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Abstract
Gaussian Processes (GPs) offer an attractive
method for regression over small, structured and
correlated datasets. However, their deployment
is hindered by computational costs and limited
guidelines on how to apply GPs beyond simple
low-dimensional datasets. We propose a frame-
work to identify the suitability of GPs to a given
problem and how to set up a robust and well-
specified GP model. The guidelines formalise the
decisions of experienced GP practitioners, with an
emphasis on kernel design and options for compu-
tational scalability. The framework is then applied
to a case study of glacier elevation change yield-
ing more accurate results at test time.

1. Introduction
A Gaussian Process (GP) is a probabilistic machine learn-
ing model usually used for supervised regression or clas-
sification tasks. GPs offer many advantages to modellers.
First, they are suitable for small, correlated, and non-gridded
datasets with missing values. Second, GPs provide a way to
encode domain knowledge through prior specification and
kernel design. Third and most importantly, they give princi-
pled uncertainty quantification which is critical to decision
making. GPs are also more interpretable than deep learning
methods. They typically have a small number of parameters
that directly capture information about the data, such as
the lengthscales of variation or timescales of periodicity,
unlike the weights of a neural network which have no direct
physical correspondence.

However, the application of GPs remains far from straight-
forward. In its simplest form, an exact GP is computation-
ally expensive for large datasets, scaling cubically with the
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number of datapoints. Furthermore, there are comparatively
few examples of GP applications suitable for non-experts.
Of these examples, most are GP applications to toy datasets
rather than complex real-world problems. In reality, many
decisions relating to model design and implementation are
developed through years of practice, reading academic lit-
erature, re-implementing experiments in code repositories,
and detailed knowledge of software packages supported by
small communities.

This paper aims to formalise the intuition of GP practition-
ers. We present guidelines to address two questions: (i) Is
GP regression both computationally and methodologically
applicable to a given problem? (ii) If so, how should the GP
model be designed? This review is not an exhaustive list of
possible GP applications but offers a starting point for using
‘application grade’ methods straightforwardly with current
open-source software. For this reason, many recommen-
dations follow a simple but principled approach to dealing
with the challenges of applying GPs to real-world data. This
framework can also be used as a guide when applying GP
as a baseline to more complex models where simply choos-
ing a squared exponential kernel does not showcase the
performance achievable with a GP. We first define exact
GP regression (Section 2) and relate this work to previous
research (Section 3). We then present the framework (Sec-
tion 4) and apply it to a case study of glacier height change
using highly-structured satellite data (Section 5).

2. Gaussian Processes
2.1. Definition

Consider the set of observations comprising of input-output
pairs {xi, yi} with i = {1, ..., N}, xi ∈ RD and yi ∈ R.
These observations are generated by a function f , describing
the relationship between inputs and outputs, and modulated
by a noise term that accounts for the uncertainty in the
observed data:

yi = f(xi) + ϵi, (1)

where ϵi is assumed to be distributed normally as N (0;σ2
n)

with standard deviation σn. The latent function f can be
modelled with a Gaussian Process (GP) (Rasmussen et al.,
2006). A GP is a stochastic process where any finite col-
lection of its random variables is distributed according to a



Beyond Intuition, a Framework for Applying GPs to Real-World Data

multivariate normal distribution. Generalising to infinity, a
GP can be viewed as a distribution over functions. A GP is
defined by a mean function µ(x) and covariance or kernel
function k(x,x′):

f(·) ∼ GP(µ(x;θµ), k(x,x
′;θk)), (2)

where both mean and kernel function typically depend on
hyperparameters θµ and θk.

A standard method for learning of the kernel hyperparame-
ters is to maximise the marginal likelihood, the probability
density of the observations given the hyperparameters. The
marginal likelihood is computed by integrating over the val-
ues of f . Collecting inputs and outputs into X = (xi)

N
i=1

and Y = (yi)
N
i=1, the logarithm of the marginal likelihood

is given by

log(p(Y |X,θ)) = −1

2
(Y −µ)⊤(K+σ2

nI)
−1(Y −µ)

− 1

2
log(|K + σ2

nI|)−
n

2
log(2π), (3)

where the mean vector µ collects (µ(xi))
N
i=1 and the kernel

matrix K is constructed from k(xi,xj) evaluated on all
pairs i, j = 1, . . . , N . The hyperparameters of mean and
kernel function and of the likelihood (σ2

n) are collected in
the hyperparameter vector θ. Maximising Equation (3) w.r.t
θ then gives the Maximum Likelihood Estimate for the
hyperparameter values.

Assuming a Gaussian likelihood for ϵ (see Equation (1)),
the posterior predictive distribution is tractable and can be
used to calculate predictions for a new output f∗, given a
new input x∗, as

p(f∗|Y ,X,x∗) = N (f∗|µ∗(x∗), σ
2
∗(x∗)). (4)

Predictions are computed using the predictive mean µ∗,
while the uncertainty associated with these predictions is
quantified through the predictive variance σ2

∗:

µ∗(x∗) = k⊤
∗n(K + σ2

nI)
−1(y − µ) + µ(x∗),

σ2
∗(x∗) = k∗∗ − k⊤

∗n(K + σ2
nI)

−1kn∗,
(5)

where k∗n = [k(x∗,x1), . . . , k(x∗,xn)]
⊤ and k∗∗ =

k(x∗,x∗).

2.2. Strengths

GPs have a number of advantages that can make them a
judicious choice over other supervised machine learning
algorithms. A GP provides:

• Well-calibrated uncertainty estimates. Assuming the
specified model is appropriate, a GP ‘knows when it
does not know’, increasing the uncertainty away from

the training distribution. This is useful for determin-
ing the likelihood of extreme events and improving
decision making.

• Machine learning for correlated datasets. In many
cases such as geospatial problems, neighbouring ob-
servations are usually not independent and identically
distributed (i.i.d.) but closely correlated to one another
(Lalchand et al., 2022; Bhatt et al., 2017).

• More interpretable machine learning. Although not as
interpretable as simpler methods such as conventional
linear regression or random forests, GP covariance
functions specify high-level properties of the generated
functions which can be conveyed in natural language
(Lloyd et al., 2014). Compared to deep learning meth-
ods, with thousands to trillions of learnable parameters
which cannot obviously be linked with given physical
features of the model predictions, GPs can be a more
trustworthy alternative to the model end users.

• Data-efficient machine learning. A GP is a non-
parametric Bayesian method which provides both
model expressivity while avoiding overfitting. GPs
adapt to different datasets and handle data efficiently
without requiring a predefined model structure. Fur-
thermore, once a GP model is trained, new data points
can be incorporated efficiently without retraining (Bui
et al., 2017).

• Machine learning systems. GP regression is unlikely
to fail and can be used reliably as a subpart of a bigger
machine learning system, for example in probabilistic
numerics (Hennig et al., 2022), reinforcement learning
(Engel et al., 2005) and automated statisticians (see
Section 3).

2.3. Limitations

It is also important to acknowledge the limitations of GPs.
They struggle with:

• Large numbers of datapoints. Training on datasets
with N ≳ 104 becomes prohibitive (Deisenroth & Ng,
2015; Wang et al., 2019). The computational complex-
ity of covariance matrix inversion in Equation (3) and
Equation (5) scales as O(N3). The memory for storing
the matrices scales as O(N2).

• High-dimensional input spaces. raining on datasets
with D ≳ 100 becomes difficult due to the need to
compute pair-wise elements of covariance function
which scales as O(DN2), e.g. they are not best-suited
to images (Van der Wilk et al., 2017).

• Complex covariance functions. In situations which
require covariance functions with many parameters that
must be learned from the data, the covariance function
will be hard to design and the model may overfit (Ober
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et al., 2021).

• Non-Gaussian distributions. While Gaussian prior and
likelihood function assumptions are quite common in
classical scientific computing techniques, modern mod-
els, such as deep generative models, are increasingly
moving towards modelling the target prior/posterior
distributions using more flexible distributions parame-
terised by deep neural networks, like normalising flows
(Korshunova et al., 2018; Casale et al., 2018). These
models avoid explicit handcrafted assumptions about
the data or model and enable less biased Bayesian in-
ference.

• Misspecified model. Here, misspecification refers to
our belief, or lack thereof, in the proposed model to
accurately represent the underlying patterns present in
the data. In this case it’s hard for the model to gen-
erate accurate results. For example, an inappropriate
kernel function could be chosen for the covariance ma-
trix. Poorly specified models will not only produce a
more inaccurate mean posterior distribution but also
inaccurate confidence intervals and inappropriate sam-
ples (Sollich, 2001; 2004; Brynjarsdóttir & O’Hagan,
2014).

3. Related work
Research focused on overcoming the limitations of GPs
is vast, from improving scalability (Liu et al., 2020a), to
overcoming the model selection problem (Liu et al., 2020b;
Simpson et al., 2021). However, these methods are usually
not beginner-friendly and in most cases applied to clean
and well-studied benchmark datasets. Previous work on
the democratisation of GPs is centred around creating an
Automatic Statistician (Steinruecken et al., 2019) which
takes in data and outputs results and a model fit in natural
language. This framework builds on Automated Bayesian
Covariance Discovery (Lloyd et al., 2014) which uses the
Bayesian Information Criterion to brute force the design of
sensible kernel function. However, this endeavour sets aside
one of the main advantages of GPs: incorporating prior
knowledge. It also does not educate modellers about how to
use GPs and therefore properly interpret their results.

Instead, our work follows a similar structure to other data
science and machine learning guidelines with supporting
code and examples to empower the deployment of GPs in
the real world (Yu, 2020; Bell et al., 2022).

4. Framework
The following section gives an overview of the framework,
illustrated in Figure 1, with the complete framework detailed
in Appendix A.

As with any data science problem, the first course of action
is to define the task at hand (Step 1). What kind of predic-
tions would we like to make? Will the model interpolate or
extrapolate the training data? What should the model output
be? Are uncertainties needed? Is the output conditional on
other variables? An initial exploration of the data can then
be performed (Step 2). The structure, size and dimensions
of the dataset should be identified. These first two steps
should help the modeller identify the suitability of applying
GPs to the task at hand and the best way to set up the model
evaluation.

Step 1: Problem definit ion

Step 2: Init ial data explorat ion

Step 3: Domain expert ise

Step 4: Training, validat ion and test  sets

Step 6: Data t ransformat ions

Step 7: Kernel design

Step 8: Model iterat ion

Step 9: Scaling

Step 10: Test ing

Match?

N o

Yes

Yes

Step 5: Scaling st ructures

Figure 1. Flowchart of the GP framework. Steps 5 and 9 can be
skipped if scaling is not required.

Step 3 formalises the domain and prior knowledge of the
modeller in a systematic way. This can help identify early on
inputs with strong predictive power, kernel structure such as
periodicity, and initialisations or priors for hyperparameters.

In Step 4, from the information collected thus far, the train-
ing , validation and test sets can be selected as independently
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as possible with respect to the problem that is trying to be
addressed. More in-depth analyses can now be performed
on the data.

First, if the dataset is large, we can identify scaling struc-
tures in the data in Step 5. We suggest three straightforward
scaling cases that have robust approximation schemes and
existing open source code: over-sampled functions, time-
series data, and Kronecker covariance structure. If no scal-
ing structure is obvious, dividing the data into manageable
chunks using an unsupervised clustering method is a base-
line alternative.

Second, data transformations can be ascertained and applied
(Step 6). To improve inference, input features should be
z-scored. Exact GPs also expect the posterior distribution
to be Gaussian. Applying a transformation to the target
data, i.e. the marginal likelihood, can help achieve this.
Transforms also can help avoid unphysical predictions such
as negative values and highlight the areas of the distribution
we would like predict with more accurately.

Third, we can analyse the properties of that data that will
inform kernel design (Step 7). The smoothness, covariance
lengthscales, periodicity, outliers and tails, asymmetry, and
stationarity should be assessed for the target variable. Once
these features have been identified, the kernel can be built
through composition, i.e. adding and multiplying standard
base kernels. The most important dimensions and most
simple kernel structures should be tried first. Information
from previous steps should also be used to apply constraints
and priors which in many cases are the determining factor
in the convergence of the model to the desired results.

To validate the kernel design (Step 8), the kernel should also
be assembled iteratively, checking the performance of the
model with each new dimension or kernel parameter. For
each iteration, the physical consistency of the samples, the
structure of residuals,posterior predictive likelihood scores
and the Root Mean Square Error (RMSE) should be checked
on both the training and validation sets. The modeller should
also make use of simple non-GP baselines. The iteration
process should continue until the scores start to stagnate or
signs of overfitting are observed. If the results of these tests
are unsatisfactory, the modeller should return to Step 6 and
try a new transformation, design or set of constraints.

Once the kernel design is determined as appropriate, the
model can now be scaled using the special structure found
in Step 5 or by combining independent GP models using a
Bayesian Committee Machine (Tresp, 2000; Deisenroth &
Ng, 2015) (Step 9). Finally, the metrics used for validation
can be reapplied to determine performance on the test set
(Step 10).

5. Case study
The framework is now applied to the case study glacier
elevation over Greenland using data derived from ICESat
and ICESat-2 satellites. The implementation details are
provided in Appendix B.

In this regression problem, we would like to estimate glacier
elevation change at unsampled locations (Step 1). Ocean dis-
tance, topographic elevation, slope, aspect, surface glacier
velocity, and x-y coordinates are used as inputs, D = 7
(Step 2). The dataset is also large with N = 5× 105. We
compare the framework with a pre-existing application of
GPs to this problem (Gardner et al., 2019).

In the original setup, the study area is split into a 30 km
by 30 km grid. The x-y coordinates, elevation and the log-
arithm of the velocity are used as predictors, with kernel
lengthscales initialised at 30 km, 200m, and 0.3m/year,
respectively. A zero mean function and squared exponen-
tial (SE) kernel with Automatic Relevance Determination
(ARD) are used, except along the x-y coordinates which
are constrained to have the same lengthscale and variance.
Observational noise is set at 0.1m/year.

The main application of these results is sea level change pre-
diction, therefore the extreme values are the most important
to predict accurately. The data is collected along satellite
‘tracks’ where neighbouring points will be highly correlated.
Furthermore, observations are more dense at higher latitudes
(Step 3). We therefore allocate randomly 70% of tracks to
the training set, 10% to the validation set, and 20% to the
test set (Step 4). The data exhibits oversampling which
makes this case amenable to sparse variational GPs (Step
5). The distribution of the variables are then examined. The
glacier velocity, slope, aspect and elevation change exhibit a
high degree of skewness and are transformed to more Gaus-
sian distributions where helpful. The predictive power of
the transformations is assessed using a k-nearest neighbour
(k-NN) baseline. All the inputs are z-scored (Step 6).

The properties of the transformed data are then further
investigated for the kernel design. Glacier elevation change
is minimal at the centre of Greenland but the rate rapidly
changes towards the coastline. Elevation and ocean distance
show the strongest linear correlation with elevation change.
Lengthscales are visually identified for each dimension.
From this analysis, a kernel with additive structure that
increases function variance near the coastline would work
well (Step 7). We then set up a simple kernel, starting with
a simple squared exponential kernel for x and y, moving
towards the final design with each new kernel iteration
using more variables and more complex kernel structures.
As the dataset is large, we also try different chunking
schemes as a function of the dataset’s properties. In this
case, k-means clustering results in a similar performance
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k-NN SE-ARD Original Framework

RMSE 0.07 0.12 0.06 0.19 0.06
RMSE 5 0.26 0.17 0.09 0.75 0.08
RMSE 95 0.08 0.22 0.05 0.30 0.07
R2 0.97 -1.24 -0.83 0.73 0.53
MLL N/A -1.54 -0.05 -0.20 -2.01

Table 1. Comparison of model performance metrics including Root
Mean Squared Error (RMSE), 5th percentile RMSE (RMSE 5) and
95th percentile RMSE (RMSE 95), coefficient of determination
(R2) and Mean Log Loss (MLL). The posterior distribution means
are quoted for the GP model predictions.

to arbitrarily gridding the data. The samples, residuals and
metrics (shown in Table 1) are checked for the training and
validation sets(Step 8). The final kernel is chosen to be:

k = kMat32(lat, lon, elev) + kMat32(ocean dist) (6)

We also apply a sparse variational GP scheme using this
kernel (Step 9). Finally, the final results are reported on
the test set (Step 10).

Table 1 compares the performance of the original imple-
mentation, the framework model, the sparse GP and two
baselines: a k-NN and a GP with a SE kernel with ARD
(SE-ARD). The baselines use untransformed x and y inputs
only. While the k-NN model significantly outperforms the
other models with respect to R2, it struggles to predict the
extreme negative values. The framework model and original
implementation have similar RMSE scores. However, the
framework model captures the variation of the data more ac-
curately with a better R2 and better constrained uncertainty
estimates (low MLL). The sparse GP captures the general
distribution of the model with a higher R2 but misses the
extreme values we are looking to predict accurately. Figure
2 visually compares the model outputs for a subsection of
the data.

6. Conclusion
In this paper, we presented a framework to apply GP regres-
sion robustly to a wide variety of datasets while making the
most of GP’s strengths and working around its limitations.
This formalisation of the modeller’s decision process leads
to improvements when applied to the case study and high-
lights the importance of model design when using GPs as
baselines. Further work will include extending the workflow
for multi-output regression and classification problems, a
more in-depth analysis of GP suitability, ‘research grade’
models and approximations, and available open-source soft-
ware packages.
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Figure 2. Subset of the a) training data, with results from the b)
k-NN, c) SE-ARD, d) the original implementation, e) the sparse
GP, and f) the framework. The posterior distribution means are
quoted for the GP model predictions

Software and Data
The code, data and interactive notebooks are avail-
able at: https://github.com/kenzaxtazi/
icml23-gpframe.git.
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A. Detailed framework
A.1. Step 1: Problem definition

As in any data science problem, the first step is to define the task at hand. What kind of predictions would we like to make?
Will the model interpolate or extrapolate the training data? What should the model output be (e.g. a report, one model, an
ensemble of models, a forecast, a de-noised timeseries)? Is the output conditional on other variables? For example, the time
for a PhD to travel to the Engineering Department will depend on their start location, their mode of transport, the time of day
and the time until their thesis submission. In particular, it is important to distinguish between different types of regression.
Typically, problems are defined as in Section 2 but they could also be posed as an auto-regressive task:

yt = f(yt−1) + ϵt (7)

where y at the variable t − 1 is used to predict the observation of y at the next t. This setup is common for emulation
problems where the modeller is interested in replicating the behaviour of a system that is expensive or difficult to study in
real life. The type of task which the modeller solves will determine how they design the model(s). For example, forecasting
a single time-series along time in the future would mean we want to concentrate on incorporating long term dependencies
present in the data. The task also shapes the metrics that should be used at validation and test time: do we care about
modelling uncertainties, the mean or the extremes?

A.2. Step 2: Initial data exploration

The next step is to perform an initial exploration of the data in order to understand whether it is suitable for GP regression.
One should consider:

• Number of data points N . For N > 104 − 105, exact GP computation becomes prohibitively expensive (Deisenroth
& Ng, 2015; Wang et al., 2019). N < 100 may be too small especially in the case of a complex kernel with many
hyperparameters which can lead to overfitting. Smaller N can be mitigated using Markov Chain Monte Carlo (MCMC)
estimation (McNeish, 2016).

• Number of input dimensions D. GPs are not immune to the curse of dimensionality. For D > 10, it is hard for the
modeller to form a clear image of the problem. It can therefore also be difficult to design an appropriate kernel. The
number of parameters used to define the kernel will also increase, meaning it will be easier to overfit. Furthermore, if
D is very large D > 100, constructing the covariance matrix, which scales as O(N2D), can become a computational
bottleneck.

• Output requirements. Are probability distributions needed for this task? If the modeller simply requires the mean
output an alternative method may be more appropriate.

Further considerations:

• We propose a range of values for the upper limit of N . This is because the limit will depend on how the model is
used. Higher N can be used for one-off modelling rather than learning hyperparameters through repeated likelihood
evaluation.

• Above these limits, it is worth considering the use of a GP as a wrapper for a deep learning model (Sun et al., 2022). In
this case, a deep learning model can be trained on a large subset of the data. The inputs to the GP can be the output from
the deep learning model or their residuals. The GP could also be used to refine the predictions for specific locations
in the input feature space using held-out data. This will then yield uncertainties which can be used for uncertainty
quantification, active learning, etc.. 1

• It may be acceptable to work in the top end of the dimension range if only a few dimensions are doing most of the
predictive work. Furthermore, it is also possible to select or generate a set of lower dimensional features to feed into the
model using decision trees such as Random Forests or dimensionality reduction methods such as Principal Component
Analysis (Binois & Wycoff, 2022).

• For large datasets (see Step 5), two approaches are possible. In the first case, the data can be divided into chunks,
independent GPs or ‘GP experts’ applied are then to each part and predictions are made using a (robust) Bayesian

1If the models are not trained jointly, the procedure will result in overfitting and the residuals will go to zero with the GP collapsing to
0 uncertainty. If the GP is fit on the training data (and not the just the held-out data) using a neural network will be more likely to result in
overfitting since the model might fit the data perfectly even before applying the GP.
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Committee Machine (Tresp, 2000; Deisenroth & Ng, 2015). In the second case and conditional on specific structure,
scaling GP methods can be also applied.

A.3. Step 3: Domain expertise

In this step, the modeller maps out the information that is known about the dataset, prior to a more in-depth analysis. Writing
out this information in detail will be key in designing an appropriate kernel with priors and constraints in Step 7. For
example, a positive constraint is necessary when modelling rainfall.

A.4. Step 4: Training, validation and test set definition

A held out dataset allows the modeller to check whether they are under or overfitting, and to give some indication of the
performance they would get on ‘real’ unseen data. The separation of the data should reflect the goals and the performance
they want to measure in Step 1, and information from Step 3. Ideally the dataset should be separated into three groups: a
training set, a validation set, and a test set which will not be iterated over. In many cases, the data is used in real-world
is not i.i.d., it is dependent and correlated, and come from heterogeneous sources and samplings regimes. If the effective
number of data points (the number of independent samples that would be needed to produce the same information content
as the given sample) is fairly small, then a cross-validation scheme is strongly recommended to assess the stability and
predictability of the model (Yu, 2020).

A.5. Step 5: Scaling structures

When working with a large dataset, the modeller should also analyse the training data to find structure that may lead to the
application of scaling methods. Three cases and how to identify them are discussed below.

• Case 1: Oversampled functions. An oversampled function is sampled more frequently than is required to capture its
underlying structure and variation. In the case of a periodic function this would be more than the Nyquist frequency. In
this situation, the modeller can use sparse GP regression with variational inference of inducing points (Titsias, 2009).
Many GP libraries, such GPflow (van der Wilk et al., 2020) or GPyTorch (Gardner et al., 2018), offer built-in
functions to perform this approximation.

• Case 2: Timeseries data. For timeseries data, the GP can be mapped to a Stochastic Differential Equation (SDE)
(Hartikainen & Särkkä, 2010). This approximation has a linear cost in the number of time points and works well in
many situations. However the mapping between the covariance matrix and the SDE can be expensive, sometimes more
expensive than solving SDE itself. Temporal GPs, a package Julia, provides a framework to apply this method.

• Case 3: Kronecker product structure. For such dataset with the following kernel structure, such as gridded data:

Cov
([

x1

x2

] [
x′
1

x′
2

])
= Cov(x1, x

′
1)⊗ Cov(x2, x

′
2),

the Kronecker identity can be used to invert the matrices in a piecewise fashion (Saatçi, 2012). This trick is used
in the Structured Kernel interpolation (SKI) (Wilson & Nickisch, 2015). Both SKI and SKIP are implementable in
GPyTorch.

If no structure is apparent, a baseline that is hard to beat is to the divide the data into smaller datasets, as previously
mentioned. This can be done naively by separating data chronologically or into tiles. However, it can be useful to make use
of clustering algorithms, such as k-means or k-nearest neighbours, to group features that exhibit similar properties.

A.6. Step 6: Data transformations

To improve inference, input features should generally be z-scored, i.e., subtracting the mean and dividing by the standard
deviation. This means that most values should lie between -1 and 1. Exact GPs also expect the posterior distribution to
be Gaussian. Applying a transformation to the target data, i.e. the marginal likelihood, can help achieve this. Transforms
also can help avoid unphysical predictions such as negative values and highlight the areas of the distribution we would
like predict with more accurately. Some common transformations are logarithm and power functions such as the Box-Cox
transformation (Box & Cox, 1964). These transformation will constrain values to be non-zero but also reduce the weighting
of the extreme values. Transformations also have a significant effect on the confidence interval of the model. The modeller
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should check the training data residuals and samples iterating over the chosen transform if necessary. It can be helpful to
check if the transformation improves baselines such as linear regression or k-nearest neighbour models.

A.7. Step 7: Kernel design

In this step, the modeller explores the dataset in order to design the kernel function. To compose a kernel, the following
characteristics of the target variable should be considered: smoothness, lengthscales, periodicity, outliers and tails, asymmetry,
and stationarity. Tools such as first and second order statistics, scatter plots (with low dimensional projections), covariance
and correlation matrices, autocorrelation plots, power density spectrum, and k-Nearest Neighbour analysis can be used to
find these properties. The modeller should exercise their common sense when applying these tests keeping in mind the task
they are trying to solve, as defined in Step 1. They should also view this exercise as hypothesis testing and ascertain if the
characteristics of the dataset match the domain knowledge, outlined in Step 3, and if not, why.

This step is also important for inference time. The covariance is inverted analytically and, in most cases, Cholesky
decomposition is used. However, this method requires the covariance matrix is Hermitian positive definite. This means the
decomposition will fail if the one of the input dimensions is linearly related to another or a combination of other inputs.
In practice, many GP models are set to have a zero mean function µ(x). However, the stability of inference can also be
improved by modelling the most obvious features of the dataset through µ(x) the rather than k(x− x′).

Now that we have a clear understanding of the data. We can design the kernel function through ‘kernel composition’. The
kernel can be built by combining standard operators and base kernel functions (Duvenaud & Model, 2014). Adding is
equivalent to applying the logical operator ‘OR’, i.e. changes in the amplitude can be explained by either term in the sum.
For example, the resulting kernel will have high value if either of the two base kernels have a high value. Multiplying is
similar to an ‘AND’ operation, i.e. changes in the amplitude are explained by both term in the multiplication. For example,
the kernel will have high value if both base kernels have a high value. It’s worth noting that multiplying kernels can result
in a lower-dimensional representation of the data, simplify eigenvalue decomposition, result in a sparse matrix, and allow
for pre-computation, thus making this procedure a computationally efficient way to combine with kernels. The design of
the kernel will first and foremost affect the smoothness of the samples. The modeller can enforce this by choosing the
smoothness of the mean and covariance functions. This is in particular useful for modeling data with underlying structures,
such as financial time series data or image data.

If the model does not initially converge close the lengthscales values determined previously. They can be initialised manually.
If this still does not change where the model converges, strong guidance can be applied through constraints and priors. In
real-world cases, including such specifications are not uncommon to achieve the desired results. These include:

• Boundary constraints. The modeller enforce boundary constraints on the model parameters, such as bounds on the
mean function parameters or variance and lengthscale of the kernel function. This can be useful when modeling
physical processes that have known limits or constraints. In practice, using constraints may be difficult. If they do not
match the observations, the model can break down. It is usually better to have small and positive priors (see next point).

• Bayesian priors. The model incorporate prior knowledge about the parameters of the model using priors distributions.
For example, a Gaussian prior can be placed on the parameters of the covariance function to encourage the model to
converge to a particular solution.

• Constraints on the covariance function. The modeller can enforce constraints on the covariance function, such as
stationarity or monotonicity. These constraints can help to ensure that the model has physically meaningful properties.

Note that kernels with many hyperparameters will be more likely to overfit the data. Furthermore, recent literature suggests
that even when a large number of terms are used, only a few parameters drive the outputs of the model after inference (Lu
et al., 2022). Regularisation techniques can be applied to the kernel function to limit overfitting (Cawley & Talbot, 2007) but
are usually quite involved to put in place.

A.8. Step 8: Model iteration

The modeller should start by setting up some simple non-GP baseline such as k-NN or linear regression. They should then
build the kernel iteratively, trying the most important dimensions first and check the physical consistency of the samples,
the structure of residuals, the posterior predictive likelihood scores such as the marginal log likelihood, the mean log loss
and Bayesian Information Criterion. The bias, Root Mean Square Error (RMSE) and Mean Absolute Error should also
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be evaluated. The checks should be repeated at for each iteration on both the training and validation sets. The modeller
should keep iterating, until the scores start to stagnate or signs of overfitting are observed. If they are using using the GP
for interpolation, this can simply be done by comparing the metrics such as RMSE and log-likelihood for the training and
validation sets. However if extrapolation is the goal, it is normal for the model to perform worse away from the training
distribution. In this case, it is useful to look at the GP samples. Are they sensible for both the training and validation sets?

GP samples can also be used as ‘synthetic data’ to check the validity of the model and training procedure. The synthetic
data is generated from the model samples. This fake data is similar to real data, but where ground truth parameter values are
known. The samples can be fit using another GP. If the specified model is doing a good job, the modeller should be able to
recover the original covariance matrix of the training data. If the results of these tests are unsatisfactory, return to Step 6 and
try a new transformation design or set of constraints.

If after performing Steps 6 to 8, there is no significant improvement, more involved ‘research grade’ GP methods such as a
Deep Gaussian Process (Damianou & Lawrence, 2013) or a Gaussian Process Latent Variable Model (Titsias & Lawrence,
2010) may be more suitable for the problem.

A.9. Step 9: Scaling

If the modeller is using a large dataset, they can now apply their findings from Step 5. In particular, they will either apply
one of the previously discussed scaling methods or apply independent GPs to chunked data to make predictions using a
Bayesian Committee Machine. This can be implemented using the ‘Guepard’ library (Durrande, 2022).

A.10. Step 10: Testing

Finally check the model on the test data using the same metrics as outlined in Step 8. These are the values that should be
quoted as the results.

B. Case study details
The following section describes implementation details of the case study. The case study code is in implemented in
GPyTorch with all the code executable from Jupyter notebooks. The most distinctive feature of the glacier elevation
dataset is the distribution of the target variable shown in Figure 3. The distribution profile change between the negative
and positive elevation change. Any simple transformation struggles to make the distribution more tractable to a GP. After
applying Box-Cox, and variations of logarithm and exponential transformations, the normalised raw data was still found to
perform the best.
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Figure 3. Empirical probability distribution of target variable
.

The grid size for the independent GPs is set to approximately 130 km2. The framework model is also initialised with the
lengthscales found in Step 7. These did not help the model converge better. Priors were also applied to see if enforcing a
soft constraint to keep the x-y lengthscales more similar during optimisation helped as they tended to differ significantly for
some of the grid tiles.
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Two baselines for x-y inputs were chosen. The k-NN baseline used 10 nearest neighbours with distance weighting using the
sci-kit learn package (Pedregosa et al., 2011). The k value is closely related to that of GP lengthscales (Vecchia,
1988) suggesting that a ‘research grade’ application of this dataset could include a non-stationary kernel with respect to
elevation or ocean distance or the implementation of variational nearest-neigbors GPs (Wu et al., 2022). The SE-ARD
kernel was chosen as the second baseline as it is often the choice baseline for probabilistic modelling (Lalchand et al., 2022;
Markou et al., 2021). This model is trained using the same parameters.

We also included a sparse GP implementation over the whole of Greenland using 1000 inducing points. Increasing the
inducing beyond this point became significantly more computationally expensive, in particular, when compared to chunking
with exact GP regression. The GP models were trained using conjugate gradient rather than Cholesky decoposition, for 150
epochs using ADAM with a learning rate of 0.01. The sparse GP used minibatch size of 1,024.


