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Abstract

The Langevin algorithm is a classic method for sampling from a given pdf in a real space.
In its basic version, it only requires knowledge of the gradient of the log-density, also called
the score function. However, in deep learning, it is often easier to learn the so-called “noisy-
data score function”, i.e. the gradient of the log-density of noisy data, more precisely when
Gaussian noise is added to the data. Such an estimate is biased and complicates the use of
the Langevin method. Here, we propose a noise-corrected version of the Langevin algorithm,
where the bias due to noisy data is removed, at least regarding first-order terms. Unlike
diffusion models, our algorithm needs to know the noisy-data score function for one single
noise level only. We further propose a simple special case which has an interesting intuitive
interpretation of iteratively adding noise the data and then attempting to remove half of
that noise.

1 Introduction

A typical approach to generative AI with data in Rk consists of estimating an energy-based (or score-based)
model of the data and then applying a sampling method, typically MCMC. Among the different methods
for learning the model of the data, score matching is one of the simplest and has achieved great success
recently. In particular, denoising score matching (DSM) is widely used since it is computationally very
compatible with neural networks, resulting in a simple variant of a denoising autoencoder (Vincent, 2011).
The downside is that it does not estimate the model for the original data but for noisy data, which has
Gaussian noise added to it. This is why it is difficult to use standard MCMC methods for sampling in such a
case. Henceforth we call the score function for the noisy data the “noisy-data score function”. We emphasize
that the noisy-data score function does not refer to an imperfectly estimated score function which would be
noisy due to, for example, a finite sample; it is the exact score function for the noisy data, since this is what
DSM gives in the limit of infinite data.

A possible solution to this problem of bias is given by diffusion models (Croitoru et al., 2023; Yang et al.,
2023), which are used in many of the state-of-the-art methods (Rombach et al., 2022). Diffusion models
need precisely the score function of the noisy data; the downside is that they need it for many different noise
levels. Another solution is to estimate the noisy-data score for different noise levels and then extrapolate
(anneal) to zero noise (Song and Ermon, 2019). However, such learning necessitating many noise levels is
computationally costly.

One perhaps surprising utility of using the noisy-data score function for sampling might be that it is a kind
of regularized version of the true score function. In particular, any areas in the space with zero data will
have a non-zero probability density when noise is added. This might lead to better mixing of any MCMC
(Saremi and Hyvärinen, 2019; Song and Ermon, 2019), and even improve the estimation of the score function
(Kingma and Cun, 2010). Hurault et al. (2025) analyze the error in sampling using DSM and Langevin in
detail, considering the Gaussian distribution.

Here, we develop an MCMC algorithm which uses the noisy-data score function, and needs it for a single noise
level only. This should have computational advantages compared to diffusion models, as well as leading to a
simplified theory where the estimation and sampling parts are clearly distinct. In particular, we develop a
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noise-corrected Langevin algorithm, which works using the noisy-data score function, while providing samples
from the original, noise-free distribution. Such a method can be seamlessly combined with denoising score
matching. A special case of the algorithm has a simple intuitive intepretation as an iteration where Gaussian
noise is first added to the data, and then, based on the well-known theory by Tweedie and Miyasawa, it
is attempted to remove that noise by using the score function. However, only half of the denoising step is
taken, leading to an algorithm based on “half-denoising”.

2 Background

We first develop the idea of denoising score matching based on the Tweedie-Miyasawa theory, and discuss
its application in the case of the Langevin algorithm.

2.1 Score functions and Tweedie-Miyasawa theory

We start with the well-known theory for denoising going back to Miyasawa (1961); Robbins et al. (1956); see
Raphan and Simoncelli (2011); Efron (2011) for a modern treatment and generalizations. They considered
the following denoising problem. Assume the observed data x̃ is a sum of original data x and some noise n:

x̃ = x + n (1)

Now, the goal is to recover x from an observation of x̃. The noise n is assumed Gaussian with covariance
Σn.

An important role here is played by the gradient of the log-derivative of the probability density function
(pdf) of x̃. We denote this for any random vector y ∈ Rk with pdf py as:

Ψy(η) = ∇η log py(η) (2)

which is here called the score function.

One central previous result is the following theorem, often called an “empirical Bayes” theorem. Robbins
et al. (1956); Efron (2011) attribute it to personal communication from Maurice Tweedie, which is why it is
often called “Tweedie’s formula”, while it was also independently published by Miyasawa (1961).

Theorem 1 (Tweedie-Miyasawa)

E{x|x̃} = x̃ + ΣnΨx̃(x̃) (3)

For the sake of completeness, the proof is given in the Appendix. The Theorem provides an interesting
solution to the denoising problem, or recovering the original x, since it gives the conditional expectation
which is known to minimize mean-squared error. In practice, the price to pay is that we need to estimate
the score function Ψx̃.

2.2 (Denoising) score matching

Another background theory we need is (non-parametric) estimation of the score function. Consider the
problem of estimating the score function Ψx of some data set. Suppose in particular that we use a neural
network to estimate Ψx. Any kind of maximum likelihood estimation is computationally very difficult, since
it would necessitate the computation of the normalization constant (partition function).

Hyvärinen (2005) showed that the score function can be estimated by minimizing the expected squared
distance between the model score function Ψ(x; θ) and the empirical data score function Ψx. He further
showed, using integration by parts, that such a distance can be brought to a relatively easily computable
form. Such score matching completely avoids the computation of the normalization constant, while provably
providing a estimator that is consistent. However, due to the existence of higher-order derivatives in the
objective, using the original score matching objective by Hyvärinen (2005) is still rather difficult in the
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particular case of deep neural networks, where estimating any derivatives of order higher than one can be
computationally demanding (Martens et al., 2012). Therefore, various improvements have been proposed,
as reviewed by Song and Kingma (2021).

Denoising score matching (DSM) by Vincent (2011) provides a particularly attractive approach in the context
of deep learning. Given original noise-free data x, it learns the score function of a noisy x̃ with noise
artificially added as in (1). Interestingly, denoising score matching can be derived from Theorem 1. Since
the conditional expectation is the minimizer of the mean squared error, we have the following corollary,
proven in Appendix B:

Corollary 1 Assume we observe both x and x̃, which follow (1) with Gaussian noise n. The score function
Ψx̃ of the noisy data is the solution of the following minimization problem:1

min
Ψ

Ex̃,x{∥x − (x̃ + ΣnΨ(x̃))∥2} (4)

We emphasize that unlike in the original Tweedie-Miyasawa theory, it is here assumed we observe the original
noise-free x, and add the noise ourselves to create a self-supervised learning problem. Thus, we learn the
noisy-data score function by training what is essentially a denoising autoencoder.

The advantage of DSM with respect to the original score matching is that there are less derivatives; in
fact, the problem is turned into a basic least-squares regression. The disadvantage is that we only get the
noisy-data score function Ψx̃. This is a biased estimate, since what we want in most cases is the original
Ψx.

2.3 Langevin algorithm

The Langevin algorithm is perhaps the simplest MCMC method to work relatively well in Rk. The basic
scheme is as follows. Starting from a random point x0, compute the sequence:

xt+1 = xt + µΨx(xt) +
√

2µ νt (5)

where Ψx = ∇x log p(x) is the score function of x, µ is a step size, and νt is Gaussian noise from N (0, I).
According to well-known theory, for an infinitesimal µ and in the limit of infinite t, xt will be a sample from
p. The assumption of an infinitesimal µ can be relaxed by applying a “Metropolis-adjustment”, but that
complicates the algorithm, and requires us to have access to the energy function as well, which may be the
reason why such a correction is rarely used in deep learning.

If we were able to learn the score function of the original x, we could do sampling using this Langevin
algorithm. But DSM only gives us the score function of the noisy data. This contradiction inspires us to
develop a variant of the Langevin algorithm that works with Ψx̃ instead of Ψx.

3 Noise-corrected Langevin algorithm

Now, we proceed to propose a new “noise-corrected” version of the Langevin algorithm. The idea of noise-
correction assumes that we have used DSM to estimate the score function of noisy data. This means our
estimate of the score function is strongly biased. While this bias is known, it is not easy to correct by
conventional means, and a new algorithm seems necessary.

3.1 Proposed algorithm

We thus propose the following noise-corrected Langevin algorithm. Starting from a random point x0, com-
pute the sequence:

xt+1 = x̃t + µΨx̃(x̃t) +
√

2µ − σ2 νt (6)
1To clarify: Ψ is here any function used as an argument for minimization. It is denoted in the same way as the score

functions, because eventually at the optimum, it will be an estimate of a score function.
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with

x̃t = xt + σnt, nt ∼ N (0, I), νt ∼ N (0, I) (7)

where µ is a step size parameter. The function Ψx̃ is the score function of the noisy data x̃ created as in (1),
with noise variance being Σn = σ2I. (As in previous sections, we use here x without time index to denote
the original observed data, and x̃ to denote the observed data with noise added, while the same letters with
time indices denote related quantities in the MCMC algorithm.)

The main point is that this algorithm only needs the noisy-data score function Ψx̃, which would typically
be given by DSM. The weight

√
2µ − σ2 of the last term in the iteration (6) is accordingly modified from

the original Langevin iteration (5) where it was
√

2µ. Clearly, we need to assume the condition

µ ≥ σ2/2 (8)

to make sure this weight is well-defined. Another important modification is that the right-hand side of (6)
is applied on a noisy version of xt, adding noise nt to the xt itself at every step.

3.2 Theoretical analysis

3.2.1 Semi-heuristic argument

First, we provide a simple analysis of the behaviour of the algorithm.2 Add σnt+1 on both sides of Eq. (6).
Since x̃t+1 = xt+1 + σnt+1, this becomes

x̃t+1 = x̃t + µΨx̃(x̃t) +
√

2µ − σ2 νt + σnt+1 (9)

We can collect the noise terms on the RHS together by defining

ν̄t = 1√
2µ

[√
2µ − σ2 νt + σnt+1

]
(10)

This new noise ν̄t follows N (0, I). Moreover, it is independent of x̃t and i.i.d. over time. Thus, our algorithm
implies the following iteration for x̃t

x̃t+1 = x̃t + µΨx̃(x̃t) +
√

2µν̄t (11)

which is exactly an ordinary Langevin iteration for x̃t.

We see that x̃t converges to sample noisy data from px̃, under the same conditions and reservations as an
ordinary Langevin iteration. In other words, px̃t

→ px̃ in the approximative sense of the Langevin algorithm.
Now, we can simply deconvolve both sides of this limit equation, and get pxt → px, in a heuristic sense.
This provides a semi-heuristic proof that the algorithm samples from px.

Of course, one can always use an iteration such as in Eq. (11) to sample x̃ from the noisy distribution, given
the noisy-data score. But then there is no straightforward way of computing the xt which is not an obvious
function of x̃t. By construction, our algorithm does compute the noise-free samples xt as well.

3.2.2 Rigorous analysis

To more rigorously understand the behavior of the algorithm, we compare it with what we call the Oracle
Langevin. This means the ordinary Langevin iteration where the true score function Ψx (i.e. of the noise-free
data x) is known and used. Basically, our goal in this paper can be formulated as emulating the Oracle
Langevin iteration while only knowing the score Ψx̃ of the noisy data.

Our main theoretical result is the following Theorem, proven in the Appendix:

Theorem 2 Denote the target pdf by px and its score function as Ψx. Assume the following regularity
conditions on the target distribution:

2I’m grateful to the Action Editor, Atsushi Nitanda, for proposing the starting point of this analysis.
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1. The score function Ψx has bounded norm, the bound being denoted as
CΨ = sup

α∈Rd

∥Ψx(α)∥ (12)

2. px is at least twice differentiable; px and its first two derivatives are square-integrable.

We are given the noisy-data score function Ψx̃ to be used in our algorithm where x̃ follows (1). Denote its
associated pdf as px̃ and define the constant

Cϵ = max(C2
Ψ∥px̃ − px∥2, CΨ∥px̃(Ψx − Ψx̃)∥2) (13)

Consider the iteration of the algorithm proposed in Eq. (6) in the space of characteristic functions and at
the true distribution xt ∼ px. Fix any given value for ξ, the argument of the characteristic function p̂xt

(ξ).

Then, one iteration of the proposed algorithm is equal to one iteration of the Oracle Langevin up to terms
of order O(max(µ3C3

Ψ∥ξ∥3, µ3∥ξ∥2, µ2Cϵ∥ξ∥2)).

Thus, we prove that our iteration removes the bias due to estimation of the score from the noise in the data
x̃, up to higher-order terms, and at the true distribution px. The results could presumably be extended to
the vicinity of px which would give some more higher-order terms in the approximation.

The regularity assumptions here are sufficient but not necessary. We note that Assumption 1), i.e. a bounded
score, is typically valid for super-Gaussian distributions (i.e. with heavy tails), such as the Laplace distri-
bution. The addition of Gaussian noise implicit in Ψx̃ has little effect on the boundedness since it does
not make heavy tails any lighter. The regularity condition in Assumption 2 is arguably a rather general
smoothness constraint. We would further conjecture that Cϵ has order σ2 = µ under suitable regularity
conditions to be determined, and thus the error would be essentially µ3.

It is well-known that an infinitesimal step size is necessary in the Langevin algorithm for proper convergence,
and a non-infinitesimal step size creates a bias, often of O(µ), see e.g., Vempala and Wibisono (2019). From
that viewpoint, approximating Oracle Langevin with O(µ3) could be considered very accurate and is unlikely
to create much more bias. (Here, an infinitesimal step size implies that the noise level is infinitesimal, since
the two are related by the condition (8).)

We also give a detailed analysis for the Gaussian case in Appendix E. The main additional result is that the
algorithm converges, up to higher-order terms, to the same distribution as Oracle Langevin. In other words,
the bias due to noisy-data score is cancelled, up to higher-order terms. Furthermore, in the Gaussian case,
we can actually prove such convergence, and this convergence is global.

3.3 Special case: Sampling by half-denoising

A particularly interesting special case of the iteration in (6) is obtained when we set the step size

µ = σ2

2 (14)

This is the smallest µ allowed according to (8), given a noise level σ2. In many cases, it may be useful to
use this lower bound since a larger step size in Langevin methods leads to more bias.

In this case the noise νt is cancelled, and we are left with a simple iteration:

xt+1 = x̃t + σ2

2 Ψx̃(x̃t) (15)

with
x̃t = xt + σnt, nt ∼ N (0, I) (16)

where, as above, Ψx̃ is the score function of the noisy data and σ2 is the variance of the noise in Ψx̃, typically
coming from DSM.

Now, the Tweedie-Miyasawa theorem in Eq. (3) tells us that the optimal nonlinearity to reduce noise is
quite similar to (15), but crucially, such optimal denoising has σ2 as the coefficient of the score function (for
isotropic noise) instead of σ2/2 that we have here. Thus, the iteration in Eq. (15) can be called half-denoising.
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4 Experiments

Data models We use two different scenarios. The first is Gaussian mixture model in two dimensions.
Two dimensions was chosen so that we can easily analyze the results by kernel density estimation, as well as
plot them. A GMM is a versatile family which also allows for exact sampling as a baseline. The number of
kernels (components) is varied from 1 to 4; thus the simulations also include sampling from a 2D Gaussian
distribution. The kernels are isotropic, and slightly overlapping. The variances of the variables in the
resulting data were in the range [0.5,1.5]. We consider two different noise levels in the score function, a
higher one (σ2 = 0.3) and a lower one (σ2 = 0.1). These are considered typical in DSM estimation.

The second scenario is Gaussian model in higher dimensions. The Gaussian data was white, and the dimen-
sion took the values 5,10,100. Only the higher noise level (σ2 = 0.3) was considered.

MCMC algorithms The starting point is that we only know the noisy-data score function (i.e. the score
function for noisy data), and for one single noise level. Using that, we sample data by the following two
methods:

• “Proposed” refers to the sampling using half-denoising and the noisy-data score function as in (15-
16). Assuming the noisy-data score function is estimated by DSM, this is the method we would
propose to generate new data.

• “Basic Langevin” uses the ordinary Langevin method in (5), together with the noisy-data score
function, since that is assumed to be the only one available. This is the (biased) baseline method
that could be used for sampling based on DSM and the ordinary Langevin algorithm.

As further baselines and bases for comparison, we use:

• “Oracle Langevin”, as defined above, uses the ordinary Langevin method together with the true
score function Ψx (i.e. of the noise-free data x). This is against the main setting of our paper, and
arguably unrealistic in deep learning where DSM is typically used. However, it is useful for analyzing
the sources of errors in our method, and to validate the theory above.

• “Ground truth” means exact sampling from the true distribution. This is computed to analyze the
errors stemming from the methods used in comparing samples, described below.

Step sizes are chosen as follows. According to the theory above, the step size for the proposed method is
implicitly given based on the noise level as in (14). For the baseline Langevin methods, we use that same
step size if nothing is mentioned, but conduct additional simulations with another step size which is 1/4
of the above. This is to control for the fact that the basic Langevin method has the possible advantage
that the step size can be freely chosen, and in particular it can be made smaller to reduce the bias due to
the non-infinitesimal step size. Note that Oracle Langevin is not identical for the two noise levels precisely
because its step size is here defined to be a function of the noise level. Each algorithm was run for 1,000,000
steps.

Analysis of the sampling results In the main results (bias removal), the last 30% of the data was
analyzed as samples of the distribution; it is assumed here that this 30% represents the final distribution
and all the algorithms have converged. (The mixing analysis described next corroborates this assumption.)

In the GMM case, we compute a kernel density estimator for each sampled data set with kernel width
0.1, evaluated at a 2D grid with width of 0.1. We then compute the Euclidean (L2) distance between the
estimated densities. In particular, we report the distances of the MCMC method from the ground truth
sample, normalized by the norm of the density of the ground truth sample, so that the errors can be intepreted
as percentages (e.g. error of -1.0 in log10 scale means 10% error). We further evaluate the accuracy of the
distance evaluation just described by computing the distance between two independent ground truth sample
data sets (simply denoted by “ground truth” in the distance plots). In the high-dimensional Gaussian case, in
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a) b)

c) d)

Figure 1: Kernel density estimates for some of the methods, for two kernels in GMM, and lower noise
σ2 = 0.1 in the score function. The proposed method achieves similar performance to the Oracle Langevin
which uses the true score function, thus effectively cancelling the bias due to the noisy-data score function.
The bias due to the non-infinitesimal step size is hardly visible.

a) b)

c) d)

Figure 2: Like Fig. 1 above, but for four kernels in GMM, and a higher noise level σ2 = 0.3. Now, some
bias due to non-infinitesimal step size is clearly visible even in Oracle Langevin. Still, the proposed method
has very similar performance to Oracle Langevin, which is the main claim we wish to demonstrate.

contrast, we compute the covariance matrices and use the Euclidean distances between them as the distance
measure.

Additional analyses were conducted regarding the mixing speed. We took the GMM with two kernels as
above, but ran it in 10,000 trials with 100 steps in each. The algorithm was initialized as a Gaussian
distribution with small variance approximately half-way between the two kernels. Here, the convergence was
analyzed by looking at the Euclidean distance between the covariance of the sample and the true covariance,
for each time point.
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Results 1: GMM bias removal Basic visualization of the results is given in Figs 1 and 2, which we will
not comment any further.

A comprehensive quantitative comparison is given in Fig. 3. Most importantly, the error in the proposed
method is very similar to the Oracle Langevin in the case where the step sizes are equal. This shows that
almost all the bias in the method is due to the non-infinitesimal step size, as Oracle Langevin suffers from
that same bias and has similar performance. Thus, removing the bias due to the noisy-data score is successful
since any possibly remaining noise-induced bias seems to be insignificant compared to the bias induced by
the step size. This corroborates the theory of this paper, in particular Theorem 2.

The basic Langevin algorithm has, in principle, the advantage that its step size can be freely chosen; however,
we see that this does not give a major advantage (see curves with “mu/4”) over the proposed method. In
the noisy-data score case, reducing the step size improves the results of basic Langevin only very slightly; as
already pointed out above, the bias due to the noisy-data score seems to be much stronger than the bias due
to non-infinitesimal step size. In contrast, in the case of the Oracle Langevin, we do see that a small step
size can sometimes improve results considerably, as seen especially in a), because it reduces the only bias
that the method suffers from, i.e. bias due to non-infinitesimal step size. However, a very small step size may
sometimes lead to worse results, as seen in b), presumably due to slow convergence or bad mixing. In any
case, even Oracle Langevin fails to approach the level of the errors of “ground truth” (i.e. exact sampling,
which has non-zero error due to the kernel density estimation).

Results 2: High-dimensional Gaussian bias removal The results, shown in Fig. 4, are very similar
to the GMM case above. Again, we see that the proposed method has performance which is almost identical
to the Oracle Langevin with the same step size, in line with our theory. In terms of sampling performance,
the proposed method clearly beats the basic Langevin. Only the Oracle Langevin with a smaller step size
is better, and only in high dimensions (arguably, it could be better in low dimensions as well if the step size
were carefully tuned and/or more steps were taken).

Results 3: Mixing speed analysis Fig. 5 shows that the noise-corrected version mixes with equal speed
to the basic Langevin. In fact, the curves are largely overlapping (e.g. solid red vs. solid blue) for the
noise-corrected version and the basic Langevin, in the beginning of the algorithm. However, soon the plain
Langevin plateaus due to the bias, while the proposed algorithm reduces the error further. Thus, no mixing
speed seems to be lost due to the noise-correction.

5 Related methods and future directions

It is often assumed that an annealed version of the Langevin algorithm is preferable in practice to avoid the
algorithm get stuck in local modes (Lee et al., 2018). A method for annealing the basic Langevin method
combined with score matching using different noise levels was proposed by Song and Ermon (2019) and its
converge was analyzed by Guo et al. (2024). Our method could easily be combined with such annealing
schedules. If the noisy-data score function were estimated for different noise levels, an annealed method
would be readily obtained by starting the iterations using high noise levels and gradually moving to smaller
ones. However, a special annealing method could be obtained by using a single estimate of the noisy-data
score, while increasing the parameter σ2 in the iteration, now divorced from the actual noise level in Ψx̃, from
zero to 2µ in the iteration in Eq. (6). We leave the utility of such annealing schedules for future research.

Saremi and Hyvärinen (2019) proposed a heuristic algorithm, called “walk-jump” sampling, inspired by the
Tweedie-Miyasawa formula. Basically, they sample noisy data using ordinary Langevin, and then to obtain
a sample of noise-free data, they do the full Tweedie-Miyasawa denoising. While there is no proof that this
will produce unbiased samples, in further work, Frey et al. (2024); Saremi et al. (2023); Pinheiro et al. (2023)
have obtained very good results in real-life application with such an iteration, mostly using an underdamped
variant. Related methods have been proposed by Bengio et al. (2013) and Jain and Poole (2022). Likewise,
diffusion models use denoising as an integral part. Connections of those methods with our method are
an interesting question for future work. However, our method distinguishes itself by denoising only “half-
way”. Some further connection might be found between our method and underdamped Langevin methods
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a)

b)

Figure 3: Gaussian 2D mixture model data: Euclidean log-distances between the kernel density estimates
for the different sampling methods and the kernel density estimate of the ground truth. a) shows the results
for a higher noise level (σ2 = 0.3) and b) for a lower noise level (σ2 = 0.1) in the score function. Error bars
(often too small to be visible) give standard errors of the mean. The curve with label “Ground truth” refers
to the distance between two different data sets given by exact sampling; it is far from zero due to errors in
the kernel density estimation used in the distance calculation. The different plots for Langevin use different
step sizes: “Basic/OracleLangevin” use the same step size as the proposed half-denoising, while the variants
with “mu/4” use a step size which is one quarter of that (“Lvin” is a short for “Langevin”). Note that
the step sizes for the Oracle Langevin curves are different in a) and b) although the methods are otherwise
identical in the two plots; one the other hand, the ground truth is independent of the noise level and thus
identical in a) and b).
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Figure 4: High-dimensional Gaussian data. Euclidean log-distances between the covariance estimates for
the different sampling methods and the covariance estimate of the ground truth. Methods and legend as in
Fig. 3, here shown for higher noise level (σ2 = 0.3) only. (“Proposed” curve may be difficult to see since it
is largely under the OracleLangevin curve.)

Figure 5: Analysis of mixing speed. The Euclidean log-distances (errors) as a function of iteration count,
averaged over 10,000 runs, for a GMM with two kernels. Algorithm legends as in Fig. 3, but here we have
the two different variance levels (“HighVar” and “LowVar”’) in a single plot.
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(Dockhorn et al., 2021). In particular, an underdamped version of our method would be an interesting
direction for future research.

We should also mention a strand of work that consider that the score function has noise added in it, as in
finite-sample estimation of the score function (Ma et al., 2015; Zhang et al., 2022). This is of course very
different from the bias due to noise added to the data, as considerered here. Another line of work, which
could be relevant to develop extensions of our method, is DSM using non-Gaussian noise (Deasy et al., 2021).

6 Conclusion

In generative deep learning, the score function is usually estimated by DSM, which leads to a well-known
bias. If the bias is not removed, any subsequent Langevin algorithm (or any ordinary MCMC) will result in
biased sampling. In particular, the samples will come from the noisy distribution, that is, the original data
with Gaussian noise added, which is obviously unsatisfactory in most practical applications. Therefore, we
propose here how to remove that bias, i.e., how to sample from the original data distribution when only the
biased (“noisy”) score function learned by DSM is available. In contrast to, for example, diffusion models,
only the score function for one noise level is needed. We analyze the convergence in the usual limit cases
(infinite data in learning the score function, infinitesimal step size in the sampling), by showing that the
algorithm is equivalent to an Oracle Langevin algorithm, i.e. Langevin used with the true score. Simple
experiments on simulated data confirm the theory.
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A Proof of Theorem 1 (Tweedie-Miyasawa)

We denote the pdf of n for notational simplicity as

ϕ(n) = 1
(2π)d/2|Σn|1/2 exp(−1

2nT Σ−1
n n) (17)
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To prove the theorem, we start by the simple identity

px̃(x̃) =
∫

p(x̃|x)px(x)dx =
∫

ϕ(x̃ − x)px(x)dx (18)

Now, we take derivatives of both sides with respect to x̃ to obtain

∇xpx̃(x̃) =
∫

Σ−1
n (x − x̃)ϕ(x̃ − x)px(x)dx (19)

We divide both sides by px̃(x̃) and rearrange to obtain

Ψx̃(x̃) =
∫

Σ−1
n xϕ(x̃ − x)px(x)/px̃(x̃)dx −

∫
Σ−1

n x̃ϕ(x̃ − x)px(x)/px̃(x̃)dx

= Σ−1
n

∫
xp(x|x̃)dx − Σ−1

n x̃
∫

p(x|x̃)dx (20)

where the last integral is equal to unity. Multiplying both sides by Σn, and moving the last term to the
left-hand-side, we get (3). □

B Proof of Corollary 1

Consider the general optimization problem:

min
f

Ex̃,x{∥x − f(x̃)∥2∥ (21)

and denote the optimal f by f∗. By well-known properties of the conditional expectation,

f∗(x̃) = E{x|x̃} (22)

Now, considering the optimization in the Corollary:

min
Ψ

Ex̃,x{∥x − (x̃ + ΣnΨ(x̃))∥2} (23)

and denoting the optimal Ψ by Ψ∗, we find that

x̃ + ΣnΨ∗(x̃) = E{x|x̃} (24)

On the other hand, by the Tweedie-Miyasawa Theorem, we have

E{x|x̃} = x̃ + ΣnΨx̃(x̃) (25)

and combining these implies Ψ∗ = Ψx̃. Thus, solving the self-supervised learning problem in the Corollary
estimates the score Ψx̃ of the noisy data x̃.

C Main proof of Theorem 2

Define a random variable as
yt = x̃t + µΨx̃(x̃t) (26)

Assume we are at a point where xt ∼ x and thus also x̃t ∼ x̃. We can drop the index t for simplicity. This
confounds the xt in the algorithm and x as in the original data being modelled (and likewise for the noisy
case), but the distributions are the same by this assumption so this is not a problem.

Consider the characteristic function (Fourier transform of pdf) of y, and make a first-order approximation
as:

p̂y(ξ) = Ey exp(iξT y) = Ex̃ exp(iξT x̃) exp(µiξT Ψx̃(x̃))

= Ex̃ exp(iξT x̃)[1 + µiξT Ψx̃(x̃) − 1
2µ2(ξT Ψx̃(x̃))2] + O(µ3C2

Ψ∥ξ∥3) (27)

where the last equality holds, especially regarding its higher-order terms, under the assumption of bounded
score (Assumption 1), as proven in Lemma 1 below. Now, we analyze the terms in this expansion.
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First terms in RHS of (27) Elementary manipulations further give for the first two terms in brackets,
multiplied by what is multiplying the brackets:

Ex̃ exp(iξT x̃)[1 + µiξT Ψx̃(x̃)] = p̂x̃(ξ) + µi

∫
exp(iξT x̃)

k∑
j=1

ξj
∂px̃(x̃)

∂x̃j
dx̃ (28)

Now, we use the well-known trick of integration by parts, and we obtain

k∑
j=1

∫
exp(iξT x̃)ξj

∂px̃(x̃)
∂x̃j

dx̃ = −
k∑

j=1
iξ2

j

∫
exp(iξT x̃)px̃(x̃)dx̃ = −i∥ξ∥2p̂x̃(ξ) (29)

Last terms in RHS of (27) Regarding the last term in (27), elementary manipulations give

Ex̃ exp(iξT x̃)(ξT Ψx̃(x̃))2 = ξT [
∫

exp(iξT z)Ψx̃(z)Ψx̃(z)T px̃(z)dz]ξ (30)

Let us denote

ϵ(z) = px̃(z) − px(z) (31)

and

Ψϵ(z) = Ψx̃(z) − Ψx(z) (32)

which are related to the bounding terms in 13. Now, consider simply the trace to see the order of the terms,
and expand the matrix above as:

tr(
∫

exp(iξT z)Ψx̃(z)Ψx̃(z)T px̃(z)dz) =
∫

exp(iξT z)Ψx(z)T Ψx(z)px(z)dz

+
∫

exp(iξT z)Ψx(z)T Ψx(z)ϵ(z)dz

+ 2
∫

exp(iξT z)Ψx̃(z)T Ψϵ(z)px̃(z)dz +
∫

exp(iξT z)Ψϵ(z)T Ψϵ(z)px̃(z)dz (33)

Consider now that the Ψx is bounded by assumption, and by Lemma 2, Ψx̃ is bounded by the same constant
CΨ. Looking at the RHS, the second and third terms are of the order of the two terms defining Cϵ in (13),
while the fourth term is of lower order (with ϵ2). Thus, the residual terms coming from omitting the other
terms than the first one in (33), considering that they are multiplied by µ2 in (27), become O(µ2Cϵ∥ξ∥2).

Denote the matrix integral in the first term by M(ξ) =
∫

exp(iξT z)Ψx(z)Ψx(z)T px(z)dz; this matrix is
bounded by assumption of bounded score.

Putting the results together Thus we have proven the following form for (27)

p̂y(ξ) = p̂x̃(ξ)(1 + µ∥ξ∥2) − 1
2µ2ξT M(ξ)ξ + O(max(µ3C3

Ψ∥ξ∥3, µ2Cϵ∥ξ∥2))

(34)

Using the well-known formula for the characteristic function of Gaussian isotropic noise of variance σ2, we
have:

p̂x̃(ξ) = p̂x(ξ) exp(−1
2σ2∥ξ∥2) (35)
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Thus, we can calculate the characteristic function of xt+1, which we denote by p̂+, by multiplying p̂y by the
characteristic function of the Gaussian isotropic noise with variance 2µ − σ2, and obtain

p̂+(ξ) = p̂y(ξ) exp(−1
2(2µ − σ2)∥ξ∥2)

= [p̂x(ξ) exp(−1
2σ2∥ξ∥2)(1+µ∥ξ∥2)− 1

2µ2ξT M(ξ)ξ] exp(−1
2(2µ−σ2)∥ξ∥2)+O(max(µ3C3

Ψ∥ξ∥3, µ2Cϵ∥ξ∥2))

= p̂x(ξ) exp(−µ∥ξ∥2)(1 + µ∥ξ∥2) − 1
2µ2ξT M(ξ)ξ exp(−1

2(2µ − σ2)∥ξ∥2) + O(max(µ3C3
Ψ∥ξ∥3, µ2Cϵ∥ξ∥2))

= p̂x(ξ) exp(−µ∥ξ∥2)(1 + µ∥ξ∥2) − 1
2µ2ξT M(ξ)ξ + O(max(µ3C3

Ψ∥ξ∥3, µ3∥ξ∥2, µ2Cϵ∥ξ∥2)) (36)

where in the last equality, we have got rid of the remaining exponential term since it is equal to 1 + O(µ),
and the O(µ) resilts as terms of O(µ3∥ξ∥2) in O term.

Now, the terms with σ2 have disappeared, and no noisy-data score is left in the equation (except in the
higher-order terms). So, the iteration is always equal to the same iteration with σ2 = 0 and the original
score, up to the higher-order terms. But such an iteration is exactly the Oracle Langevin iteration. Thus,
one iteration in the algorithm is equal to one iteration of Oracle Langevin, up to the higher-order terms
given above, if the algorithm is at the true distribution of px.□

D Lemmas used in Theorem 2

Next, we prove the two Lemmas used in the in the proof of Theorem 2.

Lemma 1 Assume that the norm of the score ∥Ψx∥ is bounded by CΨ. Then, the first-order approximation
in (27) has error O(µ3CΨ∥ξ∥3) in the limit of infinitesimal µ.

Proof of Lemma: The sum of the terms in the Taylor expansion of order higher than two, i.e. omitted in the
approximation, is

∞∑
m=3

(µi)m

m! (ξT Ψx̃(x̃))m (37)

which, when combined with the expectation gives the remainder term, denote it by α, as

α = Ex̃ exp(iξT x̃)
[ ∞∑

m=3

(µi)m

m! (ξT Ψx̃(x̃))m

]
=

∞∑
m=3

(µi)m

m! Ex̃ exp(iξT x̃)(ξT Ψx̃(x̃))m (38)

This can be bounded using elementary inequalities as follows:

|α| ≤
∞∑

m=3

µm

m! |Ex̃ exp(iξT x̃)(ξT Ψx̃(x̃))m| ≤
∞∑

m=3

µm

m! Ex̃| exp(iξT x̃)||ξT Ψx̃(x̃)|m

=
∞∑

m=3

µm

m! Ex̃|ξT Ψx̃(x̃)|m ≤
∞∑

m=3

µm

m! Ex̃(∥ξ∥∥Ψx̃(x̃)∥)m =
∞∑

m=3

µm

m! ∥ξ∥mEx̃∥Ψx̃(x̃)∥m

≤
∞∑

m=3

1
m! (µCΨ∥ξ∥)m = f(µCΨ∥ξ∥) (39)

where in the last inequality we have used Lemma 2, which says that Ψx̃ is bounded by the same CΨ as Ψx.
We also see that the function

f(z) = exp(z) − 1 − z − 1
2z2 (40)

is increasing and it vanishes at zero where its first and second derivatives vanish as well. Thus, for small
enough µ, it behaves cubically, and our Taylor approximation is valid. □
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Lemma 2 If Ψx is bounded, so is Ψx̃, and by the same constant.

Proof: We first prove
Ψx̃(y) = E{Ψx(x)|x̃ = y} (41)

which is perhaps well-known, and can be proven as follows. We start by a simple identity:

log p(x̃, x) = log p(x̃|x) + log px(x) = log ϕ(x̃ − x) + log px(x) (42)

Next, we take the derivatives of both sides with respect to x, as opposed to x̃ in the proof of Miyasawa-
Tweedie. We obtain

∇x log p(x̃, x) = Σ−1
n (x̃ − x) + ∇x log px(x) (43)

We multiply both sides by p(x|x̃) and integrate over x:∫
(∇x log p(x̃, x))p(x|x̃)dx = Σ−1

n [x̃ − E{x|x̃}] + E{∇x log px(x)|x̃} (44)

Applying the Miyasawa-Tweedie theorem, we see that the term in brackets becomes

x̃ − E{x|x̃} = ΣnΨx̃(x̃) (45)

Therefore, taking account of the fact that ∇x log p(x̃, x) = ∇x log p(x|x̃), (44) becomes∫
(∇x log p(x|x̃))p(x|x̃)dx = Ψx̃(x̃) − E{Ψx(x)|x̃} (46)

Regarding the left-hand side, we note it is the expectation of the gradient of the log-pdf, which is well known
to be always zero. To see this, consider for simplicity the integral without conditioning to obtain∫

(∇x log p(x))p(x)dx =
∫

∇xp(x)dx = 0. (47)

Thus, we have proven (41). Now, if Ψx on the RHS is bounded, so is its (conditional) expectation, and by
the same constant, which proves the Lemma. □

E Analysis of the Gaussian case

Let us consider the Gaussian case. Assume the algorithm is initialized at a Gaussian distribution, and we
run the algorithm with some noisy Gaussian score:

Ψx̃(ξ) = −Σ−1
x̃ ξ (48)

Denote for simplicity xt by x (and same with ν and n) and xt+1 by x′. The iteration becomes

x′ = x̃ + µΨx̃(x̃) +
√

2µ − σ2ν = x + σn − µΣ−1
x̃ (x + σn) +

√
2µ − σ2ν

= [I − µΣ−1
x̃ ]x + σ[I − µΣ−1

x̃ ]n +
√

2µ − σ2ν (49)

This iteration stays Gaussian and zero-mean, when started at such a distribution, which we assume in the
following. So, we only need to analyze the covariance. Denote

M = [I − µΣ−1
x̃ ] (50)

Denoting the covariance of the sampled x by Σ, the covariance Σx′ := cov(x′) can be calculated as

Σx′ = MΣM + σ2M2 + (2µ − σ2)I (51)

To solve a fixed-point of this iteration, consider the EVD

M = UDMUT (52)
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and assume that the covariance of the sampled x, or Σ, can be expressed in the same eigenvectors as
Σ = UDxUT (53)

so the iteration in (51) becomes
Σx′ = UD2

MDxUT + σ2UD2
MUT + (2µ − σ2)UUT (54)

and we see that Σx′ can be expressed with the same eigenvectors, and the iteration only consists of the
diagonal entries

Dx′ = D2
MDx + σ2D2

M + (2µ − σ2)I (55)
which is stationary if

Dx = [I − D2
M]−1[σ2D2

M + (2µ − σ2)I] (56)
and we can go back to the original matrices and see that the covariance at the fixed point fulfills

Σ = [I − M2]−1[σ2M2 + (2µ − σ2)I] (57)
which can be expanded by plugging in the definition of M as

Σ = [2µΣ−1
x̃ − µ2(Σ−1

x̃ )2]−1[σ2(I − 2µΣ−1
x̃ + µ2(Σ−1

x̃ )2) + (2µ − σ2)I]

= [2Σ−1
x̃ − µ(Σ−1

x̃ )2]−1[−2σ2Σ−1
x̃ + µσ2(Σ−1

x̃ )2 + 2I] = −σ2I + [Σ−1
x̃ − µ

2 (Σ−1
x̃ )2]−1

= −σ2I + Σx̃[I − µ

2 (Σ−1
x̃ )]−1 (58)

At this point, note that a) the above calculations were exact, and b) the σ2 expresses solely the noise added
in the iteration of the algorithm, while Σ−1

x̃ is the score used in the algorithm, possibly for a different
(incorrect) noise level. While in the definition of our algorithm the noise level in Σ−1

x̃ is equal to σ2, this
equation does not assume such equality, which will be useful in further analysis below.

Now assume Σ−1
x̃ is actually the score of the noisy data as in the original specification of the algorithm:

Σx̃ = Σx + σ2I. We make a Taylor expansion for the matrix inverse

Σ = −σ2I + Σx̃[I + µ

2 Σ−1
x̃ + µ2

4 (Σ−1
x̃ )2 + o(µ2)] = −σ2I + (Σx + σ2I) + µ

2 I + µ2

4 (Σ−1
x̃ ) + o(µ2)

= Σx + µ

2 I + O(µ2) (59)

Here, we see that the error (bias) in the covariance of the converged sample is µ
2 I for our algorithm. Such

a bias is expected due to finite step size. Next, we compare this error with original Langevin and Oracle
Langevin cases.

Original Langevin (misspecified) The developments above are valid up to (58) for the original Langevin
iteration, which would here be misspecified in the sense of being applied using the noisy-data score function.
(As noted, the effects of misspecification of the score function and the noise-correction in the algorithm are
separated in the developments above.) In particular, if σ2, corresponding to the noise-correction in that
equation, is set to zero, we get the original Langevin. Then we have, when Σx̃ is expanded so that in the
score function, the noise is not zero:

Σ = Σx̃[I + µ

2 Σ−1
x̃ + µ2

4 (Σ−1
x̃ )2 + o(µ2)] = (Σx + σ2I) + µ

2 I + µ2

4 (Σ−1
x̃ ) + o(µ2)

= Σx + [σ2 + µ

2 ]I + O(µ2) (60)

where we see that the error is greater than in our noise-corrected algorithm. Considering the step size equal
to half-denoising, i.e. µ = σ2/2, we have

σ2 + µ

2 = 2µ + µ

2 = 5 × µ

2 (61)

i.e., the error in the original Langevin is exactly five times as large as in our algorithm. In other words, the
error coming from misspesification of the score function is four times the error due to the non-infinitesimal
step size.
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Oracle Langevin The developments above are again valid up to (58) for Oracle Langevin, if σ2 in that
equation is set to zero, and further we set Σx̃ = Σx in the score function. Then we have

Σ = Σx̃[I + µ

2 Σ−1
x̃ + µ2

4 (Σ−1
x̃ )2 + o(µ2)] = Σx + µ

2 I + µ2

4 (Σ−1
x̃ ) + o(µ2) = Σx + µ

2 I + O(µ2) (62)

where we see that the error is exactly the same as in our noise-corrected version (up to second-order terms
in µ). This further corroborates our claim on bias removal.

Convergence analysis Finally, we proceed to a brief convergence analysis in the Gaussian case. Suppose
Σ0 is a stationary point of the iteration in (51). Perturb it as Σ0 + ϵ. It is trivial to see that due to the
linearity of (51), the iteration for the perturbation becomes

ϵ′ = MϵM (63)

and we only need to prove that this converges to zero. Consider the spectral norm of the matrices. We have

∥ϵ′∥ ≤ ∥M∥∥ϵ∥∥M∥ (64)

so we only need to prove that the spectral norm of M is less than one. But Σ−1
x̃ is positive definite, and

thus, for a small enough µ, M = I − µΣ−1
x̃ is positive definite and has spectral norm less than one. Thus,

for any perturbation, not necessarily infinitesimal, the algorithm will converge to the same point, which was
found above. This proves the global convergence of the algorithm in the case of Gaussian covariances. The
assumptions made were that a) the step size is small enough, and b) the algorithm is initialized as Gaussian
(for example initialization at zero, i.e. Gaussian with zero variance, is also valid).

18


	Introduction
	Background
	Score functions and Tweedie-Miyasawa theory
	(Denoising) score matching
	Langevin algorithm

	Noise-corrected Langevin algorithm
	Proposed algorithm
	Theoretical analysis
	Semi-heuristic argument
	Rigorous analysis

	Special case: Sampling by half-denoising

	Experiments
	Related methods and future directions
	Conclusion
	Proof of Theorem 1 (Tweedie-Miyasawa)
	Proof of Corollary 1
	Main proof of Theorem 2
	Lemmas used in Theorem 2
	Analysis of the Gaussian case

