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ABSTRACT

Integrated circuit (IC) footprint geometry labeling refers to the process of convert-
ing pin diagrams in IC datasheets into machine-readable geometric parameters.
This task is critical in printed circuit board (PCB) design and component assem-
bly, as accurate labeling ensures proper IC placement and reliable connectivity.
The process is challenged by unstructured annotations, complex footprint arrange-
ments, and abstract geometric diagrams, making fully automated labeling methods
inadequate. Traditional EDA tools require heavy manual input and are slow. Exist-
ing automation methods, such as OCR or object detection, can extract text or sim-
ple shapes but fail to capture the implicit geometric relationships in IC diagrams,
leaving the labeling task incomplete. Recent work has shown that end-to-end
large multimodal models (LMMs) can perform IC geometry labeling. However,
by treating the task as a black box, these methods are prone to shortcut learn-
ing and lack interpretability. In this work, we introduce ICLABAGENT, the first
multi-agent framework for fully automated IC footprint geometry labeling that
explicitly models the workflow of expert engineers to produce more interpretable
and reliable labeling outcomes. Furthermore, we present ICAGENT-INSTRUCT,
the first dynamic planning and reasoning dataset tailored for IC footprint geom-
etry labeling. Extensive experiments show that ICLABAGENT improves overall
accuracy by 10.3% compared to the previous SOTA method and by 79.5% com-
pared to manual annotation. Despite using only simple supervised fine-tuning on
a 7B model (Qwen2-VL-7B), ICLABAGENT surpasses general-purpose LMMs
such as GPT-5 (by 94.6%) and Gemini-2.5 Flash (by 378.8%).

1 INTRODUCTION

Integrated circuits (ICs) are miniaturized electronic systems with many interconnected components.
IC pins are represented in footprint diagrams, which are often referred to as “Suggest Pads” or “Land
Patterns” in IC datasheets. In printed circuit board (PCB) design, engineers must precisely label IC
pin footprints, since this ensures correct component placement and reliable electrical connections.
Many component vendors, such as Texas Instruments (Texas Instruments, 2025) and CUI (bel,
2025), provide footprint description diagrams within their IC datasheets. In addition, third-party
libraries like Digi-Key (Electronics, 2025) and SnapEDA (SnapMagic Search, 2025) offer supple-
mentary footprint resources. Despite the abundance of available IC datasheets and footprint dia-
grams (e.g., over 13 million electronic products in Digi-Key), there remains a lack of efficient tools
capable of converting these abstract geometric diagrams into machine-readable numerical descrip-
tions. This gap slows down PCB design and manufacturing, as engineers must manually interpret
diagrams, a process that is time-consuming, error-prone, and detrimental to design cycle speed and
reliability (ASSEMBLY, 2021).

Traditional electronic design automation (EDA) tools require expert operation and lack automation
for interpreting datasheet diagrams. As a result, they are inefficient and difficult to use for large-scale
or rapid PCB design. Although deep-learning methods such as OCR (Du et al., 2024; Duan et al.,
2025) and object detection (Jocher, 2020; Tan et al., 2020) are widely used for PDF text extraction
and content understanding, they primarily focus on text comprehension and image description tasks.
Consequently, they are inadequate for handling the complex text-symbol geometric understanding
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Key Parameters
pin per side=6, inner side distance=3.2, outer side distance=4.3,
pin spacing within side=0.5,
side-to-side distance=(3.2+4.3)/2=3.75,
dx1=0.55, dy1=0.25, dx2=2.6, dy2=2.6.
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Figure 1: ICLABAGENT simulates the human expert engineer’s reasoning workflow. Typical work-
flow for a PCB engineer to label IC footprint pin geometry information involves four sequential
steps: (1) searching for the diagram in the datasheet, (2) identifying the footprint type (e.g.,
whether the IC has pins on 2 sides, 4 sides, or arranged in a grid) and planning for the key pa-
rameters to be extracted, (3) searching for and calculating the key parameter values, and (4)
manually entering the extracted key parameters into EDA tools to generate footprint drawings
with geometric information. ICLABAGENT directly mimics the above workflow and replaces each
key step with a task-specific LMM agent, aiming at fully automated IC footprint labeling.

required for footprint diagrams, especially when implicit information is omitted. Large multimodal
models (LMMs) advance this capability by deep reasoning over the text-image relationships and
have demonstrated remarkable capabilities across a range of domains, including general-purpose
reasoning (Hurst et al., 2024; Guo et al., 2025; Wang et al., 2024), geometric and mathematical
reasoning (Lu et al., 2023; Masry et al., 2023; Gao et al., 2023), image understanding (Guo et al.,
2024; Tzelepi & Mezaris, 2024), and medical diagnosis (Ikezogwo et al., 2023). Building on this
progress, LLM4-IC8K (Wang et al., 2025a) introduces a two-stage training framework that fine-
tunes an LMM for automated IC footprint geometry understanding and labeling. However, by treat-
ing the task as a black box, these end-to-end methods neglect the intermediate reasoning steps that
PCB engineers naturally follow, such as locating the diagram, identifying IC types, and extracting
parameters. These steps are essential for ensuring interpretability and reliability. In contrast, our
multi-agent design explicitly mirrors this human workflow through diagram detection, type classifi-
cation, parameter extraction, and description generation.

Recent advancements in agent-based systems (Park et al., 2023; Hong et al., 2023; Chen et al.,
2024; Wu et al., 2024b) have demonstrated impressive capabilities across a wide range of domains,
including strategic gameplay (Wang et al., 2023), complex task automation (Schick et al., 2023),
multimodal content generation (Yang et al., 2023), medical diagnosis (Sun et al., 2025; Wang et al.,
2025b), and embodied agent interaction (Schumann et al., 2024). Agent-based LMM systems en-
able dynamic task decomposition and strategic planning, making them particularly well-suited for
domains that involve expert knowledge, complex reasoning workflows, and multi-step decision-
making pipelines. However, no prior work has applied such frameworks to IC geometry labeling,
leaving a gap that our work addresses.

Motivated by the natural reasoning process employed by PCB engineers during IC footprint la-
beling tasks, we propose ICLABAGENT, a novel framework that enables step-by-step dy-
namic reasoning, explicitly simulating the expert workflow used by real-world PCB engineers.
ICLABAGENT employs multiple task-specific agents to construct a multi-stage workflow for gener-
ating pin description labels of IC footprints, as illustrated in Figure 1. Our main contribution of this
article in advancing agent-based IC footprint labeling are fourfold:

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

1. We introduce ICLABAGENT, the first multi-agent framework that emulates the IC
footprint understanding and labeling workflow of expert PCB engineers by incorpo-
rating IC footprint classification, dynamic planning, and key parameter extraction through
multi-step reasoning.

2. We develop ICAGENT-INSTRUCT, the first dynamic planning and reasoning dataset
specifically designed for IC footprint geometry labeling. This dataset is tailored to fine-
tune LMMs with planning strategies and geometric understanding reflective of expert-level
PCB engineering knowledge. All datasets will be publicly available upon acceptance.

3. We propose a multi-stage training strategy that sequentially fine-tunes three task-
specific LMM agents, each specializing in a distinct subtask: footprint diagram localiza-
tion, footprint classification and parameter planning, and key parameter extraction.

4. We evaluate our framework extensively on the IC footprint geometry labeling bench-
mark and each workflow stage. The results demonstrate our approach’s effectiveness in
providing interpretable and practical reasoning for IC footprint labeling. Our method uses
only SFT training with the lightweight base model Qwen2-VL-7B (Wang et al., 2024). In
contrast, state-of-the-art general LMMs, such as GPT-5 (OpenAI, 2025) and Gemini 2.5
Flash (Comanici et al., 2025), fail to complete the labeling task.

2 RELATED WORK

2.1 LMM AGENTS

LMM agents are intelligent systems powered by LMMs, capable of perceiving the environment,
reasoning about goals, and executing actions. These capabilities enable them to autonomously
perform complex tasks traditionally requiring human expertise, while adapting to task-specific re-
quirements (Luo et al., 2025). Recent advances in LMM agents have demonstrated notable success
in simulating domain-expert workflows across a range of applications, including strategic game-
play (Wang et al., 2023), software development (Yang et al., 2023; Qian et al., 2023), creative
content generation (Yang et al., 2022), embodied interaction (Schumann et al., 2024), and clini-
cal diagnosis (Sun et al., 2025; Wang et al., 2025b). Central to their effectiveness is the perceiv-
ing–planning–reasoning–execution architecture, which equips these agents to handle dynamic en-
vironments and resolve multi-step, case-specific problems. LMM agents have shown growing po-
tential in the PCB engineering industry. Most existing applications focus on EDA, encompassing
domain-specific assistant chatbots (Liu et al., 2023; Han et al., 2023; Chen et al., 2025), hardware
description language (HDL) generation (Wu et al., 2024a; Chang et al., 2023), and code verification
and analysis (Orenes-Vera et al., 2021). However, these efforts primarily address the macroscopic
aspects of PCB design, often neglecting the foundational components, such as detailed IC footprint
information. These footprints are typically embedded within lengthy datasheet PDFs in the form
of abstract geometric diagrams, which still require significant manual effort to convert into struc-
tured numeric descriptions. We introduce the first LMM agent system devoted to addressing the IC
footprint labeling problem, laying the foundation for automating various downstream EDA tasks.

2.2 AUTOMATED IC FOOTPRINT LABELING

Traditional PCB component geometry generation is a labor-intensive and time-consuming process
that involves manually interpreting datasheets, creating footprints, generating symbols, and mapping
signals (Ni et al., 2020; hun, 2021). As modern designs often involve hundreds of components, this
manual approach becomes a significant bottleneck (Martens, 2022), susceptible to inconsistencies,
human error, and outdated libraries due to frequent specification updates (Teel, 2023; Abraham,
2025). These challenges highlight the critical need for automated, data-driven solutions to enhance
both the efficiency and reliability of PCB design workflows. Existing PCB labeling methods primar-
ily focus on the segmentation or classification of IC footprints (Ni et al., 2020; Yang et al., 2024).
However, these approaches fail to address the geometric information of individual IC pins, limiting
the automated labeling process to a higher level, overlooking the intricate details of pin-level ge-
ometry. Although object detection methods (Jocher, 2020; Tan et al., 2020) can assist in counting
IC pins and estimating their relative sizes, they struggle with footprint diagrams that omit implicit
information. Optical Character Recognition (OCR) methods (Du et al., 2024; Duan et al., 2025) can
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extract textual data from datasheet images, but cannot interpret the physical or geometric meaning of
numerical labels. Some works combine object detection and OCR for diagram object detection (Hu
et al., 2023) or for converting legacy schematic diagrams (Nurminen et al., 2020). However, these
methods do not address the gap between the extracted annotations and the underlying geometric
knowledge. LLM4-IC8K (Wang et al., 2025a) introduces a two-stage training framework that fine-
tunes an LMM for automated IC footprint geometry understanding and labeling. However, this
end-to-end approach treats the IC footprint labeling task as a black-box problem, neglecting the
intermediate reasoning processes employed by expert PCB engineers. In contrast, our framework
introduces step-by-step dynamic reasoning, explicitly simulating the workflow of real-world PCB
engineers, which leads to more interpretable and reliable footprint labeling performance.

3 IC GEOMETRY UNDERSTANDING PROBLEM

3.1 IC FOOTPRINT LABELING WORKFLOW

Understanding the IC diagrams is fundamental to effective PCB design and accurate IC module
mounting. The geometry of IC footprints encompasses the spatial configuration of IC pins and
the dimensional specifications of each pin as represented in technical schematics. Within the PCB
design and manufacturing industry, the arrangement and dimensions of an IC module’s pin foot-
prints critically influence both its physical placement on the board and the integrity of its electrical
connections, thereby ensuring the proper functionality of the circuit.

The problem of understanding IC geometry labeling can be delineated into three primary compo-
nents: (1) determining the total number of pins in the IC diagram, (2) analyzing the spatial arrange-
ment (i.e., coordinates) of the pins, and (3) discerning the shape and dimensions of each individual
pin. While experienced engineers may be able to estimate the number of pins in low-pin-count
IC footprint diagrams through intuition, the precise coordinates and dimensions of the pins cannot
be ascertained instantaneously. Furthermore, IC modules often comprise over a hundred pins, ren-
dering manual and immediate pin counting impractical. As a result, engineers typically adopt a
step-by-step approach to deconstruct the diagrams and extract key parameters that facilitate accurate
identification of IC footprints.

When identifying an IC footprint, an engineer typically begins by determining the number of pins
depicted in the diagram. This is achieved by analyzing the geometric structure of the diagram,
such as counting the number of rows and columns in a uniform pin array or the number of pins per
edge in a centrosymmetric ring configuration (as illustrated in Figure 1 ). Subsequently, the engineer
interprets the spatial relationships among the pins based on the geometric annotations provided in the
diagram, including row spacing, column spacing, and distances from the module center to the edges.
The engineer then assesses the dimensions of individual pins using the labeled measurements, such
as height and width for rectangular pins or diameter for circular pins. Finally, by summarizing this
geometric information, the engineer determines the pin count, spatial coordinates, and dimensions
of the IC footprint. In this work, we propose a multi-agent framework designed to emulate the step-
by-step reasoning process of an expert engineer, thereby enhancing the geometric understanding of
LMMs when interpreting IC footprint diagrams.

3.2 CHALLENGES

A primary challenge for LMMs in interpreting IC footprint diagrams lies in accurately identifying
the key parameters presented in the diagrams and comprehending the relationships between numeric
labels and graphical symbols. Often, these critical parameters are not explicitly provided and require
additional reasoning to infer. For instance, as illustrated in Figure 2, the center-to-center distance
between two pin rows is not directly labeled. Instead, it must be derived from the relationships
among the outer-edge distance, the inner-edge distance of the pins, and their spatial arrangement.
The agent must also be capable of adapting its reasoning workflow to accommodate different types
of IC modules. Due to the variability in the spatial arrangement of pins across module types, the key
parameters that need to be extracted, as well as the tools required for generating accurate descriptions
of these parameters, differ accordingly. Therefore, it is essential to design reasoning workflows that
account for the diverse types of IC pin arrangements and support multi-step parameter inference to
enable human-like reasoning capabilities in LMMs for IC footprint geometry understanding.
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Figure 2: Overview of the proposed agent framework ICLABAGENT. The reasoning pipeline in-
cludes four sequential stages. First, the Diagram Agent detects and locates the region of the foot-
print diagram in the datasheet page, and sends the region information to the Planning Agent. The
Planning Agent then analyzes the arrangement pattern of the IC and generates instructions to guide
the key parameter extraction process. After receiving instructions from the Planning Agent, the
Parameter Agent finds accessible key parameters in the diagram and calculates implicit key pa-
rameters based on given instructions. Finally, ICLABAGENT calls pin description generation tools
based on the IC type classification to generate a detailed geometric description for each IC pin.

4 METHODS

4.1 REASONING WORKFLOW

As described in Section 3.1, human engineers typically follow a four-step workflow to label IC foot-
prints. To replicate this process, we design ICLABAGENT as a multi-agent system. Each agent
corresponds to one of these steps, ensuring that the overall workflow mirrors the reasoning process
of real engineers while remaining interpretable: (1) identifying the region containing the target IC
footprint diagram, (2) recognizing the footprint’s arrangement type and determining the key pa-
rameters required to infer the coordinates and dimensions of the pins, (3) locating and computing
these key parameters based on the numeric annotations provided in the diagram, and (4) generating
a comprehensive description of the pins using the extracted parameters. To emulate expert-level
understanding of IC footprint geometry labeling, we develop a multi-agent system capable of dy-
namic diagram region detection, classification of IC pin arrangement types, strategic planning for
key parameter extraction, and geometric reasoning over the identified parameters. As illustrated in
Figure 2, the IC footprint geometry labeling workflow can be arranged into four key stages with
three task-specific agents:

1) Diagram Region Detection: When given a PDF page of an IC datasheet containing the IC
footprint diagram, ICLABAGENT adopts the Diagram Agent to identify the region of the target
diagram described in a four-element number pair (x, y, dx, dy), where x, y denote the coordinates
of the upper left corner of the diagram region, and dx, dy denote the width and height of the region in
proportions of the datasheet image sizes. The Diagram Agent first invokes an object-detection tool
to identify candidate regions of interest (ROIs) corresponding to the footprint diagrams, each with
an associated confidence score (orange boxes in Stage 1 in Figure 2). It then cross-validates these
candidates using its own diagram-detection judgments (blue box) and fuses the results to yield the
final detection region (red box). The detected diagram region enables downstream agents to focus
on the relevant diagram, minimizing interference from surrounding, unrelated diagrams and text.

2) Footprint Classification and Parameter Planning: After identifying the diagram region,
ICLABAGENT deploys the Planning Agent, which processes region-specific prompts alongside
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SOP SOIC QFP QFN BGA LGA SOT TO

2-sides grid4-sides other

Example ICs

IC footprint diagram in datasheet

Figure 3: We categorize IC packages into four groups based on pin distribution: dual-side packages
(e.g., SOP, SOIC), quad-side packages (e.g., QFP, QFN), grid array packages (e.g., BGA, LGA),
and others (e.g., SOT, TO). For simplicity, we refer to them as “2-sides”, “4-sides”, “grid”, and
“other” throughout this paper. “2-sides”, “4-sides”, and “grid” footprints are symmetric and can be
structurally described by several key parameters, while “other” footprints are asymmetric but often
contain fewer pins, which require a distinct description for each pin.

the diagram image. The Planning Agent classifies the IC footprint type based on the spatial arrange-
ment of its pins. To ensure representativeness while maintaining generality, we categorize common
IC footprints into four classes based on their pin arrangement patterns (Ayodele, 2024), as illus-
trated in Figure 3: 2-sides, 4-sides, grid, and other. The first three categories account for over 80%
of all IC footprints (as detailed in Appendix A.2) and collectively represent the majority of standard
IC footprint templates. Next, the Planning Agent identifies key parameters necessary to infer pin
coordinates and dimensions based on the previously determined arrangement type. It follows an
IC-type-specific checklist derived from the classification result, which includes all key parameters
that may appear in the IC diagram of the specified type. The agent evaluates both existing param-
eters and those missing but essential for accurate footprint identification. Specifically, the Planning
Agent first identifies the key parameters explicitly annotated in the diagram. For parameters not
directly provided, the agent performs parameter reasoning to determine how these values can be
derived from the available annotations. Finally, the agent compiles a summary of all relevant key
parameters, which guides the downstream parameter extraction process. IC footprints categorized
as “other” typically exhibit irregular pin arrangements and usually contain fewer than 20 pins. As
a result, identifying pin coordinates and dimensions is less complex. Therefore, we adopt a direct
approach to describe the pin count, coordinates, and dimensions for footprints in this category.

3) Dynamic Parameter Reasoning: Under the guidance provided by the Planning Agent, the Pa-
rameter Agent identifies and interprets the key parameters expressed numerically within the dia-
gram. For parameters that are not explicitly annotated, the Parameter Agent applies the reasoning
instructions specified by the Planning Agent to compute the required values. Finally, it compiles the
extracted and inferred parameters into a type-specific standardized format.

4) Description Generation: Based on the identified pin arrangement type, ICLABAGENT invokes
the appropriate description generation tool corresponding to “2-sides”, “4-sides”, or “grid” foot-
prints. These tools take the standardized key parameters as input and produce pin descriptions
aligned with the three IC footprint labeling tasks outlined in Section 3.1: determining the pin count,
computing the pin coordinates, and specifying the pin dimensions. For “other” footprints, the pin
descriptions are directly inferred through the collaborative processing of the Planning Agent and the
Parameter Agent. Thus, no description generation tool is required for this category.

4.2 DATASET CONSTRUCTION

To effectively train our agent-based model to simulate the complex reasoning workflow involved in
IC footprint understanding, To train ICLABAGENT, we construct the ICAGENT-INSTRUCT dataset.
It contains real datasheet diagrams with expert annotations and contains three subsets aligned with
our agents’ subtasks: (1) diagram detection, (2) parameter planning, and (3) parameter extraction.
Each subset reflects the reasoning steps that engineers use, ensuring that training data encodes
expert-level strategies rather than only end results.

We build upon the real-world datasheets provided in the ICGEO8K dataset proposed by Wang et al.
(2025a), which includes 4,138 IC footprint entries. To ensure data quality, we filter out diagrams
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that are mislabeled, occluded, or incorrectly classified as 2D footprint diagrams. After this cleaning
process, we obtain a total of 3,737 valid sequences, comprising 3,337 training samples from the
original real-world training subset and all 400 test samples (excluded during the fine-tuning process)
from ICGEO8K. The reasoning datasets are constructed using the datasheet page images and their
corresponding pin description labels. The data generation process strictly adheres to the reasoning
workflow outlined in Section 4.1, and incorporates additional expert annotations to improve data
quality. In the end, we construct three novel datasets based on the real-world samples: the Diagram
Detection Dataset, the Parameter Planning Dataset, and the Parameter Extraction Dataset. The
three subsets are detailed in Appendix A.1.

4.3 MODEL TRAINING

To implement an effective multi-agent framework, we adopt a three-step training strategy aimed
at developing specialized functional agents. At the core of each agent lies a powerful vision-
language model, Qwen2.5-VL. We fine-tune this multimodal model on the three task-specific rea-
soning datasets described in the previous section, resulting in three dedicated models tailored to
support the corresponding workflow agents.

We begin by training the Diagram Agent using the Diagram Detection Dataset to enable accurate
localization of IC footprint regions. We also train an object detection tool using the same Diagram
Detection Dataset to acquire IC ROI candidates. Next, the Planning Agent is trained on the Parame-
ter Planning Dataset to develop its ability to classify footprint types and plan procedures to identify
key parameters. Finally, the Parameter Agent is trained using the Parameter Extraction Dataset, al-
lowing it to extract and compute standard key parameters based on the Planning Agent outputs. At
each training stage, we incorporate chain-of-thought (CoT) training to promote step-by-step reason-
ing and ensure the models develop a robust and interpretable understanding of the tasks.

5 EXPERIMENTS

5.1 EXPERIMENT SETUP

Implementation Details. As described in Section 4.3, we adopt Qwen2-VL (Wang et al., 2024)
as the visual question answering backbone for our agents. Specifically, we utilize the 7B version
(Qwen2-VL-7B) as the base model for all task-specific agents in this work. All experiments are
conducted using 2 NVIDIA A100-40GB GPUs. For detailed training configurations and hyperpa-
rameters, please refer to Appendix A.5.

Evaluation Metrics. We adopt the same evaluation metrics as LLM4-IC8K: IoUIC measures the
Intersection over Union (IoU) ratio between predicted and ground-truth footprints; Mean Absolute
Error (MAE) and Root Mean Square Error (RMSE) measure pin count accuracy (task 1); dpin
measures coordinate precision (task 2); IoUpin measures pin dimension accuracy (task 3).

For intermediate agents, we further report the following metrics. For Stage 1 (diagram detec-
tion), IoUdiagram measures the IoU ratio between predicted and ground-truth diagram bounding
boxes. For Stage 2 (classification and planning), Type Classification Accuracy (TCA) measures
the footprint type classification accuracy, and Key Parameter Accuracy (KPA) measures whether
the Planning Agent identifies the correct set of key parameters. For Stage 3 (parameter reasoning),
Parameter Completion rate (PC) measures the recovery rate of required parameters, while MAE
and RMSE capture the numerical accuracy of predicted values.

Evaluation Baseline. We evaluate our framework on ICGEOQA, a benchmark consisting of 400
representative real-world IC datasheet pages, and compare its performance against the current state-
of-the-art method for IC footprint labeling, LLM4-IC8K (Wang et al., 2025a). For a fair com-
parison, all baselines were trained and tested under the same hardware settings. General-purpose
LMMs (e.g., GPT-4o, GPT-5, Gemini 2.5 Flash) were evaluated in zero-shot settings, while the
specialized model (i.e., LLM4-IC8K) used its reported fine-tuning pipeline. A manual industry
baseline is also computed from real-world engineer annotation data (detailed in Appendix A.3) to
serve as the accuracy standard for industrial human experts.
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Table 1: Comparison of QA performance with general LLMs on 3 tasks in mean + std format. The
best-performing method is in-bold, and the second-best is underlined.

Methods Overall (IoUIC %) ↑ Task 1 Task 2 (dpin)↓ Task 3 (IoUpin %)↑MAE↓ RMSE↓
General Large Multimodal Models

GPT-4o Hurst et al. (2024) 11.1± 0.4 8.21± 0.47 23.04± 0.22 4.01± 0.02 45.6± 0.3
GPT-5 OpenAI (2025) 40.6± 1.1 0.39± 0.04 4.13± 0.19 4.18± 0.22 65.4± 0.1
Gemini 2.0 Mallick & Kilpatrick (2025) 4.5± 0.1 1.84± 0.40 7.87± 0.85 18.27± 0.45 57.3± 0.4
Gemini 2.5 Flash (Comanici et al., 2025) 16.5± 0.3 11.13± 0.70 35.91± 0.21 3.56± 0.15 35.8± 0.6
Gemma3-12B Team et al. (2025) 5.8± 0.1 8.84± 0.42 26.09± 0.85 5.13± 0.13 21.5± 0.5
Qwen2.5-VL-7B (Bai et al., 2025) 5.4± 0.2 24.07± 0.13 46.58± 0.43 4.38± 0.17 6.2± 0.2

Manual Industry Baseline
Manual EDA 44 - - 2.98 58

IC Footprint Labeling Large Multimodal Models
LLM4-IC8K (Wang et al., 2025a) 71.6±0.5 0.35±0.07 2.81±0.08 1.11±0.02 88.0±0.3
ICLABAGENT 79.0±0.2 0.37±0.05 3.25±0.14 1.07±0.03 95.6±0.2

Table 2: Comparing performances on three stages with general-purpose LMMs.

Methods Stage1 Stage2 Stage3
IoUdiagram %↑ TCA %↑ KPA %↑ PC %↑ MAE↓ RMSE↓

GPT-5 OpenAI (2025) 2.9± 0.6 79.5± 0.2 93.1± 0.5 99.8± 0.4 1.94± 0.06 4.18± 0.38
Gemini 2.5 flash Comanici et al. (2025) 3.9± 0.7 84.6± 0.2 86.6± 0.4 80.4± 0.1 1.50± 0.04 3.55± 0.17
Gemma3-12B Team et al. (2025) 11.4± 0.3 33.9± 0.5 44.9± 0.1 61.1± 0.8 2.84± 0.17 5.04± 0.51
Qwen2.5-VL-7B Bai et al. (2025) 3.0± 0.3 28.3± 0.3 24.1± 0.4 81.6± 0.5 2.21± 0.28 10.13± 0.15
ICLABAGENT 70.2±0.4 100 97±0.1 82.3±0.4 0.22±0.03 0.39±0.06

5.2 OVERALL COMPARISON

We evaluate the overall performance of our framework and compare it against both the baseline
method and several general-purpose LMMs. As shown in Table 1, ICLABAGENT achieves an
overall IoUIC of 79.0% on the ICGEOQA benchmark, substantially outperforming both general-
purpose LMMs and the previous state-of-the-art IC footprint labeling model. While ICLABAGENT
shows sub-optimal performance in IC pin counting compared to LLM4-IC8K, the differences are
negligible, with an average error of less than 1 pin, and it still outperforms all general LMMs.
Additionally, ICLABAGENT demonstrates superior capability in pin coordinate and dimension esti-
mation, enhancing the overall geometric understanding accuracy by 10.3% compared to the SOTA
task-specific LMM and surpassing the industry manual baseline by 79.5%. This is due to the sim-
plicity and stability of the framework, which focuses on handling concise key parameters rather than
directly estimating the complex and lengthy pin geometry descriptions. ICLABAGENT encompasses
expert-level knowledge for IC footprint identification and geometric reasoning, while emulating the
step-by-step reasoning workflow of PCB engineers to support a dynamic labeling process. By adher-
ing closely to the procedural logic employed by human experts, ICLABAGENT mitigates the risks
of hallucinations and shortcut learning commonly observed in end-to-end fine-tuned LMMs. As a
result, ICLABAGENT achieves superior performance in IC footprint geometry understanding
and labeling.

5.3 COMPONENT EVALUATION

To demonstrate the reliability of the intermediate reasoning processes, we evaluate the performance
of each task-specific agent within the decision-making pipeline, shown in Table 2.

Evaluation on Diagram Region Detection. We evaluate the performance of the Diagram Agent on
the ICGEOQA benchmark and compare it with general-purpose LMMs using a one-shot learning
setup. Our Diagram Agent achieves an IoUdiagram of 70.2% in accurately locating diagram regions
within datasheet pages, significantly outperforming the baseline models. General LMMs face chal-
lenges in accurately locating the correct diagram regions without specialized training or extensive
prior knowledge. This result highlights the importance of training a dedicated agent for diagram
region detection in IC footprint understanding.

Evaluation on Footprint Classification and Parameter Planning. Next, we evaluate the perfor-
mance of the Planning Agent on footprint arrangement classification and parameter planning. The
Planning Agent achieves a TCA of 100% and a KPA of 97%, demonstrating its effectiveness in ac-
curately identifying footprint arrangement types and generating precise, footprint-specific plans for
key parameter extraction. GPT-5 and Gemini 2.5 Flash also show fine performances in identifying
footprint types and parameter recognition, expressing great potential in IC geometric understanding.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Evaluation on Footprint Classification and Parameter Planning. Next, we evaluate the perfor-
mance of the Planning Agent on footprint arrangement classification and parameter planning. The
Planning Agent achieves a TCA of 100% and a KPA of 97%, demonstrating its effectiveness in ac-
curately identifying footprint arrangement types and generating precise, footprint-specific plans for
key parameter extraction. Despite their failure in diagram region detection, GPT-5 and Gemini 2.5
Flash still demonstrate strong performance in identifying footprint types and recognizing parame-
ters. This suggests that general LMMs typically process information at the whole-image level, while
ICLABAGENT leverages zoomed-in views for more precise detail extraction.

Evaluation on Dynamic Parameter Reasoning. The Parameter Agent achieves a PC of 82.3% for
key parameter recovery, with an MAE of 0.22 and an RMSE of 0.39 for parameter value recog-
nition and reasoning. While the Parameter Agent does not recover all parameters specified in the
instructions, its precise numeric value retrieval and parameter calculation process significantly re-
duces errors in the overall parameter extraction. These results show the importance of training a
dedicated agent for accurate parameter extraction and multi-step geometric reasoning.

5.4 STAGE ABLATION

Table 3: Ablation test on reasoning stages.

Methods IoUIC%↑
Full stages (ICLABAGENT) 79.0±0.2
without stage1 72.3±0.3
without stage2 70.2±0.2
without stage1&stage2 68.2±0.4
end-to-end 65.7±0.1

We conduct an ablation study to evaluate the
contribution of each stage in our reasoning
workflow, as presented in Table 3. In one set-
ting, diagram region localization (Stage1) is re-
moved, requiring downstream agents to infer
the location of footprint diagrams without ex-
plicit guidance. In another setting, footprint
classification and parameter planning (Stage2)
are excluded, and the downstream agent is
tasked with identifying and extracting key pa-
rameters independently. The third setting excludes both Stage1 and Stage2 and directly infers key
parameter values from datasheet pages without structured guidance. Additionally, we compare with
a fully end-to-end baseline, following the training strategy of LLM4-IC8K, which directly gener-
ates pin descriptions without explicitly reasoning through intermediate key parameters.

Removing Stage 1 (diagram detection) reduces IoU by 8.5%, showing that precise region local-
ization is crucial. Removing Stage 2 (classification and planning) drops performance by 11.1%,
confirming that explicit planning avoids confusion during extraction. With only Stage 3 (parameter
reasoning), irrelevant information and IoUIC falls by 13.7%. Interestingly, we can see that the per-
formance of the Stage-3-only still exceeds that of the black-box end-to-end LMM approach. This
is attributed to the simplicity and structure of the parameter extraction process, which enables the
LMM to recover key geometric parameters more effectively than directly estimating the coordinates
and dimensions of each pin. These results demonstrate that each stage contributes substantially, and
that decomposed reasoning is more reliable than end-to-end black-box training.

6 CONCLUSION

We introduced ICLABAGENT, a multi-agent framework for fully automated IC footprint geometry
labeling. ICLABAGENT simulates the labeling workflow of expert PCB engineers by integrating
IC footprint classification, dynamic planning, and key parameter extraction through multi-step rea-
soning. The framework comprises three task-specific agents responsible for: (1) diagram region
detection, (2) footprint classification and parameter planning, and (3) dynamic parameter reasoning.
To empower the dynamic reasoning capabilities of ICLABAGENT, we developed a novel dataset,
ICAGENT-INSTRUCT, which encapsulates expert-level decision-making processes and reasoning
strategies tailored for IC footprint labeling. We further proposed a multi-stage training pipeline to
fine-tune the three LMM agents on their respective tasks. Experimental results show that our multi-
agent framework achieves a labeling IoU accuracy of 79.0%, surpassing the manual baseline by
79.5%, thereby demonstrating the effectiveness and reliability of our approach.
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A APPENDIX

A.1 DATASET CONSTRUCTION

To effectively train our agent-based model to simulate the complex reasoning workflow involved in
IC footprint understanding, we construct the ICAGENT-INSTRUCT dataset, comprising three distinct
subsets tailored to the training requirements of the three task-specific agents.

We build upon the real-world datasheets provided in the ICGEO8K dataset proposed by Wang et al.
(2025a), which includes 4,138 IC footprint entries. To ensure data quality, we filter out diagrams
that are mislabeled, occluded, or incorrectly classified as 2D footprint diagrams. After this cleaning
process, we obtain a total of 3,737 valid sequences, comprising 3,337 training samples from the
original real-world training subset and all 400 test samples (excluded during the fine-tuning process)
from ICGEO8K. The reasoning datasets are constructed using the datasheet page images and their
corresponding pin description labels. The data generation process strictly adheres to the reasoning
workflow outlined in Section 4.1, and incorporates additional expert annotations to improve data
quality. In the end, we construct three novel datasets based on the real-world samples: the Diagram
Detection Dataset, the Parameter Planning Dataset, and the Parameter Extraction Dataset. The
three subsets are detailed as follows:

1) Diagram Detection Dataset: We begin by identifying the regions containing footprint dia-
grams within the datasheet pages. To facilitate this process, we use Label Studio (Tkachenko et al.,
2020-2025) to annotate the bounding boxes corresponding to the footprint diagram regions. Each
footprint diagram bounding box is manually annotated with (1) the coordinates of its upper-left
corner and (2) its width and height. This annotated dataset is used to train the Diagram Agent to
accurately identify the regions containing IC footprint diagrams.

2) Parameter Planning Dataset: The core reasoning capability of ICLABAGENT lies in the
workflow planning conducted by the Planning Agent. To train the LMM to perform strategic param-
eter understanding in a manner that mimics expert human reasoning, we propose a four-step dataset
construction procedure. First, we manually annotate the arrangement types of the identified foot-
print diagrams. Next, based on the classified type, annotators are presented with a set of candidate
key parameters and are instructed to fill in only those parameters that are explicitly provided within
the footprint diagram. Then, we identify whether any standard key parameters are missing from the
diagram (e.g., a missing center distance) but can be computed using the available labeled parameters
(e.g., by averaging the outer-edge and inner-edge distances). This reasoning process is then added
into the planning workflow. If the provided parameters are insufficient to derive the standard key
parameters, the model is instructed to examine the surrounding context within the datasheet page
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to infer the missing information. Finally, the Planning Agent is instructed to summarize all explicit
parameters present in the diagram that are involved in the planning process, providing a structured
input for the downstream Parameter Agent. The aforementioned planning steps, combined with the
corresponding datasheet images and annotated diagram bounding boxes, constitute the Parameter
Planning Dataset.

3) Parameter Extraction Dataset: The workflow of the Parameter Agent is guided by the output
parameter sets generated by the Planning Agent. For each data sample, the Parameter Agent is tasked
with extracting the standard key parameters corresponding to the identified footprint arrangement
type. The outputs from the Planning Agent are first examined to identify any missing standard
key parameters. If standard key parameters are missing, the Parameter Agent initiates a reasoning
step to compute them using the available non-standard parameters. Finally, the Parameter Agent
consolidates the results into a complete set of standard key parameters. For IC footprints classified
as “other”, we utilize the data labels from ICGEO8K to extract their pin count, pin coordinates, and
pin dimensions. ICGEO8K data labels are also employed to identify missing pins in grid-arranged
footprints with large pin counts. Additionally, the labels from ICGEO8K serve as a reference for
cross-validating the accuracy of our annotations, thereby ensuring the reliability and consistency of
the dataset for training effective models.

In summary, we construct three novel datasets derived from the real-world ICGEO8K dataset, each
designed to capture different aspects of the dynamic reasoning process involved in IC footprint
geometry labeling.

A.2 DATA STATICS

Our dataset, ICAGENT-INSTRUCT, is constructed based on ICGEO8K (Wang et al., 2025a). Con-
sequently, the data distribution of ICAGENT-INSTRUCT mirrors that of the real-world subset of
ICGEO8K, with minor modifications and selections applied to satisfy our training requirements.

ICGEO8K includes 10 IC package types: SOP, SOIC, DFN, QFP, QFN, LGA, BGA, SOT, TO,
and Special. These packages can be grouped into the four categories defined in this work based on
their footprint arrangements: SOP and SOIC are classified as “2-sides” ICs, DFN, QFP, and QFN as
“4-sides” ICs, LGA and BGA as “grid” ICs, and SOT, TO, and Special as “other” ICs.

The type distributions of the datasets are shown in Figure A.1. In addition to ICAGENT-INSTRUCT
and ICGEOQA, we present the IC type distribution of the 200K dataset, which comprises a large
number of IC part entries (over 200K) collected from Digi-Key (Electronics, 2025). The type distri-
bution of ICAGENT-INSTRUCT aligns closely with that of this extensive IC collection, demonstrat-
ing its representativeness of the real-world distribution within the IC community.

A.3 MANUAL INDUSTRY BASELINE

Since the EDA description files corresponding to the benchmark ICs in ICGEO8K are directly
sourced from industrial PCB libraries, they are considered sufficient to meet industry standards.
However, engineers do not always strictly follow the specifications depicted in footprint diagrams,
leading to discrepancies between datasheet diagrams and actual EDA annotations. Therefore, the ac-
curacy of aligning manual EDA descriptions with footprint diagram annotations serves as a practical
baseline for evaluating industrial-standard functional labeling.

The overall low performance of manual labeling indicates that engineers exercise a certain degree
of flexibility when specifying pin geometries—for example, adjusting pin coordinates as long as
relative positions conform to the Suggest Pad diagram, or modifying pin dimensions within the
suggested regions. However, these non-standardized labeling practices hinder the standardization
of PCB design procedures, potentially resulting in IC part violations and operational malfunctions.
In contrast, ICLABAGENT strictly adheres to the footprint geometries specified in the Suggest Pad
diagrams, thereby promoting the standardization of IC footprint labeling.
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Figure A.1: IC package type distributions of datasets

A.4 VQA TEMPLATES

The three agents in ICLABAGENT are trained to develop chain-of-thought (CoT) reasoning capa-
bilities. To foster a robust and interpretable understanding of the three subtasks, the Visual Question
Answering (VQA) templates are carefully designed. Expert-level PCB knowledge is incorporated
into these VQA templates to train the agents as task-specific experts.

A.4.1 DIAGRAM DETECTION DATASET

The Diagram Agent is trained to identify the target Suggest Pad diagram area within a datasheet
page image. The target region is represented by a coordinate tuple (x, y, width, height) normalized
relative to the datasheet image size, where x and y denote the coordinates of the region’s top-left cor-
ner, and width and height denote its dimensions. For datasheet pages containing a single Suggest
Pad diagram, the prompt template is structured as follows:

VQA Template Example for Diagram Detection (Single)
Q <image>Suggest Pad is the recommended land pattern for an IC. There is only one Suggest

Pad image in the picture. Please locate the Suggest Pad image and give the area of the
Suggest Pad image in pure number pair (x,y,width,height) in proportion to the datasheet
image size, where x and y are the coordinates of the left-upper corner of the area, width and
height are the dimensions of the area. Note that (x,y)=(0,0) denotes the left upper corner of
the image.

A (0.35,0.14,0.29,0.44)

A datasheet page may contain multiple Suggest Pad diagrams, all corresponding to a series of IC
modules. When labeling a specific diagram, the target can be selected by specifying its position in
the sequence of diagrams:
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VQA Template Example for Diagram Detection (Multiple)
Q <image>Suggest Pad is the recommended land pattern for an IC. There are {count} Suggest

Pad images in the picture. Please locate the {place} Suggest Pad image and give the area of
the Suggest Pad image in pure number pair (x,y,width,height) in proportion to the datasheet
image size, where x and y are the coordinates of the left-upper corner of the area, width and
height are the dimensions of the area. Note that (x,y)=(0,0) denotes the left upper corner of
the image.

A (0.35,0.14,0.29,0.44)

For simplicity, in the following sections, each datasheet page is assumed to contain only a single
Suggest Pad diagram unless otherwise specified.

A.4.2 PARAMETER PLANNING DATASET

To guide the Planning Agent’s reasoning process, the parameter planning task is divided into two
stages. In the first stage, the agent identifies the footprint arrangement type of the target IC dia-
gram. In the second stage, it selects the relevant key parameters based on the type-specific checklist
provided within the framework. The reasoning process of the Planning Agent is arranged into a
thinking process enclosed within <think></think> and an answering process enclosed within
<answer></answer>.

VQA Template Example for Parameter Planning (2-sides)
Q <image>Suggest Pad is the recommended land pattern for an IC. There is only one

Suggest Pad image in the picture. The area of the Suggest Pad image is located by a
pure number pair (x,y,width,height)=(0.35,0.14,0.29,0.44) in proportion to the datasheet
image size, where x and y are the coordinates of the left-upper corner of the area, and
width and height are the dimensions of the area. Note that (x,y)=(0,0) denotes the left
upper corner of the image. Based on the located image, please classify this IC footprint
as “2-sides”, “4-sides”, “grid” or “other”.

A 2-sides

Q Based on the IC type, please choose the appropriate parameters to describe the positions
and dimensions of the IC pins. Note that for “2-sides” ICs, parameters are chosen from:
row, column, row spacing, column spacing, inner row spacing, outer row spacing, inner
column spacing, outer column spacing, dx, dy, diameter; for “4-sides” ICs, parameters
are chosen from: pin per side, side-to-side distance, inner side distance, outer side dis-
tance, pin spacing within side, dx1, dx2, dy1, dy2, dx, dy; for “grid” ICs, parameters are
choosen from: row, column, row spacing, column spacing, dx, dy, diameter; for “other”
ICs, parameters are: pin count, pin coordinates, pin dimensions. The reasoning process
and answers are enclosed within <think> </think> and <answer> </answer> tags,
respectively, i.e., <think> reasoning process here </think> <answer> answer here
</answer>.

A <think>Let’s think step by step. To identify the pins’ positions, I will first count the
rows and columns of the IC. Then, I will interpret the row spacings and column spacings
of the IC. To identify the pins’ dimensions, I will interpret the width and height of the
pins. Finally, I will call “Tool1” and input the above parameters to generate the descrip-
tions of this IC diagram. To sum up, I will find parameters: row, column, row spacing,
column spacing, dx, dy.</think> <answer>IC type: 2-sides, extract parameters: row,
column, row spacing, column spacing, dx, dy</answer>
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VQA Template Example for Parameter Planning (4-sides)
Q <image>Suggest Pad is the recommended land pattern for an IC. There is only one Sug-

gest Pad image in the picture. The area of the Suggest Pad image is located by a pure
number pair (x,y,width,height)=(0.35,0.14,0.29,0.44) in proportion to the datasheet image
size, where x and y are the coordinates of the left-upper corner of the area, and width and
height are the dimensions of the area. Note that (x,y)=(0,0) denotes the left upper corner
of the image. Based on the located image, please classify this IC footprint as “2-sides”,
“4-sides”, “grid” or “other”.

A 4-sides

Q Based on the IC type, please choose the appropriate parameters to describe the positions
and dimensions of the IC pins. Note that for “2-sides” ICs, parameters are chosen from:
row, column, row spacing, column spacing, inner row spacing, outer row spacing, inner
column spacing, outer column spacing, dx, dy, diameter; for “4-sides” ICs, parameters are
chosen from: pin per side, side-to-side distance, inner side distance, outer side distance,
pin spacing within side, dx1, dx2, dy1, dy2, dx, dy; for “grid” ICs, parameters are choosen
from: row, column, row spacing, column spacing, dx, dy, diameter; for “other” ICs, param-
eters are: pin count, pin coordinates, pin dimensions. The reasoning process and answers
are enclosed within <think></think> and <answer></answer> tags, respectively, i.e.,
<think> reasoning process here </think> <answer> answer here </answer>.

A <think>Let’s think step by step. To identify the pins’ positions, I will first count the pins
on each side. Then, I will interpret the center distance of two opposite sides and the spac-
ing of pins of the same side. To identify the pins’ dimensions, I will interpret the width and
height of the pins. There is an additional pin in the center of the diagram, so there are two
sets of pin dimensions. Finally, I will call “Tool2” and input the above parameters to gen-
erate the descriptions of this IC diagram. To sum up, I will find parameters: pin per side,
side-to-side distance, pin spacing within side, dx1, dy1, dx2, dy2.</think> <answer>IC
type: 4-sides, extract parameters: pin per side, side-to-side distance, pin spacing within
side, dx1, dy1, dx2, dy2</answer>

VQA Template Example for Parameter Planning (grid)
Q <image>Suggest Pad is the recommended land pattern for an IC. There is only one Suggest

Pad image in the picture. The area of the Suggest Pad image is located by a pure number pair
(x,y,width,height)=(0.35,0.14,0.29,0.44) in proportion to the datasheet image size, where x
and y are the coordinates of the left-upper corner of the area, and width and height are the
dimensions of the area. Note that (x,y)=(0,0) denotes the left upper corner of the image.
Based on the located image, please classify this IC footprint as “2-sides”, “4-sides”, “grid”
or “other”.

A grid
Q Based on the IC type, please choose the appropriate parameters to describe the positions and

dimensions of the IC pins. Note that for “2-sides” ICs, parameters are chosen from: row,
column, row spacing, column spacing, inner row spacing, outer row spacing, inner column
spacing, outer column spacing, dx, dy, diameter; for “4-sides” ICs, parameters are chosen
from: pin per side, side-to-side distance, inner side distance, outer side distance, pin spacing
within side, dx1, dx2, dy1, dy2, dx, dy; for “grid” ICs, parameters are choosen from: row,
column, row spacing, column spacing, dx, dy, diameter; for “other” ICs, parameters are: pin
count, pin coordinates, pin dimensions. The reasoning process and answers are enclosed
within <think> </think> and <answer> </answer> tags, respectively, i.e., <think> rea-
soning process here </think> <answer> answer here </answer>.

A <think>Let’s think step by step. To identify the pins’ positions, I will first count the rows
and columns of the IC. Then, I will interpret the row spacings and column spacings of the
IC. To identify the round pins’ dimensions, I will interpret the diameter of the pins. Finally,
I will call “Tool3” and input the above parameters to generate the descriptions of this IC
diagram. To sum up, I will find parameters: row, column, row spacing, column spacing, and
diameter.</think>
<answer>IC type: grid, extract parameters: row, column, row spacing, column spacing,
diameter</answer>
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VQA Template Example for Parameter Planning (other)
Q <image>Suggest Pad is the recommended land pattern for an IC. There is only one Sug-

gest Pad image in the picture. The area of the Suggest Pad image is located by a pure
number pair (x,y,width,height)=(0.35,0.14,0.29,0.44) in proportion to the datasheet image
size, where x and y are the coordinates of the left-upper corner of the area, and width and
height are the dimensions of the area. Note that (x,y)=(0,0) denotes the left upper corner
of the image. Based on the located image, please classify this IC footprint as “2-sides”,
“4-sides”, “grid” or “other”.

A other

Q Based on the IC type, please choose the appropriate parameters to describe the positions
and dimensions of the IC pins. Note that for “2-sides” ICs, parameters are chosen from:
row, column, row spacing, column spacing, inner row spacing, outer row spacing, inner
column spacing, outer column spacing, dx, dy, diameter; for “4-sides” ICs, parameters are
chosen from: pin per side, side-to-side distance, inner side distance, outer side distance,
pin spacing within side, dx1, dx2, dy1, dy2, dx, dy; for “grid” ICs, parameters are choosen
from: row, column, row spacing, column spacing, dx, dy, diameter; for “other” ICs, param-
eters are: pin count, pin coordinates, pin dimensions. The reasoning process and answers
are enclosed within <think></think> and <answer></answer> tags, respectively, i.e.,
<think> reasoning process here </think> <answer> answer here </answer>.

A <think>Let’s think step by step. As this diagram is irregular, I will directly describe the
pins in pin counts, pin coordinates, and pin diagrams. I will first count the number of pins.
Then, I will interpret the coordinates of each pin. Finally, I will interpret the widths and
heights of each pin. I will give the descriptions of this IC diagram in counts: pin count,
pin coordinates: “name, x, y”, and pin dimensions: “name, dx, dy”.</think>
<answer>IC type: other, extract parameters:pin count, pin coordinates, pin dimen-
sions</answer>

When standard key parameters are missing (e.g., if “column spacing” is not explicitly labeled on the
diagram for a “2-side” IC), the Planning Agent devises a calculation method to derive the missing
parameter using the existing parameters displayed on the diagram. The following example illustrates
a case in which the “column spacing” is absent from the diagram of a 2-side IC, while the “inner
column spacing” and “outer column spacing” are provided instead.

VQA Template Example for Parameter Planning (2-sides missing column spacing)
Q <image>Suggest Pad is the recommended land pattern for an IC. There is only one Sug-

gest Pad image in the picture. The area of the Suggest Pad image is located by pure
number pair (x,y,width,height)=(0.35,0.14,0.29,0.44) in proportion of the datasheet image
size, where x and y are the coordination of the left-upper corner of the area, width and
height are the dimension of the area. Note that (x,y)=(0,0) denotes the left upper corner
of the image. Based on the located image, please classify this IC footprint as “2-sides”,
“4-sides”, “grid” or “other”.

A 2-sides

Q Based on the IC type, please choose the appropriate parameters to describe the positions
and dimensions of the IC pins. Note that for “2-sides” ICs, parameters are chosen from:
row, column, row spacing, column spacing, inner row spacing, outer row spacing, inner
column spacing, outer column spacing, dx, dy, diameter; for “4-sides” ICs, parameters are
chosen from: pin per side, side-to-side distance, inner side distance, outer side distance,
pin spacing within side, dx1, dx2, dy1, dy2, dx, dy; for “grid” ICs, parameters are choosen
from: row, column, row spacing, column spacing, dx, dy, diameter; for “other” ICs, param-
eters are: pin count, pin coordinates, pin dimensions. The reasoning process and answers
are enclosed within <think></think> and <answer></answer> tags, respectively, i.e.,
<think> reasoning process here </think> <answer> answer here </answer>.

Continued on next page
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VQA Template Example for Parameter Planning (2-sides missing column spacing) (Contin-
ued)

A <think>Let’s think step by step. To identify the pins’ positions, I will first count the rows
and columns of the IC. Then, I will interpret the row spacings and column spacings of
the IC. The column spacing is missing in this diagram, so I will find the inner and outer
spacings of the two columns instead. To identify the pins’ dimensions, I will interpret the
width and height of the pins. Finally, I will call “Tool1” and input the above parameters
to generate the descriptions of this IC diagram. To sum up, I will find parameters: row,
column, row spacing, inner column spacing, outer column spacing, dx, dy.</think>
<answer>IC type: 2-sides, extract parameters: row, column, row spacing, inner column
spacing, outer column spacing, dx, dy</answer>

A.4.3 PARAMETER EXTRACTION DATASET

The Parameter Agent receives the Planning Agent’s output as input instructions. These instructions
generally comprise three steps: (1) extract the explicit parameter values specified by the Planning
Agent, (2) compute any missing standard key parameters based on the planning instructions, and (3)
compile standardized parameter values for use by downstream tools.

For example, in a “2-sides” IC, when all standardized parameters are explicitly provided on the
diagram, the instruction VQA is simple:

VQA Template Example for Parameter Extraction (All Key Parameters Available)
Q <image>The area of the Suggest Pad image is located by pure number pair

(x,y,width,height)=(0.53,0.12,0.16,0.24) in proportion to the datasheet image size. Note
that (x,y)=(0,0) denotes the left upper corner of the image. Based on the located suggest pad
image, this IC can be classified as “2-sides”. To describe the pins’ positions and dimensions
of this IC, please give the following pin parameters in pure numbers: row, column, row
spacing, column spacing, dx, dy. The reasoning process and answers are enclosed within
<think> </think> and <answer> </answer> tags, respectively, i.e., <think> reasoning
process here </think> <answer> answer here </answer>.

A <think>Find parameters: row=2, column=7, row spacing=6.1, column spacing=0.65,
dx=0.45, dy=1.65.</think>
<answer>row=2, column=7, row spacing=6.1, column spacing=0.65, dx=0.45,
dy=1.65</answer>

In another example, where the “row spacing” is not explicitly labeled in the diagram and only the
“inner row spacing” is labeled, the (center) row spacing can be calculated based on the relationship
between row spacing, inner row spacing, and the height of the IC pin dy:

row spacing = inner row spacing + dy (1)

The VQA example in this case is shown as follows:
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VQA Template Example for Parameter Extraction (Rowing Spacing Omitted)
Q <image>The area of the Suggest Pad image is located by pure number pair

(x,y,width,height)=(0.51,0.19,0.23,0.33) in proportion to the datasheet image size. Note that
(x,y)=(0,0) denotes the left upper corner of the image. Based on the located suggest pad im-
age, this IC can be classified as “2-sides”. To describe the pins’ positions and dimensions of
this IC, please first find the following pin parameters in pure numbers: row, column, inner
row spacing, column spacing, dx, dy. Then, calculate row spacing based on the equation
“row spacing = inner row spacing + dy”. Finally, give the pin parameters in pure numbers:
row, column, row spacing, column spacing, dx, dy. The reasoning process and answers
are enclosed within <think> </think> and <answer> </answer> tags, respectively, i.e.,
<think> reasoning process here </think> <answer> answer here </answer>.

A <think>Find parameters: row=2, column=4, inner row spacing=7.49, column spac-
ing=2.54, dx=1.78, dy=1.52.
The row spacing is 7.49 + 1.52 = 9.01.
Final parameters: row=2, column=4, row spacing=9.01, column spacing=2.54, dx=1.78,
dy=1.52.</think>
<answer>row=2, column=4, row spacing=9.01, column spacing=2.54, dx=1.78,
dy=1.52</answer>

All possible parameter reasoning cases are listed in Table A.1:

Table A.1: Possible parameter reasoning cases for each footprint arrangement type.
type standard parameters missing parameters reasoning

2-sides

row, column
row spacing

column spacing
dx, dy

row spacing

row spacing
= (inner row spacing +

outer row spacing)/2
= outer row spacing - dy
= inner row spacing + dy

column spacing

column spacing
= (inner column spacing +

outer column spacing)/2
= outer column spacing - dx
= inner column spacing + dx

4-sides

pin per side,
side-to-side distance,

pin spacing within side,
dx1, dy1, dx2, dy2

side-to-side distance

side-to-side distance
= (inner side distance +

outer side distance)/2
= outer side distance - dx1
= inner side distance + dx1

grid

row, column,
row spacing,

column spacing,
diameter

missing pins specify the missing pins by
coordinates (e.g., A1)

other
pin count,

pin coordinates,
pin dimensions

- -

A.5 TRAINING DETAILS

The detailed training hyper-parameter settings of ICLABAGENT during the fine-tuning processes of
the three task-specific agents are shown in Table A.2.

A.6 LIMITATION

Due to limited training resources, this work employs only Supervised Fine-Tuning (SFT) to fine-
tune the lightweight base model Qwen2-VL-7B using a small dataset. Despite this, it outperforms
state-of-the-art general LMMs, such as GPT-5 and Gemini 2.5 Flash, by a substantial margin in
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Table A.2: Hyper-parameter settings for fine-tuning three agents.

Parameter Value
Diagram Agent Planning Agent Parameter Agent

Dataset Diagram Detection Parameter Planning Parameter Extraction
Batch Size (per GPU) 2 2 2
Learning Rate (LR) 5e−5 5e−5 5e−5

LR Scheduler cosine cosine cosine
Epoch 3 3 3
Cut-off Length 4096 4096 4096
Gradient Accumulation 4 4 2
Validation Set Ratio 0.1 0.1 0.1
Optimizer AdamW AdamW AdamW
LoRA Rank 8 8 8
LoRA Alpha 16 16 16
LoRA Dropout 0 0 0

the IC footprint labeling task. We recognize that Reinforcement Learning (RL) methods and feed-
back refinements hold considerable potential for further improving ICLABAGENT’s performance.
Furthermore, larger and more advanced base models could enhance the framework’s overall effec-
tiveness. Nevertheless, our framework demonstrates the great potential of geometric reasoning in
IC footprint labeling by introducing a human-like thinking process that decomposes the complex
geometric reasoning task into simple, focused subtasks.

B DECLARATION OF LLM USAGE

We used large language models (LLMs) solely for light editing of prose—including wording refine-
ment, grammar correction, and minor clarity improvements—in limited portions of this paper. All
LLM-edited text was subsequently reviewed and revised by the authors.
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