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ABSTRACT

Energy-based models (EBMs) are known in the Machine Learning community
for decades. Since the seminal works devoted to EBMs dating back to the
noughties, there have been a lot of efficient methods which solve the genera-
tive modelling problem by means of energy potentials (unnormalized likelihood
functions). In contrast, the realm of Optimal Transport (OT) and, in particular,
neural OT solvers is much less explored and limited by few recent works (ex-
cluding WGAN-based approaches which utilize OT as a loss function and do not
model OT maps themselves). In our work, we bridge the gap between EBMs
and Entropy-regularized OT. We present a novel methodology which allows uti-
lizing the recent developments and technical improvements of the former in order
to enrich the latter. From the theoretical perspective, we prove generalization
bounds for our technique. In practice, we validate its applicability in toy 2D and
image domains. To showcase the scalability, we empower our method with a
pre-trained StyleGAN and apply it to high-res AFHQ 512 × 512 unpaired I2I
translation. For simplicity, we choose simple short- and long-run EBMs as a
backbone of our Energy-guided Entropic OT approach, leaving the application of
more sophisticated EBMs for future research. Our code is available at: https:
//github.com/PetrMokrov/Energy-guided-Entropic-OT

Figure 1: AFHQ 512× 512 Cat→Dog unpaired translation by our Energy-guided EOT solver
applied in the latent space of StyleGAN2-ADA. Our approach does not need data2latent encoding.

Left: source samples; right: translated samples.

1 INTRODUCTION

The computational Optimal Transport (OT) field is an emergent and fruitful area in the Machine
Learning research which finds its applications in generative modelling (Arjovsky et al., 2017; Gul-
rajani et al., 2017; Deshpande et al., 2018), domain adaptation (Nguyen et al., 2021; Shen et al.,
2018; Wang et al., 2022), unpaired image-to-image translation (Xie et al., 2019; Hu et al.), datasets
manipulation (Alvarez-Melis & Fusi, 2020), population dynamics (Ma et al., 2021; Wang et al., 2018),
gradient flows modelling (Alvarez-Melis et al., 2022; Mokrov et al., 2021), barycenter estimation
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(Korotin et al., 2022a; Fan et al., 2021). The majority of the applications listed above utilize OT
as a loss function, e.g., have WGAN-like objectives which compare the generated (fake) and true
data distributions. However, for some practical use cases, e.g., unpaired image-to-image translation
(Korotin et al., 2023b), it is worth modelling the OT maps or plans by themselves.

The existing approaches which recover OT plans are based on various theoretically-advised techniques.
Some of them (Makkuva et al., 2020; Korotin et al., 2021a) utilize the specific form of the cost
function, e.g., squared Euclidean distance. The others (Xie et al., 2019; Lu et al., 2020) modify GAN
objectives with additional OT regularizer, which results in biased OT solvers (Gazdieva et al., 2022,
Thm. 1). The works (Fan et al., 2023; Korotin et al., 2023b; Rout et al., 2022) take advantage of
dual OT problem formulation. They are capable of tackling unbiased large-scale continuous OT with
general cost functions but may yield fake solutions (Korotin et al., 2023a). To overcome this issue,
(Korotin et al., 2023a) propose to use strictly convex regularizers which guarantee the uniqueness of
the recovered OT plans. And one popular choice which has been extensively studied both in discrete
(Cuturi, 2013) and continuous (Genevay et al., 2016; Clason et al., 2021) settings is the Entropy.
The well-studied methodological choices for modelling Entropy-regularized OT (EOT) include (a)
stochastic dual maximization approach which prescribes alternating optimization of dual potentials
(Seguy et al., 2018; Daniels et al., 2021) and (b) dynamic setup having connection to Schrödinger
bridge problem (Bortoli et al., 2021; Gushchin et al., 2023; Chen et al., 2022). In contrast to the
methods presented in the literature, we come up with an approach for solving EOT built upon EBMs.

Contributions. We propose a novel energy-based view on the EOT problem.

1. We take advantage of weak dual formulation for the EOT problem and distinguish the EBM-related
nature of dual potential which originates due to this formulation (§3.1).

2. We propose theoretically-grounded yet easy-to-implement modifications to the standard EBMs
training procedure which makes them capable of recovering the EOT plans (§3.2).

3. We establish generalization bounds for the EOT plans learned via our proposed method (§3.3).
4. We showcase our algorithm’s performance on low- and moderate-dimensional toy setups and

large-scale 512×512 images transfer tasks solved with help of a pre-trained StyleGAN (§5).

Notations. Throughout the paper,X andY are compact subsets of the Euclidean space, i.e.,X ⊂ RDx

and Y ⊂ RDy . The continuous functions on X are denoted as C(X ). In turn, P(X ) are the sets
of Borel probability distributions on X . Given distributions P ∈ P(X ) and Q ∈ P(Y), Π(P,Q)
designates the set of couplings between the distributions P and Q, i.e., probability distributions on
product space X × Y with the first and second marginals given by P and Q, respectively. We use
Π(P) to denote the set of probability distributions on X × Y with the first marginal given by P. The
absolutely continuous probability distributions on X are Pac(X ). For P ∈ Pac(X ) we use dP(x)

dx and
dQ(y)
dy to denote the corresponding probability density functions. Given distributions µ and ρ defined

on a set Z , µ≪ ρ means that µ is absolutely continuous with respect to ρ.

2 BACKGROUND

2.1 OPTIMAL TRANSPORT

The generic theory behind OT could be found in (Villani et al., 2009; Santambrogio, 2015). For the
specific details on EOT, see (Genevay et al., 2016; Genevay, 2019).

Let P ∈ P(X ) and Q ∈ P(Y). The primal OT problem due to Kantorovich (Villani et al., 2009) is:

OTc(P,Q)
def
= inf

π∈Π(P,Q)

∫
X×Y

c(x, y)dπ(x, y). (1)

In the equation above, c : X × Y → R is a continuous cost function which reflects a practitioner’s
knowledge of how data from the source and target distribution should be aligned. Typically, the cost
function c(x, y) is chosen to be Euclidean norm ∥x− y∥2 yielding the 1-Wasserstain distance (W1)
or halved squared Euclidean norm 1

2∥x− y∥22 yielding the square of 2-Wasserstein distance (W2
2).

The distributions π∗ ∈ Π(P,Q) which minimize objective (1) are called the Optimal Transport plans.
Problem (1) may have several OT plans (Peyré et al., 2019, Remark 2.3) and in order to impose the
uniqueness and obtain a more tractable optimization problem, a common trick is to regularize (1)
with strictly convex (w.r.t. distribution π) functionalsR : P(X × Y)→ R.
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Entropy-regularized Optimal Transport. In our work, we utilize the popular Entropic regularization
(Cuturi, 2013) which has found its applications in various works (Solomon et al., 2015; Schiebinger
et al., 2019; Rukhaia, 2021). This is mainly because of amenable sample complexity (Genevay, 2019,
§3) and tractable dual representation of the Entropy-regularized OT problem which can be leveraged
by, e.g., Sinkhorn’s algorithm (Cuturi, 2013; Vargas et al., 2021). Besides, the EOT objective is
known to be strictly convex (Genevay et al., 2016) thanks to the strict convexity of Entropy H and
KL divergence (Santambrogio, 2015; Nutz, 2021; Nishiyama, 2020) appearing in EOT formulations.

Let ε > 0. The EOT problem can be formulated in the following ways:
EOT(1)

c,ε(P,Q)

EOT(2)
c,ε(P,Q)

EOTc,ε(P,Q)

def
= min

π∈Π(P,Q)

∫
X×Y

c(x, y)dπ(x, y) +


+εKL (π∥P×Q) , (2)
−εH(π), (3)
−ε
∫
XH(π(·|x))dP(x). (4)

These formulations are equivalent when P and Q are absolutely continuous w.r.t. the corresponding
standard Lebesgue measures since KL (π∥P×Q) = −

∫
X H(π(·|x))dP(x) +H(Q) = −H(π) +

H(Q) +H(P). In other words, the equations (2), (3) and (4) are the same up to additive constants.

In the remaining paper, we will primarily work with the EOT formulation (4), and, henceforth, we
will additionally assume P ∈ Pac(X ), Q ∈ Pac(Y) when necessary.

Let π∗ ∈ Π(P,Q) be the solution of EOT problem. The measure disintegration theorem yields:
dπ∗(x, y) = dπ∗(y|x)dπ∗(x) = dπ∗(y|x)dP(x).

Distributions π∗(·|x) will play an important role in our analysis. In fact, they constitute the only
ingredient needed to (stochastically) transform a source point x ∈ X to target samples y1, y2, · · · ∈ Y
w.r.t. EOT plan. We say that distributions {π∗(·|x)}x∈X are the optimal conditional plans.

EOT problem as a weak OT (WOT) problem. EOT problem (4) can be understood as the so-called
weak OT problem (Gozlan et al., 2017; Backhoff-Veraguas et al., 2019). Given a weak transport
cost C : X × P(Y) → R which penalizes the displacement of a point x ∈ X into a distribution
π(·|x) ∈ P(Y), the weak OT problem is given by

WOTC(P,Q)
def
= inf

π∈Π(P,Q)

∫
X
C(x, π(·|x)) dπ(x)︸ ︷︷ ︸

=dP(x)

. (5)

EOT formulation (4) is a particular case of weak OT problem (5) for weak transport cost:

CEOT(x, π(·|x)) =
∫
Y
c(x, y)dπ(y|x)− εH(π(·|x)). (6)

Note that if weak cost C is strictly convex and lower semicontinuous, as it is the case for CEOT, the
solution for (5) exists and unique (Backhoff-Veraguas et al., 2019).

Weak OT dual formulation of the EOT problem. Similar to the case of classical Kantorovich
OT (1), the weak OT problem permits the dual representation. Let f ∈ C(Y). Following (Backhoff-
Veraguas et al., 2019, Eq. (1.3)) one introduces weak C-transform fC : X → R by

fC(x)
def
= inf

µ∈P(Y)

{
C(x, µ)−

∫
Y
f(y)dµ(y)

}
. (7)

For our particular case of EOT-advised weak OT cost (6), equation (7) reads as

fCEOT(x) = min
µ∈P(Y)

{∫
Y
c(x, y)dµ(y)− εH(µ)−

∫
Y
f(y)dµ(y)

}
def
= min

µ∈P(Y)
Gx,f (µ). (8)

Note that the existence and uniqueness of the minimizer for (8) follows from Weierstrass theorem
(Santambrogio, 2015, Box 1.1.) along with lower semicontinuity and strict convexity of Gx,f in µ.
The dual weak functional Fw

C : C(Y)→ R for primal WOT problem (5) is

Fw
C (f)

def
=

∫
X
fC(x)dP(x) +

∫
Y
f(y)dQ(y).

Thanks to the compactness of X and Y , there is the strong duality (Gozlan et al., 2017, Thm. 9.5):

EOTc,ε(P,Q) = sup
f∈C(Y)

{∫
X

min
µx∈P(Y)

Gx,f (µx)dP(x) +
∫
Y
f(y)dQ(y)

}
= sup

f∈C(Y)

Fw
CEOT

(f). (9)

We say that (9) is the weak dual objective. It will play an important role in our further analysis.
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2.2 ENERGY-BASED MODELS

The EBMs are a fundamental class of deep Generative Modelling techniques (LeCun et al., 2006;
Salakhutdinov et al., 2007) which parameterize distributions of interest µ ∈ P(Y) by means of the
Gibbs-Boltzmann distribution density:

dµ(y)

dy
=

1

Z
exp (−E(y)) . (10)

In the equation above E : Y → R is the Energy function (negative unnormalized log-likelihood), and
Z =

∫
Y exp(−E(y))dy is the normalization constant, known as the partition function.

Let µ ∈ P(Y) be a true data distribution which is accessible by samples and µθ(y), θ ∈ Θ be a
parametric family of distributions approximated using, e.g., a deep Neural Network Eθ, which imitates
the Energy function in (10). In EBMs framework, one tries to bring the parametric distribution µθ to
the reference one µ by optimizing the KL divergence between them. The minimization of KL (µ∥µθ)
is done via gradient descent by utilizing the well-known gradient (Xie et al., 2016):

∂

∂θ
KL (µ∥µθ) =

∫
Y

∂

∂θ
Eθ(y)dµ(y)−

∫
Y

[
∂

∂θ
Eθ(y)

]
dµθ(y). (11)

The expectations on the right-hand side of (11) are estimated by Monte-Carlo, which requires samples
from µ and µθ. While the former are given, the latter are usually obtained via Unadjusted Langevin
Algorithm (ULA) (Roberts & Tweedie, 1996). It iterates the discretized Langevin dynamics

Yl+1 = Yl −
η

2

∂

∂y
Eθ(Yl) +

√
ηξl , ξl ∼ N (0, 1), (12)

starting from a simple prior distribution Y0 ∼ µ0, for L steps, with a small discretization step η > 0.
In practice, there have been developed a lot of methods, which improve or circumvent the procedure
above by informative initialization (Hinton, 2002; Du & Mordatch, 2019), more sophisticated MCMC
approaches (Lawson et al., 2019; Qiu et al., 2020; Nijkamp et al., 2022), regularizations (Du et al.,
2021; Kumar et al., 2019), explicit auxiliary generators (Xie et al., 2018; Yin et al., 2022; Han et al.,
2019; Gao et al., 2020). The application of these EBM improvements for the EOT problem is a
fruitful avenue for future work. For a more in-depth discussion of the methods for training EBMs,
see a recent survey (Song & Kingma, 2021).

3 TAKING UP EOT PROBLEM WITH EBMS

In this section, we connect EBMs and the EOT problem and exhibit our proposed methodology. At
first, we present some theoretical results which characterize weak dual objective (9) and its optimizers
(§3.1). Secondly, we develop the optimization procedure (§3.2) and corresponding algorithm capable
of implicitly recovering EOT plans. Thirdly, we establish generalization bounds for our proposed
method (§3.3). All proofs are situated in Appendix B.

3.1 ENERGY-GUIDED REFORMULATION OF WEAK DUAL EOT

We start our analysis by taking a close look at objective (9). The following proposition characterizes
the inner minµx

optimization problem arising in (9).
Theorem 1 (Optimizer of weak CEOT-transform). Let f ∈ C(Y) and x ∈ X . Then inner weak dual
objective minµ∈P(Y) Gx,f (µ) (8) permits the unique minimizer µf

x which is given by

dµf
x(y)

dy

def
=

1

Z(f, x)
exp

(
f(y)− c(x, y)

ε

)
, (13)

where Z(f, x)
def
=
∫
Y exp

(
f(y)−c(x,y)

ε

)
dy.

By substituting minimizer (13) to (8), we obtain the close form for the weak CEOT-transform:

fCEOT(x) = Gx,f (µf
x) = −ε logZ(f, x) = −ε log

(∫
Y
exp

(
f(y)− c(x, y)

ε

)
dy

)
. (14)

The equation (14) resembles (c, ε)-transform (Genevay, 2019, Eq. 4.15) appearing in standard
semi-dual EOT formulation (Genevay, 2019, §4.3). For completeness, we shortly introduce
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the dual EOT and semi-dual EOT problems in Appendix A, relegating readers to (Genevay, 2019)
for a more thorough introduction. In short, it is the particular form of weak dual EOT objective,
which differs from semi-dual EOT objective, and allows us to utilize EBMs, as we show in §3.2.
Thanks to (14), objective (9) permits the reformulation:

EOTc,ε(P,Q) = sup
f∈C(Y)

Fw
CEOT

(f) = sup
f∈C(Y)

{
− ε

∫
X
logZ(f, x)dP(x) +

∫
Y
f(y)dQ(y)

}
. (15)

For a given f ∈ C(Y), consider the distribution dπf (x, y)
def
= dµf

x(y)dP(x). We prove, that the
optimization of weak dual objective (15) brings πf closer to the optimal plan π∗.
Theorem 2 (Bound on the quality of the plan recovered from the dual variable). For brevity, define

the optimal value of (9) by Fw,∗
CEOT

def
= EOTc,ε(P,Q). For every f ∈ C(Y) it holds that

Fw,∗
CEOT
− Fw

CEOT
(f) = ε

∫
X

KL
(
π∗(·|x)∥µf

x

)
dP(x) = εKL

(
π∗∥πf

)
. (16)

From our Theorem 2 it follows that given an approximate maximizer f of dual objective (15), one
immediately obtains a distribution πf which is close to the optimal plan π∗. Actually, πf is formed
by conditional distributions µf

x (Theorem 1), whose energy functions are given by f (adjusted with
transport cost c). Below we show that f in (15) can be optimized analogously to EBMs as well.

3.2 OPTIMIZATION PROCEDURE

Following the standard machine learning practices, we parameterize functions f ∈ C(Y) as neural
networks fθ with parameters θ ∈ Θ and derive the loss function corresponding to (15) by:

L(θ)
def
= −ε

∫
X
logZ(fθ, x)dP(x) +

∫
Y
fθ(y)dQ(y). (17)

The conventional way to optimize loss functions such as (17) is the stochastic gradient ascent. In the
following result, we derive the gradient of L(θ) w.r.t. θ.
Theorem 3 (Gradient of the weak dual loss L(θ)). It holds true that:

∂

∂θ
L(θ) = −

∫
X

∫
Y

[
∂

∂θ
fθ(y)

]
dµfθ

x (y)dP(x) +
∫
Y

∂

∂θ
fθ(y)dQ(y). (18)

Formula (18) resembles the gradient of Energy-based loss, formula (11). This allows us to look at
EOT problem (4) from the perspectives of EBMs. In order to emphasize the novelty of our approach,
and, simultaneously, establish the deep connection between the optimization of weak dual objective in
form (15) and EBMs, below we characterize the similarities and differences between standard EBMs
optimization procedure and our proposed EOT-encouraged gradient ascent following ∂L(θ)/∂θ .

Differences. In contrast to the case of EBMs, potential fθ, optimized by means of loss function L,
does not represent an energy function by itself. However, the tandem of cost function c and fθ helps
to recover the Energy functions of conditional distributions µfθ

x :

E
µ
fθ
x
(y) =

c(x, y)− fθ(y)

ε
.

Therefore, one can sample from distributions µfθ
x following ULA (12) or using more advanced

MCMC approaches (Girolami & Calderhead, 2011; Hoffman et al., 2014; Samsonov et al., 2022). In
practice, when estimating (18), we need samples (x1, y1), (x2, y2), . . . (xN , yN ) from distribution
dπfθ (x, y)

def
= dµfθ

x (y)dP(x). They could be derived through the simple two-stage procedure:

1. Sample x1, . . . xN ∼ P , i.e., derive random batch from the source dataset.
2. Sample y1|x1 ∼ µfθ

x1
, . . . , yN |xN ∼ µfθ

xN
, e.g., performing Langevin steps (12).

Similarities. Besides a slightly more complicated two-stage procedure for sampling from generative
distribution πfθ , the gradient ascent optimization with (18) is similar to the gradient descent with
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(11). This allows a practitioner to adopt the existing practically efficient architectures of EBMs, e.g.,
(Du & Mordatch, 2019; Du et al., 2021; Gao et al., 2021; Zhao et al., 2021), in order to solve EOT.

Algorithm. We summarize our findings and detail our optimization procedure in the Algorithm 1.
The procedure is basic, i.e., for the sake of simplicity, we specifically remove all technical tricks which
are typically used when optimizing EBMs (persistent replay buffers (Tieleman, 2008), temperature
adjusting, etc.). Particular implementation details are given in the experiments section (§5).

We want to underline that our theoretical and practical setup allows performing theoretically-grounded
truly conditional data generation by means of EBMs, which unlocks the data-to-data translation
applications for the EBM community. Existing approaches leveraging such applications with Energy-
inspired methodology lack theoretical interpretability, see discussions in §4.1.

Algorithm 1: Entropic Optimal Transport via Energy-Based Modelling
Input :Source and target distributions P and Q, accessible by samples;

Entropy regularization coefficient ε > 0, cost function c(x, y) : RDx × RDy → R;
number of Langevin steps K > 0, Langevin discretization step size η > 0;
basic noise std σ0 > 0; potential network fθ : RDy → R, batch size N > 0.

Output : trained potential network fθ∗ recovering optimal conditional EOT plans
for i = 1, 2, . . . do

Derive batches {xn}Nn=1 = X ∼ P, {yn}Nn=1 = Y ∼ Q of sizes N;
Sample basic noise Y (0) ∼ N (0, σ0) of size N;
for k = 1, 2, . . . ,K do

Sample Z(k) = {z(k)n }Nn=1, where z
(k)
n ∼ N (0, 1);

Obtain Y (k) = {y(k)n }Nn=1 with Langevin step:
y
(k)
n ← y

(k−1)
n + η

2ε · stop_grad
(

∂
∂y [fθ(y)− c(xn, y)]

∣∣
y=y

(k−1)
n

)
+
√
ηz

(k)
n

L̂← − 1
N

[ ∑
y
(K)
n ∈Y (K)

fθ

(
y
(K)
n

)]
+ 1

N

[ ∑
yn∈Y

fθ (yn)

]
;

Perform a gradient step over θ by using ∂L̂
∂θ ;

3.3 GENERALIZATION BOUNDS FOR LEARNED ENTROPIC PLANS

Below, we sort out the question of how far a recovered plan is from the true optimal plan π∗.

In practice, the source and target distributions are given by empirical samples XN = {xn}Nm=1 ∼ P
and YM = {ym}Mm=1 ∼ Q, i.e., finite datasets. Besides, the available potentials f come from
restricted functional class F ⊂ C(Y), e.g., f are neural networks. Therefore, in practice, we actually
optimize the following empirical counterpart of the weak dual objective (15)

max
f∈F

F̂w
CEOT

(f)
def
= max

f∈F

{
− ε

1

N

N∑
n=1

logZ(f, xn) +
1

M

M∑
m=1

f(ym)

}
.

and recover f̂ def
= argmaxf∈F F̂w

CEOT
(f). A question arises: how close is πf̂ to the OT plan π∗?

Our Theorem 4 below characterizes the error between πf̂ and π∗ arising due to approximation (F is
restricted), and estimation (finite samples of P,Q are available) errors. To bound the estimation error,
we employ the well-known Rademacher complexity (Shalev-Shwartz & Ben-David, 2014, M26).
Theorem 4 (Finite sample learning guarantees). Denote the functional class of weak CEOT-transforms
corresponding to F by FCEOT = {−ε logZ(f, ·) : f ∈ F}. Let RN (F ,Q) and RM (FCEOT ,P)
denote the Rademacher complexities of functional classes F and FCEOT w.r.t. Q and P for sample
sizes N and M , respectively. Then the following upper bound on the error between π∗ and πf̂ holds:

E
[
KL
(
π∗∥πf̂

) ]
≤

Estimation error︷ ︸︸ ︷
ε−1
[
4RN (FCEOT ,P) + 4RM (F ,Q)

]
+

Approximation error︷ ︸︸ ︷
ε−1
[
Fw,∗
CEOT
−max

f∈F
Fw
CEOT

(f)
]
. (19)
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where the expectation is taken over random realizations of datasets XN ∼ P, YM ∼ Q of sizes N,M .

We note that there exist many statistical bounds for EOT (Genevay, 2019; Genevay et al., 2019;
Rigollet & Stromme, 2022; Mena & Niles-Weed, 2019; Luise et al., 2019; del Barrio et al., 2023), yet
they are mostly about sample complexity of EOT, i.e., estimation of the OT cost value, or accuracy of
the estimated barycentric projection x 7→

∫
Y y dπ∗(y|x) in the non-parametric setup. In contrast to

these works, our result is about the estimation of the entire OT plan π∗ in the parametric setup. Our
Theorem 4 could be improved by deriving explicit numerical bounds. This can be done by analyzing
particular NNs architectures, similar to (Klusowski & Barron, 2018; Sreekumar et al., 2021). We
leave the corresponding analysis to follow-up research.

4 RELATED WORKS

In this section, we look over existing works which are the most relevant to our proposed method.
We divide our survey into two main parts. Firstly, we discuss the EBM approaches which tackle
similar practical problem setups. Secondly, we perform an overview of solvers dealing with Entropy-
regularized OT. The discussion of general-purpose OT solvers is available in Appendix A.2.

4.1 ENERGY-BASED MODELS FOR UNPAIRED DATA-TO-DATA TRANSLATION

Given a source and target domains X and Y , accessible by samples, the problem of unpaired data-
to-data translation (Zhu et al., 2017) is to transform a point x ∈ X from the source domain to
corresponding points yx1 , y

x
2 , · · · ⊂ Y from the target domain while “preserving” some notion of

x’s content. In order to solve this problem, (Zhao & Chen, 2021; Zhao et al., 2021) propose to
utilize a pretrained EBM of the target distribution Q, initialized by source samples x ∼ P. In spite
of plausibly-looking practical results, the theoretical properties of this approach remain unclear.
Furthermore, being passed through MCMC, the obtained samples may lose the conditioning on the
source samples. In contrast, our proposed approach is free from the aforementioned problems and
can be tuned to reach the desired tradeoff between the conditioning power and data variability. The
authors of (Xie et al., 2021) propose to cooperatively train CycleGAN and EBMs to solve unpaired
I2I problems. However, in their framework, EBMs just help to stabilize the training of I2I maps and
can not be considered as primal problem solvers.

4.2 ENTROPY-REGULARIZED OT

To the best of our knowledge, all continuous EOT solvers are based either on KL-guided formulation
(2) (Genevay et al., 2016; Seguy et al., 2018; Daniels et al., 2021) or unconditional entropic one
(3) with its connection to the Schrödinger bridge problem (Finlay et al., 2020; Bortoli et al., 2021;
Gushchin et al., 2023; Chen et al., 2022; Shi et al., 2023). Our approach seems to be the first which
takes advantage of conditional entropic formulation (4). Methods (Genevay et al., 2016; Seguy et al.,
2018; Daniels et al., 2021) exploit dual form of (2), see (Genevay, 2019, Eq. 4.2), which is an
unconstrained optimization problem w.r.t. a couple of dual potentials (u, v). However, (Genevay
et al., 2016; Seguy et al., 2018) do not provide a direct way for sampling from optimal conditional
plans π∗(y|x), since it requires the knowledge of target distribution Q. In order to leverage this issue,
(Daniels et al., 2021) proposes to employ a separate score-based model approximating Q. At the
inference stage (Daniels et al., 2021) utilizes MCMC sampling, which makes this work to be the
closest to ours. The detailed comparison is given below:

1. The authors of (Daniels et al., 2021) optimize dual potentials (u, v) following the dual form of (2).
This procedure is unstable for small ε as it requires the exponentiation of large numbers which are
of order ε−1. At the same time, a “small ε” regime is practically important for some downstream
applications when one needs a close-to-deterministic plan between X and Y domains. On the
contrary, our Energy-based approach does not require exponent computation and can be adapted
for a small ε by proper adjusting of ULA (12) parameters (step size, number of steps, etc.).

2. In (Daniels et al., 2021), it is mandatory to have three models, including a third-party score-based
model. Our algorithm results in a single potential fθ capturing all the information about the OT
conditional plans and only optionally may be combined with an extra generative model (M5.3).

The alternative EOT solvers (Finlay et al., 2020; Bortoli et al., 2021; Gushchin et al., 2023; Chen
et al., 2022; Vargas et al., 2021; Shi et al., 2023) are based on the connection between primal EOT
(3) and the Schrödinger bridge problem. The majority of these works model the EOT plan as a
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time-dependent stochastic process with learnable drift and diffusion terms, starting from P at the
initial time and approaching Q at the final time. This requires resource-consuming techniques to
solve stochastic differential equations. Moreover, the aforementioned methods work primarily with
the quadratic cost and hardly could be accommodated for a more general case.

5 EXPERIMENTAL ILLUSTRATIONS

In what follows, we demonstrate the performance of our method on toy 2D scenario, Gaussian-to-
Gaussian and high-dimensional AFHQ Cat/Wild→Dog image transformation problems solved using
the latent space of a pretrained StyleGAN2-ADA (Karras et al., 2020). In the first two experiments
the cost function is chosen to be squared halved l2 norm: c(x, y) = 1

2∥x− y∥22, while in the latter
case, it is more tricky and involves StyleGAN generator. An additional experiment with Colored
MNIST images translation setup is considered in Appendix C.1.

Our code is written in PyTorch and publicly available at https://github.com/
PetrMokrov/Energy-guided-Entropic-OT. The actual neural network architectures as
well as practical training setups are disclosed in the corresponding subsections of Appendix D.

5.1 TOY 2D

We apply our method for 2D Gaussian→Swissroll case and demonstrate the qualitative results on
Figure 2 for Entropy regularization coefficients ε = 0.1, 0.001. Figure 2b shows that our method
succeeds in transforming source distribution P to target distribution Q for both Entropy regularization
coefficients. In order to ensure that our approach learns optimal conditional plans π∗(y|x) well, and
correctly solves EOT problem, we provide Figures 2c and 2d. On these images, we pick several
points x ∈ X and demonstrate samples from the conditional plans π( · |x), obtained either by our
method (π(·|x) = µfθ

x ) or by discrete EOT solver (Flamary et al., 2021). In contrast to our approach,
the samples generated by the discrete EOT solver come solely from the training dataset. Yet these
samples could be considered as a fine approximation of ground truth in 2D.

(a) Input and target
distributions P and Q.

(b) Our fitted distributi-
ons; ε = 10−1 (up),
ε = 10−3 (down).

(c) Our fitted conditional
plans π(·|x); ε = 10−1

(up), ε = 10−3 (down)

(d) Discrete conditional
plans πDOT(·|x); ε = 10−1

(up), ε = 10−3 (down)

Figure 2: Performance of Energy-guided EOT on Gaussian→Swissroll 2D setup.

5.2 GAUSSIAN-TO-GAUSSIAN

Here we validate our method in Gaussian-to-Gaussian transformation tasks in various dimensions
(Dx = Dy = 2, 16, 64, 128), for which the exact optimal EOT plans are analytically known (Janati
et al., 2020). We choose ε = 0.1, 1, 10 and compare the performance of our approach with those,
described in §4.2. We report the BW2

2 -UVP metric, see Appendix D.2 for the explanation, between
the learned π̂ and optimal π∗ plans in Table 1. As we can see, our method manages to recover the
optimal plan rather well compared to baselines. Technical peculiarities are disclosed in Appendix D.
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Method
Ours

(Gushchin et al., 2023)
(Bortoli et al., 2021)

(Chen et al., 2022) (Alt)
(Chen et al., 2022) (Joint)

(Vargas et al., 2021)
(Daniels et al., 2021)
(Seguy et al., 2018)

2 16 64 128
0.01 0.2 0.56 0.97
0.02 0.08 0.19 0.34
1.97 4.22 3.44 5.87
1.44 8.22 3.5 4.33
0.45 4.8 5.6 5.28
2.96 2.94 4.06 4.0
n/a n/a n/a n/a

11.3 28.6 39.4 57.4

(a) ε = 0.1

2 16 64 128
0.03 0.1 0.26 0.31
0.006 0.04 0.12 0.33
0.88 1.29 2.32 2.43
0.75 1.7 2.45 2.64
0.07 0.21 0.34 0.58
0.3 0.9 1.34 1.8

0.92 1.36 4.62 5.33
6.77 14.6 25.6 47.1

(b) ε = 1

2 16 64 128
0.11 0.09 0.18 0.29
0.22 0.15 0.4 0.86
n/a n/a n/a n/a
n/a n/a n/a n/a

0.88 2.12 2.77 3.45
0.1 0.21 0.72 1.14

3.22 5.57 3.13 4.98
10.2 14.6 28.9 40.1

(c) ε = 10

Table 1: Performance (BW2
2 -UVP↓) of Energy-guided EOT (ours) and baselines on

Gaussian→Gaussian tasks for dimensions D = 2, 16, 64, 128 and reg. coefficients ε = 0.1, 1, 10.

5.3 HIGH-DIMENSIONAL UNPAIRED IMAGE-TO-IMAGE TRANSLATION

Figure 3: AFHQ 512× 512 Wild→Dog unpaired I2I
by our method in the latent space of StyleGAN2-ADA.

Left: source; right: translated.

In this subsection, we deal with the large-scale
unpaired I2I setup. As with many other works in
EBMs, e.g., (Zhao & Chen, 2021; Tiwary et al.,
2022), we consider learning in the latent space.
We pick a pre-trained StyleGANV2-Ada (Kar-
ras et al., 2020) generator G for Dogs AFHQ
512× 512 dataset and consider Cat→Dog (and
Wild→Dog) unpaired translation. As P, we use
the dataset of images of cats (or wild); as Q, we
useN (0, I512), i.e., the latent distribution of the
StyleGAN. We use our method with ϵ = 1 to
learn the EOT between P and Q with cost 1

2∥x−G(z)∥2, i.e., ℓ2 between the input image and the
image generated from the latent code z. Note that our method trains only one MLP network fθ acting
on the latent space, which is then used for inference (combined with G). Moreover, our approach does
not need a generative model of the source distribution P, and does not need encoder (data2latent)
networks. The qualitative results are provided in Figures 1 and 3. Our method allows us to translate
the images from one domain to the other while maintaining the similarity with the input image. For
more examples and qualitative comparisons, see Appendix C.2. For the quantitative analysis, we
compare our approach with popular unpaired I2I models ILVR (Choi et al., 2021), SDEdit (Meng
et al., 2022), EGSDE (Zhao et al., 2022), CycleGAN (Zhu et al., 2017), MUNIT (Huang et al., 2018)
and StarGANv2 (Choi et al., 2020), the obtained FID metrics are reported in Table 2. As we can see,
our approach achieves comparable-to-SOTA quality.

Method Ours ILVR SDEdit EGSDE CycleGAN MUNIT StarGAN v2
Cat → Dog FID 56.6 74.37 74.17 51.04 85.9 104.4 54.88

Wild → Dog FID 65.8 75.33 68.51 50.43 - - -

Table 2: Baselines FID1for Cat→ Dog and Wild→ Dog.

6 DISCUSSION

Our work paves a principled connection between EBMs and EOT. The latter is an emergent problem
in generative modelling, with potential applications like unpaired data-to-data translation (Korotin
et al., 2023b). Our proposed EBM-based learning method for EOT is theoretically grounded and we
provide proof-of-concept experiments. We believe that our work will inspire future studies that will
further empower EOT with recent EBMs capable of efficiently sorting out truly large-scale setups
(Du et al., 2021; Gao et al., 2021; Zhao et al., 2021).

The limitations of our method roughly match those of basic EBMs. Namely, our method requires
using MCMC methods for training and inference. This may be time-consuming. For the extended
discussion of limitations, see Appendix F.

The broader impact of our work is the same as that of any generative modelling research. Generative
models may be used for rendering, image editing, design, computer graphics, etc. and simplify the
existing digital content creation pipelines. At the same time, it should be taken into account that the
rapid development of generative models may also unexpectedly affect some jobs in the industry.

1FID scores of the baselines are taken from (Zhao et al., 2022). In order to estimate FID, we downscale the
generated images to 256× 256 for a fair comparison with the alternative methods.
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A EXTENDED BACKGROUND AND RELATED WORKS

A.1 DUAL/SEMI-DUAL EOT PROBLEMS AND THEIR RELATION TO WEAK DUAL EOT PROBLEM

Dual formulation of the EOT problem. Primal EOT problem (2) has the dual reformulation
(Genevay et al., 2016). Let u ∈ C(X ) and v ∈ C(Y). Define the dual functional by

Fε(u, v)
def
=

∫
X
u(x)dP(x)+

∫
Y
v(y)dQ(y)− ε

∫
X×Y

exp

(
u(x) + v(y)− c(x, y)

ε

)
d [P×Q](x, y).

(20)

Then the strong duality holds (Genevay et al., 2016, Proposition 2.1), i.e.,

EOT(1)
c,ε(P,Q) = sup

u∈C(X ),v∈C(Y)

Fε(u, v). (21)

The sup here may not be attained in C(X ), C(Y), yet it is common to relax the formulation and
consider u ∈ L∞(P) and v ∈ L∞(Q) instead (Marino & Gerolin, 2020). In this case, the sup
becomes max (Genevay, 2019, Theorem 7). The potentials u∗, v∗ which constitute a solution of the
relaxed (21) are called the (Entropic) Kantorovich potentials. The optimal transport plan π∗ which
solves the primal problem (2) could be recovered from a pair of Kantorovich potentials (u∗, v∗) as

dπ∗(x, y) = exp

(
u∗(x) + v∗(y)− c(x, y)

ε

)
dP(x)dQ(y). (22)

From the practical viewpoint, the dual objective (21) is an unconstrained maximization problem
which can be solved by conventional optimization procedures. The existing methods based on (21) as
well as their limitations and drawbacks are discussed in the related works section, §4.2.

Semi-dual formulation of the EOT problem. Objective (21) is a convex optimization problem.
By fixing a function v ∈ C(Y) and applying the first-order optimality conditions for the marginal
optimization problem supu∈C(X ) Fε(u, v), one can recover the solution of

vc,ε
def
= argmax

u∈C(X )

Fε(u, v) (23)

in the closed-form:

vc,ε(x) = −ε log
(∫

Y
exp

(
v(y)− c(x, y)

ε

)
dQ(y)

)
. (24)

Function vc,ε is called (c, ε)-transform (Genevay, 2019). By substituting the argument u ∈ C(X )
of the max with vc,ε in equation (21) and performing several simplifications, one can recover the
objective

EOT(1)
c,ε(P,Q) = sup

v∈C(Y)

∫
X
vc,ε(x)dP(x) +

∫
Y
v(y)dQ(y). (25)

This one is called the semi-dual formulation of EOT problem (Genevay, 2019, §4.3). It is not so
popular as the classical dual problem (21) since the estimation of vc,ε is non-trivial, yet it has a direct
relation to formulation (9), which forms the basis of our proposed method. In order to comprehend
this relation, below we compare (c, ε)-transform and minµ Gx,f (µ), given by (14).

Correspondence between (semi-) dual EOT and weak dual EOT. As we already pointed out in
the main part of the manuscript, equation (14) which then appears in weak dual objective (15) looks
similar to (c, ε)-transform (24). The difference is the integration measure, which is Q in the case of
(24) and the standard Lebesgue one in our case (14).

From the theoretical point of view, such dissimilarity is not significant. That is why semi-dual
(25) and weak dual (9) optimization problems are expected to share such properties as convergence,
existence of optimizers and so on. In particular, there is a relation between potentials u, v that appear
in (semi-) dual EOT problems (21, 25), and our optimized potential f from (9).

Let Q ∈ Pac(Y), and EQ : Y → R be the energy function of Q, i.e., dQ(y)
dy ∝ exp (−EQ(y)).

Consider the parameterization of potentials v by means of f as follows:

v(y)← f(y) + εEQ(y). (26)
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Then,

vc,ε(x) = −ε log
(∫

Y
exp

(
v(y)− c(x, y)

ε

)
dQ(y)

)
= −ε log

(∫
Y
exp

(
f(y)− c(x, y)

ε

)
exp (EQ(y))

dQ(y)

dy
dy

)
= −ε log

(∫
Y
exp

(
f(y)− c(x, y)

ε

)
exp (EQ(y)) exp (−EQ(y)) dy

)
+ Const(Q)

see (14)
= −ε logZ(f, x) + Const(Q). (27)

By substituting (26, 27) in (25) we obtain that semi-dual EOT objective (25) recovers our weak dual
objective (15) up to reparameterization (26):

EOT(1)
c,ε(P,Q) = sup

v∈C(Y)

{∫
X
vc,ε(x)dP(x) +

∫
Y
v(y)dQ(y)

}
= Const1(Q)︸ ︷︷ ︸

=εH(Q)

+ sup
f∈C(Y)−εEQ

{∫
X

[
− ε logZ(f, x)

]
dP(x) +

∫
Y
f(y)dQ(y)

}
.

Strictly speaking, the optimization class C(Y)−εEQ = {f−εEQ, f ∈ C(Y)} in the equation above is
different from C(Y) that appears in (15). However, under mild assumptions on EQ the corresponding
optimization problems are similar. One important consequence of the observed equivalence is the
existence of optimal potential f∗ (not necessary to be continuous) which solves weak dual objective
(9). It can be expressed through optimal Kantorovich potential v∗ by f∗ = v∗ − εEQ.

From the practical point of view, the difference between (14) and (24) is much more influential.
Actually, it is the particular form of internal weak dual problem solution (14) that allows us to utilize
EBMs, see §3.2.

A.2 DISCRETE AND CONTINUOUS OT SOLVERS REVIEW

Discrete OT. The discrete OT (DOT) is the specific domain in OT research area, which deals with
distributions supported on finite discrete sets. There have been developed various methods for solving
DOT problems (Peyré et al., 2019), the most efficient of which deals with discrete EOT (Cuturi, 2013).
In spite of good theoretically-grounded convergence guarantees, it is hard to adopt the DOT solvers
for out-of-distribution sampling and mapping, which limits their applicability in some real-world
scenarios.

Continuous OT. In the continuous setting, the source and target distributions become accessible only
by samples from (limited) budgets. In this case, OT plans are typically parameterized with neural
networks and optimized with the help of SGD-like methods by deriving random batches from the
datasets. The approaches dealing with such practical setup are called continuous OT solvers.

There exists a lot of continuous OT solvers (Makkuva et al., 2020; Korotin et al., 2021a; Fan et al.,
2023; Xie et al., 2019; Rout et al., 2022; Gazdieva et al., 2022; Korotin et al., 2022b; Taghvaei &
Jalali, 2019; Liu et al., 2023). However, the majority of these methods model OT as a deterministic
map which for each input point x assigns a single data point y rather than distribution π(y|x).
Only a limited number of approaches are capable of solving OT problems which require stochastic
mapping, and, therefore, potentially applicable for our EOT case. Here we exclude methods designed
specifically for EOT and cover them in the further narrative.

The recent line of works (Korotin et al., 2023b;a; Asadulaev et al., 2024) considers dual formulation
of weak OT problem (Gozlan et al., 2017) and comes up with maxmin objective for various weak
(Korotin et al., 2023b;a) and even general (Asadulaev et al., 2024) cost functionals. However, their
proposed methodology requires the estimation of weak cost by samples, which complicates its
application for EOT. An alternative concept (Xie et al., 2019) works with primal OT formulation (1)
and lifts boundary source and target distribution constraints by WGAN losses. It also utilizes sample
estimation of corresponding functionals and can not be directly adapted for EOT setup.

17



Published as a conference paper at ICLR 2024

B PROOFS

B.1 PROOF OF THEOREM 1

Proof. In what follows, we analyze the optimizers of the objective minµ∈P(Y) Gx,f (µ) introduced in
(8). Let µ ∈ P(Y). We have:

Gx,f (µ) =
∫
Y
c(x, y)dµ(y) + ε

∫
Y
log

dµ(y)

dy
dµ(y)−

∫
Y
f(y)dµ(y)

= ε

∫
Y

(
c(x, y)− f(y)

ε
+ log

dµ(y)

dy

)
dµ(y)

= ε

∫
Y

(
− logZ(f, x)︸ ︷︷ ︸

does not depend on y

+ logZ(f, x)− f(y)− c(x, y)

ε︸ ︷︷ ︸
=− log

dµ
f
x(y)
dy

+ log
dµ(y)

dy

)
dµ(y)

= −ε logZ(f, x) + ε

∫
Y

(
− log

dµf
x(y)

dy
+ log

dµ(y)

dy

)
dµ(y)

= −ε logZ(f, x) + εKL
(
µ∥µf

x

)
. (28)

The last equality holds true thanks to the fact that µf
x ∈ Pac(Y) and ∀y ∈ Y :

dµf
x(y)
dy > 0. This

leads to the conclusion that the absolute continuity of µ (µ≪ λ, where λ is the Lebesgue measure
on Y) is equivalent to the absolute continuity of µ w.r.t. µf

x (µ≪ µf
x). In particular, if µ /∈ Pac(Y),

then the last equality in the derivations above reads as +∞ = +∞. From (28) we conclude that
µf
x = argmin

µ∈P(Y)

Gx,f (µ).

B.2 PROOF OF THEOREM 2

Proof. Recall that we denote the optimal value of weak dual objective (9) by Fw,∗
CEOT

. It equals to
EOTc,ε(P,Q) given by formula (4), thanks to the strong duality, i.e.,

Fw,∗
CEOT

=

∫
X×Y

c(x, y)dπ∗(x, y)− ε

∫
X
H(π∗(y|x))dP(x). (29)

For a potential f ∈ C(Y), our Theorem 1 yields:

Fw
CEOT

(f)=

∫
X
Gx,f (µf

x)dP(x)+
∫
Y
f(y)dQ(y)

Eq. (14)
= −ε

∫
X
logZ(f, x)dP(x)+

∫
Y
f(y)dQ(y). (30)

In what follows, we combine (29) and (30):

Fw,∗
CEOT
− Fw

CEOT
(f) =∫

X×Y
c(x, y)dπ∗(x, y)−ε

∫
X
H(π∗(y|x))dP(x)+ε

∫
X
logZ(f, x) dP(x)︸ ︷︷ ︸

=dπ∗(x)

−
∫
Y
f(y) dQ(y)︸ ︷︷ ︸

=dπ∗(y)

=

∫
X×Y

[
c(x, y)− f(y)

]
dπ∗(x, y)− ε

∫
X
H(π∗(y|x))dP(x) + ε

∫
X
logZ(f, x)dπ∗(x) =

−ε
∫
X×Y

f(y)− c(x, y)

ε︸ ︷︷ ︸
=log exp( f(y)−c(x,y)

ε )

dπ∗(x, y) + ε

∫
X×Y

log Z(f, x)︸ ︷︷ ︸
=
∫
Y exp( f(y)−c(x,y)

ε )dy

dπ∗(x, y)− ε

∫
X
H(π∗(y|x))dP(x) =

−ε

{∫
X×Y

log

[
1

Z(f, x)
exp

(
f(y)− c(x, y)

ε

)
︸ ︷︷ ︸

=
dµ

f
x(y)
dy

]
dπ∗(x, y)

}
− ε

∫
X
H(π∗(y|x))dP(x) =

−ε
∫
X×Y

log

(
dµf

x(y)

dy

)
dπ∗(x, y)− ε

∫
X
H(π∗(y|x))dP(x) =
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−ε
∫
X

∫
Y
log

(
dµf

x(y)

dy

)
dπ∗(y|x) dπ∗(x)︸ ︷︷ ︸

=dP(x)

+ε

∫
X

∫
Y
log

(
dπ∗(y|x)

dy

)
dπ∗(y|x)dP(x) =

ε

∫
X

{∫
Y

[
log

(
dπ∗(y|x)

dy

)
− log

(
dµf

x(y)

dy

)]
dπ∗(y|x)

}
dP(x) =

ε

∫
X

KL
(
π∗(·|x)∥µf

x

)
dP(x) .

In the last transition of the derivations above, we use the equality∫
Y

[
log

(
dπ∗(y|x)

dy

)
− log

(
dµf

x(y)

dy

)]
dπ∗(y|x) = KL

(
π∗(·|x)∥µf

x

)
.

It holds true due to the same reasons, as explained in the proof of Theorem 1, after formula (28).

We are left to show that
∫
X KL

(
π∗(·|x)∥µf

x

)
dP(x) = KL

(
π∗∥πf

)
. Since dπ∗(x, y) =

dπ∗(y|x)dP(x) and dπf (x, y) = dµf
x(y)dP(x), we derive:∫

X
KL
(
π∗(·|x)∥µf

x

)
dP(x) =

∫
X

∫
Y
log

(
dπ∗(y|x)
dµf

x(y)

)
dπ∗(y|x)dP(x) =

∫
X

∫
Y
log

(
dπ∗(y|x)dP(x)
dµf

x(y)dP(x)

)
dπ∗(y|x)dP(x) =∫

X×Y
log

(
dπ∗(x, y)

dπf (x, y)

)
dπ∗(x, y) = KL

(
π∗∥πf

)
,

which completes the proof.

B.3 PROOF OF THEOREM 3

Proof. The direct derivations for (18) read as follows:

∂

∂θ
L(θ) = −ε

∫
X

∂

∂θ
logZ(fθ, x)dP(x) +

∫
Y

∂

∂θ
fθ(y)dQ(y) =

−ε
∫
X

1

Z(fθ, x)

{
∂

∂θ

∫
Y
exp

(
fθ(y)− c(x, y)

ε

)
dy

}
dP(x) +

∫
Y

∂

∂θ
fθ(y)dQ(y) =

−ε
∫
X

{
1

Z(fθ, x)

∫
Y

[
∂
∂θfθ(y)

ε

]
exp

(
fθ(y)− c(x, y)

ε

)
dy

}
dP(x) +

∫
Y

∂

∂θ
fθ(y)dQ(y) =

−
∫
X

{∫
Y

[
∂

∂θ
fθ(y)

]
1

Z(fθ, x)
exp

(
fθ(y)− c(x, y)

ε

)
dy︸ ︷︷ ︸

=dµ
fθ
x (y)

}
dP(x) +

∫
Y

∂

∂θ
fθ(y)dQ(y) =

−
∫
X

∫
Y

[
∂

∂θ
fθ(y)

]
dµfθ

x (y)dP(x) +
∫
Y

∂

∂θ
fθ(y)dQ(y) ,

which finishes the proof.

B.4 PROOF OF THEOREM 4

To begin with, for the ease of reading and comprehension, we recall the statistical learning setup
from §3.3. In short, XN and YM are empirical samples from P and Q, respectively, F ⊂ C(Y) is a
function class in which we are looking for a potential f̂ , which optimizes the empirical weak dual
objective

F̂w
CEOT

(f) = −ε 1

N

N∑
n=1

logZ(f, xn) +
1

M

M∑
m=1

f(ym),
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i.e., f̂ = argmaxf∈F F̂w
CEOT

(f). Additionally, we introduce fF def
= argmaxf∈F Fw

CEOT
(f). It

optimizes weak dual objective (9) in the function class under consideration. Following statistical
generalization practices, our analysis utilizes Rademacher complexity. We recall the definition below.
Definition 1 (Rademacher complexityRN (F , µ)). Let F be a function class and µ be a distribution.
The Rademacher complexity of F with respect to µ of sample size N is

RN (F , µ) def
=

1

N
E
{
sup
f∈F

N∑
n=1

f(xn)σn

}
,

where {xn}Nn=1 ∼ µ are mutually independent, {σn}Nn=1 are mutually independent Rademacher
random variables, i.e., Prob

(
{σn = 1}

)
= Prob

(
{σn = −1}

)
= 0.5, and the expectation is taken

with respect to both {xn}Nn=1 and {σn}Nn=1.

Now we are ready to verify our Theorem 4.

Proof. Our Theorem 2 yields that

εKL
(
π∗∥πf̂

)
= Fw,∗

CEOT
− Fw

CEOT
(f̂).

Below we upper-bound the right-hand side of the equation above.

Fw,∗
CEOT
− Fw

CEOT
(f̂) =

Fw,∗
CEOT
− Fw

CEOT
(fF ) + Fw

CEOT
(fF )− F̂w

CEOT
(f̂) + F̂w

CEOT
(f̂)− Fw

CEOT
(f̂) ≤∣∣Fw,∗

CEOT
− Fw

CEOT
(fF )

∣∣ + (31)∣∣Fw
CEOT

(fF )− F̂w
CEOT

(f̂)
∣∣ + (32)∣∣F̂w

CEOT
(f̂)− Fw

CEOT
(f̂)
∣∣ . (33)

Analysis of (31). Equation (31) relates to approximation error and depends on the richness of class
F . The detailed investigation of how could the approximation error be treated in the context of our
Energy-guided EOT setup and, more generally, EBMs is an interesting avenue for future work.

Analysis of (32). Similar to (Taghvaei & Jalali, 2019, Theorem 3.4), we estimate (32) using the
Rademacher complexity bounds. First, we need the following technical Lemma.

Lemma 1. For each particular samples XN , YM , there exists f̃ ∈ F , such that:∣∣Fw
CEOT

(fF )− F̂w
CEOT

(f̂)
∣∣ ≤ ∣∣Fw

CEOT
(f̃)− F̂w

CEOT
(f̃)
∣∣

Proof. Let’s consider
∣∣Fw

CEOT
(fF )− F̂w

CEOT
(f̂)
∣∣. There are two possibilities.

1. Fw
CEOT

(fF ) ≥ F̂w
CEOT

(f̂).
Since ∀f ∈ F : F̂w

CEOT
(f̂) ≥ F̂w

CEOT
(f), and, in particular, F̂w

CEOT
(f̂) ≥ F̂w

CEOT
(fF ), it holds:∣∣Fw

CEOT
(fF )− F̂w

CEOT
(f̂)
∣∣ = Fw

CEOT
(fF )− F̂w

CEOT
(f̂) ≤

Fw
CEOT

(fF )− F̂w
CEOT

(fF ) ≤
∣∣Fw

CEOT
(fF )− F̂w

CEOT
(fF )

∣∣,
i.e., we set f̃ ← fF .

2. F̂w
CEOT

(f̂) > Fw
CEOT

(fF ).
Similar to the previous case, ∀f ∈ F : Fw

CEOT
(fF ) ≥ Fw

CEOT
(f) ⇒ Fw

CEOT
(fF ) ≥ Fw

CEOT
(f̂).

Analogous derivations read as:∣∣Fw
CEOT

(fF )− F̂w
CEOT

(f̂)
∣∣ = F̂w

CEOT
(f̂)− Fw

CEOT
(fF ) ≤

F̂w
CEOT

(f̂)− Fw
CEOT

(f̂) ≤
∣∣Fw

CEOT
(f̂)− F̂w

CEOT
(f̂)
∣∣,

i.e., we set f̃ ← f̂ and finish the proof of the Lemma.
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Now we continue the proof of our Theorem. For particular samples XN and YM , consider f̃ from
Lemma 1. We derive: ∣∣Fw

CEOT
(fF )− F̂w

CEOT
(f̂)
∣∣ ≤ ∣∣Fw

CEOT
(f̃)− F̂w

CEOT
(f̃)
∣∣ =∣∣∣∣∫

X

[
−ε logZ(f̃ , x)

]
dP(x)+

∫
Y
f̃(y)dQ(y)−

{ N∑
n=1

−ε logZ(f̃ , xn)

N
+

M∑
m=1

f̃(ym)

M

}∣∣∣∣ =

∣∣∣∣{∫
X

[
−ε logZ(f̃ , x)

]
dP(x)−

N∑
n=1

−ε logZ(f̃ , xn)

N

}
+

{∫
Y
f̃(y)dQ(y)−

M∑
m=1

f̃(ym)

M

}∣∣∣∣ ≤∣∣∣∣∫
X

[
−ε logZ(f̃ , x)

]
dP(x)−

N∑
n=1

−ε logZ(f̃ , xn)

N

∣∣∣∣+∣∣∣∣∫
Y
f̃(y)dQ(y)−

M∑
m=1

f̃(ym)

M

∣∣∣∣ ≤
sup
f∈F

∣∣∣∣∫
X
fCEOT(x)dP(x)−

N∑
n=1

fCEOT(xn)

N

∣∣∣∣+ sup
f∈F

∣∣∣∣∫
Y
f(y)dQ(y)−

M∑
m=1

f(ym)

M

∣∣∣∣ =

sup
h∈FCEOT

∣∣∣∣∫
X
h(x)dP(x)−

N∑
n=1

h(xn)

N

∣∣∣∣+ sup
f∈F

∣∣∣∣∫
Y
f(y)dQ(y)−

M∑
m=1

f(ym)

M

∣∣∣∣ .
Recall that FCEOT = {fCEOT : f ∈ F} = {−ε logZ(f, ·) : f ∈ F}. Thanks to well-known
Rademacher bound (Shalev-Shwartz & Ben-David, 2014, Lemma 26.2), it holds:

E

{
sup

h∈FCEOT

∣∣∣∣∫
X
h(x)dP(x)−

N∑
n=1

h(xn)

N

∣∣∣∣
}
≤ 2RN (FCEOT ,P),

E

{
sup
f∈F

∣∣∣∣∫
Y
f(y)dQ(y)−

M∑
m=1

f(ym)

M

∣∣∣∣
}
≤ 2RM (F ,Q),

where the expectations are taken with respect to samples XN and YM . Combining the results above,
we conclude:

E
∣∣Fw

CEOT
(fF )− F̂w

CEOT
(f̂)
∣∣ ≤ 2RN (FCEOT ,P) + 2RM (F ,Q). (34)

Analysis of (33). Similar to the previous case, we obtain the inequality:∣∣F̂w
CEOT

(f̂)− Fw
CEOT

(f̂)
∣∣ ≤

sup
h∈FCEOT

∣∣∣∣∫
X
h(x)dP(x)−

N∑
n=1

h(xn)

N

∣∣∣∣+ sup
f∈F

∣∣∣∣∫
Y
f(y)dQ(y)−

M∑
m=1

f(ym)

M

∣∣∣∣ .
Therefore,

E
∣∣F̂w

CEOT
(f̂)− Fw

CEOT
(f̂)
∣∣ ≤ 2RN (FCEOT ,P) + 2RM (F ,Q). (35)

By gathering equations (31, 34, 35), we prove the theorem:

E
[
KL
(
π∗∥πf̂

) ]
= ε−1E

{
Fw,∗
CEOT
− Fw

CEOT
(f̂)
}
≤

ε−1
∣∣Fw,∗

CEOT
− Fw

CEOT
(fF )

∣∣+ ε−1E
∣∣Fw

CEOT
(fF )− F̂w

CEOT
(f̂)
∣∣+ ε−1E

∣∣F̂w
CEOT

(f̂)− Fw
CEOT

(f̂)
∣∣ ≤

ε−1
∣∣Fw,∗

CEOT
− Fw

CEOT
(fF )

∣∣+ ε−1
[
4RN (FCEOT ,P) + 4RM (F ,Q)

]
.

C EXTENDED EXPERIMENTS

C.1 COLORED MNIST

In this subsection, we consider Colored MNIST (Gushchin et al., 2023, M5.3). Following (Gushchin
et al., 2023), we set source and target distributions P and Q to be colored handwritten images of
digits “2” and “3” accordingly. The entropic regularization coefficients are in range ε = 0.01, 0.1, 1.
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ϵ 0.01 0.1 1
LPIPS (VGG) 0.043 0.063 0.11

Table 3: LPIPS variance of Our method for
ColoredMNIST “2”→“3” transfer.

The qualitative results of learning our model directly
in the data space are presented in Figure 4. As we
can see, our learned EOT plans successfully preserve
color and geometry of the transformed images. Gen-
erated images (Figures 4b, 4c, 4d) are slightly noised
since we add noise to target images when training for
stability. For quantitative analysis and comparison with competitive methods, we borrow the results
on the ColoredMNIST transfer problem for (Bortoli et al., 2021), (Daniels et al., 2021), (Gushchin
et al., 2023) from (Gushchin et al., 2023). Additionally, we run the code for the recent (Shi et al.,
2023) on our own. The methods generally work for different ε due to their principles, and we choose
ε = 1 as an admissible entropic regularization power for all methods except (Daniels et al., 2021)
which struggles for small ε, see the discussion in § 4.2. For it, we choose ε = 25. The obtained
FID metrics are reported in Table 4. For the qualitative performance of baselines, see (Gushchin
et al., 2023, Fig. 2). Besides, we provide Table 3 with LPIPS metric to show that the diversity of our
method increases with ε.

Method Ours (Bortoli et al., 2021) (Shi et al., 2023) (Gushchin et al., 2023) (Daniels et al., 2021)
FID 109 93 91.3 6.3 14.7(ε = 25)

Table 4: Baselines FID for ColoredMNIST “2”→“3” transfer, ε = 1

We honestly state that the FID of our approach is not good. One reason is that the default Langevin
dynamic produces slightly noisy samples. FID is known to terribly react to any noise. Secondly, we
emphasize that we adapt the simplest long-run EBMs with persistent replay buffer (Nijkamp et al.,
2020) for the experiment, see Appendix D.4 for the details. We leave the applications of modern
EBMs which can generate sharp data (Du & Mordatch, 2019; Du et al., 2021) for future research.

(a) x ∼ P (b) y ∼ π̂(·|x) , ε = 0.01 (c) y ∼ π̂(·|x) , ε = 0.1 (d) y ∼ π̂(·|x) , ε = 1

Figure 4: Quantitative performance of Energy-guided EOT on Colored MNIST.

C.2 EXTENDED HIGH-DIMENSIONAL UNPAIRED IMAGE-TO-IMAGE TRANSLATION

In this section, we provide additional quantitative results and comparisons for our considered high-
dimensional I2I setup. In Table 5, we show uncurated samples from our approach learned on
512 × 512 AFHQ Cat→Dog and Wild→Dog image transfer problems. To compare our visual
results with alternatives, we demonstrate the pictures generated by (Zhao et al., 2022) and (Daniels
et al., 2021) solvers, see Figure 6. The former demonstrates SOTA results, see Table 2, but has no
relation to OT. The latter is the closest approach to ours. For (Daniels et al., 2021), we trained their
algorithm in the same setup as we used, with the latent space of the StylaGAN and transport cost
c(x, y) = 1

2∥x−G(z)∥22, see § 5.3. We found that their method works only for ε = 10000 yielding
unconditional generation. It is in concordance with our findings about the approach, see discussion in
§ 4.2, and the insights from the original work, see (Daniels et al., 2021, §5.1).

D EXPERIMENTAL DETAILS

General Details. For the first two experiments, we take the advantage of replay buffer B constructed
as described in (Du & Mordatch, 2019). When training, the ULA algorithm is initialized by samples
from B with probability p = 0.95 and from Gaussian noise with probability 1− p = 0.05. For the
last two image-data experiments, we also use a similar replay buffer but with p = 1, i.e., we do not
update B with short-run samples.
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(a) 512×512 AFHQ Cat→Dog (b) 512×512 AFHQ Wild→Dog

Figure 5: Uncurated Image-to-Image translation by our method in the latent space of StyleGAN.

(a) 256× 256 samples obtained with
(Zhao et al., 2022)

(b) 512× 512 samples obtained with
(Daniels et al., 2021), ε = 10000

Figure 6: Image-to-Image Cat→Dog translation by alternative methods

D.1 TOY 2D DETAILS

We parameterize the potential fθ as MLP with two hidden layers and
LeakyReLU(negative_slope= 0.2) as the activation function. Each hidden layer has
256 neurons. The hyperparameters of Algorithm 1 are as follows: K = 100, σ0 = 1, N = 1024, see
the meaning of each particular variable in the algorithm listing. The Langevin discretization steps are
η = 0.05 for ε = 0.1 and η = 0.005 for ε = 0.001. The reported numbers are chosen for reasons of
the training stability.

Computation complexity. The experiment was conducted on a single GTX 1080 Ti and took
approximately two hours for each entropy regularization parameter value.
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D.2 GAUSSIAN-TO-GAUSSIAN DETAILS

For the source and target distributions, we choose P = N (0,ΣX) and Q = N (0,ΣY ) with ΣX and
ΣY chosen at random. For the reproducibility, these parameters are provided in the code.

The details of baseline methods (Table 1) are given in Appendix E. For each particular parameter
set ε,D, our trained potential fθ is given by MLP with three hidden layers, 512 neurons each,
and ReLU activation. The same architectural setup is chosen for ⌊Gushchin et. al.⌉ (Gushchin
et al., 2023) for fair comparison. The hyperparameters of Algorithm 1 are the same for each ε,D:
K = 100, σ0 = 1, N = 1024, η = 0.1. At the inference stage, we run ULA steps for Ktest = 700
iterations. The only parameter which we choose to be dependent on ε,D is the learning rate. It
affects the stability of the training. The particular learning rates which are used in our experiments
are given in Table 5. More specific training peculiarities could be found in our code.

Bures-Wasserstein UVP metric. The BW2
2 -UVP metric (Korotin et al., 2021b, Eq. 18) is the

Wasserstein-2 distance between distributions π1 and π2 that are coarsened to Gaussians and nor-
malised by the variance of distribution π2:

BW2
2-UVP(π1, π2)

def
=

100%
1
2Var(π2)

W2
2

(
N (µπ1

,Σπ1
),N (µπ2

,Σπ2
)
)
.

In our experiment, π2 is the optimal plan π∗ which is known to be Gaussian, and π1 is the learned
plan π̂, whose mean and covariance are estimated by samples.

Computation complexity. Each experiment with particular ε,D takes approximately 12 hours on a
single GTX 1080 Ti.

D 2 16 64 128
ε 0.1 1 10 0.1 1 10 0.1 1 10 0.1 1 10
lr 5 ·

10−7
4 ·

10−7
2 ·

10−7
2 ·

10−5
4 ·

10−6
1 ·

10−5
7 ·

10−5
4 ·

10−5
2 ·

10−5
2 ·

10−4
5 ·

10−5
5 ·

10−5

Table 5: Learning rates for Gaussian-to-Gaussian experiment; ε = 0.1, 1, 10 and D = 2, 16, 64, 128.

D.3 HIGH-DIMENSIONAL UNPAIRED IMAGE-TO-IMAGE TRANSLATION DETAILS

General details. In this experiment, we learn EOT between a source distribution of images P ∈
P(R3×512×512) and Q = N (0, I512) ∈ P(R512), which is the latent distribution of the pretrained
StyleGAN G. We use non-euclidean cost c(x, y) = 1

2∥x−G(z)∥22. Below we describe the primary

idea behind this choice. Consider the pushforward distribution Qambi def
= G♯Q. In our case, it is the

parametric distribution of AFHQ Dogs. Thanks to our specific cost function, the learned optimal
conditional plans πf̂ (·|x) between P and Q help to approximate (given ε is sufficiently small) the
standard Euclidean Optimal Transport between P and Qambi, which is the motivating problem of
several OT researches (Makkuva et al., 2020; Korotin et al., 2021a). The corresponding (stochastic)
mapping is given by pushforward distributions G♯π

f̂ (·|x). In practice, we sample from πf̂ (·|x) using
our cost-guided MCMC and then pass the obtained samples through G. Note that our setup seems to
be the first theoretically-advised attempt to leverage W2

2 OT between 512× 512 images.

Technical details. The AFHQ dataset is taken from the StarGAN v2 (Choi et al., 2020) github:
https://github.com/clovaai/stargan-v2.

The dataset includes three groups of high-quality 512× 512 images: Dogs, Cats and Wilds (wildlife
animals). The latter two groups are used as the source distributions P. The pretrained (on AFHQ
Dogs) StyleGAN2-ADA Karras et al. (2020) is taken from the official PyTorch implementation:

https://github.com/NVlabs/stylegan2-ada-pytorch.

As a potential fθ which operates in the 512-dimensional latent space of the StyleGAN model, we
choose fully-connected MLP with ReLU activations and three hidden layers with 1024, 512 and 256
neurons, accordingly. The training hyperparameters are: K = 100,

√
η = 0.008, σ0 = 1.0, N = 128.

For both Cat→Dog and Wild→Dog experiments, we train our model for 11 epochs with a learning
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rate 10−4 which starts monotonically decreasing to 10−5 after the fifth epoch. At inference, we
initialize the sampling procedure (in the latent space) with standard Normal noise. Then we repeat
Langevin steps for K init

test = 1000 iterations with
√
η = 0.008. After that, additional K refine

test = 1000
steps are performed with

√
η = 0.0005. The obtained latent codes are then passed through the

StyleGAN generator, yielding the images from the AFHQ Dog dataset.

Computation complexity. The training takes approximately a day on 4 A100 GPUs. The inference
(as described above) takes about 20 minutes per batch on a single A100 GPU.

D.4 COLORED MNIST DETAILS

For generating Colored MNIST dataset, we make use of the code, provided by the authors of
(Gushchin et al., 2023). The dataset consists of colored images of digit “2” (≈ 7K) and colored
images of digit “3” (≈ 7K). The images are scaled to resolution 32× 32.

To solve the problem in view, we adapt the base EBM code from (Nijkamp et al., 2020):

https://github.com/point0bar1/ebm-anatomy.

We do nothing but embed the cost function gradient’s computation when performing Langevin steps,
leaving all the remaining technical details unchanged. In particular, we utilize simple CNNs with
LeakyReLU(negative_slope= 0.05) activations as our learned potential fθ. We pick batch
size N = 256 and initialize the persistent replay buffer at random using Uniform[−1, 1]3×32×32

distribution. We use Adam optimizer with learning rate gradually decreasing from 3 · 10−5 to 10−5.
The reported images 4 correspond to approximately 7000 training iterations.

For each entropic coefficient ε = 0.01, 0.1, 1, we run 6 experiments with the parameters given in
Table 6. For training stability, we add Gaussian noise N (0, 9 · η) to target samples when computing
loss estimate L̂ in Algorithm 1.

ε 0.01 0.1 1
K ∈ {500, 1000, 2000} {500, 1000, 2000} {500, 1000, 2000}√
η ∈ {0.1, 0.3} {0.1, 0.3} {0.2, 0.3}

Table 6: Training parameters for Colored MNIST; ε = 0.01, 0.1, 1.

At the inference stage, we initialize the MCMC chains with source data samples. The ULA steps
are repeated for Ktest = 2000 iterations with the same Langevin discretization step size η as the one
used at the training stage. For each ε, the reported images 4 are picked for those parameters set K, η,
which we found to be the best in terms of qualitative performance.

For LPIPS calculation, we use the official code:

https://github.com/richzhang/PerceptualSimilarity,

where we pick VGG backbone for calculating lpips features. To calculate the resulting metric, we
sample 18 target images from πf̂ (·|x) for each test source image x. For every pair of these 18 images,
we compute LPIPS and report the average value (along the generated target images and source ones).

Computation complexity. It takes approximately one day on one V100 GPU to complete an image
data experiment for each set of parameters.

E DETAILS OF THE BASELINE METHODS

In this section, we discuss details of the baseline methods with which we compare our method on the
Gaussian-to-Gaussian transformation problem.

⌊Daniels et.al.⌉ (Daniels et al., 2021). We use the code from the authors’ repository

https://github.com/mdnls/scones-synthetic

for their evaluation in the Gaussian case. We employ their configuration blob/main/config.py.
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⌊Seguy et.al.⌉ (Seguy et al., 2018). We use the part of the code of SCONES correspond-
ing to learning dual OT potentials blob/main/cpat.py and the barycentric projection
blob/main/bproj.py in the Gaussian case with configuration blob/main/config.py.

⌊Chen et.al.⌉ (Joint) (Chen et al., 2022). We utilize the official code from

https://github.com/ghliu/SB-FBSDE

with their configuration blob/main/configs/default_checkerboard_config.py for
the checkerboard-to-noise toy experiment, changing the number of steps of dynamics from 100 to 200
steps. Since their hyper-parameters are developed for their 2-dimensional experiments, we increase
the number of iterations for dimensions 16, 64 and 128 to 15 000.

⌊Chen et.al.⌉ (Alt) (Chen et al., 2022). We also take the code from the
same repository as above. We base our configuration on the authors’ one
(blob/main/configs/default_moon_to_spiral_config.py) for the moon-to-
spiral experiment. As earlier, we increase the number of steps of dynamics up to 200. Also, we
change the number of training epochs for dimensions 16, 64 and 128 to 2,4 and 8 correspondingly.

⌊De Bortoli et.al.⌉ (Bortoli et al., 2021). We utilize the official code from

https://github.com/JTT94/diffusion_schrodinger_bridge

with their configuration blob/main/conf/dataset/2d.yaml for toy problems. We increase
the amount of steps of dynamics to 200 and the number of steps of IPF procedure for dimensions 16,
64 and 128 to 30, 40 and 60, respectively.

⌊Vargas et.al.⌉ (Vargas et al., 2021). We use the official code from

https://github.com/franciscovargas/GP_Sinkhorn

with hyper-parameters from blob/main/notebooks/2D Toy
Data/2d_examples.ipynb. We set the number of steps to 200. As earlier, we in-
crease the number of steps of IPF procedure for dimensions 16, 64 and 128 to 1000, 3500 and 5000,
respectively.

⌊Vargas et.al.⌉ (Vargas et al., 2021). We tested the official code from

https://github.com/franciscovargas/GP_Sinkhorn

Instead of Gaussian processes, we used a neural network as for ⌊ENOT⌉. We use N = 200
discretization steps as for other SB solvers, 5000 IPF iterations, and 512 samples from distributions
P0 and P1 in each of them. We use the Adam optimizer with lr = 10−4 for optimization.

⌊Gushchin et.al.⌉ (Gushchin et al., 2023) We use the code provided by the authors. In our experi-
ments, we use exactly the same hyperparameters for this setup as the authors (Gushchin et al., 2023,
Appendix B), except the number of discretization steps N , which we set to 200 as well as for other
Schrödinger Bridge based methods.

F EXTENDED DISCUSSION OF LIMITATIONS

In general, the main limitation of our approach is the usage of MCMC. This procedure is time-
consuming and requires adjusting several hyperparameters. Moreover, in practice, it may not
always converge to the desired distribution which introduces additional biases. The other details
of launching our proposed algorithm arise due to its connection to EBM’s learning procedure. It is
known that EBMs for generative modelling could be trained by two different optimization regimes:
short-run (non-convergent) training and long-run (convergent) training (Nijkamp et al., 2020). In
the first regime, the learned potential does not necessarily represent the energy function of the
learned distribution. Because of this, the short-run mode may not always be adapted for Energy-
guided EOT, since it seems crucial for fθ to represent the true component of the conditional Energy
potentials E

µ
fθ
x
(y) = c(x,y)−fθ(y)

ε . In particular, for our Colored MNIST experiment, we found
the short-run regime to be unstable and utilize exclusively long-run mode. At the same time, for
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moderate-dimensional Toy 2D and Gaussian-to-Gaussian experiments as well as for latent-space
high-dimensional I2I setup, non-convergent training was successful.
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