
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

AN ITERATIVE PROMPTING FRAMEWORK FOR LLM-
BASED DATA PREPROCESSING

Anonymous authors
Paper under double-blind review

ABSTRACT

Data preprocessing plays a crucial role in machine learning, directly impacting
model convergence and generalization, especially for simple yet widely used lin-
ear models. However, preprocessing methods are diverse, and there are no deter-
ministic rules for selecting the most suitable method for each feature in a dataset.
As a result, practitioners often rely on exhaustive manual searches, which are
both time-consuming and costly. In this paper, we propose an LLM-based itera-
tive prompting framework that automates the selection of preprocessing methods.
Our approach significantly reduces the number of iterations required to identify
effective preprocessing strategies, thereby lowering human effort. We conduct
an ablation study to analyze the contribution of each design component and pro-
vide extensive empirical evaluations. Results show that our method matches or
surpasses baselines while substantially improving efficiency. The discovered pre-
processing methods also accelerate training—either by improving convergence
speed, enhancing generalization performance, or both.

1 INTRODUCTION

Data preprocessing is a critical stage in the machine learning (ML) pipeline: it shapes the optimiza-
tion landscape (e.g., conditioning) and impacts generalization through bias–variance tradeoffs (Ma-
harana et al., 2022; de Amorim et al., 2023; Li et al., 2017). In practice, however, selecting effec-
tive, leakage-safe1 transformations for heterogeneous features is labor-intensive and often dominates
project time. This has motivated research on automating preprocessing within end-to-end ML sys-
tems.

AutoML methods treat preprocessing as part of a pipeline search problem, typically combining algo-
rithm selection with hyperparameter tuning via Bayesian optimization or evolutionary search (e.g.,
Auto-WEKA (Thornton et al., 2013), auto-sklearn (Feurer et al., 2015), TPOT (Olson et al., 2016)).
These systems explore curated libraries of preprocessing operators and models under cross-validated
evaluation (He et al., 2021; Truong et al., 2019). Reinforcement-learning-based approaches go fur-
ther by modeling pipeline construction as a sequential decision process over editable primitives
(Drori et al., 2018). More recently, LLM-based systems have been used to synthesize data-wrangling
code and propose preprocessing steps (Hong et al., 2025; Guo et al., 2024) (Zhang et al., 2024b;
Meguellati et al., 2025), sometimes coupled with programmatic prompt-optimization frameworks
that iterate over feedback to refine suggestions (Li et al., 2025; Qi et al., 2024).

Despite progress, three challenges persist. (i) Search cost and rigidity: AutoML systems often
operate over fixed, hand-curated operator sets; exhaustive or near-exhaustive exploration becomes
computationally expensive as feature-dependent choices and operator hyperparameters expand com-
binatorially (Mumuni & Mumuni, 2025). (ii) Sample and compute inefficiency: RL-based pipeline
synthesis improves automation but typically requires many environment interactions, careful reward
shaping, and substantial compute to achieve stable policies (Yang et al., 2021; Cai et al., 2023).
(iii) LLM fragility and objective mismatch: LLM-driven preprocessing can suffer from prompt sen-
sitivity, hallucinated transformations, and misalignment with the low-epoch validation objectives

1This term means that no information from the validation or test sets is allowed to influence the fitted
preprocessing or the model during training. All statistics, choices, and fitted parameters must be learned only
from the training data of the current split, then applied to the held-out data purely for evaluation.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

practitioners actually care about (Madaan et al., 2023; Zhang et al., 2024a; Narayan et al., 2022);
moreover, enforcing leakage-safe evaluation and reproducibility remains nontrivial. These limita-
tions motivate approaches that are feature-aware, budgeted (few-epoch), and evaluation-grounded
rather than purely exploratory.

We introduce an LLM-based iterative prompting framework for preprocessing that searches over
input/target mappings using a fixed-iteration budget and hold-out validation as a proxy objective.
Concretely, for a given budget k, the system proposes candidate preprocessing strategies, trains the
downstream model for exactly k epochs on transformed training data, and selects the strategy that
minimizes validation loss on transformed validation data—yielding a search that is aligned with
practical time/compute constraints while remaining feature-dependent and leakage-safe.

The remainder of this paper is organized as follows. We begin by introducing the basic background
of statistical learning and linear regression, followed by mathematical insights into why preprocess-
ing is critical for learning performance, affecting both convergence and generalization. Next, we
present our objective formulation and the proposed LLM-based approach for selecting preprocess-
ing strategies. We then provide an extensive ablation study to validate each design choice, and finally
compare our approach against baselines on a variety of benchmark datasets to validate its efficacy.

2 BACKGROUND AND PROBLEM SETTING

This section briefly reviews the basic background of the statistical learning setting and explains
why data preprocessing matters for both convergence rate and generalization. We then introduce
our learning objective, which aims to optimize the selection of preprocessing strategies through an
LLM-based prompting framework.

2.1 STATISTICAL LEARNING BACKGROUND: WHY PREPROCESSING MATTERS

Let X ∈ Rn×d and y ∈ Rn. Conventional statistical learning setting typically assumes that X, y are
sampled from some unknown probability distribution. A fundamental algorithm is linear regression,
that attempts to capture the linear relationship between the input feature X and output target y.
Such basic setting could help understand why data preprocessing matters. We refer to A.1 for more
mathematical details regarding why preprocessing might affect convergence and generalization.

Convergence perspective. Consider the empirical square-loss, along with the gradient and Hessian
notations:

f(w) =
1

2n
∥Xw − y∥22, ∇f(w) =

1

n
X⊤(Xw − y), H := ∇2f(w) =

1

n
X⊤X.

It is known that the convergence is governed by the spectrum of H . Specifically, the condition
number: κ := λmax(H)

λmin(H) (Nocedal & Wright, 2006; Karimi et al., 2016).

Preprocessing can substantially improve the numerical properties of the learning problem by re-
ducing the condition number of the data covariance matrix, which in turn accelerates convergence
of gradient-based optimization (Gutman & Peña, 2021). Intuitively, good preprocessing makes the
problem more “well-conditioned,” meaning the optimizer can move towards the solution with fewer
small or unstable steps.

For example, scaling or standardizing features (e.g., z-score normalization) ensures that all features
are on a comparable scale, preventing a single high-variance feature from dominating the optimiza-
tion dynamics. Similarly, whitening or decorrelation methods such as PCA transform the data so
that features are uncorrelated and of equal variance; in this ideal case, gradient descent can converge
to the solution in just one iteration. Finally, centering the data (subtracting the mean from both
features and targets) removes the need for the optimizer to handle large intercept terms separately,
further improving numerical stability.

Generalization perspective. Under the well-specified model y = Xw⋆ + ε with E[ε] = 0 and
Var(ε) = σ2I , we have ŵOLS = (X⊤X)−1X⊤y, Var(ŵOLS) = σ2(X⊤X)−1. The predic-
tion variance at test point x is σ2 x⊤(X⊤X)−1x (Hastie et al., 2009). Preprocessing that inflates
small eigenvalues of X⊤X or removes near-null directions (e.g., via PCA truncation) reduces vari-
ance and can lower test MSE (Hoerl & Kennard, 1970).

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

When preprocessing is an invertible linear rescaling (e.g., standardization) applied consistently to
train and test data, OLS predictions are unchanged—only the parameterization differs. General-
ization is affected when regularization or early stopping are used, or when the transform is non-
invertible (e.g., PCA, binning). In ridge and Lasso, unstandardized features receive uneven penalties,
biasing estimates and hurting test error (Hastie et al., 2009; Hoerl & Kennard, 1970); standardization
balances penalties and improves performance. Early stopping similarly acts as directional shrink-
age (Ali et al., 2019; Sonthalia et al., 2024), and preprocessing that flattens the spectrum (scaling,
whitening, PCA) makes this implicit regularization more uniform, leading to better generalization.

While spectral analysis of linear regression provides intuition for why preprocessing affects both
optimization and generalization, the practical task of selecting preprocessing strategies is far from
straightforward. Defining a precise objective—such as minimizing the condition number or balanc-
ing the bias–variance tradeoff—is difficult, since the space of possible transformations is complex,
not explicitly enumerable, and often computationally infeasible to search exhaustively. Moreover,
the design space of column-wise and joint transformations, along with their hyperparameters, is
combinatorial. Each candidate pipeline requires evaluation through cross-validation under leakage-
safe protocols, and the resulting implementations add maintenance overhead as data distributions
evolve.

Industry surveys report that roughly 40%–60% of practitioners’ time is spent on data preparation
tasks rather than modeling (QuantumBlack, 2020; TMMData & Association, 2017), making prepro-
cessing both time-consuming and human-intensive. We therefore explore an LLM-driven approach
that proposes and refines preprocessing pipelines via iterative feedback, aiming to reduce human
effort without sacrificing convergence or generalization.

2.2 OBJECTIVE OF DATA PREPROCESSING

We formalize preprocessing as a pair of mappings rx and ry that transform inputs and targets,
respectively. Let f (k) denote a predictor obtained after k training iterations (e.g., gradient steps) on
the transformed data. Our ideal goal is a two-layer optimization:

min
rx, ry

min
f, k

E
[
ℓ
(
f (k)(rx(X)), ry(Y)

)]
, (1)

which seeks preprocessing strategies (rx, ry) that minimize the best attainable generalization loss,
achieved in as few training iterations k as possible. This objective is not directly tractable: the search
space over (rx, ry) is intricate and not explicitly enumerable, and the inner optimization over (f, k)
is computationally prohibitive.

Consequently, we adopt a practical proxy. We approximate the expectation with a hold-out valida-
tion error and treat k as a budgeted hyperparameter (fixing the number of training iterations/epochs).
Let T and V be a train/validation split. For any candidate (rx, ry), we (i) fit rx, ry on T and apply
them to both T and V (to avoid leakage), (ii) train the model for exactly k iterations on the trans-
formed T , and (iii) evaluate the validation loss on the transformed V . The resulting implementable
objective is

min
rx, ry

Ê(x,y)∈V

[
ℓ
(
f (k)
rx,ry

(
rx(x)

)
, ry(y)

)]
, (2)

where f
(k)
rx,ry is the predictor obtained after k iterations of training on

(
rx(TX), ry(TY)

)
. In our

framework, an LLM proposes candidate (rx, ry) strategies, and we select the one that minimizes the
above proxy objective under the fixed iteration budget k.

3 LLM-BASED ITERATIVE APPROACH: LLM-PRESTO

This section introduces our main approach, LLM-Presto (LLM-based Preprocessing Strategy Op-
timization), for optimizing preprocessing methods, followed by variants that serve as baselines or
ablation settings in the experimental section.

3.1 OUR APPROACH: LLM-PRESTO

Our procedure performs an iterative, LLM-driven search that approximately solves the imple-
mentable version of the ideal two-layer optimization stated previously.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Step 1: Preprocessing strategy generation. An LLM is prompted with a summary of the dataset
and task (feature counts and types, basic statistics, target type), the downstream model class and
hyperparameters, and the iteration budget k. Conditioned on this context, the LLM proposes a
preprocessing strategy (r

(t)
x , r

(t)
y) at iteration t, comprising concrete input/target transformations

(e.g., scaling, imputation, encoding, PCA, target processing).

Step 2: Leakage-safe evaluation under a fixed budget. For the proposed (r
(t)
x , r

(t)
y):

1. Fit transforms on train only: estimate all parameters of r
(t)
x and r

(t)
y using T ; apply the

fitted transforms to both T and V . 2. Train for k iterations: train the downstream model
on r

(t)
x (TX) for exactly k iterations to obtain f

(k)

r
(t)
x ,r

(t)
y

. 3. Score the strategy: compute

Lt := Ê(x,y)∈V

[
ℓ
(
f
(k)

r
(t)
x ,r

(t)
y

(r
(t)
x (x)), r

(t)
y (y)

)]
. Record Lt and maintain the incumbent best L⋆ =

mins≤t Ls with corresponding (r⋆x, r
⋆
y).

Step 3: Iterative refinement via feedback. Provide the LLM with structured feedback from Step
2 (e.g., training/validation losses or task-appropriate metrics, the incumbent L⋆, and a brief sum-
mary of what changed in (r

(t)
x , r

(t)
y)). Using this feedback, the LLM proposes a refined strategy

(r
(t+1)
x , r

(t+1)
y). Iterate Steps 1–3 until a stopping rule is met: (i) the LLM signals no further im-

provements, (ii) L⋆ has not improved for a preset number of iterations, or (iii) a compute/prompt
budget is reached.

Return the best strategy found, (r⋆x, r
⋆
y) ∈ argmint Lt, i.e., the empirical minimizer explored by the

loop. This procedure therefore optimizes the proxy objective derived from equation 1 by (a) fixing
the iteration budget k, (b) evaluating generalization via hold-out validation, and (c) using an LLM
to generate and refine candidate (rx, ry) in a leakage-safe, feedback-driven search.

This iterative feedback loop allows the LLM to explore a wide preprocessing space while remaining
computationally feasible.

Potential Variants of LLM-Presto. To better understand the contribution of each component in
our approach, we define several variants below.

Zero-shot single-pass LLM: This approach queries the LLM with the same initial prompt and
generates the preprocessing strategy once, without any iteration or feedback. It serves as a minimal
baseline for evaluating whether iterative refinement indeed provides a better strategy than a one-time
request.

Self-refine (iterative) (Madaan et al., 2023): This baseline is designed as repeatedly prompting
the LLM to critique and improve upon its latest strategy through multiple rounds. The process
continues until the LLM explicitly outputs ”no changes”. This extension explores whether iterative
self-refinement yields better preprocessing strategies compared to both single-query refinement and
external iterative feedback.

Self-refine (single query): Inspired by the iterative Self-Refine approach, we design a baseline that
instructs the LLM to critique its own suggestions and propose an improved version in response. This
can reduce the need for extra external iterations and can generate better preprocessing strategies in
one interaction. This strategy focuses on exploring whether self-improvement can replace external
model training and feedback. It serves as a baseline that provides a refinement mechanism without
requiring interaction, allowing us to assess the benefit of an explicit interaction.

In the following discussion, we refer to self-refine (single query) as Self-refine I and self-refine
(iterative) as Self-refine II.

Chain-of-thought (CoT) (Wei et al., 2022): The LLM is instructed to generate preprocessing
strategies with reasoning step-by-step. CoT helps the LLM to emphasize the rationale behind each
transformation, which can lead to the production of more logical strategies and can improve in-
terpretability. It may also reduce the likelihood of producing unjustified preprocessing strategies.
Since CoT is a widely adopted prompting technique, we use it as a baseline to benchmark our itera-
tive feedback approach against a standard reasoning-based paradigm.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

These variants allow us to systematically investigate how iterative refinement and prompting style
affect preprocessing strategy search. This provides a clear basis for evaluating the specific advan-
tages of our proposed approach.

4 EMPIRICAL STUDIES

Our experiments are divided into two parts. The first part presents an ablation study that examines
the contribution of each design choice in our proposed method on California Housing (CAH) dataset.
The second part reports the overall empirical results on additional five benchmark datasets. The
datasets used are: for classification tasks: Adult Census Income (ADU), Obesity Risk (OBS), and
Higgs Boson (HIG); for regression tasks: Wine Quality-White (WQW), California Housing (CAH),
and Ames Housing (AMH). These datasets are frequently used in related works (Gijsbers et al.,
2024; Li et al., 2023). Details of the Datasets can be found in Table 8 in Appendix A.3.

4.1 ABLATION STUDY

The ablation study is designed with two main objectives: 1) Assessing the effect of using a limited
number of epochs (i.e. the fixed budget in Step 2 of our approach) to evaluate the performance of
different preprocessing methods, and 2) investigating the impact of incorporating various forms of
feedback into prompts when requesting preprocessing suggestions. The experiments are conducted
on the California Housing Dataset.

The effect of fixed budget. We investigate how the number of searching epochs k in the feedback
affects both the efficiency and stability of finding the optimal preprocessing strategy. Table 1 shows
how k affects the efficiency and stability of finding the best preprocessing method. Very small
budgets (k = 1) are unstable and often lead to poor strategies, while larger budgets (k ≥ 10) provide
little improvement but incur substantially higher costs. Across learning rates, k = 5 consistently
achieves the best trade-off, matching or outperforming a larger k in validation loss while requiring
30–50% fewer epochs. We also note that k = 20 occasionally produces anomalous results, where
the LLM shifts focus toward feature compression (e.g., PCA) prematurely, leading to unexpected
high validation losses. A detailed discussion of this phenomenon is included in the Appendix A.2.
We therefore adopt k = 5 as the default in subsequent experiments.

Table 1: Best loss and total epochs of different feedback budgets and learning rates. k stands for the
number of searching epochs included in the feedback prompt. LR stands for the learning rate. In this
table, total epochs include the epochs during searching process. Best Loss is the smallest validation
loss achieved. Experiments are conducted on the California Housing Dataset, with learning rate
starting at 0.005, which is found to be optimal for the unpreprocessed dataset through parameter
sweep experiments.

k
LR 0.005 0.01 0.1

Best Loss Total Epochs Best Loss Total Epochs Best Loss Total Epochs
1 0.6762 32 0.6223 22 0.6409 24
5 0.5970 88 0.5669 67 0.5767 54

10 0.6137 106 0.5605 124 0.5772 126
20 0.7127 277 0.7552 552 0.5708 209

Investigate the utility of prompt content. With this experiment, our aim is to determine which
information should be included in the feedback prompt of Step 3. We test different signals: Sam-
ple data, a subset of the training set that exposes feature semantics important for imputation or
encoding; Unprocessed training losses, i.e., raw training and validation losses with model pa-
rameters (weights and bias), which directly reflect optimization dynamics; Training losses from
the previous iteration, which help the LLM refine its recommendations based on prior outcomes;
Model parameters, namely weights and bias with feature names, which capture feature importance
and guide dataset-specific strategies; Aggregated statistics, such as the best validation loss so far,
which summarize progress across iterations; and Derived signals, including higher-order indicators
like gradient norms. For convex models such as linear regression, training and validation losses are
typically sufficient, while exploration of higher-order signals is left to future work.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Table 2: Final validation loss with different prompting contents. The first two variants are evaluated
on the zero-shot result, as they directly affect the zero-shot performance. The remaining variants are
evaluated one by one incrementally with our proposed method, LLM-Presto.

Final Loss
with without

Sample Data from Training Set 0.7052 0.7724
Unpreprocessed Training Losses for Each Epoch 0.7378 0.7052
Training Losses for Each Epoch of Last Iteration 0.6295 0.6673

Model Parameters 0.5868 0.6295
Best Validation Loss so far 0.5669 0.5868

Table 2 reports the final validation loss when including or excluding each prompt component. sam-
ple data clearly improves results by exposing feature semantics and aiding imputation, especially
with missing values. In contrast, prompting with unprocessed training losses does not help and
can even hurt performance, likely because raw loss trajectories are noisy and hard for the LLM to
interpret. Adding loss curves from the previous feedback iteration further boosts performance by
revealing the effectiveness of the last strategy and signs of under/overfitting. Model parameters
also help to stabilize performance, often prompting the LLM to propose feature selection. Finally,
best validation loss so far provides a complementary historical context, though its benefit is modest
compared to other signals.

4.2 OVERALL EXPERIMENTS

In this section, our goal is to demonstrate the practical utility of the proposed method by evaluat-
ing its impact on: 1) optimizing final model performance, as reflected by identifying preprocessing
strategies that achieve lower loss or higher accuracy, and 2) improving sampling efficiency, as re-
flected by discovering effective preprocessing strategies and achieving lower generalization error
within fewer training epochs. These two aspects are essential for assessing the effectiveness of a
preprocessing strategy search method: a useful search approach should be able to find preprocessing
strategies that generalize well and at the same time discover them within fewer iterations, reducing
the overall training cost.

To ensure leakage safety, each of the six datasets is split into training and validation sets before any
descriptive statistics are gathered. In the initial prompt, only the training data are used to compute
the statistics for all features. No preprocessing is applied beforehand, preserving the primitiveness
of the raw data. For fair comparison, we account for all training epochs consumed during the search
for the best preprocessing method, since in practice this process is typically performed by humans
through repeated cross-validation runs that require substantial computation.

Baselines. We compare our method with four baselines: (1) Zero-shot, (2) CoT (Chain-of-
Thought, (3) Self-Refine, with (i) Single-Query Self-Refine, and (ii) Iterative Self-Refine. It-
erative Self-Refine can also be considered as an ablation study of the model performance feedback.
These baselines are chosen to represent direct generation, reasoning-enhanced prompting, and it-
erative refinement. All methods are implemented under the same experimental settings to ensure
fair comparison. For each dataset, we fix a set of random seeds and apply the same seeds across
all methods to control variance. Unless otherwise specified, we use a batch size of 256. Since the
optimal learning rate can vary depending on the preprocessing strategies, using a constant value
for both baselines and our method maintains consistency and ensures fair comparison. Specifically,
we set the learning rate to 0.01 for regression tasks and 0.001 for classification tasks. We apply
early stopping with a patience of 10 epochs. Experiments on all datasets are implemented using
the open-source LLM Deepseek-r1:32b, except for the Ames Housing dataset, for which we use
Deepseek-r1:70b due to its more complex feature space (DeepSeek-AI et al., 2025).

Comparison on Final Results. We report task-specific evaluation metrics: accuracy(ACC) for
classification datasets (ADU, OBS, HIG) and loss (RMSE/RMSLE as specified per task) for regres-
sion datasets (WQW, CAH, AMH). Table 3 summarizes the mean best score over multiple random
seeds for each dataset. Compared to the baselines, our proposed method attains the highest accuracy
in classification tasks and the lowest loss in regression tasks. These gains are obtained under the

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 3: Mean best loss/accuracy with standard error on 6 datasets. In the parentheses next to the
dataset abbreviations are their corresponding evaluation metric. For this table we include extreme in
average computation.

ADU(ACC) OBS(ACC) HIG(ACC) WQW(RMSE) CAH(RMSE) AMH(RMSLE)

LLM-Presto 0.853(±0.001) 0.855(±0.005) 0.658(±0.020) 0.732(±0.020) 0.567(±0.090) 0.166(±0.036)

Zero-shot 0.826(±0.040) 0.812(±0.048) 0.626(±0.017) 0.790(±0.064) 0.705(±0.061) 0.381(±0.292)

CoT 0.812(±0.045) 0.762(±0.058) 0.643(±0.007) 0.745(±0.013) 0.726(±0.050) 4.743(±7.187)

Self-refine I 0.845(±0.002) 0.832(±0.013) 0.626(±0.025) 0.746(±0.002) 0.701(±0.059) 0.316(±0.248)

Self-refine II 0.836(±0.016) 0.828(±0.017) 0.603(±0.028) 0.812(±0.056) 0.667(±0.032) 0.196(±0.098)

(a) WQW (Final Iter). (b) CAH (Final Iter). (c) AMH (Final Iter).

(d) WQW. (e) CAH . (f) AMH.

Figure 1: Validation loss curves. Average validation loss (mean ± std) versus epochs across datasets.
The top row presents the final model training curves of LLM-Presto while the bottom row includes
the losses during the searching epoch. The y-axis is in log scale, and number of runs averaged are
shown in the parentheses.

reduced-epoch feedback strategy established above, thus aligning the improvements in final metrics
with our efficiency objectives.

We observe that the variance across seeds and datasets is not uniform, reflecting the distinct char-
acteristics of datasets. For relatively simple datasets such as Wine Quality, which are already well-
cleaned, the optimal preprocessing strategy can be identified in the very first iteration. More complex
datasets require iterative refinement, and single-answer baseline methods frequently fail to find the
best preprocessing strategy in one attempt, while Self-refine II often drifts away from promising
initial solutions due to the lack of informative feedback. This limitation results in higher variance
and degraded final performance.

Figures 1a 1b 1c and 2a 2b 2c provide detailed insight into convergence behavior and vari-
ance across datasets. In regression tasks, LLM-Presto achieves lower validation losses with smaller
standard deviations and flatter curves in later epochs, indicating more stable convergence. In classi-
fication tasks, our approach also reaches higher final accuracy. The clear leftward shift of the curves
demonstrates faster convergence and improved overall performance, suggesting that the preprocess-
ing strategy identified are well optimized.

Comparison on Sampling Efficiency. To quantify sampling efficiency, we measure the number
of training epochs required by each method to reach a certain target performance. The target is
defined as the worst final evaluation metric achieved by the baselines, ensuring that each method has
a valid reference point for comparison. Table 4 shows both the total number of epochs including the
searching stage with k = 5 outside the parentheses and the number of epochs required to fully train
the final model with the identified preprocessing strategy inside the parentheses. The two numbers
are the same for the baselines.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

(a) ADU (Final Iter). (b) OBS (Final Iter). (c) HIG (Final Iter).

(d) ADU. (e) OBS. (f) HIG.

Figure 2: Validation accuracy curves. Average validation accuracy (mean ± std) versus epochs
across datasets. The top row presents the final model training curves of LLM-Presto while the
bottom row includes the accuracy of searching epoch. The number of runs averaged are shown in
the parentheses.

Table 4: The epoch number used by each method to reach the target performance. The target chosen
here is the worst final accuracy/loss that is achieved by the baselines other than extreme outliers, to
ensure there is a valid number for each run. In the bracket is the average number of epochs to reach
the target in the final model training stage.

ADU(ACC) OBS(ACC) HIG(ACC) WQW(RMSE) CAH(RMSE) AMH(RMSLE)

Target 0.8182 0.7236 0.5715 0.8627 0.7839 0.9584
LLM-Presto 15.7(2.3) 61(37.7) 2.7(1) 8.7(8.7) 9(3.7) 22.3(5.7)

Zero-shot >35 57.7 2 79.7 4 129
CoT >38 114.7 1.3 24.3 26.7 >390

Self-refine I 4 56.3 3 38.3 23.7 151
Self-refine II 46 65 5 97.3 4 180.3

As shown in Table 4, LLM-Presto consistently requires fewer epochs in the final training stage to
achieve the same target performance compared to all baselines. For instance, on Ames Housing,
our method reaches the target accuracy within 23 epochs when including the searching stage, and
within only 6 epochs once the optimal preprocessing strategy is fixed. This is significantly lower
than the other baselines. On simpler datasets, the final training stage of LLM-Presto always requires
fewer epochs than the other baselines, and although the total epoch number can be slightly higher, it
remains competitive by enabling the discovery of a more effective preprocessing strategy.

In addition to reducing the number of epochs to target, LLM-Presto also exhibits higher stability
across different datasets. With k = 5, the iterative feedback method consistently achieves the lowest
epoch numbers on all tasks, while the baselines’ ranks vary across datasets. The robustness of our
method helps to prove that the feedback pipeline generalizes well across diverse data characteristics
and problem types, thus highlighting its reliability in practical settings.

In Table 5, we further illustrate sampling efficiency using the epoch number to the best evaluation
metric. Here, the target performance is chosen as the mean best loss/accuracy achieved by our
method. The results show that LLM-Presto reaches the target metric with substantially fewer epochs
across datasets. In contrast, alternative prompting strategies require many more epochs, and often
fail to reach the target even after the maximum training epoch limit. These observations demonstrate
that our method not only improves the final performance, but also achieves the desired performance
or loss level more efficiently, thus reducing training cost.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 5: The epoch number used by each method to reach the target performance. The target set
here is the min best accuracy/loss that is achieved by LLM-Presto. If the target is not achieved, we
include the best metric up to the seen epochs in the parentheses. An extended version of this table
with mean, min, and max listed is included in Appendix A.2 as Table 6 and 7

Dataset ADU(ACC) OBS(ACC) HIG(ACC) WQW(RMSE) CAH(RMSE) AMH(RMSLE)

Target 0.851 0.850 0.643 0.753 0.666 0.207
LLM-Presto 17.3 239 19 14 15 110(final iter)
LLM-Presto 52.3 262 30 19 23 126(with searching)

Zero-shot >84.3 >569 >100 >100 >67 >843
CoT >100 >805 >50 >50 >100 >1000

Self-refine I >100 387 >53 54 >72 >577
Self-refine II >100 >551 >100 >84 >42 >536

As shown in Figure 1d 1e 1f and 2d 2e 2f, the curves for LLM-Presto increase higher for
classification tasks and drop lower for regression tasks during later epochs, despite the oscillation
in the early stages. Although these fluctuations, introduced by the iterative feedback step, reduce
stability compared to single-shot baselines, the overall performance remains competitive. Even with
oscillations, once a more effective preprocessing strategy is identified, the validation curve rapidly
improves and can surpass the baseline curves during searching epochs. This pattern illustrates that
the transient instability is offset by the capacity to discover stronger preprocessing strategies, even-
tually leading to better sampling efficiency.

5 CONCLUSION

This paper studies a simple yet effective iterative prompting method for optimizing column-wise
data preprocessing strategies for linear models. We systematically investigated the types of infor-
mation that should be provided to the LLM in order to generate preprocessing suggestions, and
how these suggestions can be refined through iterative adjustments. Our approach leverages an effi-
cient early-stopping criterion—evaluating validation error within a fixed training budget—to select
the best preprocessing strategy. Through extensive ablation studies, we verified the importance of
each design choice, including the type of information fed to the LLM and the role of early stop-
ping in evaluation. Overall, our method is capable of identifying preprocessing strategies that yield
strongest generalization performance, while also demonstrating significantly improved sample effi-
ciency compared to a variety of baselines—even after accounting for the training episodes consumed
during the preprocessing search.

Limitations and future work. We highlight three main limitations. First, the performance of LLMs
may degrade when the number of features is large, reflecting the broader challenge of handling long-
context inputs (Liu et al., 2024); in such cases, the suggestions may become less specific. Second,
our work focuses primarily on linear models, motivated by their simplicity and interpretability in line
with prior literature (Hastie et al., 2009). Extending the approach to deep learning settings would
be a natural and valuable direction for future research. Third, we have not yet explored integrating
our method into existing AutoML frameworks (Feurer et al., 2015; Olson et al., 2016), which could
further enhance its practical utility. While such integration would require significant engineering
effort, we believe it is an important avenue for future work.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

This work aims to automate data preprocessing to improve the efficiency of machine learning work-
flows. We acknowledge the broader ethical context of this research. While our intention is to reduce
the significant time and cost of manual pipeline design for legitimate applications, we recognize
that any efficiency tool has the potential for dual use. The primary ethical consideration is that the
preprocessing strategies generated by our LLM-based framework could, if applied without scrutiny,
perpetuate or amplify biases present in the underlying data or the LLM itself, leading to unfair
models.

To address this, we emphasize that our method is designed as an assistive tool for practitioners, not a
fully autonomous system. Responsible use requires validating suggested preprocessing steps against
fairness and domain-specific criteria. Our empirical evaluation used standard, publicly available
benchmarks in compliance with their licenses.

REPRODUCIBILITY STATEMENT

We have taken several steps to ensure the reproducibility of our work. The main paper details the
proposed algorithm and its design choices, while the appendix documents implementation specifics,
including parameter sweeps, random seeds, software libraries, and computing environment. All
datasets used in our experiments are publicly available, with data sources clearly provided. A com-
plete code repository with scripts to reproduce all experiments will be released upon publication.

REFERENCES

Alnur Ali, J. Zico Kolter, and Ryan J. Tibshirani. A continuous-time view of early stopping for least
squares. International Conference on Artificial Intelligence and Statistics, 89:142–188, 2019.

Pierre Baldi, Peter Sadowski, and Daniel Whiteson. Searching for exotic particles in high-energy
physics with deep learning. Nature Communications, 5:4308, 2014.

Barry Becker and Ronny Kohavi. Adult. UCI Machine Learning Repository, 1996.

Qingpeng Cai, Can Cui, Yiyuan Xiong, Wei Wang, Zhongle Xie, and Meihui Zhang. A survey on
deep reinforcement learning for data processing and analytics. IEEE Transactions on Knowledge
and Data Engineering, 35:4446–4465, 2023.

Dean R. De Cock. Ames, iowa: Alternative to the boston housing data as an end of semester
regression project. Journal of Statistics Education, 19, 2011.

P. Cortez, Antonio Luı́z Cerdeira, Fernando Almeida, Telmo Matos, and José Reis. Modeling wine
preferences by data mining from physicochemical properties. Decis. Support Syst., 47:547–553,
2009a.

Paulo Cortez, A. Cerdeira, F. Almeida, T. Matos, and J. Reis. Wine quality data set. https://
archive.ics.uci.edu/ml/datasets/wine+quality, 2009b. UCI Machine Learn-
ing Repository.

DanB. Housing prices competition for kaggle learn users. https://kaggle.com/
competitions/home-data-for-ml-course, 2018. Kaggle.

Lucas B.V. de Amorim, George D.C. Cavalcanti, and Rafael M.O. Cruz. The choice of scaling
technique matters for classification performance. Applied Soft Computing, 133:109924, 2023.

DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, et al.
Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement learning, 2025.

Iddo Drori, Yamuna Krishnamurthy, Rémi Rampin, Raoni Lourenço, Jorge One, Kyunghyun Cho,
Claudio Silva, and Juliana Freire. Alphad3m: Machine learning pipeline synthesis. International
Conference on Machine Learning Workshop on AutoML, 2018.

Matthias Feurer, Aaron Klein, Katharina Eggensperger, Jost Tobias Springenberg, Manuel Blum,
and Frank Hutter. Efficient and robust automated machine learning. Advances in Neural Infor-
mation Processing Systems, 2015.

10

https://archive.ics.uci.edu/ml/datasets/wine+quality
https://archive.ics.uci.edu/ml/datasets/wine+quality
https://kaggle.com/competitions/home-data-for-ml-course
https://kaggle.com/competitions/home-data-for-ml-course

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Pieter Gijsbers, Marcos L. P. Bueno, Stefan Coors, Erin LeDell, Sébastien Poirier, Janek Thomas,
Bernd Bischl, and Joaquin Vanschoren. Amlb: an automl benchmark. Journal of Machine Learn-
ing Research, pp. 1–65, 2024.

Siyuan Guo, Cheng Deng, Ying Wen, Hechang Chen, Yi Chang, and Jun Wang. Ds-agent: auto-
mated data science by empowering large language models with case-based reasoning. 2024.

David H. Gutman and Javier F. Peña. The condition number of a function relative to a set. Mathe-
matical Programming, 188, 2021.

Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The Elements of Statistical Learning: Data
Mining, Inference, and Prediction. Springer, 2009.

Xin He, Kaiyong Zhao, and Xiaowen Chu. Automl: A survey of the state-of-the-art. Knowledge-
Based Systems, 212, 2021.

Arthur E. Hoerl and Robert W. Kennard. Ridge regression: Biased estimation for nonorthogonal
problems. Technometrics, 12:55–67, 1970.

Sirui Hong, Yizhang Lin, Bang Liu, Bangbang Liu, Binhao Wu, et al. Data interpreter: An llm agent
for data science, 2025.

Hamed Karimi, Julie Nutini, and Mark Schmidt. Linear convergence of gradient and proximal-
gradient methods under the polyak–Łojasiewicz condition. European Journal of Operational
Research, 2016.

R. Kelley Pace and Ronald Barry. Sparse spatial autoregressions. Statistics Probability Letters, 33:
291–297, 1997.

Jundong Li, Kewei Cheng, Suhang Wang, Fred Morstatter, Robert P. Trevino, Jiliang Tang, and
Huan Liu. Feature selection: A data perspective. ACM Comput. Surv., 50, 2017.

Peng Li, Zhiyi Chen, Xu Chu, and Kexin Rong. Diffprep: Differentiable data preprocessing pipeline
search for learning over tabular data. Proceedings of the ACM on Management of Data, 2023.

Ziming Li, Qianbo Zang, David Ma, Jiawei Guo, et al. Autokaggle: A multi-agent framework for
autonomous data science competitions. In International Conference on Learning Representations
2025 Third Workshop on Deep Learning for Code, 2025.

Nelson F. Liu, Kevin Lin, John Hewitt, Ashwin Paranjape, Michele Bevilacqua, Fabio Petroni, and
Percy Liang. Lost in the middle: How language models use long contexts. Transactions of the
Association for Computational Linguistics, 12:157–173, 2024.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri
Alon, et al. Self-refine: Iterative refinement with self-feedback. Conference on Neural Informa-
tion Processing Systems, 2023.

Kiran Maharana, Surajit Mondal, and Bhushankumar Nemade. A review: Data pre-processing and
data augmentation techniques. Global Transitions Proceedings, 3:91–99, 2022.

Elyas Meguellati, Nardiena Pratama, Shazia Sadiq, and Gianluca Demartini. Are large language
models good data preprocessors?, 2025.

Alhassan Mumuni and Fuseini Mumuni. Automated data processing and feature engineering for
deep learning and big data applications: A survey. Journal of Information and Intelligence, 3:
113–153, 2025.

Avanika Narayan, Ines Chami, Laurel Orr, Simran Arora, and Christopher Ré. Can foundation
models wrangle your data? International Conference on Very Large Data Bases, 2022.

Jorge Nocedal and Stephen J. Wright. Numerical Optimization. Springer Science & Business Media,
2006.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Randal S. Olson, William Bartley, Ryan J. Urbanowicz, and Jason H. Moore. TPOT: A tree-based
pipeline optimization tool for automating machine learning. Genetic and Evolutionary Computa-
tion Conference Companion, pp. 251–259, 2016.

Danrui Qi, Zhengjie Miao, and Jiannan Wang. Cleanagent: Automating data standardization with
llm-based agents. arXiv preprint arXiv:2403.08291, 2024.

McKinsey & Company / QuantumBlack. Rethinking ai talent strategy as automl comes of age, 2020.

Walter Reade and Ashley Chow. Multi-class prediction of obesity risk. https://kaggle.com/
competitions/playground-series-s4e2, 2024. Kaggle.

Rishi Sonthalia, Jackie Lok, and Elizaveta Rebrova. On regularization via early stopping for least
squares regression. arXiv:2406.04425, 2024.

Chris Thornton, Frank Hutter, Holger H. Hoos, and Kevin Leyton-Brown. Auto-weka: combined
selection and hyperparameter optimization of classification algorithms. International Conference
on Knowledge Discovery and Data Mining, pp. 847–855, 2013.

TMMData and Digital Analytics Association. Nearly 40% of data professionals spend half of their
time prepping data rather than analyzing it, 2017.

Anh Truong, Austin Walters, Jeremy Goodsitt, Keegan Hines, C. Bayan Bruss, and Reza Farivar. To-
wards automated machine learning: Evaluation and comparison of automl approaches and tools.
International Conference on Tools with Artificial Intelligence (ICTAI), pp. 1471–1479, 2019.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, brian ichter, Fei Xia, Ed Chi, Quoc V
Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language models.
Advances in Neural Information Processing Systems, pp. 24824–24837, 2022.

Daniel Whiteson. HIGGS. UCI Machine Learning Repository, 2014.

Junwen Yang, Yeye He, and Surajit Chaudhuri. Auto-pipeline: Synthesizing complex data pipelines
by-target using reinforcement learning and search. International Conference on Very Large Data
Bases, 2021.

Haochen Zhang, Yuyang Dong, Chuan Xiao, and Masafumi Oyamada. Jellyfish: A large language
model for data preprocessing. Conference on Empirical Methods in Natural Language Process-
ing, 2024a.

Haochen Zhang, Yuyang Dong, Chuan Xiao, and Masafumi Oyamada. Large language models as
data preprocessors. International Conference on Very Large Data Bases Workshops, 2024b.

A APPENDIX

This appendix introduces additional background about mathematical insights into why preprocess-
ing matters, additional empirical results that may be of interest to readers, and experimental details
that used to reproduce our experiments.

A.1 MORE MATH DETAILS

Convergence perspective. Consider the empirical square-loss, along with the gradient and Hessian
notations:

f(w) =
1

2n
∥Xw − y∥22, ∇f(w) =

1

n
X⊤(Xw − y), H := ∇2f(w) =

1

n
X⊤X.

Consider gradient descent with step size η > 0. It follows

wt+1 = wt − η∇f(wt), et+1 = (I − ηH)et, et := wt − w⋆.

12

https://kaggle.com/competitions/playground-series-s4e2
https://kaggle.com/competitions/playground-series-s4e2

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

If 0 < η < 2/λmax(H), then ∥et∥2 ≤ ρt∥e0∥2 with ρ = maxi |1 − ηλi(H)|. Using the optimal
fixed step η⋆ = 2

λmax(H)+λmin(H) yields the linear rate

∥et∥2 ≤
(κ− 1

κ+ 1

)t

∥e0∥2, κ :=
λmax(H)

λmin(H)
.

Thus, convergence speed is controlled by the condition number κ.

Here are some examples of how preprocessing might improve condition number. Applying an in-
vertible feature transform Z = XP replaces H by P⊤HP (Gutman & Peña, 2021). Good prepro-
cessing chooses P so that P⊤HP is closer to I (smaller κ).

Scaling/standardization (e.g., z-scores) approximately equalizes column norms and typically re-
duces κ. In the toy case of uncorrelated columns with variances σ2

j , H = diag(σ2
j) so κ =

maxj σ
2
j /minj σ

2
j ; standardizing (σj = 1) gives κ = 1.

With centered X = UΣV ⊤, set Z := XV Σ−1
√
n so that 1

nZ
⊤Z = I . Then H = I and gradient

descent with η = 1 converges in a single step in the transformed coordinates. Centering X and y
(when fitting an intercept) decouples the intercept and generally improves conditioning.

Generalization perspective. If the preprocessing is invertible and linear (e.g., scaling by S) and
the same transform is applied to train and test features, then OLS predictions are invariant: us-
ing Z = XS merely reparameterizes w. Generalization changes arise when (i) regularization or
early stopping is used, or (ii) the transform is non-invertible (e.g., PCA truncation, winsorization,
binning).

Consider ridge on Z = XS:

β̂ = argmin
β

1

2n
∥Zβ − y∥22 +

λ

2
∥β∥22.

In original coordinates θ = Sβ,

min
θ

1

2n
∥Xθ − y∥22 +

λ

2
θ⊤S−2θ.

Thus, without standardization, ridge (and similarly Lasso) imposes uneven feature-wise penalties
(small-variance features are penalized more), which can increase bias and harm test error (Hastie
et al., 2009; Hoerl & Kennard, 1970). Standardization makes the penalty more isotropic and typi-
cally improves generalization.

One might also consider the perspective of early stopping as spectral shrinkage (Ali et al., 2019;
Sonthalia et al., 2024). After t GD steps,

ŵt = gt(H)
1

n
X⊤y, gt(λ) =

1− (1− ηλ)t

λ
,

so each eigendirection of H is shrunk by gt(λ). A spread spectrum induces anisotropic shrinkage
(overfitting high-variance directions, underfitting low-variance ones). Preprocessing that flattens the
spectrum (scaling, whitening, PCA) makes this implicit regularization more uniform, often reducing
test error.

A.2 ADDITIONAL RESULTS

This subsection provides details and further analysis of the empirical study in Section 4.

Comparison on Feedback Budget We compare how the searching epoch number k in the feed-
back affects the efficiency of finding the optimal preprocessing strategy. We also test whether k is
stable regarding different learning rates. By optimal we mean the optimal of that specific run. As

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

shown in Table 1, setting the feedback epoch number to 5 achieves the best balance between opti-
mization quality and computational efficiency. With LR = 0.005, it reaches the lowest loss (0.5970)
while requiring substantially fewer epochs than larger settings. Similar trends hold for LR = 0.01
and 0.1, where k = 5 matches or outperforms k = 10 in loss (0.5669 vs. 0.5605 at LR = 0.01;
0.5767 vs 0.5772 at LR = 0.1), and with around 50% fewer epochs (67 vs. 124 and 54 vs. 126). In
the contrary, k = 1 is unstable, often leading to higher losses and failing to provide reliable feed-
back for strategy selection. On the other hand, increasing k ≥ 10 does not significantly improves the
performance compared to k of 5, and because of the higher costs of training it leads to diminishing
returns. k = 5 is also insensitive to the change in learning rate, as observed from its consistent good
performance regarding all three learning rates. In conclusion, k = 5 is both efficient and stable in
finding the optimal preprocessing strategy. Therefore, we choose k = 5 as the default.

Effect of Large Feedback Budget As shown in Table 1, we observe that the k = 20 experiments
occasionally exhibit degraded performance compared to smaller feedback budgets. A plausible
explanation is that, since the model is often trained close to convergence within the k = 20 budget,
the LLM infers that the current preprocessing strategy is already sufficiently effective. Consequently,
the LLM tends to shift its focus toward feature selection or dimensionality reduction, rather than
exploring additional preprocessing strategies. For example, it frequently proposes the use of PCA
to compress the feature space, even when the number of features is already small.

Dimensionality Reduction (PCA)
- **Objective:** Reduce the number of features while retaining
most of the variance.
- **Implementation:**
‘‘‘python
from sklearn.decomposition import PCA
Apply PCA to reduce dimensionality
pca = PCA(n_components=0.95)
Retain 0.95 of variance
principal_components = pca.fit_transform(

data[[’feature1’, ’feature2’, ...]]
)
Replace the original features with PCA components
data_pca = pd.DataFrame(

principal_components,
columns=[’PC1’, ’PC2’, ...]

)

While dimensionality reduction and feature selection is expected with the LLM’s objective of opti-
mizing efficiency, it leads to a worse performance. This is because the model prioritizes improving
efficiency over refining the preprocessing pipeline as a whole, thus discarding potentially informa-
tive features.

Additional Analysis of Epochs to Reach Target Table 6 and 7 report the detailed number of
training epochs required by each method to achieve the target performance.

LLM-Presto consistently reach the target in significantly fewer epochs compared to the baselines
whether or not the searching epoch number is taken into account. Even when additional searching
increases the total number of epochs, the process remains competitive and is capable of discover
stronger preprocessing strategies. In contrast, the baselines often fail to meet the target. They
converge around the best observed metric shown in the parentheses. This indicates that without
iterative feedback refinement, these approaches may stall below the desired performance.

Data complexity influences both the absolute epoch number and the relative gap between methods.
For example, on simpler datasets such as WQW, LLM-Presto reaches the target in fewer than 20
epochs, while some baselines barely reach the target within the total epoch number limit. On more
challenging datasets such as ADU and AMH, the gap enlarges, with LLM-Presto still reaching the
target while other methods fail.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Table 6: Epochs to reach the target accuracy for ADU, OBS, and HIG. If the goal is not achieved,
we include the best metric within the seen epochs in parentheses. This table is the full version of
Table 5 from Section 4.2 on classification tasks.

(a) ADU

Mean Max Min
Target 0.851

LLM-Presto (final iter) 17.3 20 16
LLM-Presto (with searching) 52.3 66 50

Zero-shot > 84.3 > 100(0.780) 53
CoT > 100 > 100(0.760) > 100(0.844)

Self-refine I > 100 > 100(0.843) > 100(0.847)
Self-refine II > 100 > 100(0.817) > 100(0.847)

(b) OBS

Mean Max Min
Target 0.850

LLM-Presto (final iter) 239 332 110
LLM-Presto (with searching) 262 357 130

Zero-shot > 569 > 1000(0.849) 291
CoT > 805 > 1000(0.803) 415

Self-refine I 387 475 267
Self-refine II > 551 > 1000(0.844) 166

(c) HIG

Epochs Mean Max Min
Target 0.643

LLM-Presto (final iter) 19 45 1
LLM-Presto (with searching) 30 65 9

Zero-shot > 100 > 100(0.607) > 100(0.637)
CoT > 50 > 100(0.637) 20

Self-refine I > 53 > 100(0.637) 20
Self-refine II > 100 > 100(0.573) > 100(0.623)

A.3 EXPERIMENT DETAILS FOR REPRODUCIBLE RESEARCH

Datasets. In Table 8 we present the full description of the datasets we use. All datasets are obtained
from public repositories: Adult Census Income (Becker & Kohavi, 1996), Obesity Risk (Reade
& Chow, 2024), Higgs Boson (Baldi et al., 2014; Whiteson, 2014)(UCI dataset version 1), Wine
Quality (White) (Cortez et al., 2009a;b), California Housing (Kelley Pace & Barry, 1997)(loaded
via sklearn.datasets.fetch california housing), and Ames Housing (Cock, 2011).

Random Seed. For reproducibility, we fixed three random seeds: 1757860097, 1758570208, and
1758568404. For each dataset, we evaluated all methods under the same three random seeds to
ensure fair comparison under identical initialization and data shuffling conditions.

Software libraries. Experiments were implemented in Python 3.10.12 and rely on a standard ML
stack, including PyTorch 2.7.1, scikit-learn 1.7.0, NumPy 2.2.6, and pandas 2.3.1.

Computing environment. All experiments were executed on a Linux workstation Linux-5.15.0-
131-generic-x86 64-with-glibc2.35. GPU runs used an NVIDIA RTX A5000 (24 GB) with Driver
560.35.05 and CUDA 12.6.

Parameter sweeps. We varied learning rates and used a fixed batch size. We swept the learning rate
over 0.001, 0.01 with batch size set to 256 for all runs. Following early tuning, we used learning
rate 0.01 for regression tasks on Ames Housing, California Housing, and Wine Quality, and 0.001
for classification tasks on Adult Census, Higgs, and Obesity Risk.

Data split. For all experiments, the train-validation split is set to 80:20. The same split was applied
across all methods to ensure fair comparison.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Table 7: Epochs to reach the target loss for WQW, CAH, AMH. If the goal is not achieved, we
include the best metric within the seen epochs in parentheses. This table is the full version of
Table 5 from Section 4.2 on regression tasks.

(a) WQW

Epochs Mean Max Min
Target 0.753

LLM-Presto (final iter) 14 25 2
LLM-Presto (with searching) 19 35 2

Zero-shot > 100 > 100(0.867) > 100(0.767)
CoT > 50 > 100(0.757) 5

Self-refine I 54 62 50
Self-refine II > 84 > 100(0.893) 51

(b) CAH

Epochs Mean Max Min
Target 0.666

LLM-Presto (final iter) 15 29 1
LLM-Presto (with searching) 23 43 4

Zero-shot > 67 > 100(0.747) 2
CoT > 100 > 100(0.784) > 100(0.691)

Self-refine I > 72 > 100(0.754) 16
Self-refine II > 42 > 100(0.700) 6

(c) AMH

Epochs Mean Max Min
Target 0.207

LLM-Presto (final iter) 110 208 59
LLM-Presto (with searching) 126 228 69

Zero-shot > 843 > 1000(0.706) 529
CoT > 1000 > 1000(8.303) > 1000(0.211)

Self-refine I > 577 > 1000(0.461) 156
Self-refine II > 536 > 1000(0.274) 94

Table 8: Description of selected datasets. Num stands for numerical and Cat stands for categorical.
The first three datasets are used for Classification task, the last three are used for Regression task.
For classification tasks, we choose accuracy as the evaluation metric. For regression tasks, we use
root mean square error (RMSE) for Wine Quality and California Housing dataset, and root mean
square logarithmic error (RMSLE) for the Ames Housing, as this is the evaluation metric used by
the Kaggle Housing Prices Competition (DanB, 2018).

Dataset Name Resource Feature Type Feature Number Sample number
Adult Census Income UCI Num & Cat 14 48842

Obesity Risk Kaggle Num & Cat 17 20758
Higgs Boson UCI Num 28 98050

Wine Quality (White) UCI Num 11 4898
California Housing scikit-learn Num 8 20640

Ames Housing OpenML Num & Cat 79 1460

A.4 LLM USAGE

Large Language Models (LLMs) were used in the preparation of this paper for limited editorial
assistance: grammar checking, phrasing refinement, and improvement of clarity. They were also
used to help with LaTeX table formatting and to support, but not replace, parts of the literature
search. All research ideas, methodological design, experiments, analyses, and interpretations are
solely the work of the authors.

16

	Introduction
	Background and Problem Setting
	Statistical Learning background: why preprocessing matters
	Objective of data preprocessing

	LLM-based Iterative Approach: LLM-Presto
	Our Approach: LLM-Presto

	Empirical Studies
	Ablation Study
	Overall Experiments

	Conclusion
	Appendix
	More Math Details
	Additional Results
	Experiment Details for Reproducible Research
	LLM Usage

