Dual-discriminative Graph Neural Network for
Imbalanced Graph-level Anomaly Detection

Ge Zhang! Zhenyu Yang'
Jia Wu'* Jian Yang' Xue Shan? Hao Peng® Jianlin Su*
Chuan Zhou® Quan Z. Sheng! Leman Akoglu® Charu C. Aggarwal’
Macquarie University ~ 2University of Wollongong ~ ®Beihang University
4Zhuiyi Technology ~ 5AMSS, Chinese Academy of Sciences
6Carnegie Mellon University ~ “IBM T. J. Watson Research Center
{ge.zhangb, zhenyu.yang3}@students.mq.edu.au,
{jia.wu, jian.yang}@mq.edu.au, sxueQuow.edu.au,
penghao@buaa.edu.cn, bojonesu@wezhuiyi.com, zhouchuan®@amss.ac.cn,
michael.sheng@mqg.edu.au, lakoglu®@andrew.cmu.edu, charu@us.ibm.com

Abstract

Graph-level anomaly detection aims to distinguish anomalous graphs in a graph
dataset from normal graphs. Anomalous graphs represent a very few but essential
patterns in the real world. The anomalous property of a graph may be referable to its
anomalous attributes of particular nodes and anomalous substructures that refer to
a subset of nodes and edges in the graph. In addition, due to the imbalance nature
of anomaly problem, anomalous information will be diluted by normal graphs
with overwhelming quantities. Various anomaly notions in the attributes and/or
substructures and the imbalance nature together make detecting anomalous graphs
a non-trivial task. In this paper, we propose a graph neural network for graph-level
anomaly detection, namely iGAD. Specifically, an anomalous graph attribute-aware
graph convolution and an anomalous graph substructure-aware deep Random
Walk Kernel (deep RWK) are welded into a graph neural network to achieve
the dual-discriminative ability on anomalous attributes and substructures. Deep
RWK in iGAD makes up for the deficiency of graph convolution in distinguishing
structural information caused by the simple neighborhood aggregation mechanism.
Further, we propose a Point Mutual Information (PMI)-based loss function to
target the problems caused by imbalance distributions. PMI-based loss function
enables iGAD to capture essential correlation between input graphs and their
anomalous/normal properties. We evaluate iGAD on four real-world graph datasets.
Extensive experiments demonstrate the superiority of iGAD on the graph-level
anomaly detection task.

1 Introduction

Graphs have been used as an indispensable tool to describe relational data, such as chemical com-
pounds, transport networks, and social networks. For instance, in a graph that models a chemical
compound, nodes represent atoms and edges describe chemical bonds between atoms. Learning
graphs to understand the world has been drawing considerable attention in recent years [S} [14} 15/ 51].
Given a graph dataset containing a set of graphs, graph-level anomaly detection aims to identify
graphs with anomalous information. Generally, these anomalous graphs with special characteristics
or functions are the minority in a graph dataset. For example, among all antibody molecules, only

*Corresponding Author

36th Conference on Neural Information Processing Systems (NeurIPS 2022).



a few of them exhibit anti-cancer activity on a specific type of cancer cell line [55]. Graph-level
anomaly detection is a research topic of great practical value, say, it can support cancer drug discovery
by identifying molecules with anti-cancer activity from other antibody molecules [48]]. Also, the
research can help to reveal pathogenic brain mechanisms by distinguishing the brain structures of
patients with neurological disorders from healthy individuals [21]].

In practice, the attributes of particular nodes are a contributing factor to a graph’s anomalous
properties. For example, the hydrogen and oxygen atoms at the end of molecules are the key
to discriminating between Alcohol and Alkane [45]. Graph substructures can be another factor
for a graph’s anomalous properties. For instance, pharmacophores composed of some particular
substructures can induce molecular toxicity. These graph attributes and substructures that are essential
for distinguishing anomalous graphs from normal graphs are regarded as anomalous attributes and
anomalous substructures, respectively. Most existing graph mining methods, especially those graph
convolution-based models which have achieved state-of-the-art performance [154, |59 20, 3], focus
on the aggregation of neighborhood-structured information. However, the anomalous structure
information could be all possible substructures. In addition, anomalous attributes and substructures
will be diluted by the information of normal graphs with overwhelming quantities, which is the
imbalance nature of the anomaly problem. In summary, various anomaly notions in attributes
and/or substructures and the imbalance nature make graph-level anomaly detection an important yet
challenging problem.

In this paper, we propose a dual-discriminative graph neural network for imbalanced Graph-level
Anomaly Detection 1IGAD). Specifically, iGAD investigates a novel anomalous attribute-aware graph
convolution. The final node representation is the concatenation of the independent encoding on a
node itself and the independent encoding on its neighborhoods from different hops. In this way,
the attributes of center nodes can evolve independently over the graph convolution process and the
anomalous attributes on particular nodes can get exposure. However, it is intractable to enable graph
convolution to be aware of anomalous substructures. Due to the high dependence on neighborhood
aggregation, graph convolution can only capture very limited substructures in graphs. Moreover,
even the simple substructures such as triangles, graph convolution cannot count them in a graph
[3]. RWK [47], as one type of Graph Kernels (GKs), learns graphs by exploring common random
walk sequences among all input graphs, which naturally involves the comparison about diverse
substructures in different graphs. To embed the information of anomalous substructures into graph
representations, we propose to compare random walk sequences of input graphs against anomalous
substructures. By modeling anomalous substructures as parameters, they became learnable and
can get updated through back-propagation. We entitle this design anomalous substructure-aware
deep RWK. In addition, we propose a new loss function to target the imbalance distribution caused
by the great difference in the number of normal and anomalous graphs. The newly proposed loss
function models the PMI between graphs and their normal/anomalous properties and enables iGAD to
capture anomalous information from an imbalanced graph dataset. Welding three designs mentioned
above into a graph neural network, the graph-level anomaly detection model iGAD is achieved. We
conclude the contributions of iGAD as follows:

* The anomalous attribute-aware graph convolution exposes anomalous attributes by keeping
the independent evolution of center node’s attributes.

* Anomalous substructures are modeled as learnable parameters. Substructure-aware deep
RWK embeds the information of anomalous substructures into graph representations by
comparing the random walk sequences from input graphs and anomalous substructures.

* The PMI-based loss function addresses issues brought by the imbalance nature of the
anomaly problem and enables iGAD to learn anomalous graphs as a minority effectively.

» Comprehensive experiments demonstrate the effectiveness of iGAD, which outperforms
state-of-the-art graph convolution-based graph classification models and graph-level
anomaly detection algorithms on four real-world graph datasets. The code is available
at https://github.com/graph-level-anomalies/iGAD.

2 Related Work

Anomaly Detection. The task aims to identify anomalies that deviate from the majority of samples.
Early anomaly detection algorithms use different metrics, such as distance-based [[18] and density-


https://github.com/graph-level-anomalies/iGAD

based [[7], to measure the deviation degree among samples to detect anomalies. For example, isolation
forest-based algorithms [25, |26] identify anomalous by building the binary search tree structure
to isolate samples. In addition, anomaly detection algorithms based on one-class classification
[40L 39, 1377, 163]] and autoencoder [2} [64]] have also been in the spotlight. For the graph-structured
data, most graph anomaly detection algorithms dedicate to detect anomalies (e.g., anomalous nodes
[44,[13L158]] and edges [36,157]) in a single graph [1]].

The anomaly notions of graph-level anomalies are more diversified than those of node-level anomalies.
For example, node-level anomaly detection methods usually regard nodes that betray network
homophilyﬂ as anomalies [44]. However, at the graph level, nodes that can achieve an anomalous
graph go far beyond the nodes that do not meet homophily. Node-level anomaly detection methods
identify anomaly nodes from a micro perspective (e.g., neighborhood structures) while identifying
anomalous graphs needs learning graphs at the macro level. Employing node-level anomaly detection
methods to detect graph-level anomalies could capture some anomalies, but only a small part.
Moreover, graph-level anomaly detection algorithms need to consider anomaly notions related to
graph substructures. Hence, it is necessary to propose anomaly detection methods that are specialized
in detecting graph-level anomalies.

Graph-level Anomaly Detection. To the best of our knowledge, there are only several preliminary
research on graph-level anomaly detection. Zhao et al. [62] investigate a research question of “should
we use the data for the graph classification task to evaluate graph-level anomaly detection models?”,
followed by which two graph-level anomaly detection algorithms [27, 35] combine Graph Neural
Networks (GNNs) with knowledge distillation and one-class classification respectively to detect
anomalous graphs.

Graph-level anomaly detection can be regarded as a special case of graph classification. There is a
huge gap between the number of graphs belonging to the normal class versus the anomalous ones.
But, graph classification algorithms usually assume that the number of graphs in each class is close.
GKs [47,[16] 142,16} 141] used to be the mainstream graph classification methods. Generally, GKs use
the kernel function to calculate kernel values (i.e., similarity) between pair-wised graphs. Afterward,
an off-the-shelf classifier is applied to the graph similarity matrix to perform the classification task.
Graph classification algorithms based on GKs cannot learn graph representations explicitly and be
optimized in an end-to-end fashion. In recent years, graph mining practitioners pay more attention to
GNNGs [8) 111} 4} 38]. GNNs with spatial graph convolution [20} 46, |19] are summarized as message-
passing framework (MPNNG5) [17,,154) 159,156} 152]]. In general, MPNNs update the representation of
each node by iteratively aggregating information coming from their neighbors. To represent a graph,
MPNNSs apply the readout function or pooling operation on node embeddings. The spatial graph
convolution that mix the representation of nodes and their neighborhoods to represent nodes will
smooth node attributes [61} |4]. In addition, [31} 28} 160] proved that spatial graph convolution has
limited power in distinguishing graph structures. Performing message passing between subgraphs can
enable spatial graph convolution to capture more graph structural information. But such a solution
exponentially consumes memory resources and computation complexities [3]].

Graph classification methods mentioned above are likely to underfit anomalous graphs since they
do not have any intrinsic mechanism to target the imbalanced distributions. In iGAD, a novel loss
is presented for the imbalanced distributions by modeling PMI. In addition, different from existing
graph-level anomaly methods [[62| 27} 35] that employ the off-the-shelf MPNNs (e.g., GIN [54]) to
represent graphs, iGAD can embed the information of anomalous attributes and substructures into
graph representations.

Imbalanced Learning. Learning data with imbalanced distribution can be divided into data- and
algorithm-level approaches. The former alleviates the imbalanced distribution of the original data by
either under-sampling the majority [49] or over-sampling the minority [9]. However, modifying the
original distribution of data will bring a lot of drawbacks inevitably, such as over-fitting and discarding
important samples. There are different types of approaches to address the issue at the algorithm level.
The typical approaches include employing post-hoc correction [30], aligning data distribution, [53]],
and modifying the loss function [24, 22]. In the real-world application, considering the different
consequences of false-positive identification (e.g., predicting an inactive chemical compound to be

'In a graph with high homophily, nodes tend to have the same label and similar features as their neighbors.
Node-level anomaly detection methods focus on the neighborhood structure and usually identify the nodes which
do not have the same label or similar features with most of their neighbors as anomalies.



active) and false-negative identification (e.g., predicting a cancer patient as a healthy individual), the
situation will be more complicated [33]. In this paper, iGAD introduces PMI to the cross-entropy
loss function to solve this problem.

3 Preliminaries

Notations. A graph dataset consisting of N graphs can be denoted as G = {G1, ..., Gn}, where
G; = {V;, E;} is an unweighted and undirected graph in G, V; and F; are the node and the edge set,
respectively. The topology of G; can be modeled as an adjacency matrix A; € {0,1}"*", where
A;(u,v) = 1 if there is an edge between nodes u and v, otherwise 0. A; does not consider the
self-loop, A;(u,u) = 0,YVu € V;. We use x,, € R€ to denote the attribute vector of node u € V;.
X; € R™*¢ is the attribute matrix of G;. G; = {V/, E!} can be regarded as a substructure in G;,
iff V/ CV;and E! C E;. Y is the label set of G. G; is labeled by y; € {0, 1}, where 1 represents
anomalous and 0 represents normal.

Problem Definition. This paper concentrates on the supervised graph-level anomaly detection
problem. Given the training set 7 = {(G1, 41), (G2,y2), ...}, we aim to train a model to predict the
normal/anomalous proprieties of unseen graphs. 7 contains N1 anomalous graphs and Ny normal

graphs (N7 < Ng). The imbalanced ratio of 7 is defined as § (§ = m)

Spatial Graph Convolution. A graph convolution layer updates node representations by iteratively
aggregating information coming from its one-hop neighborhood. The formulation is:

B () = o ( feomme(h® (1), faconsos (10 (0), 0 € A ()})) O (1) = x0, (1)

where 0 < k < K — 1, N'(u) denotes the 1-hop neighborhood of node u. faggrecare denotes how to
aggregate neighbors of node u, and fcougne defines how to combine the immediate representations
of node u and its neighbors. o is the activation function. Generally, the final representation of the
node u is h) (u).

Random Walk Kernels (RWK). RWK measures graph similarities by counting common random
walk sequences among graphs. There are two graphs G; = {V1, E1} and Go = {V», Ex}. G« =
{Vx, Ex } denotes the direct product graph about G; and Go, where Vy, = {(u,v')|u € Vi, u' € Va}
and Ex = {((u,u), (v,v"))|(u,v) € Eq,(W,v") € Ey}. Performing random walking on G is
equivalent to doing random walking on G; and G2 simultaneously. The adjacency matrix of direct
product graph A . can be obtained by the Kronecker product operation ® on A; and A, that
is Ax = A; ® A,. The number of [-length common walk sequences between GG; and Gs is
kW(G1,G2) = qf (Ax)'px, where px and qx are the vector about the starting and stopping
probabilities of random walks on G, respectively. The elements in px and g are all ones when
there is no prior knowledge. Overall, the RWK about G; and G5 can be defined as:

K(G1,Gs) : Zn (G1,G2). @)

4 iGAD

In this section, we will describe iGAD in detail (see Figureﬂ]for an illustration). iGAD contains three
key designs: (1) anomalous graph attribute-aware graph convolution; (2) anomalous substructure-
aware deep RWK; and (3) PMI-based loss function. The first two designs encode the anomalous
information on graph attributes and substructures into graph embeddings. The loss function makes
the training on iGAD not completely dominated by normal graphs.

4.1 iGAD: Anomalous Attribute-aware Graph Convolution

As aforementioned in Section[T} the attributes of particular nodes can achieve an anomalous graph.
The graph convolution which iteratively updates node representations by performing feature trans-
formation on the concatenated information about nodes and their neighborhoods will make node
representations over-smoothed [61]. Under such a graph convolution mechanism, only limited anoma-
lous information can be manifest in corresponding node representations. We argue that making each



A Graph Dataset 1. Anomalous Attribute-aware Graph Convolution (K=2)

lll. PMI-based

S Loss Function
; | pCons
PR - R Prediction

G, : Normal Graph

snojeluouy

®
> Gy Sp) —->
Gy, S,)

Figure 1: Taking learning the graph Gy in a graph dataset as an example, we illustrate the framework
of iGAD with three designs. I. Anomalous Attribute-aware Graph Convolution, which concatenates
the independent encoding on nodes and their k-hop neighborhoods to represent nodes in G . To
obtain the graph representation hgjv‘w, a readout function is applied to all node representations. II.
The Anomalous Substructure-aware Deep RWK, which performs random walks on two learnable
anomalous substructures (i.e., S and .S5) and the input graph Gy simultaneously. Deep RWK obtains
h§F® based on kernel values ) (G, Sp), ! = {1,.., L}, m = {1,..., M }. IIL. The PMI-based Loss

Function. iGAD concatenates hg}’\?’v and hgf\‘f to obtain the final graph representation hg . Finally,
a MLP is applied to h¢, to predict Gy. The model training is guided by a PMI-based loss function.

node’s attributes evolve independently over the graph convolution process is critical for capturing
anomalous attributes. To achieve it, anomalous attribute-aware graph convolution concatenates the
independent encoding on the node itself and the independent encoding on its k-hop neighborhood
(1 < k < K) to represent each node in a graph. Formally,

h, = feomsme (h(o) (u), h(l)(u), ~-~7h(K)(U)> ) 3)

where h,, is the final node representation of the node u, h(*) (u) is the representation of node u’s k-
hop neighborhood, and fcomse is the concatenation operation. h(®) (u) and h() (u) are formulated

as:
h© (u) = MLP(x,), “

and
h®) () = o(A;HFDWHE), )

respectively, where HZ(-O) = X;, MLP denotes a multi-layer perceptron, ¢ represents the activation
function, and W (¥ is the trainable weight matrix. To obtain the entire graph representation hg‘f”v,
we apply the permutation invariant Readout function R(-) on all nodes in the graph G,. That is,

he™N = R ({hy|u € Vi}), (6)

where R(+) can be the sum-based or mean-based global pooling operation.

4.2 iGAD: Anomalous Substructure-aware Deep RWK

Generally, the neighborhood aggregation mechanism adopted by existing GNNs only depends on
local neighborhood structures to perform message passing [[60]), which leads to the deficiency of
graph convolution in distinguishing substructures [3,[10]. To make iGAD to be aware of anomalous
substructures, we resort to RWK that can explore diverse substructures through random walking
sequences. There is a pioneering work [32] that represents graphs by calculating RWK values
between input graphs and some substructures. It inspires us to embed information about anomalous
substructures into graph representations by performing random walks in input graphs and learnable
anomalous substructures simultaneously.

We present an anomalous substructure-aware deep RWK, which models elements in the adjacency
matrices of anomalous substructures as learnable parameters. Supposed that {57, ..., Sy} is the set



of M anomalous substructures, and the size of S,,, is n’. P,,, € R" X" is the adjacency matrix of
Sm» where the matric element P,,, (v, v") denotes the possibility that an edge exists between nodes
v’ and v in S,,,. As the adjacency matrix is symmetric, P, contains = (n =1) parameters. Referring
to Eq. [2]and supposing that the starting and the stopping possibilities on each node are all ones, the
number of /-length common random walk sequences between the input graph GG; and the anomalous
substructure S,,, is:

N

.y
2]

KD(Gi, Sm) =1T(A; @ Pp) 1= [(P) E(A)]
i g

where 1 € R™'™ is a column vector full of l,and E € R™ X" is a matrix in which all elements are 1.
The proof of Eq. [/|can be found in Appendix A.1. RWK with infinite random walk lengths will often
meet the halting issue [43]]. Therefore, iGAD only considers the random walk length from 1 to L. As
the size of anomalous substructures (n’) is small, optimizing (P,,)" is not necessary. The adjacency
matrix A is sparse, and we compute (A;)! by the sparse matrix multiplication in PyTorch [34]. That
is (A$)! = A$(A3...(A3(Ay))...), where A? is the sparse version of A;. Afterward, deep RWK

values k) (G}, S,,) about G and S,,, m = {1,.., M}, = {1,.., L} will be assembled into a vector
ag,. That s,

aGi = (H(l)(Gi, Sl), veey Ii(l)(Gi, S]\/[)7 ceey K,(L)(Gi, 51), veey K(L)(Gi, S]V[)) 5 (8)
where ag, € RML. The graph representation h§® based on deep RWK is:

h&™ = MLP(ag, ). )

The final graph representation h¢, for G; € G can be obtained by concatenating h%?NV and hgfk
together. The anomalous attribute-aware graph convolution and anomalous substructure-aware deep
RWK are welded into a graph neural network together through hg;,.

4.3 iGAD: PMI-based Loss Function

The number of normal graphs is much more than that of anomalous graphs. Under the imbalance
nature of the anomaly problem, normal graphs will dominate model training. Targeting this issue, we
propose a new loss function that can model the PMI between input graphs and their anomalous/normal
properties. Specifically, we use f(G; ©) to denote the proposed model iGAD, where O represents
model parameters. Modeling the PMI between the input graph G; and its anomalous/normal properties
can be formulated as:

Po(Gi,yi)

P(Gi)P(yi),

where the right part represents the PMI between G; and y;, P(y;) is the proportion of anomalous
graphs or normal graphs in the training set 7. Compared with most existing loss functions, especially
the loss function that models the conditional distribution about y; given G; (i.e., fy,(Gi;©) ~
Po(yi|G;)), PMI enables iGAD to give priority to learning the information that reveals the essential
correlation between graphs and their labels. Eq. [[0]can be reformatted as:

log Po (yilGi) ~ fy,(Gi, ©) + log P(y:). (11

After softmax normalization, the distribution of y; given G; is formulated as:

fv:(Gi;0) ~ log (10)

eJu; (Gi;0)+log P(y:)

Pol(y:|Gi) = S efui(Gi®)+log P(yi)°
Yi

(12)

Incorporating Pg (y;|G;) in to the framework of the cross-entropy loss function, we can obtain the
PMI-based loss function L:

N
1
L= NZ;flogPe(yilGi)- (13)
Specifically, iGAD predict the graph G;:



Table 1: Statistical information of four real-world datasets. We regard the one-hot encoding of node
labels (e.g., carbon (C), nitrogen (N), oxygen (O)) as node attributes.

DATASET #GRAPHS (N) #ANOMALOUS GRAPHS 0 AVG. #NODES (AVG. n) AVG. #EDGES (AVG. |E|) # NODE LABELS (¢) TUMOR

Sw-620 40,532 2,411 5.95% 26.05 28.08 65 COLON

MoLT-4 39,765 2,904 7.90% 26.07 28.13 64 LEUKEMIA

MCcEF-7 27,770 2,293 8.26% 26.39 28.52 46 BREAST
Pc-3 27,509 1,568 5.70% 26.35 28.49 45 PROSTATE

argmax fy, (Gy; ©) +log P(y;), during training.

* yi 14
Yi argmax f,. (Gi; ©), during testing. (14)
Yi

The reason that we use argmax,, f, (G; ©) to predict a graph in test time can be found in Appendix
A2. o

Many other loss functions target the difficulties brought by imbalanced distributions, such as the
cost-sensitive loss function that assigns or learns different weights to the majority and the minority
samples [29} 150, [12]]. Compared with them, the PMI-based loss function does not introduce any
new parameters that need to be carefully tuned. It comes in the form of the most widely used
cross-entropy loss function and gives prediction results that can achieve maximized PMI between
inputs and predictions.

4.4 Algorithm Description & Computational Complexity

The pseudocode of iGAD is included in Algorithm 1 in Appendix A.1. We divide graphs in G into
different mini-batches to train iGAD [23]. But for illustrating how iGAD predicts a graph more
clearly, the batch size is set as 1 in Algorithm 1. Given the training set, we initialize anomalous
substructures and other parameters (Line 1 in Algorithm 1) and calculate the proportion of normal
and anomalous graphs (Line 2). For each graph, iGAD learns its graph representation (Lines 3 to
15). Based on the graph representation, a MLP equipped with the PMI-based loss function gives
predictions to graphs (Lines 16 and 17). At the back-propagation stage, anomalous substructures and
other parameters will get updated. At each epoch, deep RWK performs random walking on input
graphs and anomalous substructures that get updated during the previous epoch.

Lemma 1 The computational complexity of iGAD is O(n + |E|), where n and |E| are the number
of nodes and edges, respectively. (The detailed analysis can be found in Appendix A.3).

5 Experiments

In this section, we conduct a series of experiments to study the performance of iGAD on the graph-
level anomaly detection task. Specifically, we investigate the following six questions:

Q1. How about the performance of iGAD on the graph-level anomaly detection task?

Q2. Does iGAD benefit from the PMI-based loss function?

Q3. How about the performance of the anomalous graph attribute-aware graph convolution in iGAD?
Q4. How about the performance of iGAD when it utilizes pre-defined anomalous substructures?
Q5. Can the anomalous substructure-aware deep RWK in iGAD learn anomalous substructures?
Q6. How does the maximum length of random walk sequences affect the performance of iGAD?

The questions from Q2 to Q4 can be regarded as the ablation study on our three main design elements,
they are: (a). cross-entropy loss function versus the proposed PMI-based loss function; (b). general
graph convolution versus the proposed graph convolution; (c). RWK versus the proposed deep RWK.



Table 2: Graph-level anomaly detection performance (%) of five graph classification methods, their
GAD variants, iGAD, and iGAD’s two variants on four datasets. The value behind =+ denotes the
standard deviation (mean = std) over different data splits. The best result is highlighted in gray. The
description about evaluation metrics AUC, Recall, Recall(A), and F-score is in Appendix B.1.

DATA  METRICS GCN GCN-GAD  GIN  GIN-GAD DGCNN DGCNN-GAD SOPooL SOPoOL-GAD RWGNN RWGNN-GAD I1GAD-1 1GAD-2 1GAD

Auc 74.90£074 76.48+151 78.61+285 76424280 80.06£042  79.36+128  75.51+506  76.89+207 73371036  74.92+197 85404093 85.77+072 85.82+0.69
RECALL  51.79+047 69.65+139 56.62+397 70.38+218 56.02+1.16  72.65+063 56.01+229  69.97+1690  51.43+087 68.32+1.76  78.60+097 79.08+131 79.64-£083
RECALL(A) 3.784095 67.26+188 14.40+857 64.11+683 12.74+241 67.84+1.78 13.28+5.05 62.32+6.23 3.11+182 63.82+5.40 74.23+3.66 73.24+252 | 74.27+2.99
F-SCORE  52.00+087 52.44+132 58.47+543 55.00+282 58.73:164  56.11+089  58.11+286  55.63+478  S1.31+162 52474317  61.824222 63.36:+1.58 63.68+1.56

Sw-620

Auc 72.55+052 72.88+099 75.86+160 75434282 76.50+060  77.43+073  75.11+097 74504169  71.30+1.23 71.51+0.70 81.59+1.10 82.73+1.12 83.59+1.07
RECALL  51.26:054 66.84+066 56.87+698 69.40+247 55.35+127  70.14:£069 55314374  69.124150  51.39+1.41 65844127 74.97+161 76.33+1.18 76.8240.82
RECALL(A) 2.74+1.12  67.32+304 17.7129.02 64.36+7.14 11.69+2.87 65.76+1.97 12.23+934 63.44+655 3.18+321 61.24+3.89 68.18+2.72 70.54+4.28 | 72.10+2.47
F-SCORE  50.53£1.03 51.25+150 55.43+652 55.86+201 57.33£1.76 56.22+1.32 56.204364  56.02+317  50.67+264  52.69+260 62224048 63.12£131 63.30£1.17

MoLt-4

Auc 75.36+213 75.62+122  78.44+167 76.95+174 79.15+184  78.90+170  69.37+153 78244197 76274086  76.10+1.92 85.44+120 85.83+1.02 86.04+1.14
RECALL  50.72+059 69.46+157 57.43+461 71.49+127 52.88+028  72.53+140  56.78+379  71.44+153  51.02+1.53 69.90:+1.74 78.31+0.76 79.94:0.64 79.59+0.41
RECALL(A) 1.53+126 65.29+569 16.31+1047 68.224676 6.05+0.57 70.06+5.19 15.67+8.98 69.60-+9.54 2.17+3.26 66.62+3.03 70.45+329 75.35+0.74 | 75.69+1.64
F-SCORE  49.99+1.63 52.76+1.11  59.07+415 54.094304 54.01+048 54464170  57.80+374  51.764527 50444276 52724154 61.17+243 62.97+140 63.50+073

Pc-3

Auc 72704105 73.89+099  69.54+1.15 75.90+144 7641081  76.83+048  75.64+217  76.69+133  70.47+126  73.25+156  83.02+046 83.49£1.03 83.22:+0.64
RECALL ~ 50.42+028 67.14x1.13 57.08+382 69.40+232 5511111 70.74+063  56.82+4357  68.88+1.07  52.09+1.06  66.99+191  75.80+081 76.81£0.97 76.77+047
RECALL(A) 0.96+063 61.79+2.14 16.69+9.92 59.48+10.14 11.07+233 69.37+3.05 15.34+8.20 63.92+7.30 4.97+524 57.73+11.16  67.67+254 71.59+2.19 73.38+3.59
F-SCORE  48.76+059 53.37+189 58.27+320 58.71+253 56.99+1.70 55.74+1.54 56.82+3.57 54.824300  51.65+346  56.06+293 61.56+1.89 63.75+1.18 64.704+2.58

McCE-7

5.1 Experimental Setup

Datasets. SW-610, MOLT-4, PC-3, and MCF-7 are four real-world graph datasets. These datasets
are collected from PubChenﬂ which records a tremendous amount of chemical compounds and
their anti-cancer activity testing results (“active” or “inactive”) on different types of cancer cell
lines. We regard the chemical compounds with the outcome “active” as anomalous, and “inactive”
as normal. For example, the graph dataset SW-620 records 40,532 chemical formulas and their
anti-cancer activity testing results on the colon cancer cell line. Chemical compounds that exhibit
antibody activity against colon cancer are labeled as anomalous graphs, otherwise normal graphs.
The statistical information about these four datasets is shown in Table [Tl

Baselines & Experimental Settings. To investigate

Q1, we compare iGAD with the following baseline

models: (1) GCNJ[20] + Readout function (abbreviated Table 3: The performance (%) of t‘_’VO graph-
GCN) and GIN [54]. These two algorithms employ level anomaly detection methods (i.e., GLo-
spatial graph convolution to learn node representation ~¢alKD and OCGTL) and iGAD w.r.t. AUC.
and apply the readout function to node representations DATA  GLOCALKD  OCGTL IGAD

to obtain graph representations and classify graphs; (2)  Sw-620  64.144092  67.69+£002  85.82::0.69
DGCNN [59) and SOPool [52]. In these two models,  Morté S 9132 By
spatial graph convolution and the graph pooling opera- MCE-7 61434126  64.924192  83.22-40.64
tion are employed to downsize graphs and complete the
graph classification task; (3) RWGNN [32]. It employs
random walk sequences to represent graphs and then classify graphs based on graph representations.
All the above baselines are supervised and use the cross-entropy loss function; (4) The graph-level
anomaly detection methods GLocalKD [27]] and OCGTL [33]]. The former adopts random distillation
to detect the locally- and globally-anomalous graphs and the latter combines the one-class classifica-
tion and graph transformation learning to identify anomalous graphs. Both of them only use normal
graphs to train models. They learn anomaly scores for graphs to measure each graph’ anomaly degree
and do not provide any criterion to determine whether a graph is anomalous or not.

For the fairness of experiments and to answer Q2, we also compare iGAD with GCN-GAD, GIN-
GAD, DGCNN-GAD, SOPool-GAD, and RWGNN-GAD. These algorithms are the graph anomaly
detection (GAD) variants of GCN, GIN, DGCNN, SOPool, and RWGNN. We replace the cross-
entropy loss in these algorithms with the proposed PMI-based loss function. To answer Q3, we
consider a variant of iGAD —iGAD-1 that only utilizes the anomalous graph attribute-aware graph
convolution to represent graphs and detect anomalous graphs. To answer Q4, we consider the other
variant named iGAD-2 in which the random walking performs on input graphs and pre-defined
anomalous graph substructures simultaneously. Specifically, we use 3-star, triangle, tailed triangle,

“https://pubchem.ncbi.nlm.nih.gov


https://pubchem.ncbi.nlm.nih.gov

SW-620 (M=5, n'=8) MOLT-4 (M=5, n'=8) PC-3 (M=5, n'=8) MCF-7 (M=5, n'=8)

—— Mean —— Mean Mean —— Mean
0.71 STD 0.71 STD 0.72 STD 0.71 STD
0.69 0.70
© 0.69 o o © 0.69
S S 0.67 8 o0.68 S
¢ P ¢ ¢
i 0.67 pa ra Lo ol —
0.65 0.66
0.65 0.63 0.64 0.65
0.63 0.61 0.62 0.63
2 3 4 5 6 7 8 2 3 4 5 6 7 8 2 3 4 5 6 7 8 2 3 4 5 6 7 8
maximum random walk length L maximum random walk length L maximum random walk length L maximum random walk length L
SW-620 (M=5, n'=10) MOLT-4 (M=5, n'=10) PC-3 (M=5, n'=10) MCF-7 (M=5, n'=10)
0.72 Mean 0.72 Mean Mean Mean
sTD STD 0.72 STD 0.71 STD
0.70 0.70
0.70
19 o @ @ 0.69
S 0.68 S 0.68 S S
2 % 2 0.68 %
“ 0.66 * 0.66 “ 066 v 0.67
0.64 0.64 0.64 0.65
0.62 0.62 0.62 0.63
2 3456 7 8 910 2 34586 7 8 910 2 3456 7 8 910 2 3456 7 8 910

maximum random walk length L maximum random walk length L maximum random walk length L maximum random walk length L

Figure 3: The impact of different maximum random walk length L on the performance of iGAD. The
first row reports the performance of iGAD under the setting M=5 and n'=8. The second row reports
the performance of iGAD under the setting M=5 and n'=10.

and 4-cycle graphlets as pre-defined graph anomalous substructures (see Figure 4 in Appendix B
for these substructures). Information about parameter setting and algorithm implementation can be
found in Appendix B.1. We report experimental results under 5-fold cross-validation.

5.2 Experimental Results

This section answers Q1 - Q6 by Al - A6, respectively. We
put extra experiments in Appendix B.2.

MCF-7 | PC-3
Al. iGAD demonstrates superior performance in identify- _
ing graph-level anomalies. Observed from Table[2} 1) Com- ”
pared with the graph classification baselines GCN, GIN, =
DGCNN, SOPool, and RWGNN, iGAD demonstrates sig- f Py

nificant advantages on four real world datasets in terms of
all evaluation metrics; 2) iGAD also beats the above base-
lines’ GAD variants, GCN-GAD, GIN-GAD, DGCNN-
GAD, SOPool-GAD, and RWGNN-GAD in terms of all
evaluation metrics. In addition, as shown in Table[3] iGAD
outperforms two graph-level anomaly detection methods
GLocalKD and OCGTL concerning AUC.

A2. PMlI-based loss function can capture essential corre- Figure 2: The anomalous substructures
lations between graphs and their anomalous/normal pro- learned by iGAD under the experimental
prieties even if the data distribution is imbalanced. As setting M=1, n’=10, L=5. We only draw
shown in Table P} compared with GNNs with the cross- the edge (u’,v") with the learned weight
entropy loss function (GCN, GIN, DGCNN, SOPOOL, and Pm (u’,v") over 0.5.

RWGNN), their GAD variants equipped with the newly

proposed PMI-based loss function (GCN-GAD, GIN-GAD, DGCNN-GAD, SOPOOL-GAD, and
RWGNN-GAD) witness a significant performance improvement regarding Recall and Recall(A) over
all datasets. For example, the value of Recall and Recall(A) achieved by DGCNN over the dataset
SW-620 are 56.02+1.16 and 12.74+2.41 respectively. In contrast, 72.65+0.63 and 67.84+1.78 are reported
by DGCNN-GAD. PMI-based loss function can greatly improve GNN-based graph classification
model in datasets with highly imbalanced class distributions.

MOLT-4 | SW-620

@
o

@

A3. The anomalous attribute-aware graph convolution can embed anomalous attributes into graph rep-
resentations and improve graph-level anomaly detection. As shown in Table 2] iGAD-1 significantly
outperforms all baseline algorithms on four graph datasets in terms of AUC, Recall, and F-score.



Concerning Recall(A), on the dataset MCF-7, iGAD-1 has a little performance degradation compared
with DGCNN-GAD. Specifically, DGCNN-GAD achieves 69.37+3.0s on MCF-7, while iGAD-1 gets
67.67+254. But iGAD-1 beats DGCNN-GAD on other datasets in terms of Recall(A).

A4. iGAD is also effective when it is equipped with pre-defined anomalous substructures. As shown
in Table[2] iGAD-2 demonstrates significant advantages against all baseline models. Moreover, iGAD-
2 also beats iGAD-1 concerning all metrics over datasets MOLT-4, PC-3, and MCF-7. iGAD-2 does
not outperform than iGAD on all datasets concerning AUC, Recall(A), and F-score. But, on PC-3 and
MCF-7, iGAD-2 has a slight lead over iGAD regarding Recall. The experiment results demonstrate
that, in most cases, the performance of iGAD equipped with a deep RWK is better than iGAD-2 using
pre-defined anomalous substructures and algorithms that do not consider anomalous substructures.
Based on the above analysis, we can conclude that comparing the random walk sequences between
the input graph and pre-defined substructure can improve graph-level anomaly detection to a certain
extent, but the algorithm that can automatically learn the anomalous substructures is better.

AS5. The anomalous substructures learned by iGAD are demonstrated in Figure[2] We can observe that
anomalous graph substructures on four datasets are composed of the triangle, the tailed triangle, and
the 4-cycle graphlets. It explains why iGAD-2 can achieve competitive results compared with iGAD
(as shown in Table 2] and A4). We can draw a preliminary conclusion that the graph substructures
having the triangle, the tailed triangle, and the 4-cycle graphlets are important for distinguishing
anomalous graphs from normal graphs on these four graph datasets.

A6. The performance of iGAD under different maximum random walk lengths L is shown in Figure
Under the setting that iGAD with 5 anomalous substructures and each of substructures has 8 nodes,
on these four graph datasets SW-620, MOLT-4, PC-3, and MCF-7, iGAD can achieve the highest
F-score value when the maximum random walk length ranges from 4 to 8. In addition, when each
anomalous substructure contains 10 nodes, iGAD can reach the best F-score score at the maximum
random walk length from 5 to 9. The results verify that appropriately increasing the maximum length
of random walking can improve the performance of iGAD since more much longer random walk
sequences can capture more graph structure information.

Finally, we discuss the limitations of the proposed graph-level anomaly detection model iGAD. In
practice, the nodes and/or substructures at a particular position in a graph can also be the reason for
the graph’s anomalous properties. For example, an Alcohol compound can be obtained by replacing
the hydrogen atom at the end of the Alkane compound with a hydroxy group (i.e., -OH). But, iGAD
cannot capture the position information of nodes and substructures in graphs. In addition, iGAD
is a supervised algorithm. It may not be able to achieve superior performance in identifying the
graph-level anomalies that follow the anomaly distributions that have never been exposed in the
training graph anomalies. In the future, we will propose specific solutions to this problem.

6 Conclusion

This paper proposes a method named iGAD for graph-level anomaly detection. We highlight the
challenges brought by imbalanced distributions and various anomaly notions in graph attributes and
substructures. In addition, the significant differences between detecting anomalous graphs in a graph
dataset and identifying anomalous nodes in a single graph are also introduced in detail. iGAD treats
graph-level anomaly detection as a special case of graph classification and learns binary labels for
graphs. In iGAD, the anomalous attribute-aware graph convolution and anomalous substructure-aware
deep RWK embed graph-level anomaly information into graph representations. A PMI-based loss
function guides iGAD to identify anomalous samples from a large number of normal samples. We do
extensive experiments on four real-world graph datasets, and iGAD achieves superior performance
on the graph-level anomaly detection task.

Acknowledge

We greatly appreciate the constructive and insightful comments from reviewers. This work is funded
by the Australian Research Council Discovery Early Career Researcher Award (ARC DECRA)
Project (No. DE200100964) and the NSFC (No. 61872360).

10



References

[1] Leman Akoglu, Hanghang Tong, and Danai Koutra. Graph based anomaly detection and description: a
survey. Data Min Knowl Discov, 29(3):626—688, 2015.

[2] Jinwon An and Sungzoon Cho. Variational autoencoder based anomaly detection using reconstruction
probability. Special Lecture on IE, 2(1):1-18, 2015.

[3] Muhammet Balcilar, Pierre Héroux, Benoit Gauzere, Pascal Vasseur, Sébastien Adam, and Paul Honeine.
Breaking the limits of message passing graph neural networks. In ICML, pages 599-608, 2021.

[4] Muhammet Balcilar, Guillaume Renton, Pierre Héroux, Benoit Gaiizere, Sébastien Adam, and Paul Honeine.
Analyzing the expressive power of graph neural networks in a spectral perspective. In ICLR, 2021.

[5] John Adrian Bondy, Uppaluri Siva Ramachandra Murty, et al. J. Graph Theory Appl., volume 290.
Macmillan London, 1976.

[6] Karsten M Borgwardt and Hans-Peter Kriegel. Shortest-path kernels on graphs. In /CDM, pages 74-81.
IEEE, 2005.

[7] Markus M Breunig, Hans-Peter Kriegel, Raymond T Ng, and Jorg Sander. Lof: identifying density-based
local outliers. In SIGMOD, pages 93—104, 2000.

[8] Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann LeCun. Spectral networks and locally connected
networks on graphs. arXiv preprint arXiv:1312.6203, 2013.

[9] Jonathon Byrd and Zachary Lipton. What is the effect of importance weighting in deep learning? In ICML,
pages 872-881, 2019.

[10] Pim de Haan, Taco S Cohen, and Max Welling. Natural graph networks. In NeurIPS, pages 3636-3646,
2020.

[11] Michaél Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional neural networks on graphs
with fast localized spectral filtering. In NeurIPS, pages 3837-3845, 2016.

[12] Jacek P Dmochowski, Paul Sajda, and Lucas C Parra. Maximum likelihood in cost-sensitive learning:
Model specification, approximations, and upper bounds. J. Mach. Learn. Res., 11(12), 2010.

[13] Yingtong Dou, Zhiwei Liu, Li Sun, Yutong Deng, Hao Peng, and Philip S Yu. Enhancing graph neural
network-based fraud detectors against camouflaged fraudsters. In CIKM, pages 315-324, 2020.

[14] David Duvenaud, Dougal Maclaurin, Jorge Aguilera-Iparraguirre, et al. Convolutional networks on graphs
for learning molecular fingerprints. In NeurlIPS, pages 2224-2232, 2015.

[15] Alex Fout, Jonathon Byrd, Basir Shariat, et al. Protein interface prediction using graph convolutional
networks. In NeurlPS, pages 6530-6539, 2017.

[16] Thomas Gértner, Peter Flach, and Stefan Wrobel. On graph kernels: Hardness results and efficient
alternatives. In Learning theory and kernel machines, pages 129—143. Springer, 2003.

[17] Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural message
passing for quantum chemistry. In /ICML, pages 1263-1272, 2017.

[18] Markus Goldstein and Seiichi Uchida. A comparative evaluation of unsupervised anomaly detection
algorithms for multivariate data. PloS one, 11(4):e0152173, 2016.

[19] Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs. In
NeurlPS, pages 1024-1034, 2017.

[20] Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional networks. In
ICLR, 2017.

[21] Tommaso Lanciano, Francesco Bonchi, and Aristides Gionis. Explainable classification of brain networks
via contrast subgraphs. In KDD, pages 3308-3318, 2020.

[22] Buyu Li, Yu Liu, and Xiaogang Wang. Gradient harmonized single-stage detector. In AAAI, pages
8577-8584, 2019.

[23] Mu Li, Tong Zhang, Yuqiang Chen, and Alexander J Smola. Efficient mini-batch training for stochastic
optimization. In KDD, pages 661-670, 2014.

11



[24] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollar. Focal loss for dense object
detection. In CVPR, pages 2980-2988, 2017.

[25] Fei Tony Liu, Kai Ming Ting, and Zhi-Hua Zhou. Isolation forest. In ICDM, pages 413-422. IEEE, 2008.

[26] Fei Tony Liu, Kai Ming Ting, and Zhi-Hua Zhou. Isolation-based anomaly detection. ACM Trans. Knowl.
Discov. Data, 6(1):1-39, 2012.

[27] Rongrong Ma, Guansong Pang, Ling Chen, and Anton van den Hengel. Deep graph-level anomaly
detection by glocal knowledge distillation. In WSDM, pages 704—714, 2022.

[28] Haggai Maron, Heli Ben-Hamu, Hadar Serviansky, and Yaron Lipman. Provably powerful graph networks.
In NeurIPS, pages 2153-2164, 2019.

[29] Hamed Masnadi-Shirazi and Nuno Vasconcelos. Risk minimization, probability elicitation, and cost-
sensitive svms. In ICML, pages 759-766, 2010.

[30] Aditya Krishna Menon, Sadeep Jayasumana, Ankit Singh Rawat, Himanshu Jain, Andreas Veit, and Sanjiv
Kumar. Long-tail learning via logit adjustment. In /CLR, 2020.

[31] Christopher Morris, Martin Ritzert, Matthias Fey, William L Hamilton, Jan Eric Lenssen, Gaurav Rattan,
and Martin Grohe. Weisfeiler and leman go neural: Higher-order graph neural networks. In AAAI, pages
4602-4609, 2019.

[32] Giannis Nikolentzos and Michalis Vazirgiannis. Random walk graph neural networks. In NeurIPS, pages
16211-16222, 2020.

[33] Shirui Pan, Jia Wu, and Xingquan Zhu. Cogboost: Boosting for fast cost-sensitive graph classification.
IEEE Trans. Knowl. Data Eng., 27(11):2933-2946, 2015.

[34] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen,
Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style, high-performance deep
learning library. NeurIPS, 32, 2019.

[35] Chen Qiu, Marius Kloft, Stephan Mandt, and Maja Rudolph. Raising the bar in graph-level anomaly
detection. In IJCAI, pages 2196-2203, 2022.

[36] Stephen Ranshous, Steve Harenberg, Kshitij Sharma, and Nagiza F Samatova. A scalable approach for
outlier detection in edge streams using sketch-based approximations. In SDM, pages 189-197, 2016.

[37] Lukas Ruff, Robert Vandermeulen, Nico Goernitz, Lucas Deecke, Shoaib Ahmed Siddiqui, Alexander
Binder, Emmanuel Miiller, and Marius Kloft. Deep one-class classification. In ICML, pages 4393—4402,
2018.

[38] Saurabh Sawlani, Lingxiao Zhao, and Leman Akoglu. Fast attributed graph embedding via density of
states. In ICDM, pages 559-568. IEEE, 2021.

[39] Bernhard Scholkopf, John C Platt, John Shawe-Taylor, Alex J Smola, and Robert C Williamson. Estimating
the support of a high-dimensional distribution. Neural Comput., 13(7):1443-1471, 2001.

[40] Bernhard Scholkopf, Robert C Williamson, Alex Smola, John Shawe-Taylor, and John Platt. Support
vector method for novelty detection. In NeurIPS, pages 582-588, 1999.

[41] Nino Shervashidze and Karsten Borgwardt. Fast subtree kernels on graphs. In NeurIPS, pages 1660-1668,
2009.

[42] Nino Shervashidze, SVN Vishwanathan, Tobias Petri, Kurt Mehlhorn, and Karsten Borgwardt. Efficient
graphlet kernels for large graph comparison. In AISTATS, pages 488—495, 2009.

[43] Mabhito Sugiyama and Karsten Borgwardt. Halting in random walk kernels. In NeurIPS, pages 1639-1647,
2015.

[44] Jianheng Tang, Jiajin Li, Ziqi Gao, and Jia Li. Rethinking graph neural networks for anomaly detection. In
ICML, pages 21076-21089, 2022.

[45] Ruo-Chun Tzeng and Shan-Hung Wu. Distributed, egocentric representations of graphs for detecting
critical structures. In ICML, pages 6354-6362, 2019.

[46] Petar Velickovié, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua Bengio.
Graph attention networks. In /CLR, 2017.

12



[47] S Vichy N Vishwanathan, Nicol N Schraudolph, Risi Kondor, and Karsten M Borgwardt. Graph kernels. J.
Mach. Learn. Res., 11:1201-1242, 2010.

[48] H Gerhard Vogel, Wolfgang H Vogel, H Gerhard Vogel, Giinter Miiller, Jiirgen Sandow, and Bernward A
Scholkens. Drug discovery and evaluation: pharmacological assays, volume 2. Springer, 1997.

[49] Byron C Wallace, Kevin Small, Carla E Brodley, and Thomas A Trikalinos. Class imbalance, redux. In
ICDM, pages 754-763, 2011.

[50] Jiagi Wang, Wenwei Zhang, Yuhang Zang, Yuhang Cao, Jiangmiao Pang, Tao Gong, Kai Chen, Ziwei Liu,
Chen Change Loy, and Dahua Lin. Seesaw loss for long-tailed instance segmentation. In CVPR, pages
9695-9704, 2021.

[51] Shen Wang, Lifang He, Bokai Cao, Chun-Ta Lu, Philip S Yu, and Ann B Ragin. Structural deep brain
network mining. In KDD, pages 475-484, 2017.

[52] Zhengyang Wang and Shuiwang Ji. Second-order pooling for graph neural networks. IEEE Trans. Pattern
Anal. Mach. Intell., 2020.

[53] Gang Wu and Edward Y Chang. Kba: Kernel boundary alignment considering imbalanced data distribution.
IEEE Trans. Knowl. Data Eng., 17(6):786-795, 2005.

[54] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural networks?
In ICLR, 2019.

[55] Xifeng Yan, Hong Cheng, Jiawei Han, and Philip S Yu. Mining significant graph patterns by leap search.
In SIGMOD, pages 433444, 2008.

[56] Zhitao Ying, Jiaxuan You, Christopher Morris, Xiang Ren, Will Hamilton, and Jure Leskovec. Hierarchical
graph representation learning with differentiable pooling. NeurlPS, pages 4805—4815, 2018.

[57] Ge Zhang, Zhao Li, Jiaming Huang, Jia Wu, Chuan Zhou, Jian Yang, and Jianliang Gao. efraudcom: An
e-commerce fraud detection system via competitive graph neural networks. ACM Trans Inf Syst, 40(3):1-29,
2022.

[58] Ge Zhang, Jia Wu, Jian Yang, Amin Beheshti, Shan Xue, Chuan Zhou, and Quan Z Sheng. Fraudre: Fraud
detection dual-resistant to graph inconsistency and imbalance. In ICDM, pages 867-876. IEEE, 2021.

[59] Muhan Zhang, Zhicheng Cui, Marion Neumann, et al. An end-to-end deep learning architecture for graph
classification. In AAAI, pages 4438—4445, 2018.

[60] Muhan Zhang and Pan Li. Nested graph neural networks. In NeurIPS, pages 15734-15747, 2021.
[61] Lingxiao Zhao and Leman Akoglu. Pairnorm: Tackling oversmoothing in gnns. In /CLR, 2020.

[62] Lingxiao Zhao and Leman Akoglu. On using classification datasets to evaluate graph outlier detection:
Peculiar observations and new insights. Big Data, 2021.

[63] Panpan Zheng, Shuhan Yuan, Xintao Wu, Jun Li, and Aidong Lu. One-class adversarial nets for fraud
detection. In AAAI, pages 1286-1293, 2019.

[64] Bo Zong, Qi Song, Martin Rengiang Min, Wei Cheng, Cristian Lumezanu, Daeki Cho, and Haifeng Chen.
Deep autoencoding gaussian mixture model for unsupervised anomaly detection. In /CLR, 2018.

13



Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s contribu-
tions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes]
(c) Did you discuss any potential negative societal impacts of your work? [N/A]
(d) Have you read the ethics review guidelines and ensured that your paper conforms to them? [Yes]

2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes]
(b) Did you include complete proofs of all theoretical results? [Yes]
3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experimental
results (either in the supplemental material or as a URL)? [ Yes]
(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they were chosen)?
[Yes]
(c) Did you report error bars (e.g., with respect to the random seed after running experiments
multiple times)? [Yes]
(d) Did you include the total amount of compute and the type of resources used (e.g., type of GPUs,
internal cluster, or cloud provider)? [Yes]
4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [N/A |

(b) Did you mention the license of the assets? [IN/A]

(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]

(d) Did you discuss whether and how consent was obtained from people whose data you’re us-
ing/curating? [N/A]

(e) Did you discuss whether the data you are using/curating contains personally identifiable informa-
tion or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if applicable?
[N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review Board (IRB)
approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount spent on
participant compensation? [N/A]

14



