xw

t | xw
0 ) and

q(xl
t | xl

0) respectively.

While the original Diffusion-DPO [6] formulation often utilizes clean preference pairs (xw
0 ,x

l
0)

from offline datasets to approximate such objectives, the recently introduced Stepwise Preference
Optimization (SPO) [10] approach leverages intermediate samples generated by an online model
as preference pairs. The SPO loss is typically expressed in a more direct log-likelihood ratio form,
analogous to the general DPO principle:

LSPO = −Ec,xt,t

[

log σ

(

β

(

log
pθ(x

w
t−1 | c,xt)

pref(xw
t−1 | c,xt)

− log
pθ(x

l
t−1 | c,xt)

pref(xl
t−1 | c,xt)

))]

. (5)

The timestep t is uniformly sampled as t ∼ U [1, T − κ] for a fixed constant κ. Textual prompts c are
drawn from a distribution p(c), and the initial latent state xT is sampled from N (0, I). Intermediate
latent states xt are obtained by applying the discrete reverse diffusion process (using Eq. 2 iteratively).
The winning x

w
t−1 and losing x

l
t−1 samples for the transition from xt to xt−1 are determined by a

step-aware reward model r(·, ·):

x
w
t−1 = argmax

xt−1∈{x(i)
t−1}

r(xt−1, t− 1), x
l
t−1 = argmin

xt−1∈{x(i)
t−1}

r(xt−1, t− 1), (6)

where {x(i)
t−1} are candidate samples generated from pθ(xt−1 | c,xt).

SPO contrasts with standard DPO applications by operating on preferences over intermediate tran-
sitions rather than only final outputs. By integrating feedback throughout the generation process,
SPO provides denser reward signals. This stepwise learning mechanism aims to enhance training
efficiency and offer finer-grained control for aligning the model’s generation trajectory with human
preferences while requiring significantly less computational cost.

3 GradSPO: A Gradient Guidance Perspective on Stepwise Preference

Optimization for Diffusion Models

Stepwise Preference Optimization (SPO) [10], as outlined in Section 2.2, aligns diffusion models
by optimizing preferences at intermediate generative steps. Recall from Eq. 2 that the generation
of xt−1 from a given xt and context c involves sampling noise z ∼ N (0, I) such that xt−1 =
µθ(xt, c, t) + σtz. Consequently, selecting xt−1 to maximize or minimize a step-aware reward
r(xt−1, t− 1) (Eq. 6) is equivalent to finding the optimal noise z for that step. This can be expressed
as:

z+ = argmax
z

r(µθ(xt, c, t) + σtz, t− 1),

z− = argmin
z

r(µθ(xt, c, t) + σtz, t− 1).
(7)

A key insight from Huang et al. [14] is the interpretation this argmax noise serves as an approximation
of a scaled, noisy gradient of the reward model:

z± ≈ ±
√

Tβt∇xt
r(xt) + z, (8)

where z ∼ N (0, I). This approximation motivates us to view SPO from a reward guided perspec-

tive. Within this view, an ideal reward-guided score function can be defined as sw,l
ideal(xt, c, t) =

sθ(xt, c, t)± γ∇xt
r(xt, t), where sθ(xt, c, t) = ∇xt

log pθ(xt|c) is the original model score and γ
is the guidance scale. From this point of view, SPO can be seen as approximating this ideal guidance
term ±γ∇xt

r(xt, t, t) relying on the connection between the gradient of the reward models and z±

in Eq. 8. Specifically, we define our approximate guided scores ŝw,l
θ as:

ŝw,l
θ (xt, c, t) := ∇xt

log pθ(xt|c) + γ′
tz

± (9)

Here, z± is defined in Eq. 7, and γ′
t is a time-dependent scaling factor related to γ. Drawing an

analogy to how Diffusion DPO handles preferred and rejected samples, we introduce GradSPO, a
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method that performs model alignment by extending DPO principles to operate on guided scores:

LGradSPO(θ, θref;xt, c, t) = −E
[

log σ

(

−βw(t)
(

∥sθ(xt, c, t)− sg(ŝwθ (xt, c, t))∥22

−∥sref(xt, c, t)− sg(ŝwθ (xt, c, t))∥22
−∥sθ(xt, c, t)− sg(ŝlθ(xt, c, t))∥22
+∥sref(xt, c, t)− sg(ŝlθ(xt, c, t))∥22

)

)]

,

(10)

where sθ(xt, c, t) is the current model’s score prediction (e.g., related to ϵθ), sref is the reference
model’s score, sg(·) denotes the stop-gradient operator (which prevents gradients from flowing
through its argument), and w(t) is a time-dependent weighting function. The stop-gradient operator

is essential for stable training, as it detaches the target scores, i.e., sg(swθ0) and sg(slθ0), from gradient

updates. With these fixed targets, Eq. 10 trains the model by pulling the current score sθ(xt, c, t)
closer to the winning score swθ , while pushing it away from the losing score slθ. Without this
detachment, the winning score would drift toward the current prediction (swθ → sθ), weakening the
supervision signal and destabilizing learning.

Theorem 1 (GradSPO Loss as Upper Bound). Let LGradSPO(sθ, sref;T
w, T l) denote the GradSPO

loss functional as defined in Eq. 10, where Tw and T l are the target winning and losing scores.
Let swideal = sθ + γ∇xt

r(xt, t) and slideal = sθ − γ∇xt
r(xt, t) be the ideal target scores based on

true reward gradients. Let ŝwθ and ŝlθ (as defined in Eq. 9) be the target scores constructed using
the approximated, potentially noisy, gradient signal. Then, the GradSPO loss computed with the
approximated targets forms an upper bound on the loss computed with ideal targets:

LGradSPO(sθ, sref; s
w
ideal, s

l
ideal) ≤ LGradSPO(sθ, sref; ŝ

w
θ , ŝ

l
θ). (11)

A detailed derivation of Theorem 1 is provided in Appendix A. This theorem is significant as it
demonstrates that our practical GradSPO loss (the right-hand side, which we minimize) serves
as an upper bound on an idealized loss formulated with exact reward gradients. Analogous to
ELBO maximization in variational inference, minimizing this upper bound provides a principled
approach to optimizing for the underlying clean-gradient objective. This is particularly advantageous
in scenarios like latent diffusion models, where precise gradient computations ∇xt

r(xt, t) might
involve costly backpropagation through components like the VAE decoder. The GradSPO loss
objective from Eq. 10, when expressed in terms of noise predictions ϵθ(xt, c, t) (where sθ(xt, c, t) =
−ϵθ(xt, c, t)/

√
1− ᾱt can be written as:

LGradSPO = −E
[

log σ

(

−βa(t)
(

∥ϵθ(xt, c, t)− sg(ϵθ(xt, c, t)−∆ϵ+)∥22

−∥ϵref(xt, c, t)− sg(ϵθ(xt, c, t)−∆ϵ+)∥22
−∥ϵθ(xt, c, t)− sg(ϵθ(xt, c, t)−∆ϵ−)∥22
+∥ϵref(xt, c, t)− sg(ϵθ(xt, c, t)−∆ϵ−)∥22

)

)]

,

(12)

where ∆ϵ± = γt
√
1− ᾱtz

±, a(t) is a time-dependent weighting function, and β is a scalar co-
efficient. Notably, the standard SPO loss can be interpreted within this guided noise prediction
framework by specific choices of a(t) and γt (see Appendix A for details).

This reinterpretation of SPO through a gradient guidance perspective offers critical insights into
its behavior and limitations. For instance, it reveals that SPO’s interval-based training [10] can be
viewed as an application of the recently introduced interval guidance [15], which has been shown to
improve sample quality and diversity.

More critically, this re-framing reveals that the effective weighting function a(t) in the original
SPO formulation (as shown in Figure 2) disproportionately underweights the later diffusion steps.
A similar pattern emerges when analyzing the Pick Score difference between the base model and
its SPO-finetuned counterpart: the improvement decays exponentially over time, even though later
steps are crucial for capturing fine-grained details. This suggests that SPO primarily enhances early
timesteps, with minimal gains in the later stages of the denoising process. To address this imbalance
and ensure more uniform supervision across timesteps, we adopt a simplified objective in which both
a(t) and γt are set to constant values.
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Figure 2: (a) Timestep weighting function a(t) used in SPO. (b) Pick Score difference between SPO and the
base model across timesteps.

3.1 Noise Reduction Techniques

The z± values (Eq. 8), which serve as noisy reward gradient approximations also include an inherent
noise component z ∼ N (0, I). This inherent noise in z± can introduce variance into the target
signals, potentially hindering training performance. To address this, we propose a technique to
reduce noise in the estimated gradient direction. Recall z± ≈ z ± √Tβt∇xt

r(xt, t). The term
±√Tβt∇xt

r(xt, t) is the desired gradient signal. We define a noise-reduced estimate as:

z±max-min = ±z+ − z−

2
(13)

This estimator leverages the opposing nature of the target gradient components in z+ and z−.

Theorem 2 (Variance Reduction of Estimated Gradient Signal). Let z+ = G + z1 and z− =
−G+ z2, where G =

√
Tβt∇xt

r(xt, t) is the true scaled gradient signal, and z1, z2 ∼ N (0, I) are

independent noise terms. The noise-reduced estimate z±max-min has variance half that of the original
estimation z±:

Var(z±max-min) =
Var(z±)

2
(14)

A proof is provided in Appendix B. This demonstrates that z±max-min offers a more stable estimate
of the desired gradient signal, leading to a more stable training process that converges effectively,
resulting in the generation of better aligned images.

While noise reduction techniques are beneficial, noise cannot be entirely removed. The persistence of
this inherent noise in the gradient estimates necessitates the development of training algorithms that
are robust to its presence. Towards this end, to further enhance stability and promote convergence,
we employ an Exponential Moving Average (EMA) of the model parameters θ during training and
online sampling. The EMA parameters θEMA are updated as:

θEMA ← µθEMA + (1− µ)θ, (15)

where µ ∈ [0, 1) is a decay rate (e.g., 0.999). EMA parameters often provide a more stable
representation of the learned model particularly in noisy environments [16, 17].

By incorporating these noise reduction strategies, we arrive at the final GradSPO framework. The
target noise predictions in the loss function are now constructed using the EMA model’s prediction
ϵθEMA

and the noise-reduced gradient signal z±max-min. The resulting GradSPO loss is:

LGradSPO = −E
[

log σ

(

−βa(t)
(

∥ϵθ(xt, c, t)− sg(ϵθEMA
(xt, c, t)−∆ϵ+reduced)∥22

−∥ϵref(xt, c, t)− sg(ϵθEMA
(xt, c, t)−∆ϵ+reduced)∥22

−∥ϵθ(xt, c, t)− sg(ϵθEMA
(xt, c, t)−∆ϵ−reduced)∥22

+∥ϵref(xt, c, t)− sg(ϵθEMA
(xt, c, t)−∆ϵ−reduced)∥22

)

)]

,

(16)

where ∆ϵ±reduced = γt
√
1− ᾱtz

±
max-min. This changes brought about by this new viewpoint on SPO

substantially improves the alignment capabilities of stepwise preference optimization.
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4 Experimental Results

4.1 Experimental Setup

Datasets and Models. We fine-tune both Stable Diffusion 1.5 [18] (Creativeml-openrail-m License)
and SDXL [19] (Openrail++ License) models using the GradSPO objective, as detailed in Section 3.
Following the SPO training scheme, we train the models on 4,000 randomly sampled prompts from
the Pick-a-Pic v1 dataset [20], which contains 580,000 pairs of image preference for each prompt.
For evaluation, unless stated otherwise, we used the test set consisting of 500 prompts sourced from
the Pick-a-Pic v2 dataset, similar to previous work in the field [12, 10].

Implementation Details. Since GradSPO builds upon the SPO framework [10], we retain SPO’s
base hyperparameters to ensure a fair and direct comparison. Additionally, because we do not
modify the stepwise-aware preference model, we reuse the same reward model from SPO rather
than training a new one. However, GradSPO introduces several unique hyperparameters to optimize
performance: the time-dependent weight function αt is set to 1, the guidance scale γt is fixed at 0.5,
and the Exponential Moving Average (EMA) decay rate µ is set to 0.9. These settings are applied
consistently across both SDXL [19] and Stable Diffusion 1.5 [18] models. A complete listing of all
hyperparameters used in our experiments can be found in Appendix D for reproducibility and further
reference.

Baselines. To evaluate the effectiveness of GradSPO in aligning with human preferences, we
benchmark its performance against several strong baselines. These include the original pre-trained
models, Stable Diffusion 1.5 [18] and SDXL [19], as well as several recent preference learning
methods: Direct Preference Optimization (DPO) [12], Stepwise Preference Optimization (SPO)
[10], InPO [8], and MaPO [13]. For consistency across comparisons, we utilize publicly available
pretrained checkpoints for all baseline methods and apply identical evaluation protocols.

Evaluation. We assess model performance using four widely accepted metrics that quantify alignment
with human preferences: HPS v2 [21] (Apache-2.0 License), PickScore [22] (MIT License), Aesthetic
score [23] (MIT License), and Image Reward [24] (Apache-2.0 License). For each prompt in the
evaluation set, we compute and report the average scores across all compared models to provide a
comprehensive view of performance. In line with the evaluation procedure used in SPO [10], we
generate images for all models using DDIM sampling [25] with 20 diffusion steps and a classifier-free
guidance scale of 5.0 [26]. This consistent inference setup ensures fair comparisons of image quality
and alignment metrics across methods.

4.2 Quantitative Results

Table 1 presents quantitative comparisons of GradSPO against established baselines on both SD
1.5 and SDXL backbones. For the SD 1.5 backbone, GradSPO demonstrates strong performance,
surpassing most existing methods. While InPO achieves a marginally higher score on the Image
Reward metric, it is important to contextualize this: GradSPO builds upon the SPO framework, which
itself registers the lowest Image Reward among the compared alignment techniques. Despite this
foundational starting point, GradSPO substantially elevates SPO’s Image Reward score to 0.4747,
securing the second-highest position for this metric. Furthermore, GradSPO markedly improves
SPO’s aesthetic score, underscoring the significant advantages of reinterpreting SPO through our
gradient guidance perspective.

On the SDXL backbone, GradSPO’s performance is particularly compelling, demonstrating clear
superiority across all evaluated metrics. It achieves, for instance, a leading Aesthetic Score of 6.2985
and a Pick Score of 28.93. The improvement over its direct precursor, Stepwise Preference Optimiza-
tion (SPO), is significant—boosting the HPSv2 score from 28.27 (SPO) to 28.93 (GradSPO). These
outcomes strongly affirm the benefits of our gradient guidance reinterpretation of SPO, particularly
its advantages over conventional likelihood-based optimization strategies.

To further assess the effectiveness of our GradSPO training paradigm on SDXL, we conducted a user
study with five judges using 100 prompts randomly sampled from the HPSv2 benchmark [21]. For
each prompt, participants were shown two images, one generated by GradSPO and the other by a
competing method, and asked to indicate a preference or select a tie if neither image was clearly
better. Judgments were based on three criteria: overall image quality, image–text alignment, and
aesthetic appeal.
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Model Method HPSv2 Pick Score Aesthetic Score Image Reward

SD 1.5 [18]

Baseline 26.26 20.62 5.2687 0.0741

DPO [6] 26.56 21.01 5.3704 0.2704

InPO [8] 26.86 21.21 5.4674 0.5135

SPO [10] 26.47 21.11 5.5898 0.1945

GradSPO (Ours) 26.86 21.38 5.7651 0.4747

SDXL [19]

Baseline 27.06 21.85 5.8253 0.4749

DPO [6] 27.81 22.41 5.8412 0.7466

MaPO [13] 27.30 21.95 5.9684 0.5868

InPO [8] 28.07 22.46 5.9046 0.8546

SPO [10] 28.27 22.93 6.2236 0.9982

GradSPO (Ours) 28.93 23.45 6.2985 1.0861

Table 1: Comparison of GradSPO with baseline methods on SD 1.5 and SDXL backbones. GradSPO
attains the highest scores across most human preference metrics, demonstrating superior alignment and visual
quality. For each metric, the top-performing method is bolded, while the second-best is underlined.

Figure 3: User study results comparing GradSPO against two baselines. Top: comparison with SDXL. Bottom:
comparison with SPO.

As summarized in Figure 3, the results indicate a clear human preference for images generated by
GradSPO, reflecting a notable improvement in overall quality. GradSPO achieved a win rate of 75.6%
against SDXL and 53.0% against SPO. Notably, the strongest gains were observed in aesthetic quality,
where GradSPO attained win rates of 81.1% and 56.2% against SDXL and SPO, respectively.

4.3 Qualitative Results

Figure 4 illustrates the qualitative performance of our model, GradSPO (using the SDXL backbone),
compared to other Text-to-Image (T2I) methods. In the first row, for the prompt "The Best," GradSPO
successfully generates an image accurately containing the desired text, outperforming baseline
methods. Notably, while the InPO approach nearly generates the correct text, it includes visible
artifacts. For the second row, corresponding to the prompt "Buff Harry Potter," most baseline
methods (excluding InPO) fail to generate images following the provided textual prompt. However,
comparing GradSPO and InPO, GradSPO produces a more aesthetically pleasing image. Lastly, in
the final row, all baseline methods fail to effectively render the "A gorgeous queen" following the
textual prompt, whereas GradSPO reliably and accurately generates the image. Collectively, these
examples in Figure 4 qualitatively demonstrate GradSPO’s superior capability in prompt adherence,
text rendering, and aesthetic quality compared to baseline methods.

4.4 Ablation on EMA Momentum and Reward Guidance Scale

To better understand the performance and stability of GradSPO, we conduct ablations on two key
hyperparameters: the EMA momentum µ and the reward guidance scale γ. All other settings are
fixed for SD 1.5, with results reported on the Pick-a-Pic v2 dataset. When varying µ, we set γ = 0.5,
and when varying γ, we fix µ = 0.9. The results are summarized in Table 2.
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Figure 4: Side-by-side comparison of images generated by related methods using SDXL. GradSPO
demonstrates a significant improvement in terms of aesthetic appeal and fidelity to the caption.

γ HSPv2 Pick Score Aesthetic ImageRwd

0.25 26.67 20.71 5.5278 0.452

0.50 26.86 21.38 5.7651 0.4747

0.75 26.70 20.99 5.4630 0.3878

(a)

µ HSPv2 Pick Score Aesthetic ImageRwd

0.90 26.86 21.38 5.7651 0.4747

0.95 26.74 21.12 5.6352 0.4153

0.99 26.68 21.22 5.7591 0.3871

(b)

Table 2: Ablation study of GradSPO on SD 1.5 (Pick-a-Pic v2). (a) Varying the reward guidance scale γ with
EMA momentum fixed at µ = 0.9; (b) Varying the EMA momentum µ with reward scale fixed at γ = 0.5.

We observe that GradSPO is relatively robust to changes in the EMA momentum µ, showing only
minor performance degradation at higher values. We attribute this to an oversmoothing effect, where
the EMA model lags behind the current model and adapts too slowly.

In contrast, the reward guidance scale γ exerts a stronger influence. A large γ increases the variance of
the reward signal, especially in noisy regions, leading to less stable convergence. Conversely, a very
small γ weakens the learning signal, preventing the model from capturing meaningful preferences.
Empirically, we find γ = 0.5 provides a good balance between stability and signal strength, and
adopt this setting across both SDXL and SD 1.5 experiments.

4.5 Effectiveness of Gradient-Guided Objectives and Noise Mitigation Strategies

Figure 5: Win-rate comparisons across SPO-
Simple, SPO-Simple-Maxmin (z±max-min), and
GradSPO on popular reward metrics,

To dissect the contributions of our gradient guidance
perspective on Stepwise Preference Optimization (SPO)
and to validate the efficacy of the proposed noise mit-
igation strategies, we conducted systematic ablation
experiments. The results for experiments conducted on
the SDXL backbone, presented in Figure 5, illustrate
the progressive performance enhancements (measured
by win-rates across diverse automated reward models)
as each component of GradSPO is incrementally intro-
duced, starting from a standard SPO baseline.

First, adopting the simplified objective derived from our
gradient-guided reinterpretation (denoted SPO+Simple)
led to improvements across most metrics, with only a
slight drop in aesthetic score. This highlights the advan-
tage of our reformulated objective, including uniform
timestep weighting.

Subsequently, integrating the max-min noise reduction technique for the gradient signal, z±max-min

(termed SPO+Simple+Maxmin), yielded a further discernible boost in performance, increasing the
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average win rate across all 4 metrics. This gain is primarily attributed to the reduced variance in the
estimated reward gradients, demonstrating the effectiveness of this stabilization approach.

Finally, the incorporation of Exponential Moving Average (EMA) for model parameters during train-
ing (Eq. 15), which constitutes the full GradSPO method, achieved the highest average performance
among all configurations. This result highlights EMA’s crucial role in further stabilizing the training
dynamics within the inherently stochastic preference learning landscape.

In summary, the ablation study (Figure 5) demonstrates that each core component of GradSPO—the
simplified gradient-guided objective, max-min noise reduction, and EMA—makes a distinct and
measurable contribution to the overall performance

5 Related Works

5.1 Diffusion Models for Text-to-Image Generation

Denoising Diffusion Probabilistic Models (DDPMs) [11] are a class of powerful generative models
that have recently gained popularity for their ability to effectively model high-dimensional data. This
has led to their successful adoption across a range of applications, including image synthesis [2, 1,
19], video generation [27–29], and text-to-speech synthesis [30–32]. Among these, text-to-image
generation has been particularly impactful, enabling the creation of complex visuals directly from
textual descriptions [2, 3] and unlocking new possibilities in creative fields such as digital art and
design. Despite their ability to produce high-quality images after pretraining, these models often
struggle to capture nuanced human preferences, frequently resulting in visual artifacts such as poorly
rendered hands and faces [7]. These limitations have spurred ongoing research into improving
sampling efficiency [33–35] and enhancing alignment with textual inputs [6, 10, 8].

5.2 Human-Preference Alignment for Diffusion

Human preference alignment has long been recognized as beneficial in Large Language Models
(LLMs), where techniques like Reinforcement Learning from Human Feedback (RLHF) have substan-
tially improved performance, helpfulness, and safety [5, 4, 12, 36, 37]. Inspired by these successes,
recent work has explored applying human preference learning to text-to-image generation [6, 7]. A
prominent example is Diffusion DPO [6], which adapts Direct Preference Optimization (DPO) for
diffusion models, steering the model toward preferred images and away from dispreferred ones using
an offline dataset. While Diffusion DPO significantly enhances text alignment and aesthetic quality,
generating high-quality images, it demands considerable computational resources. More recently,
Stepwise Preference Optimization (SPO) [10] was introduced, performing preference learning at
intermediate diffusion steps on a per-sample basis. This approach provides stronger learning signals,
greatly improving computational efficiency and text alignment.

Despite SPO’s success, its sample-wise formulation deviates markedly from the typical score matching
training paradigm used in diffusion models [11]. In this work, we reinterpret SPO through a score
matching lens, showing that rather than maximizing sample-wise likelihoods, SPO effectively learns
to move towards preferred scores and away from dispreferred ones. This perspective exposes
limitations in the original SPO training framework. Building on this insight, we propose GradSPO, a
score matching–inspired approach that substantially enhances image generation quality.

6 Conclusion

In this paper, we revisit Stepwise Preference Optimization (SPO) through the lens of score matching.
We establish a novel theoretical connection, demonstrating that SPO is equivalent to Direct Preference
Optimization (DPO) when using winning and losing score functions derived from reward models with
added noise. Leveraging this perspective, we propose a simplified and more intuitive optimization
objective, alongside effective noise reduction techniques that significantly mitigate approximation
errors caused by such noise. Empirical evaluations demonstrate that our proposed method, GradSPO,
consistently outperforms existing preference learning approaches, highlighting its superior capability
in generating images that align closely with human preferences. Furthermore, this new interpretation
of SPO links gradient guidance to the SPO training objective allowing for the integration of improved
gradient guidance techniques for more user aligned images which we leave for future work.
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A Proof of Theorem 1

Theorem 1 (GradSPO Loss as Upper Bound). Let LGradSPO(sθ, sref;T
w, T l) denote the GradSPO

loss functional as defined in Eq. 10, where Tw and T l are the target winning and losing scores.
Let swideal = sθ + γ∇xt

r(xt, t) and slideal = sθ − γ∇xt
r(xt, t) be the ideal target scores based on

true reward gradients. Let ŝwθ and ŝlθ (as defined in Eq. 9) be the target scores constructed using
the approximated, potentially noisy, gradient signal. Then, the GradSPO loss computed with the
approximated targets forms an upper bound on the loss computed with ideal targets:

LGradSPO(sθ, sref; s
w
ideal, s

l
ideal) ≤ LGradSPO(sθ, sref; ŝ

w
θ , ŝ

l
θ). (17)

Proof. From Eq. 8, we have:

E(γ′
tz

±) = ±γ∇xt
r(xt, t),

V ar(γ′
tz

±) = I.
(18)

It follows that:

E(ŝw,l
θ ) = sw,l

ideal,

V ar(ŝw,l
θ ) = I.

(19)

Next, consider the GradSPO loss in Eq. 10 (where we omit the stop gradient operator sg(·) for
simplicity):

LGradSPO(sθ, sref; s
w
ideal, s

l
ideal) = −E

[

log σ
(

−βw(t)
(

∥sθ(xt, c, t)− swideal(xt, c, t)∥22

−∥sref(xt, c, t)− swideal(xt, c, t)∥22
−∥sθ(xt, c, t)− slideal(xt, c, t)∥22

+∥sref(xt, c, t)− slideal(xt, c, t)∥22
))

]

.

(20)

Using E(ŝwθ ) = swideal and E(ŝlθ) = slideal, we can rewrite the loss as:

LGradSPO(sθ, sref; s
w
ideal, s

l
ideal) = −E

[

log σ
(

−βw(t)
(

∥sθ(xt, c, t)− E[ŝwθ (xt, c, t)]∥22

−∥sref(xt, c, t)− E[ŝwθ (xt, c, t)]∥22
−∥sθ(xt, c, t)− E[ŝlθ(xt, c, t)]∥22

+∥sref(xt, c, t)− E[ŝlθ(xt, c, t)]∥22
))

]

,

(21)

since

E
[

∥sref(xt, c, t)− ŝwθ (xt, c, t)∥22
]

= ∥E[sref(xt, c, t)− ŝwθ (xt, c, t)]∥22 + nV ar(ŝwθ (xt, c, t)),

where n denotes the dimension of the variable ŝθ. Since the variance terms are equal, they cancel
each other out, allowing us to move the expectation out of the norm:

LGradSPO(sθ, sref; s
w
ideal, s

l
ideal) = −E

[

log σ
(

−βw(t)
(

E[∥sθ(xt, c, t)− ŝwθ (xt, c, t)∥22]

− E[∥sref(xt, c, t)− ŝwθ (xt, c, t)∥22]

− E[∥sθ(xt, c, t)− ŝlθ(xt, c, t)∥22]

+ E[∥sref(xt, c, t)− ŝlθ(xt, c, t)∥22]
)

)]

.

(22)
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Finally, applying Jensen’s inequality to the convex function − log σ(·) yields

LGradSPO(sθ, sref; s
w
ideal, s

l
ideal) ≤ −E

[

log σ
(

−βw(t)
(

∥sθ(xt, c, t)− ŝwθ (xt, c, t)∥22

− ∥sref(xt, c, t)− ŝwθ (xt, c, t)∥22
− ∥sθ(xt, c, t)− ŝlθ(xt, c, t)∥22

+ ∥sref(xt, c, t)− ŝlθ(xt, c, t)∥22
)

)

]

= LGradSPO(sθ, sref; ŝ
w
θ , ŝ

l
θ).

(23)

Thus, the approximate GradSPO loss serves as an upper bound on the exact variant.

B Proof of Theorem 2

Theorem 2 (Variance Reduction of Estimated Gradient Signal). Let z+ = G + z1 and z− =
−G+ z2, where G =

√
Tβt∇xt

r(xt, t) is the true scaled gradient signal, and z1, z2 ∼ N (0, I) are

independent noise terms. The noise-reduced estimate z±max-min has variance half that of the original
estimation z±:

Var(z±max-min) =
Var(z±)

2
(24)

Proof. We are given two noisy estimates

z+ = G+ z1 and z− = −G+ z2,

where z1, z2 ∼ N (0, I) are independent. Consequently,

z+ ∼ N (G, I) and z− ∼ N (−G, I),

so Var(z+) = Var(z−) = I. We define the noise-reduced estimate

z±max-min = ±z+ − z−

2
.

First, to see that this estimator is unbiased, note

E[z±max-min] = E

[z+ − z−

2

]

= ±1

2

(

E[z+]− E[z−]
)

= ±1

2
(G− (−G)) = ±G.

Next, to compute its variance, observe that z+ and z− are independent, so

Var
(

z±max-min

)

= Var
(

± z+ − z−

2

)

=
1

4

(

Var(z+) + Var(z−)
)

=
1

4

(

I+ I
)

=
1

2
I.

Thus,

Var
(

z±max-min

)

=
1

2
Var(z+) =

1

2
Var(z−),

showing that the variance of z±max-min is exactly half the variance of the original noisy estimates z+ or

z−. Therefore, ± z+−z−

2 is an unbiased estimator of ±G whose variance is reduced by a factor of 1
2

compared to the individual noisy vectors.

C Link Between GradSPO and SPO

The Step-by-step Preference Optimization (SPO) framework utilizes the Denoising Diffusion Implicit
Models (DDIM) [25] transition probability. This probability, pθ(xt−1|xt), from xt to xt−1 is defined
as a Gaussian distribution:

pθ(xt−1|xt) = N
(

xt−1;µθ(xt, c, t), σ
2
t I
)

, (25)
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where

µθ(xt, c, t) =
√
ᾱt−1

(

xt −
√
1− ᾱtϵθ(xt, c, t)√

ᾱt

)

+
√

1− ᾱt−1 − σ2
t · ϵθ(xt, c, t). (26)

In this formulation, the terms σ2
t , ᾱt, and ϵθ follow the definitions provided in Section 2.1. Given

these definitions, the log-probability of a specific sample x
w,l
t−1 can be expressed as:

log pθ(x
w,l
t−1|xt) = −

1

2σ2
t

∥

∥

∥
µθ(xt, c, t)− x

w,l
t−1

∥

∥

∥

2

2
+ C, (27)

where the constant C is given by C = −d
2 log

(

2πσ2
t

)

, with d being the dimensionality of the variable
xt.

Rewriting the log-probability where x
w,l
t−1 is expressed using an auxiliary variable z

±:

log pθ(x
w,l
t−1|xt) = −

1

2σ2
t

∥

∥µθ(xt, c, t)− µθ(xt, c, t) + σtz
±∥
∥

2

2
+ C. (28)

This expression can be further reformulated in terms of the noise prediction ϵθ(xt, c, t):

log pθ(x
w,l
t−1|xt) = −A(t)

∥

∥ϵθ(xt, c, t)−
(

ϵθ(xt, c, t)−B(t)
√
1− ᾱtz

±)∥
∥

2

2
+ C. (29)

The time-dependent coefficients A(t) and B(t) are defined as:

A(t) :=
1

2σ2
t

(

√

ᾱt−1(1− ᾱt)√
ᾱt

−
√

1− ᾱt−1 − σ2
t

)2

(30)

B(t) :=
σt

√
1− ᾱt

(√
ᾱt−1(1−ᾱt)√

ᾱt

−
√

1− ᾱt−1 − σ2
t

) . (31)

By comparing the rewritten form of log pθ(x
w,l
t−1|xt) with the objective function of GradSPO in Eq.

12, it becomes evident that SPO can be viewed as a specific instance of GradSPO. The correspondence
is established by setting the GradSPO parameters a(t) and γt as follows:

a(t) = A(t) and γt = B(t). (32)

This demonstrates that GradSPO can be considered a generalization of the original SPO method,
where SPO emerges under a particular choice for the functions a(t) and γt.

D Additional Experimental Details

Hyperparameters SD 1.5 SDXL

Learning rate 6e-5 1e-5

# of epochs 10 10

Batch size 40 16

µ 0.9 0.9

β 10 10

κ [0, 750] [0, 750]

LoRA rank 4 64

cfg during training 5.0 5.0

# of samples per step 4 4

Sampling steps during training 20 20

GPU Setup 4x NVIDIA A100 4x NVIDIA A100

Table 3: Hyperparameter settings used for SD 1.5 and SDXL backbones.

We generally adopted hyperparameters aligned with those used in SPO, training all models with
AdamW [38] using a weight decay of 1e-4. Additional hyperparameter details are provided in Table 3.
For SDXL, however, we deviated from the standard multi-step preference optimization procedure of
SPO, instead employing a single-step approach analogous to the one utilized in SD1.5. Although
the multi-step preference optimization typically yields superior outcomes compared to the single-
step method within SPO, our single-step procedure for SDXL nonetheless achieved performance
surpassing that of SPO.
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E Limitations

While GradSPO significantly improves upon the original SPO method, our current implementation
remains restricted to single-step preference optimization and has not yet been extended to multi-step
preference optimization. Nonetheless, GradSPO consistently outperforms SPO, even though SPO
employs multi-step preference optimization with models such as SDXL, underscoring the robustness
and effectiveness of GradSPO’s gradient-based viewpoint. Additionally, although GradSPO training
does not necessitate an explicit image dataset, it relies on a prompt dataset and a trained reward
model, rendering it susceptible to biases inherent in the training data. These biases can propagate
throughout the optimization process, potentially affecting the quality, fairness, and generalizability of
outcomes. Despite these limitations, GradSPO provides valuable theoretical insights by generalizing
and improving upon SPO, clarifying both the fundamental advantages and inherent challenges
associated with stepwise preference-based optimization techniques.

F Evaluations on Parti Prompts and HPDv2

This section presents additional comparative evaluations conducted using the Parti Prompts [39]
consisting of over 1600 prompts and HPDv2 [21] datasets consisting of 400 prompts. The results,

Model Method HPSv2 Pickscore Aesthetic Score Image Reward

SD 1.5 [18]

Baseline 26.29 20.63 5.2191 -0.2901

DPO [6] 26.71 21.22 5.4662 0.1179

InPO [8] 27.60 21.62 5.6009 0.6178

SPO [10] 27.25 21.65 5.8101 0.2975

GradSPO (Ours) 27.70 21.93 5.8273 0.5325

SDXL [19]

Baseline 27.63 22.58 5.9639 0.6726

DPO [6] 28.28 23.03 6.0127 0.9613

MaPO [13] 27.92 22.66 6.0699 0.7413

InPO [8] 28.78 23.18 6.0504 0.9599

SPO [10] 29.00 23.75 6.1341 0.9441

GradSPO (Ours) 29.55 24.26 6.3470 1.1498

Table 4: HPDv2 results. Results for GradSPO and preference alignment baselines on HPDv2. For each metric,
the top-performing method is bolded, while the second-best is underlined.

summarized in Table 4, clearly illustrate the superior performance of GradSPO on the HPDv2
dataset across both SD1.5 and SDXL models. GradSPO significantly outperforms the baseline SPO
method, achieving notably higher average scores—29.55 for HPSv2 and 24.26 for PickScore—which
underscores its efficacy in enhancing alignment with human preferences.

Model Method HPSv2 Pickscore Aesthetic Score Image Reward

SD 1.5 [18]

Baseline 26.50 21.27 5.1481 0.0505

DPO [6] 26.78 21.56 5.2137 0.2274

InPO [8] 27.62 21.85 5.4610 0.6067

SPO [10] 27.16 21.72 5.5289 0.3986

GradSPO (Ours) 27.49 21.99 5.6794 0.5951

SDXL [19]

Baseline 27.38 22.24 5.5929 0.4864

DPO [6] 28.29 22.83 5.6826 0.9943

MaPO [13] 27.72 22.41 5.7819 0.6793

InPO [8] 28.48 22.87 5.7093 0.9252

SPO [10] 28.78 23.32 6.0509 0.9762

GradSPO (Ours) 29.35 23.80 6.1202 1.1005

Table 5: Parti prompt results. Comparison of GradSPO and preference alignment baselines evaluated on Parti
prompts. The best-performing method for each metric is highlighted in bold, and the runner-up is underlined.
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As detailed in Table 5, GradSPO performs comparably to the leading method, InPO, when evaluated
with the SD1.5 model on the Parti Prompts dataset, showing only minor differences. Crucially,
GradSPO consistently outperforms SPO, highlighting the advantages of our proposed gradient-based
optimization approach. Furthermore, when using the SDXL model with the Parti Prompts dataset,
GradSPO surpasses all baseline methods, confirming its robust ability to generate visually appealing
images.

Overall, GradSPO achieves state-of-the-art or highly competitive results across various reward metrics
for both datasets. The consistent and significant improvements over the original SPO variant further
validate the effectiveness and practical benefits of viewing SPO from this gradient-based optimization
perspective.

G Comparisons with Clean Gradient

In this section, we present an ablation study comparing GradSPO to a variant trained with exact gradi-
ents, which we term "Clean Gradient." Unlike GradSPO, which uses a noisy gradient approximation,
Clean Gradient utilizes exact gradients obtained by backpropagating through the reward model. We
observed instability when training with gradients with respect to xt (i.e., ∇xt

), consistent with prior
findings [40, 41]. Consequently, for our Clean Gradient experiments, we used gradients with respect
to the estimated clean latent, x0 (i.e., ∇x0

), for the Clean Gradient experiments.

Method Comp. Cost Reward Metrics

GPU Mem. (GB) Time (s) HPSv2 Pickscore Aesthetic Score Image Reward

Clean Gradient 52 25 27.11 21.67 5.7058 0.5211

GradSPO 28 17 26.86 21.38 5.7651 0.4747

Table 6: Comparison of computational costs and performance metrics for GradSPO and Clean Gradient on
Pick-a-Pic v2. Best results per metric are in bold. Computational costs per optimization step were measured
using a single NVIDIA A100 GPU with a batch size of 5.

Table 6 demonstrates that Clean Gradients generally outperforms GradSPO across most metrics,
with the notable exception of the aesthetic score. We primarily attribute this performance gap
to the inherent noise in GradSPO’s gradient estimation. This highlights the critical role of noise
reduction strategies of GradSPO in narrowing this performance difference. Despite Clean Gradient’s
better performance, Clean Gradient incurs a higher memory cost, as it requires backpropagation
through both the VAE and the reward model (see Table 6). In contrast, GradSPO offers a more
memory-efficient alternative that remains applicable even when the reward model isn’t explicitly
differentiable.

H Connection Between Maximal/Minimal Noise and Reward Gradient

This section briefly explains the connection between the maximal and minimal noise, z±, and the
gradient of a reward model, ∇xt

r(xt, t). From an energy-based perspective, the reward function
models the conditional likelihood:

p(y | xt) =
eλr(xt,t)

Z
, (33)

where Z is the normalization factor and λ serves as a guidance scale.

From an optimal control viewpoint, guiding the model to sample from p(y | xt) equates to sampling
from the augmented stochastic differential equation (SDE):

dxt =

[

−1

2
Tβtxt − Tβt∇xt

log p(xt)

]

dt+
√

Tβt (u
∗(xt, t)dt+ dw) , (34)

where u∗(xt, t) denotes the optimal control function minimizing a cost function (negative of the
terminal reward), and dw denotes standard Brownian motion.

6



As detailed in Huang et al. [14] (Section 4.4), this optimal control function is connected to the reward
gradient:

u∗(xt, t) =
√

Tβt∇xt
log p(y | xt)

= λ
√

Tβt∇xt
r(xt, t).

(35)

Additionally, the noise maximizing this reward (Eq. 7), z + , provides an upper bound to this optimal
control function, u∗(xt, t). Hence, [14] employs it as an approximation for the sum of control and
Brownian increments (see Section 4.3 of [14]):

(u∗(xt, t) + z)dt ≈ z+dt. (36)

A similar reasoning can be applied to noise minimizing the reward, approximating the negative
reward gradient ∇xt

r(xt, t) with minimal noise z−.

I GenEval Results

To further assess the compositional and perceptual capabilities of our models, we evaluate them on the
GenEval benchmark using SDXL-based backbones. As shown in Table 7, GradSPO achieves notable
gains over SPO—not only in aesthetic quality but also in compositional fidelity—resulting in a higher
overall score. However, consistent with prior findings from the SPO study, GradSPO still falls short of
Diff-DPO in overall GenEval performance. This suggests that, like SPO, GradSPO tends to prioritize
aesthetic reward signals over fine-grained compositional alignment, despite outperforming Diff-DPO
on all individual image-level reward metrics.

Method Single Two Count Color Pos AttrBind Overall

SDXL 97.81 68.43 40.62 86.70 12.00 23.00 54.76

Diff-DPO 99.69 81.06 48.44 89.63 13.25 27.75 59.84

SPO 97.81 73.74 41.25 86.44 13.00 20.25 55.41

GradSPO 99.06 77.78 47.50 88.03 13.00 22.25 57.07

Table 7: GenEval results for SDXL models. Each column reports accuracy (%) for a specific evaluation
dimension, and the final column shows the overall GenEval score.

J Effect of Timestep Weighting

To investigate the impact of different timestep weighting strategies on preference-based diffusion
training, we compare three commonly used schemes: min-SNR weighting [42], P2 weighting [43], and
uniform weighting. Table 8 presents results for GradSPO trained on SD 1.5 using the Pick-a-Pic v2
dataset.

Unlike standard diffusion training—where non-uniform schemes such as min-SNR or P2 often
outperform uniform weighting—we observe that uniform weighting performs slightly better across
most preference-learning metrics. This indicates that, although these weighting schemes have been
widely adopted for diffusion model training, their effectiveness does not directly transfer to the
preference optimization setting.

We hypothesize that this discrepancy arises from the differing objectives of diffusion generation
and diffusion preference learning. While the former seeks to approximate a data distribution,
preference learning focuses on maximizing the margin between preferred and non-preferred samples.
Consequently, uniform weighting may provide a better inductive bias for stable optimization in
margin-based objectives.

K Additional Qualitative Results

Figure 6 and Figure 7 present additional image samples generated by GradSPO and various preference
alignment methods on SDXL for qualitative comparisons on Parti Prompts and HPDv2, respectively.
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Weighting HSPv2 Pick Score Aesthetic Score Image Reward

Min-SNR [42] 26.72 21.26 5.6590 0.5165

P2 [43] 26.79 21.25 5.6028 0.5318

Uniform 26.86 21.38 5.7651 0.4747

Table 8: Comparison of timestep weighting schemes for GradSPO trained on SD 1.5 with the Pick-a-Pic v2
dataset. The best result in each column is highlighted in bold.

Figure 6: Side-by-side comparison of images generated by related methods on Parti Prompts using SDXL.
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Figure 7: Side-by-side comparison of images generated by related methods on HPDv2 using SDXL.
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NeurIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Our claims reflect the paper’s contributions and scope as stated in Section 1.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We have discussed the limitations in Appendix E.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.

• The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: Assumptions are clearly stated in Section 3 and Proofs are provided in the
Appendix A, B and C.

Guidelines:

• The answer NA means that the paper does not include theoretical results.

• All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

• All assumptions should be clearly stated or referenced in the statement of any theorems.

• The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: To reproduce the experimental result, we provide the corresponding setup in
Subsection 4.1.

Guidelines:

• The answer NA means that the paper does not include experiments.

• If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: An open-source implementation is publicly available at https://github.
com/JoshuaTTJ/GradSPO.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We have included the experimental details in Section 4.1 with more details in
Appendix D.

Guidelines:

• The answer NA means that the paper does not include experiments.

• The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

• The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Error bars are included in figures where applicable to indicate variability or
uncertainty, such as in user study results in Figure 3.

Guidelines:

• The answer NA means that the paper does not include experiments.

• The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).

• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Compute resource was provided in Appendix D.

Guidelines:

• The answer NA means that the paper does not include experiments.

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We confirm that this paper conforms with the code of ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

• If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: Given that our work primarily focuses on improving the aesthetic quality
and faithfulness of generated images, the associated societal impacts, both positive (e.g.,
enhanced digital art) and negative (e.g., misuse for disinformation), align with those broadly
discussed for generative image models and do not introduce novel ethical considerations
requiring a dedicated section.
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Guidelines:

• The answer NA means that there is no societal impact of the work performed.

• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: -

Guidelines:

• The answer NA means that the paper poses no such risks.

• Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We have properly credited these in Subsection 4.1.

Guidelines:

• The answer NA means that the paper does not use existing assets.

• The authors should cite the original paper that produced the code package or dataset.

• The authors should state which version of the asset is used and, if possible, include a
URL.

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: -

Guidelines:

• The answer NA means that the paper does not release new assets.

• Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: -

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: -

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: -

Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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