Published as a conference paper at ICLR 2022

FEDPARA: LOW-RANK HADAMARD PRODUCT FOR
COMMUNICATION-EFFICIENT FEDERATED LEARNING

Nam Hyeon-Woo', Moon Ye-Bin', Tae-Hyun Oh':2:3

!Department of Electrical Engineering, POSTECH 2Graduate School of Al, POSTECH
3Yonsei University

{hyeonw.nam, ybmoon, taehyun}@postech.ac.kr

ABSTRACT

In this work, we propose a communication-efficient parameterization, FedPara,
for federated learning (FL) to overcome the burdens on frequent model uploads
and downloads. Our method re-parameterizes weight parameters of layers using
low-rank weights followed by the Hadamard product. Compared to the conven-
tional low-rank parameterization, our FedPara method is not restricted to low-
rank constraints, and thereby it has a far larger capacity. This property enables to
achieve comparable performance while requiring 3 to 10 times lower communi-
cation costs than the model with the original layers, which is not achievable by
the traditional low-rank methods. The efficiency of our method can be further im-
proved by combining with other efficient FL optimizers. In addition, we extend
our method to a personalized FL application, pFedPara, which separates param-
eters into global and local ones. We show that pFedPara outperforms competing
personalized FL. methods with more than three times fewer parameters. Project
page: https://github.com/South-hw/FedPara_ICLR22

1 INTRODUCTION

Federated learning (FL; McMahan et al., 2017) has been proposed as an efficient collaborative learn-
ing strategy along with the advance and spread of mobile and IoT devices. FL allows leveraging
local computing resources of edge devices and locally stored private data without data sharing for
privacy. FL typically consists of the following steps: (1) clients download a globally shared model
from a central server, (2) the clients locally update each model using their own private data without
accessing the others’ data, (3) the clients upload their local models back to the server, and (4) the
server consolidates the updated models and repeats these steps until the global model converges. FL
has the key properties (McMahan et al., 2017) that differentiate it from distributed learning:

* Heterogeneous data. Data is decentralized and non-IID as well as unbalanced in its amount due
to different characteristics of clients; thus, local data does not represent the population distribution.

» Heterogeneous systems. Clients consist of heterogeneous setups of hardware and infrastructure;
hence, those connections are not guaranteed to be online, fast, or cheap. Besides, massive client
participation is expected through different communication paths, causing communication burdens.

These FL properties introduce challenges in the convergence stability with heterogeneous data and
communication overheads. To improve the stability and reduce the communication rounds, the prior
works in FL have proposed modified loss functions or model aggregation methods (Li et al., 2020;
Karimireddy et al., 2020; Acar et al., 2021; Yu et al., 2020; Reddi et al., 2021). However, the
transferred data is still a lot for the edge devices with bandwidth constraints or countries having
low-quality communication infrastructure.! A large amount of transferred data introduces an energy
consumption issue on edge devices because wireless communication is significantly more power-
intensive than computation (Yadav & Yadav, 2016; Yan et al., 2019).

I'The gap between the fastest and the lowest communication speed across countries is significant; approximately
63 times different (Speedtest).

https://github.com/South-hw/FedPara_ICLR22

Published as a conference paper at ICLR 2022

In this work, we propose a communication-efficient re-parameterization for FL, FedPara, which
reduces the number of bits transferred per round. FedPara directly re-parameterizes each fully-
connected (FC) and convolutional layers of the model to have a small and factorized form while
preserving the model’s capacity. Our key idea is to combine the Hadamard product with low-rank
parameterizationas W = (X, Y])®(X2Y,) € R™*", called low-rank Hadamard product. When
rank(X;Y]) = rank(X,Y,) = r, then rank(W) < r2. This outstanding property facilitates
spanning a full-rank matrix with much fewer parameters than the typical m x n matrix. It signifi-
cantly reduces the communication burdens during training. At the inference phase, we pre-compose
and maintain W that boils down to its original structure; thus, FedPara does not alter computa-
tional complexity at inference time. Compared to the aforementioned prior works that tackle reduc-
ing the required communication rounds for convergence, our FedPara is an orthogonal approach
in that FedPara does not change the optimization part but re-defines each layer’s internal structure.

We demonstrate the effectiveness of FedPara with various network architectures, including VGG,
ResNet, and LSTM, on standard classification benchmark datasets for both IID and non-IID settings.
The accuracy of our parameterization outperforms that of the traditional low-rank parameterization
baseline given the same number of parameters. Besides, FedPara has comparable accuracy to
original counterpart models and even outperforms as the number of parameters increases at times.
We also combine FedPara with other FL algorithms to improve communication efficiency further.

We extend FedPara to the personalized FL application, named pFedPara, which separates the
roles of each sub-matrix into global and local inner matrices. The global and local inner matrices
learn the globally shared common knowledge and client-specific knowledge, respectively. We de-
vise three scenarios according to the amount and heterogeneity of local data using the subset of
FEMNIST and MNIST. We demonstrate performance improvement and robustness of pFedPara
against competing algorithms. We summarize our main contributions as follows:

* We propose FedPara, a low-rank Hadamard product parameterization for communication-
efficient FL. Unlike traditional low-rank parameterization, we show that FedPara can span a
full-rank matrix and tensor with reduced parameters. We also show that FedPara requires up
to ten times fewer total communication costs than the original model to achieve target accuracy.
FedPara even outperforms the original model by adjusting ranks at times.

* Our FedPara takes a novel approach; thereby, our FedPara can be combined with other FL
methods to get mutual benefits, which further increase accuracy and communication efficiency.

* We propose pFedPara, a personalization application of FedPara, which splits the layer

weights into global and local parameters. pFedPara shows more robust results in challenging
regimes than competing methods.

2 METHOD

In this section, we first provide the overview of three popular low-rank parameterizations in Sec-
tion 2.1 and present our parameterization, FedPara, with its algorithmic properties in Section 2.2.
Then, we extend FedPara to the personalized FL application, pFedPara, in Section 2.3.

Notations. We denote the Hadamard product as ®, the Kronecker product as ®, n-mode tensor prod-
uct as x,,, and the i-th unfolding of the tensor 7() € R**ILixi ki given a tensor 7~ € RF1% " *kn,

2.1 OVERVIEW OF LOW-RANK PARAMETERIZATION

The low-rank decomposition in neural networks has been typically applied to pre-trained models for
compression (Phan et al., 2020), whereby the number of parameters is reduced while minimizing
the loss of encoded information. Given a learned parameter matrix W € R™*" it is formulated

as finding the best rank-r approximation, as arg ming; |[W — W]||r such that W = XY T, where

X € R™*", Y € R™™", and r< min (m,n). It reduces the number of parameters from O(mn) to
O((m + n)r), and its closed-form optimal solution can be found by SVD.

This matrix decomposition is applicable to the FC layers and the reshaped kernels of the convolution
layers. However, the natural shape of a convolution kernel is a fourth-order tensor; thus, the low-
rank tensor decomposition, such as Tucker and CP decomposition (Lebedev et al., 2015; Phan et al.,

Published as a conference paper at ICLR 2022

T i
T Y Y.
(;gxn) R ®%)
w _ X w - Xy o X2
(mxn) (mx2R) (mxn) (mxR) (mXR)
WA W,
rank(W) < 2R rank(W) < R? (mxn) (mxn)
(a) Conventional low-rank parameterization (b) FedPara (Ours)

Figure 1: Illustrations of low-rank matrix parameterization and FedPara with the same number of
parameters 2R(m + n). (a) Low-rank parameterization is the summation of 2R number of rank-
1 matrices, W = XY ', and rank(W) < 2R. (b) FedPara is the Hadamard product of two
low-rank inner matrices, W = W; ©® Wy = (X;Y]) ® (XY,), and rank(W) < R2.

Layer Parameterization # Params. Maximal Rank Example [# Params. / Rank]

Original mn min(m,n) 66 K /256

FC Layer Low-rank 2R(m +n) 2R 16 K/32
FedPara 2R(m +n) R? 16 K /256
Original OIK 1 K> min(0, I K, K>) 590 K /256

. Low-rank 2R(0 + I + RK, K>) 2R 21K/32
Convolutional Layer . 5., - (Proposition 1) 2R(O + 1K, Ka) R? 82K /256
FedPara (Proposition 3) 2R(O + I + RK; K>) R? 21 K /256

Table 1: The number of parameters, maximal rank, and example. We assume that the weights
of the FC and convolutional layers are in R™*™ and RO*/xK1xKz2 " regpectively. The rank of
the convolutional layer is the rank of the 1% unfolding tensor. As a reference example, we set
m=n=0=1=256,K; = Ky =3,and R = 16.

2020), can be a more suitable approach. Given a learned high-order tensor 7~ € R¥1***k» Tucker
decomposition multiplies a kernel tensor I € R™ > %™ with matrices X; € R" %™ where r; =

rank(%(i)) as % = K x1 X3 Xg -+ Xy, X, and CP decomposition is the summation of rank-1

tensors as 7 = > .| x} x x? x --- x x?, where x] € R¥i. Likewise, it also reduces the number
of model parameters. We refer to these rank-constrained structure methods simply as conventional
low-rank constraints or low-rank parameterization methods.

In the FL context, where the parameters are frequently transferred between clients and the server
during training, the reduced parameters lead to communication cost reduction, which is the main
focus of this work. The post-decomposition approaches (Lebedev et al., 2015; Phan et al., 2020)
using SVD, Tucker, and CP decompositions do not reduce the communication costs because those
are applied to the original parameterization after finishing training. That is, the original large-size
parameters are transferred during training in FL, and the number of parameters is reduced after
finishing training.

We take a different notion from the low-rank parameterizations. In the FL scenario, we train a
model from scratch with low-rank constraints, but specifically with low-rank Hadamard product re-
parameterization. We re-parameterize each learnable layer, including FC and convolutional layers,
and train the surrogate model by FL. Different from the existing low-rank method in FL. (Kone¢ny
et al., 2016), our parameterization can achieve comparable accuracy to the original counterpart.

2.2 FEDPARA: A COMMUNICATION-EFFICIENT PARAMETERIZATION

As mentioned, the conventional low-rank parameterization has limited expressiveness due to its low-
rank constraint. To overcome this while maintaining fewer parameters, we present our new low-rank
Hadamard product parameterization, called FedPara, which has the favorable property as follows:

Proposition 1 Let X; € R™*™ X, € R™*"™2 Y, € R, Yy € R ™2, rq,ry < min(m,n)
and the constructed matrix be W := (X, Y|) ® (X3Y,). Then, rank(W) < 7.

All proofs can be found in the supplementary material including Proposition 1. Proposition 1 im-
plies that, unlike the low-rank parameterization, a higher-rank matrix can be constructed using the
Hadamard product of two inner low-rank matrices, W7 and W5 (Refer to Figure 1). If we choose the

Published as a conference paper at ICLR 2022

inner ranks r; and ro such that 79 > min(m, n), the constructed matrix does not have a low-rank
restriction and is able to span a full-rank matrix with a high chance (See Figure 6); i.e., FedPara
has the minimal parameter property achievable to full-rank. In addition, we can control the number
of parameters by changing the inner ranks r; and r», respectively, but we have the following useful
property to set the hyper-parameters to be a minimal number of parameters with a maximal rank.

Proposition 2 Given R € N, 1 = ro = R is the unique optimal choice of the following criteria,
argmin,. . oy (ri+7ro)(m—+mn) st. rire > R (1)

and its optimal value is 2R(m + n).

Equation 3 implies the criteria that minimize the number of weight parameters used in our parame-
terization with the target rank constraint of the constructed matrix as R2. Proposition 2 provides an
efficient way to set the hyper-parameters. It implies that, if we set ry=r,=R and R? > min(m,n),
FedPara is highly likely to have no low-rank restriction’ even with much fewer parameters than
that of a naive weight, i.e., 2R(m + n) < mn. Moreover, given the same number of parameters,
rank(W) of FedPara is higher than that of the naive low-rank parameterization by a square factor,
as shown in Figure 1 and Table 1.

To extend Proposition 1 to the convolutional layers, we can simply reshape the fourth-order tensor
kernel to the matrix as RO/ *K1xKa _y ROX(IK1K2) a4 3 pajve way, where O, I, K1, and K> are
the output channels, the input channels, and the kernel sizes, respectively. That is, our parameteriza-
tion spans convolution filters with a few basis filters of size I x K7 x K. However, we can derive
more efficient parameterization of convolutional layers without reshaping as follows:

Proposition 3 Let 71, T, € R Bxksxka X, X, € RFMXE Y, Yy € RF2XE R < min(ky, ks)
and the convolution kernel be W := (T; x1 X1 x2 Y1) ® (T2 X1 Xg X2 Y3). Then, the rank of the
kernel satisfies rank(W(1)) = rank(W(?) < R2.

Proposition 3 is the extension of Proposition 1 but can be applied to the convolutional layer without
reshaping. In the convolutional layer case of Table 1, given the specific tensor size, Proposition 3
requires 3.8 times fewer parameters than Proposition 1. Hence, we use Proposition 3 for the convo-
lutional layer since the tensor method is more effective for common convolutional models.

Optionally, we employ non-linearity and the Jacobian correction regularization, of which details can
be found in the supplementary material. These techniques improve the accuracy and convergence
stability but not essential. Depending on the resources of devices, these techniques can be omitted.

2.3 PFEDPARA: PERSONALIZED FL APPLICATION

In practice, data are heterogeneous and personal
due to different characteristics of each client, such
as usage times and habits. FedPer (Arivazhagan [[
et al., 2019) has been proposed to tackle this sce- [V"””*”/W [V"””*”/W

[Global 1 Local

nario by distinguishing global and local layers in ,,,ETL,, ,,,E’Tﬁ,,
the model. Clients only transfer global layers (the i i
top layer) and keep local ones (the bottom layers) | LayerN [layerN
on each device. The global layers learn jointly to / ' ‘/ ; \
extract general features, while the local layers are taver 1.\ | lavelt
biased towards each user. Client Client
(a) FedPer (b) pFedPara (Ours)

With our FedPara, we propose a personalization
application, pFedPara, in which the Hadamard Figure 2: Diagrams of (a) FedPer and (b)
product is used as a bridge between the global inner pFedPara. The global part is transferred to

weight Wy and the local inner weight Wa. Each he server and shared across clients, while the
layer of the personalized model is constructed by [ocal part remains private in each client.

W = W; © (W3 + 1), where W is transferred

*Its corollary and empirical evidence can be found in the supplementary material. Under Proposition 2, R? >
min(m, n) is a necessary and sufficient condition for achieving a maximal rank.

Published as a conference paper at ICLR 2022

to the server while Wy, is kept in a local device during training. This induces W to learn glob-
ally shared knowledge implicitly and acts as a switch of the term (W5 + 1). Conceptually, we
can interpret by rewriting W = W0OW2+W; = W, + W, , where W,,.,, = W10W,
and Wy;,, = W;. The construction of the final personalized parameter W in pFedPara can
be viewed as an additive model of the global weight W, and the personalizing residue W ...
pFedPara transfers only a half of the parameters compared to FedPara under the same rank
condition; hence, the communication efficiency is increased further.

Intuitively, FedPer and pFedPara are distinguished by their respective split directions, as illus-
trated in Figure 2. We summarize our algorithms in the supplementary material. Although we only
illustrate feed-forward network cases for convenience, it can be extended to general cases.

3 EXPERIMENTS

We evaluate our FedPara in terms of communication costs, the number of parameters, and com-
patibility with other FL. methods. We also evaluate pFedPara in three different non-IID scenarios.
We use the standard FL algorithm, FedAvg, as a backbone optimizer in all experiments except
for the compatibility experiments. More details and additional experiments can be found in the
supplementary material.

3.1 SETUP

Datasets. In FedPara experiments, we use four popular FL datasets: CIFAR-10, CIFAR-100
(Krizhevsky et al., 2009), CINIC-10 (Darlow et al., 2018), and the subset of Shakespeare (Shake-
speare, 1994). We split the datasets randomly into 100 partitions for the CIFAR-10 and CINIC-10
IID settings and 50 partitions for the CIFAR-100 IID setting. For the non-IID settings, we use the
Dirichlet distribution for random partitioning and set the Dirichlet parameter o as 0.5 as suggested
by He et al. (2020b). We assign one partition to each client and sample 16% of clients at each round
during FL. In pFedPara experiments, we use the subset of handwritten datasets: MNIST (LeCun
et al., 1998) and FEMNIST (Caldas et al., 2018). For the non-IID setting with MNIST, we follow
McMahan et al. (2017), where each of 100 clients has at most two classes.

Models. We experiment VGG and ResNet for the CNN architectures and LSTM for the RNN
architecture as well as two FC layers for the multilayer perceptron. When using VGG, we use
the VGG16 architecture (Simonyan & Zisserman, 2015) and replace the batch normalization with
the group normalization as suggested by Hsieh et al. (2020). VGG16,,;. stands for the original
VGG16, VGG1 6]0y the one with the low-rank tensor parameterization in a Tucker form by following
TKD (Phan et al., 2020), and VGG1 6regpara the one with our FedPara. In the pFedPara tests,
we use two FC layers as suggested by McMahan et al. (2017).

Rank Hyper-parameter. We adjust the inner rank of W1 and Wy as v = (1—7)7min + Y7mazs
where 7,,;,, 1S the minimum rank allowing FedPara to achieve a full-rank by Proposition 2, 7,4
is the maximum rank such that the number of FedPara’s parameters do not exceed the number of
original parameters, and v € [0,1]. We fix the same - for all layers for simplicity.® Note that -y
determines the number of parameters.

3.2 QUANTITATIVE RESULTS

Capacity. In Table 2, we validate the propositions stating that our FedPara achieves a higher rank
than the low-rank parameterization given the same number of parameters. We train VGG1 614y, and
VGG1 6pegpara for the same target rounds 7', and use 10.25% and 10.15% of the VGG1 6,,;. param-
eters, respectively, to be comparable. As shown in Table 2a, VGG1 6rcgpara SUrpasses VGG1 6jqy,
on all the IID and non-IID settings benchmarks with noticeable margins. The same tendency is
observed in the recurrent neural networks as shown in Table 2b. We train LLSTM on the subset of
Shakespeare. Table 2b shows that LSTMreqpara has higher accuracy than LSTMey, Where the num-
ber of parameters is set to 19% and 16% of L.STM, respectively. This experiment evidences that our
FedPara has a better model expressiveness and accuracy than the low-rank parameterization.

3The parameter can be independently tuned for each layer in the model. Moreover, one may apply neural
architecture search or hyper-parameter search algorithms for further improvement. We leave it for future work.

Published as a conference paper at ICLR 2022

CIFAR-10 (T'=200) CIFAR-100 (T" = 400) CINIC-10 (7" = 300)

(a) CNN Models
11D non-IID 11D non-1ID 11D non-IID
VGG 610w 77.62 67.75 34.16 30.30 63.98 60.80
VGG 6gpegpara (Ours) 82.88 71.35 45.78 43.94 70.35 64.95
Shakespeare (7" = 500)
(b) RNN Model
1ID non-IID
LSTMiow 54.59 51.24
LSTMregpara (Ours) 63.65 51.56

Table 2: Accuracy comparison between low-rank parameterization and FedPara. (a) The accuracy
VGG16jow and VGG 6regpara. We set the target rounds 7' = 200 for CIFAR-10, 400 for CIFAR-
100, and 300 for CINIC-10. (b) The accuracy of LSTMow and LSTMregpara. We set the target
rounds 7" = 500 for the Shakespeare dataset.

--- VGG16eq, —— VGG16pegpara (OUrS)
___________ 51.0 USRS
40.8 '
9
5305
1%
<<
20.2
86 172 259 345 10.05 55 110 165 220 136 272 409 545
Communication Cost [GB] Communication Cost [GB] Communication Cost [GB]
(a) CIFAR-10 IID (y=0.1) (b) CIFAR-100 IID (y=0.4) (¢) CINIC-10 IID (y=0.3)
74.0 47.0 [P 67.0 I
58.0 37.8 52.8 .
5 42.0 - 5285 5385
O B [v] O
< , < <
26.0 19.2 242,
10.0, 90 180 270 350 100690 180 270 360 10.0, 138 256 384 512
Communication Cost [GB] Communication Cost [GB] Communication Cost [GB]

(d) CIFAR-10 non-IID (y=0.1) (e) CIFAR-100 non-IID (y=0.4) (f) CINIC-10 non-IID (y=0.3)

1 VGG16or, B VGG16regpara (Ours)

@ 378.0/9.3 g
i 283.5/7.0 305.3/7.5 E
© 235.1/5.8 g
g| 205.3/5.1 :
8 154.9/3.8 2
O Z
: 67.3/1.7 <

55.2/1.4 o 46.3/1.1 53.9/13 |3
£ 20.3/0.5 32.5/0.8 6.3/ :
S =
© CIFAR10 IID CIFAR10 non-IID CIFAR100 IID CIFAR100 non-IID CINIC10 IID CINIC10 non-IID w

(80%) (70%) (50%) (45%) (70%) (65%)

(g) Communication Costs

Figure 3: (a-f): Accuracy [%] (y-axis) vs. communication costs [GBytes] (z-axis) of VGG1 6. and
VGG1l6regpara- Broken line and solid line represent VGG1 64, and VGG1 6rcgpara, respectively.
(g): Size comparison of transferred parameters, which can be expressed as communication costs
[GBytes] (left y-axis) or energy consumption [MJ] (right y-axis), for the same target accuracy. The
white bars are the results of VGG16,,;. and the black bars are the results of VGG1 6regpara. The
target accuracy is denoted in the parentheses under the x-axis of (g).

Communication Cost. We compare VGG 6regpara and VGG1 64,4, in terms of accuracy and
communication costs. FL evaluation typically measures the required rounds to achieve the tar-
get accuracy as communication costs, but we instead assess total transferred bit sizes, 2 X
(#participants) x (model size) x (#rounds), which considers up-/down-link and is a more prac-
tical communication cost metric. Depending on the difficulty of the datasets, we set the model

size of VGG1 6pagpara as 10.1%, 29.4%, and 21.8% of VGG1 6, for CIFAR-10, CIFAR-100, and
CINIC-10, respectively.

Published as a conference paper at ICLR 2022

--- VGG16ei —— VGG16regpara (OUrS)
51.50
50.07
S 48.64 S
< <
47.21
8231529 48 67 86 4578629 48 67 86 7033629 48 67 86
Parameters [%] Parameters [%] Parameters [%]
(a) CIFAR-10 TID (b) CIFAR-100 TID (¢) CINIC-10 TID

7133629 48 67 86 29 48 67 86 64936 29 48 67 86
Parameters [%] Parameters [%] Parameters [%]
(d) CIFAR-10 non-IID (e) CIFAR-100 non-IID (f) CINIC-10 non-IID

Figure 4: Test accuracy [%] (y-axis) vs. parameters ratio [%] (z-axis) of VGG1 6rcqpara at the target
rounds. The target rounds follow Table 2. The dotted line represents VGG1 6,,;. with no parameter
reduction, and the solid line VGG1 6zcqpars adjusted by v € [0.1,0.9] in 0.1 increments.

FedAvg FedProx SCAFFOLD FedDyn FedAdam

Accuracy (T = 200) 82.88 78.95 84.72 86.05 82.48
Round (80%) 110 . 92 80 117

Table 3: The compatibility of FedPara with other FL algorithms. The first row is the accuracy of
FedPara combined with other FL algorithms on the CIFAR-10 IID setting after 200 rounds, and
the second row is the required rounds to achieve the target accuracy 80%.

In Figures 3a-3f, VGG1 6rcqpara has comparable accuracy but requires much lower communica-
tion costs than VGG1 6,,;,. Figure 3g shows communication costs and energy consumption required
for model training to achieve the target accuracy; we compute the energy consumption by the en-
ergy model of user-to-data center topology (Yan et al., 2019). VGG16reqpara needs 2.8 to 10.1
times fewer communication costs and energy consumption than VGG1 6, to achieve the same tar-
get accuracy. Because of these properties, FedPara is suitable for edge devices suffering from
communication and battery consumption constraints.

Model Parameter Ratio. We analyze how the number of parameters controlled by the rank ratio
v affects the accuracy of FedPara. As revealed in Figure 4, VGG1 6pcgpara’s accuracy mostly
increases as the number of parameters increases. VGG1 6r.gpars can achieve even higher accuracy
than VGG164,4.. It is consistent with the reports from the prior works (Luo et al., 2017; Kim et al.,
2019) on model compression, where reduced parameters often lead to accuracy improvement, i.e.,
regularization effects.

Compatibility. We integrate the FedPara-based model with other FL. optimizers to show that
our FedPara is compatible with them. We measure the accuracy during the target rounds and the
required rounds to achieve the target accuracy. Table 3 shows that VGG1 6pcgpara combined with the
current state-of-the-art method, FedDyn, is the best among other combinations. Thereby, we can
further save the communication costs by combining FedPara with other efficient FL. approaches.

Personalization. We evaluate pFedPara, assuming no sub-sampling of clients for an update. We
train two FC layers on the FEMNIST or MNIST datasets using four algorithms, FedPAQ, FedAvg,
FedPer, and pFedPara, with ten clients. FedPAQ denotes the local models trained only using
their own local data; FedAvg the global model trained by the FedAvg optimization; and FedPer
and pFedPara the personalized models of which the first layer (FedPer) and half of the inner

Published as a conference paper at ICLR 2022

Local FedAvg FedPer pFedPara (Ours)
75.0 59.0 99.5
" -
70.8 54.8 97.8
— T I — —
X x X
5 66.5 5505 I 5 96.0
) o O
< << <
62.2 I 46.2 ‘|V ‘|' 94.2
==
58.0 Local FedAvg FedPer pFedPara 42.0 Local FedAvg FedPer pFedPara 92.5 Local FedAvg FedPer pFedPara
(a) Scenario 1 (b) Scenario 2 (c) Scenario 3

Figure 5: Average test accuracy over ten local models trained by each algorithm. (a) 100% of local
training data on FEMNIST are used with the non-IID setting, which mimics enough local data to
train and evaluates each local model on their own data. (b) 20% of local training data on FEMNIST
are used with the non-IID setting, which mimics insufficient local data to train local models. (c)
100% of local training data on MNIST are used with the highly-skew non-IID setting, where each
client has at most two classes. The error bars denote 95% confidence intervals obtained by 5 repeats.

matrices (pFedPara) are trained by sharing with the server, respectively, while the other parts are
locally updated. We validate these algorithms on three scenarios in Figure 5.

In Scenario 1 (Figure 5a), the FedPAQ accuracy is higher than those of FedAvg and FedPer
because each client has sufficient data. Nevertheless, pFedPara surpasses the other methods. In
Scenario 2 (Figure 5b), the FedAvg accuracy is higher than that of FedPAQ because local data
are too scarce to train the local models. The FedPer accuracy is also lower than that of FedAvg
because the last layer of FedPer does not exploit other clients’ data; thus, FedPer is susceptible
to a lack of local data. The higher performance of pFedPara shows that our pFedPara can take
advantage of the wealth of distributed data in the personalized setup. In Scenario 3 (Figure 5c¢), the
FedAvg accuracy is much lower than the other methods due to the highly-skewed data distribution.
In most scenarios, pFedPara performs better or favorably against the others. It validates that
pFedPara can train the personalized models collaboratively and robustly.

Additionally, both pFedPara and FedPer save the communication costs because they partially
transfer parameters; pFedPara transfers 3.4 times fewer parameters, whereas FedPer transfers
1.07 times fewer than the original model in each round. The reduction of FedPer is negligible
because it is designed to transfer all the layers except the last one. Contrarily, the reduction of
pFedPara is three times larger than FedPer because all the layers of pFedPara are factorized
by the Hadamard product during training, and only a half of each layer’s parameters are transmitted.
Thus, pFedPara is far more suitable in terms of both personalization performance and communi-
cation efficiency in FL.

Additional Experiments. We conducted additional experiments of wall clock time simulation and
other architectures including ResNet, LSTM, and Puf ferfish (Wangetal., 2021), but the results
can be found in the supplementary material due to the page limit.

4 RELATED WORK

Federated Learning. The most popular and de-facto algorithm, FedAvg (McMahan et al., 2017),
reduces communication costs by updating the global model using a simple model averaging once
a large number of local SGD iterations per round. Variants of FedAvg (Li et al., 2020; Yu et al.,
2020; Diao et al., 2021) have been proposed to reduce the communication cost, to overcome data
heterogeneity, or to increase the convergence stability. Advanced FL optimizers (Karimireddy et al.,
2020; Acar et al., 2021; Reddi et al., 2021; Yuan & Ma, 2020) enhance the convergence behavior and
improve communication efficiency by reducing the number of necessary rounds until convergence.
Federated quantization methods (Reisizadeh et al., 2020; Haddadpour et al., 2021) combine the
quantization algorithms with FedAvg and reduce only upload costs to preserve the model accuracy.
Our FedPara is a drop-in replacement for layer parameterization, which means it is an orthogonal
and compatible approach to the aforementioned methods; thus, our method can be integrated with
other FL optimizers and model quantization.

Published as a conference paper at ICLR 2022

Distributed Learning. In large-scale distributed learning of data centers, communication might be
a bottleneck. Gradient compression approaches, including quantization (Alistarh et al., 2017; Bern-
stein et al., 2018; Wen et al., 2017; Reisizadeh et al., 2020; Haddadpour et al., 2021), sparsification
(Alistarh et al., 2018; Lin et al., 2018), low-rank decomposition (Vogels et al., 2019; Wang et al.,
2021), and adaptive compression (Agarwal et al., 2021) have been developed to handle communi-
cation traffic. These methods do not deal with FL properties such as data distribution and partial
participants per round (Kairouz et al., 2019). Therefore, the extension of the distributed methods to
FL is non-trivial, especially for optimization-based approaches.

Low-rank Constraints. As described in section 2.1, low-rank decomposition methods (Lebedev
et al., 2015; Tai et al., 2016; Phan et al., 2020) are inappropriate for FL due to additional steps;
the post-decomposition after training and fine-tuning. In FL, Kone¢ny et al. (2016) and Qiao et al.
(2021) have proposed low-rank approaches. Kone¢ny et al. (2016) train the model from scratch with
low-rank constraints, but the accuracy is degraded when they set a high compression rate. To avoid
such degradation, FedDLR (Qiao et al., 2021) uses an ad hoc adaptive rank selection and shows
the improved performance. However, once deployed, those models are inherently restricted by lim-
ited low-ranks. In particular, FedDLR requires matrix decomposition in every up/down transfer. In
contrast, we show that FedPara has no such low-rank constraints in theory. Empirically, the mod-
els re-parameterized by our method show comparable accuracy to the original counterparts when
trained from scratch.

5 DISCUSSION AND CONCLUSION

To overcome the communication bottleneck in FL, we propose a new parameterization method,
FedPara, and its personalized version, pFedPara. We demonstrate that both FedPara and
pFedPara can significantly reduce communication overheads with minimal performance degra-
dation or better performance over the original counterpart at times. Even using a strong low-rank
constraint, FedPara has no low-rank limitation and can achieve a full-rank matrix and tensor by
virtue of our proposed low-rank Hadamard product parameterization. These favorable properties en-
able communication-efficient FL, of which regimes have not been achieved by the previous low-rank
parameterization and other FL approaches. We conclude our work with the following discussions.

Discussions. FedPara conducts multiplications many times during training, including the
Hadamard product, to construct the weights of the layers. These multiplications may potentially
be more susceptible to gradient exploding, vanishing, dead neurons, or numerical instability than
the low-rank parameterization with an arbitrary initialization. In our experiments, we have not ob-
served such issues when using He initialization (He et al., 2015) yet. Investigating initializations
appropriate for our model might improve potential instability in our method.

Also, we have discussed the expressiveness of each layers in neural networks in the view of rank. As
another view of layer characteristics, statistical analysis of weights and activation also offers ways to
initialize weights (He et al., 2015; Sitzmann et al., 2020) and understanding of neural networks (De
& Smith, 2020), which is barely explored in this work. It would be a promising future direction to
analyze statistical properties of composited weights from our parameterization and activations and
may pave the way for FedPara-specific initialization or optimization.

Through the extensive experiments, we show the superior performance improvement obtained by our
method, and it appears to be with no extra cost. However, the actual payoff exists in the additional
computational cost when re-composing the original structure of W from our parameterization dur-
ing training; thus, our method is slower than the original parameterization and low-rank approaches.
However, the computation time is not a dominant factor in practical FL scenarios as shown in Ta-
ble 7, but rather the communication cost takes a majority of the total training time. It is evidenced
by the fact that FedPara offers better Pareto efficiency than all compared methods because our
method has higher accuracy than low-rank approaches and much less training time than the original
one. In contrast, the computation time might be non-negligible compared to the communication
time in distributed learning regimes. While our method can be applied to distributed learning, the
benefits of our method may be diminished there. Improving both computation and communication
efficiency of FedPara in large-scale distributed learning requires further research. It would be a
promising future direction.

Published as a conference paper at ICLR 2022

ETHICS STATEMENT

We describe the ethical aspect in various fields, such as privacy, security, infrastructure level gap,
and energy consumption.

Privacy and Security. Although FL is privacy-preserving distributed learning, personal informa-
tion may be leaked due to the adversary who hijacks the model intentionally during FL. Like other
FLs, this risk is also shared with FedPara due to communication. Without care, the private data
may be revealed by the membership inference or reconstruction attacks (Rigaki & Garcia, 2020).
The local parameters in our pFedPara could be used as a private key to acquire the complete
personal model, which would reduce the chance for the full model to be hijacked. It would be inter-
esting to investigate whether our pFedPara guarantees privacy preserving or the way to improve
robustness against those risks.

Infrastructure Level Gap. Another concern introduced by FL is limited-service access to the
people living in countries having inferior communication infrastructure, which may raise human
rights concerns including discrimination, excluding, efc. It is due to a larger bandwidth requirement
of FL to transmit larger models. Our work may broaden the countries capable of FL by reducing
required bandwidths, whereby it may contribute to addressing the technology gap between regions.

Energy Consumption. The communication efficiency of our FedPara directly leads to noticeable
energy-saving effects in the FL scenario. It can contribute to reducing the battery consumption of
IoT devices and fossil fuels used to generate electricity. Moreover, compared to the optimization-
based FL approaches that reduce necessary communication rounds, our method allows more clients
to participate in each learning round under the fixed bandwidth, which would improve convergence
speed and accuracy further.

ACKNOWLEDGEMENT

This work was supported by Institute of Information & communications Technology Planning &
Evaluation (IITP) grant funded by the Korea government(MSIT) (No.2021-0-02068, Artificial In-
telligence Innovation Hub), the National Research Foundation of Korea (NRF) grant funded by the
Korea government (MSIT) (No. NRF-2021R1C1C1006799), and the “HPC Support” Project sup-
ported by the ‘Ministry of Science and ICT” and NIPA.

REFERENCES

Durmus Alp Emre Acar, Yue Zhao, Ramon Matas, Matthew Mattina, Paul Whatmough, and
Venkatesh Saligrama. Federated learning based on dynamic regularization. In International Con-
ference on Learning Representations (ICLR), 2021.

Saurabh Agarwal, Hongyi Wang, Kangwook Lee, Shivaram Venkataraman, and Dimitris Papail-
iopoulos. Adaptive gradient communication via critical learning regime identification. In Machine
Learning and Systems (MLSys), 2021.

Dan Alistarh, Demjan Grubic, Jerry Li, Ryota Tomioka, and Milan Vojnovic. Qsgd:
Communication-efficient sgd via gradient quantization and encoding. In Advances in Neural
Information Processing Systems (NeurIPS), 2017.

Dan Alistarh, Torsten Hoefler, Mikael Johansson, Nikola Konstantinov, Sarit Khirirat, and Cedric
Renggli. The convergence of sparsified gradient methods. In Advances in Neural Information
Processing Systems (NeurlPS), 2018.

Manoj Ghuhan Arivazhagan, Vinay Aggarwal, Aaditya Kumar Singh, and Sunav Choudhary. Fed-
erated learning with personalization layers. arXiv preprint arXiv:1912.00818, 2019.

Jeremy Bernstein, Yu-Xiang Wang, Kamyar Azizzadenesheli, and Animashree Anandkumar.

signSGD: Compressed optimisation for non-convex problems. In International Conference on
Machine Learning (ICML), 2018.

10

Published as a conference paper at ICLR 2022

Sebastian Caldas, Sai Meher Karthik Duddu, Peter Wu, Tian Li, Jakub Kone¢ny, H Brendan McMa-
han, Virginia Smith, and Ameet Talwalkar. Leaf: A benchmark for federated settings. Advances
in Neural Information Processing Systems Workshops (NeurIPSW), 2018.

Luke N Darlow, Elliot J Crowley, Antreas Antoniou, and Amos J Storkey. Cinic-10 is not imagenet
or cifar-10. arXiv preprint arXiv:1810.03505, 2018.

Soham De and Sam Smith. Batch normalization biases residual blocks towards the identity function
in deep networks. In Advances in Neural Information Processing Systems (NeurIPS), 2020.

Enmao Diao, Jie Ding, and Vahid Tarokh. HeteroFL: Computation and communication efficient
federated learning for heterogeneous clients. In International Conference on Learning Represen-
tations (ICLR), 2021.

Farzin Haddadpour, Mohammad Mahdi Kamani, Aryan Mokhtari, and Mehrdad Mahdavi. Feder-
ated learning with compression: Unified analysis and sharp guarantees. In Artificial Intelligence
and Statistics (AISTATS), 2021.

Chaoyang He, Murali Annavaram, and Salman Avestimehr. Group knowledge transfer: Feder-
ated learning of large cnns at the edge. In Advances in Neural Information Processing Systems
(NeurlIPS), 2020a.

Chaoyang He, Songze Li, Jinhyun So, Mi Zhang, Hongyi Wang, Xiaoyang Wang, Praneeth
Vepakomma, Abhishek Singh, Hang Qiu, Li Shen, et al. Fedml: A research library and benchmark
for federated machine learning. Advances in Neural Information Processing Systems Workshops
(NeurIPSW), 2020b.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Surpass-
ing human-level performance on imagenet classification. In IEEE International Conference on
Computer Vision (ICCV), 2015.

Kevin Hsieh, Amar Phanishayee, Onur Mutlu, and Phillip Gibbons. The non-iid data quagmire of
decentralized machine learning. In International Conference on Machine Learning (ICML), 2020.

Yo-Seb Jeon, Mohammad Mohammadi Amiri, Jun Li, and H Vincent Poor. A compressive sensing
approach for federated learning over massive mimo communication systems. /[EEE Transactions
on Wireless Communications, 20(3):1990-2004, 2020.

Peter Kairouz, H Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi Bennis, Arjun Nitin
Bhagoji, Keith Bonawitz, Zachary Charles, Graham Cormode, Rachel Cummings, et al. Advances
and open problems in federated learning. arXiv preprint arXiv:1912.04977, 2019.

Sai Praneeth Karimireddy, Satyen Kale, Mehryar Mohri, Sashank Reddi, Sebastian Stich, and
Ananda Theertha Suresh. Scaffold: Stochastic controlled averaging for federated learning. In
International Conference on Machine Learning (ICML), 2020.

Hyeji Kim, Muhammad Umar Karim Khan, and Chong-Min Kyung. Efficient neural network com-
pression. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2019.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In International
Conference on Learning Representations (ICLR), 2015.

Jakub Konec¢ny, H Brendan McMahan, Felix X Yu, Peter Richtarik, Ananda Theertha Suresh, and
Dave Bacon. Federated learning: Strategies for improving communication efficiency. arXiv
preprint arXiv:1610.05492, 2016.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
Technical report, Citeseer, 2009.

Vadim Lebedev, Yaroslav Ganin, Maksim Rakhuba, Ivan V. Oseledets, and Victor S. Lempitsky.
Speeding-up convolutional neural networks using fine-tuned cp-decomposition. In International
Conference on Learning Representations (ICLR), 2015.

11

Published as a conference paper at ICLR 2022

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278-2324, 1998.

Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet Talwalkar, and Virginia Smith.
Federated optimization in heterogeneous networks. In Machine Learning and Systems (MLSys),
2020.

Yujun Lin, Song Han, Huizi Mao, Yu Wang, and Bill Dally. Deep gradient compression: Reducing
the communication bandwidth for distributed training. In International Conference on Learning
Representations (ICLR), 2018.

Jian-Hao Luo, Jianxin Wu, and Weiyao Lin. Thinet: A filter level pruning method for deep neural
network compression. In IEEE International Conference on Computer Vision (ICCV), 2017.

Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.
Communication-efficient learning of deep networks from decentralized data. In Artificial Intelli-
gence and Statistics (AISTATS), 2017.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-performance deep
learning library. In Advances in Neural Information Processing Systems (NeurlPS), 2019.

Anh-Huy Phan, Konstantin Sobolev, Konstantin Sozykin, Dmitry Ermilov, Julia Gusak, Petr
Tichavsky, Valeriy Glukhov, Ivan Oseledets, and Andrzej Cichocki. Stable low-rank tensor de-
composition for compression of convolutional neural network. In European Conference on Com-
puter Vision (ECCV), 2020.

Zhefeng Qiao, Xianghao Yu, Jun Zhang, and Khaled B Letaief. Communication-efficient federated
learning with dual-side low-rank compression. arXiv preprint arXiv:2104.12416, 2021.

Stephan Rabanser, Oleksandr Shchur, and Stephan Giinnemann. Introduction to tensor decomposi-
tions and their applications in machine learning. arXiv preprint arXiv:1711.10781, 2017.

Sashank J. Reddi, Zachary Charles, Manzil Zaheer, Zachary Garrett, Keith Rush, Jakub Konecny,
Sanjiv Kumar, and Hugh Brendan McMahan. Adaptive federated optimization. In International
Conference on Learning Representations (ICLR), 2021.

Amirhossein Reisizadeh, Aryan Mokhtari, Hamed Hassani, Ali Jadbabaie, and Ramtin Pedarsani.
Fedpaq: A communication-efficient federated learning method with periodic averaging and quan-
tization. In Artificial Intelligence and Statistics (AISTATS), 2020.

Maria Rigaki and Sebastian Garcia. A survey of privacy attacks in machine learning. arXiv preprint
arXiv:2007.07646, 2020.

William Shakespeare. =~ The complete works of william shakespeare. https://www.
gutenberg.org/ebooks/100, 1994,

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. In International Conference on Learning Representations (ICLR), 2015.

Vincent Sitzmann, Julien Martel, Alexander Bergman, David Lindell, and Gordon Wetzstein. Im-
plicit neural representations with periodic activation functions. In Advances in Neural Information
Processing Systems (NeurlPS), 2020.

Speedtest. SPEEDTEST. https://www.speedtest.net/global-index. Accessed:
2021-05-26.

Cheng Tai, Tong Xiao, Xiaogang Wang, and Weinan E. Convolutional neural networks with low-
rank regularization. In International Conference on Learning Representations (ICLR), 2016.

Thijs Vogels, Sai Praneeth Karimireddy, and Martin Jaggi. Powersgd: Practical low-rank gradient
compression for distributed optimization. In Advances in Neural Information Processing Systems
(NeurIPS), 2019.

12

https://www.gutenberg.org/ebooks/100
https://www.gutenberg.org/ebooks/100
https://www.speedtest.net/global-index

Published as a conference paper at ICLR 2022

Hongyi Wang, Saurabh Agarwal, and Dimitris Papailiopoulos. Pufferfish: Communication-efficient
models at no extra cost. In Machine Learning and Systems (MLSys), 2021.

Wei Wen, Cong Xu, Feng Yan, Chunpeng Wu, Yandan Wang, Yiran Chen, and Hai Li. Terngrad:
Ternary gradients to reduce communication in distributed deep learning. In Advances in Neural
Information Processing Systems (NeurIPS), 2017.

Sarika Yadav and Rama Shankar Yadav. A review on energy efficient protocols in wireless sensor
networks. Wireless Networks, 22(1):335-350, 2016.

Ming Yan, Chien Aun Chan, André F Gygax, Jinyao Yan, Leith Campbell, Ampalavanapillai Nir-
malathas, and Christopher Leckie. Modeling the total energy consumption of mobile network
services and applications. Energies, 12(1):184, 2019.

Felix Yu, Ankit Singh Rawat, Aditya Menon, and Sanjiv Kumar. Federated learning with only
positive labels. In International Conference on Machine Learning (ICML), 2020.

Honglin Yuan and Tengyu Ma. Federated accelerated stochastic gradient descent. In Advances in
Neural Information Processing Systems (NeurIPS), 2020.

Guangxu Zhu, Yuqing Du, Deniz Giindiiz, and Kaibin Huang. One-bit over-the-air aggregation
for communication-efficient federated edge learning: Design and convergence analysis. IEEE
Transactions on Wireless Communications, 20(3):2120-2135, 2020.

13

Published as a conference paper at ICLR 2022

SUPPLEMENTARY
In this supplementary material, we present additional details, results, and experiments that are not

included in the main paper due to the space limit. The contents of this supplementary material are
listed as follows:

CONTENTS
A Maximal Rank Property
B Additional Techniques
C Details of Experiment Setup
C.1 Datasets
C.2 Models
C.3 FedPara & pFedPara
C.4 Hyper-parameters of Backbone Optimizer
C.5 Hyper-parameters of Other Optimizer
D Additional Experiments
D.1 Training Time

D.2 Other Models

A MAXIMAL RANK PROPERTY

This section presents the proofs of our propositions and an additional analysis of our method’s
algorithmic behavior in terms of the rank property.

A.1 PROOFS

Proposition 1 Ler X; € R™*™ X, € R™*™2 Y, € R"*" Y, € R™™ "2, ry 1y < min(m,n)
and the constructed matrix be W := (XY) ® (X3Y,). Then, rank(W) < ry7.

Proof X, Y{ and X5Y, can be expressed as the summation of rank-1 matrices such that X; Y, =

Zij{’ xijy;j, where x;; and y;; are the j-th column vectors of X; and Y, and ¢ € {1,2}. Then,

J=r J=r2 k=ry j=r2
W = XlYir ® XQY;— = Z ley;—j ® Z ngy;j = Z Z (Xlky;—k) ® (ngy;j). (2)
j=1 j=1 k=1 j=1

W is the summation of 7172 number of rank-1 matrices; thus, rank(W) is bounded above r179. O
Proposition 2 Given R € N, ry = ro = R is the unique optimal choice of the following criteria,

argmin,. . .y (r1+7ro)(m+n) st. riry > R 3)
and its optimal value is 2R(m + n).

Proof. We use arithmetic-geometric mean inequality and the given constraint. We have
(r1 +r2)(m+n) > 2y/rira(m+n) > 2R(m + n). 4)

14

Published as a conference paper at ICLR 2022

The equality holds if and only if ; = r9 = R by the arithmetic—geometric mean inequality. O

Corollary 1 Under Proposition 2, R? > min(m,) is a necessary and sufficient condition for
achieving the maximal rank of W = (X YT) ©® (X2Y]) € R™" where X1 € R™ "1 X, €
R™X™2 Y € R™¥™ Yy € R" "™, and r1,ro < min(m,n).

Proof. We first prove the sufficient condition. Given 71 = ro = R under Proposition 2 and R? >
min(m,n), rank(W) < min(ry72,m,n) = min(R?,m,n) = min(m,n). The matrix W has no
low-rank restriction; thus the condition, R? > min(m, n), is the sufficient condition.

The necessary condition is proved by contraposition; if R? < min(m,n), the matrix W cannot
achieve the maximal rank. Since 71 = ro = R under Proposition 2and R? < min(m, n), then
rank(W) < min(ry7r9,m,n) = min(R?,m,n) = R? < min(m,n). That is, rank(W) is upper-
bounded by R2, which is lower than the maximal achievable rank of W. Therefore, the condition,
R? > min(m,n), is the necessary condition because the contrapositive is true.]

Corollary 1 implies that, with R? > min(m, n), the constructed weight W does not have the low-
rank limitation, and allows us to define the minimum inner rank as 7,,,;, := min([v/m |, [v/n]).
If we set 11 = 1y = Tpin, rank(W) of our FedPara can achieve the maximal rank because
rirg = 72,. > min(m,n) while minimizing the number of parameters.

Proposition 3 Let 71, To € RFEXExksxka X, X, € RFMXE Y, Yy € RF2XE R < min(ky, ks)
and the convolution kernel be W := (T1 x1 X1 x2Y1) ® (T2 X1 Xg X2 Y3). Then, the rank of the
kernel satisfies rank(W(1)) = rank(W(?) < R2.

Proof. According to Rabanser et al. (2017), the 15¢ and 2°¢ unfolding of tensors can be expressed as

wh = (X, TV IY 91 0 Y1) T) 0 (XT3 (IW 0 I® @ Ya)T),

(5
W = (Y, 7,20 210 e X1)T) 0 (Yo.T2 00 0 10 X,)T),

where I(®) € RFsxks and T(4) € RFaxka gre identity matrices. Since WD and W@ are matrices,
we apply the same process used in Eq. 2, then we obtain rank(W1)) = rank(W(?) < R2. O

A.2 ANALYSIS OF THE RANK PROPERTY

To demonstrate our propositions empirically, we sample the parameters randomly and count
rank(W). When applying our parameterization to W € R190x100 "we set 7,,;, = 10 by Corol-
lary 1 to Proposition 2. We sample the entries of X1, X5, Y, Yy € R100X10 from the standard
Gaussian distribution and repeat this experiment 1, 000 times.

As shown in Figure 6, we observe that our parameterization achieves the full rank with the probabil-

ity of 100% but requires 2.5 times fewer entries than the original 100 x 100 matrix. This empirical

result demonstrates that our parameterization can span the full-rank matrix with fewer parameters
efficiently.

1000

750

500

Count

250

20 40 60 80 100
Rank

Figure 6: Histogram of rank(W). We apply FedPara to W € R199%100 and set r; = ro = 10.
We repeat this experiment 1, 000 times.

15

Published as a conference paper at ICLR 2022

B ADDITIONAL TECHNIQUES

We devise additional techniques to improve the accuracy and stability of our parameterization. We
consider injecting a non-linearity in FedPara and Jacobian correction regularization to further
squeeze out the performance and stability. However, as will be discussed later, these are optional.

Non-linear Function. The first is to apply a non-linear function before the Hadamard product.
FedPara composites the weight as W = W1 ®W3, and we inject non-linearity as W = o(W1)®
o0 (W) as a practical design. This makes our algorithm departing from directly applying the proofs,
i.e., empirical heuristics. However, the favorable performance of our FedPara regardless of this
non-linearity injection in practice suggests that our re-parameterization is a reasonable model to
deploy.

The non-linear function o (-) can be any non-linear function such as ReLU, Tanh, and Sigmoid, but
ReLLU and Sigmoid restrict the range to only positive, whereas Tanh has both negative and positive
values of range [—1,1]. The filters may learn to extract the distinct features, such as edge, color,
and blob, which require both negative and positive values of the filters. Furthermore, the reasonably
bounded range can prevent overshooting a large value by multiplication. Therefore, Tanh is suitable,
and we use Tanh through experiments except for those of pFedPara.

Jacobian Correction. The second is the Jacobian correction regularization, which induces that the
Jacobians of X, X5, Y, and Y5 follow the Jacobian of the constructed matrix W. Suppose that
X1,Xo € R™*" and Y1, Yy € R™ " are given. We construct the weight as W = W; © Wy,
where W; = X, Y] and W, = X, Y . Additionally, suppose that the Jacobian of W with respect
to the objective function is given: Jw = (%‘v. We can compute the Jacobians of X1, X5, Y1, and
Y with respect to the objective function and apply one-step optimization with SGD. For simplicity,
we set the momentum and the weight decay to be zero. Then, we can compute the Jacobian of other

variables using the chain rule:

OL OL oL

Jw, = =JwoW,y, Jx, =-——=JwY/, Jy, = =X,J
W oW, w © Wa, X, X, wy Y1, Jy, Y, 19wy, ©
oL oL oL
Jw, = =JwoW,, Jx,= =Jw,Y;, Jv,= =X, Jw,.
W2 = 5w, w O Wi, Jx, 7%, MERERNEES Chalr on 2 Jw,
We update the parameters using SGD with the step size 7 as follows:
X=X, —nIx,, Y =Yi—nJy,, o

Xy =Xo = nIx,, Y5=Ys—nJy,.
We can compute W', which is the constructed weight after one-step optimization:
W = (X1Y1") o (X5Y5)
= {(X1 = 1Ix) (Y1 = 03v,)} 0 {(Xz = nIx,) (Y3 = ndv,)}
={X1Y{ =%, Y] +XuJv,) +0°Ix, 37, } 0 {Xe Y5 —n(Ix, Y3 + Xodv,) +17°Tx, v, }
= (X1Y]) 0 (X2Y3) + 7' (Ix,Iv,) © (Ix,Jv,)
— 0 {(Ix, Y] +X1Jv,) © (Ixdv,) + (Ix, Yo +XoJy,) O (Ix,Iv,)}
+*{(Ix, YT +X1dv,) 0 (I, Y3 +X2Jv,) + (Txadv,) © (X2 Y3) + (Ix,Jv,) © (X1 YT)}

- 77{(JX1Y1r + X1J;r(1) © (X2Y;—) + (szY; + XQJ;F(Q) © (X1YI)}-
()

This shows that gradient descent and ascent are mixed, as shown in the signs of each term. We
propose the Jacobian correction regularization to minimize the difference between W’ and W —
nJw, which induces our parameterization to follows the direction of W —nJyy . The total objective
function consists of the target loss function and the Jacobian correction regularization as:

A
m:L(X17X27Y1aY2)+EHW/_(W_UJW)HQ (9)

Results. We evaluate the effects of each technique in Table 4. We train VGG1 6 with group normal-
ization on the CIFAR-10 IID setting during the same target rounds. We set v = 0.1 and A = 10. As

16

Published as a conference paper at ICLR 2022

Models Accuracy
FedPara (base) 82.45 £ 0.35
+ Tanh 82.42 £0.33
+ Regularization 82.38 £ 0.30
+ Both 82.52 £0.26

Table 4: Accuracy of FedPara with additional techniques. 95% confidence intervals are presented
with eight repetitions.

shown, the model with both Tanh and regularization has higher accuracy and lower variation than
the base model. There is gain in accuracy and variance with both techniques, whereas only variance
with only one technique.

Again, note that these additional techniques are not essential for FedPara to work; therefore,
we can optionally use these techniques depending on the situation where the device has enough
computing power.

C DETAILS OF EXPERIMENT SETUP

In this section, we explain the details of the experiments, including datasets, models, and hyper-
parameters. We also summarize our FedPara and pFedPara into the pseudo algorithm. For
implementation, we use PyTorch Distributed library (Paszke et al., 2019) and 8 NVIDIA GeForce
RTX 3090 GPUs.

C.1 DATASETS

CIFAR-10. CIFAR-10 (Krizhevsky et al., 2009) is the popular classification benchmark dataset.
CIFAR-10 consists of 32 x 32 resolution images in 10 classes, with 6, 000 images per class. We use
50, 000 images for training and 10, 000 images for testing. For federated learning, we split training
images into 100 partitions and assign one partition to each client. For the IID setting, we split the
dataset into 100 partitions randomly. For the non-IID setting, we use the Dirichlet distribution and
set the Dirichlet parameter as 0.5 as suggested by He et al. (2020b;a).

CIFAR-100. CIFAR-100 (Krizhevsky et al., 2009) is the popular classification benchmark dataset.
CIFAR-100 consists of 32 x 32 resolution images in 100 classes, with 6,000 images per class.
We use 50,000 images for training and 10,000 images for testing. For federated learning, we
split training images into 50 partitions. For the IID setting, we split the dataset into 50 partitions
randomly. For the non-IID setting, we use the Dirichlet distribution and set the Dirichlet parameter
as 0.5 as suggested by He et al. (2020b;a).

CINIC-10. CINIC-10 (Darlow et al., 2018) is a drop-in replacement for CIFAR-10 and also the
popular classification benchmark dataset. CINIC-10 consists of 32 x 32 resolution images in 10
classes and three subsets: training, validation, and test. Each subset has 90, 000 images with 9, 000
per class, and we do not use the validation subset for training. For federated learning, we split
training images into 100 partitions. For the IID setting, we split the dataset into 100 partitions
randomly. For the non-IID setting, we use the Dirichlet distribution and set the Dirichlet parameter
as 0.5 as suggested by He et al. (2020b;a).

MNIST. MNIST (LeCun et al., 1998) is a popular handwritten number image dataset. MNIST
consists of 70,000 number of 28 x 28 resolution images in 10 classes. We use 60,000 images
are for training and 10, 000 images for testing. We do not use MNIST IID-setting, and we split
the dataset so that clients have at most two classes as suggested by McMahan et al. (2017) for a
highly-skew non-IID setting.

FEMNIST. FEMNIST (Caldas et al., 2018) is a handwritten image dataset for federated settings.
FEMNIST has 62 classes and 3, 550 clients, and each client has 226.83 data samples on average of
28 x 28 resolution images. FEMNIST is the non-IID dataset labeled by writers.

17

Published as a conference paper at ICLR 2022

Shakespeare. Shakespeare (Shakespeare, 1994) is a next word prediction dataset for federated
learning settings. Shakespeare has 80 classes and 1, 129 clients, and each client has 3, 743.2 data
samples on average (Caldas et al., 2018).

C.2 MODELS

VGG16. PyTorch library (Paszke et al., 2019) provides VGG1 6 with batch normalization, but we
replace the batch normalization layers with the group normalization layers as suggested by Hsieh
et al. (2020) for federated learning. We also modify the FC layers to comply with the number of
classes. The dimensions of the output features in the last three FC layers are 512-512—(#classes),
sequentially. We do not apply our parameterization to the last three FC layers and set the same -y
to all convolutional layers in the model for simplicity. For reference purpose, Table 5 shows the
number of parameters corresponding to each +.

No. parameters

7 10-classes 100-classes

original 15.25M 15.30M

0.1 1.55M 1.59M
0.2 233 M 238 M
0.3 331 M 336 M
0.4 445M 450 M
0.5 579M 5.84 M
0.6 733 M 7.38M
0.7 9.01 M 9.05M

0.8 10.90 M 10.94 M
0.9 1292 M 12.96 M

Table 5: v’s and their corresponding numbers of parameters for VGG1 6. and VGG1 6rcgpara-

Two FC Layers. In personalization experiments, we use two FC layers as suggested by McMahan
et al. (2017) but modify the size of the hidden features corresponding to the number of classes in the
datasets. The dimensions of the output features in two FC layers are 256 and the number of classes,
respectively; i.e., 256—(#classes). We do not use other layers, such as normalization and dropout,
and set v = 0.5 for pFedPara.

LSTM. For the Shakespeare dataset, we use two-layer LSTM as suggested by McMahan et al.
(2017) and Acar et al. (2021). We set the hidden dimension as 256 and the number of classes
as 80. We also apply the weight normalization technique on original parameterization, low-rank
parameterization, and FedPara.

C.3 FEDPARA & PFEDPARA

Algorithm 1: FedPara

Input: rounds 7', parameters {X1;, Xa;, Y1, You =5 where {X1;, Xa1, Y11, Yo } is the 1"
layer of the model and L is the number of layers

fort=1,2,...,7T do

Sample the subset S of clients;

for each client c € S do
Download {X1;, Xa;, Y1, Yo }=1 from the server;
Optimize({X1;, Xa, Y11, Yo }=5);
Upload {X1;, Xar, Y11, Yo H=E to the server;

end

Aggregate {X1;, X2, Y1, Y }i=1s

end

18

Published as a conference paper at ICLR 2022

Algorithm 2: pFedPara

Input: rounds 7', parameters {X1;, Xz, Y11, Ygl}fjf where {X17, X21, Y11, Yo } is the ith
layer of the model and L is the number of layers
Transmit {X1;, Xa;, Y11, Yo }=F to clients to train the same initial point at start;
fort=1,2,...,T do
Sample the subset S of clients;
for each client ¢ € S do
Download half of parameters {X1;, Y1;}/=% from the server;
Optimize({X 11, Xa1, Y11, Yo }1=1);
Upload {Xy;, Yll}ézf to the server;
end
Aggregate {Xu, Yu}i=1s

end

We summarize our two methods, FedPara and pFedPara, into Algorithms 1 and 2 for apparent
comparison. In these algorithms, we mainly use the popular and standard algorithm, FedAvg, as a
backbone optimizer, but we can switch with other optimizer and aggregate methods. As mentioned
in Section B, we can consider the additional techniques. In the FedPara experiments, we use
the regularization to Algorithm 1, and set the regularization coefficient A as 1.0. In pFedPara
experiments, we do not apply the additional techniques to Algorithm 2.

C.4 HYPER-PARAMETERS OF BACKBONE OPTIMIZER

FedAvg (McMahan et al., 2017) is the most popular algorithm in federated learning. The server
samples S number of clients as a subset in each round, each client of the subset trains the model
locally by E number of SGD epochs, and the server aggregates the locally updated models and
repeats these processes during the total rounds 7. We use FedAvg as a backbone optimization
algorithm, and its hyper-parameters of our experiments, such as the initial learning rate n, local
batch size B, and learning rate decay 7, are described in Table 6.

CIFAR-10 CIFAR-100 CINIC-10 LSTM FEMNIST
Models

IID nonlID 1D nonI[D 1D nonlID 1D nonIID & MNIST
K 16 16 8 8 16 16 16 16 10
T 200 200 400 400 300 300 500 500 100
E 10 5 10 5 10 5 1 1 5
B 64 64 64 64 64 64 64 64 10
7 0.1 0.1 0.1 0.1 0.1 0.1 1.0 1.0 0.1-0.01
T 0.992 0992 0992 0.992 0992 0992 0.992 0.992 0.999
A 1 1 1 1 1 1 0 0 0

Table 6: Hyper-parameters of our FedPara with FedAvg

C.5 HYPER-PARAMETERS OF OTHER OPTIMIZERS

For compatibility experiment, we combine FedPara with other optimization-based FL algorithms:
FedProx (Li et al., 2020), SCAFFOLD (Karimireddy et al., 2020), FedDyn (Acar et al., 2021),
and FedAdam (Reddi et al., 2021). FedProx (Li et al., 2020) imposes a proximal term to the
objective function to mitigate heterogeneity; SCAFFOLD (Karimireddy et al., 2020) allows clients
to reduce the variance of gradients by introducing auxiliary variables; FedDyn (Acar et al., 2021)
introduces dynamic regularization to reduce the inconsistency between minima of the local device
level empirical losses and the global one; FedAdam employs Adam (Kingma & Ba, 2015) at the
server-side instead of the simple model average.

They need a local optimizer to update the model in each client, and we use the SGD optimizer
for a fair comparison, and the SGD configuration is the same as that of FedAvg. The four algo-
rithms have additional hyper-parameters. FedProx has a proximal coefficient i, and we set y as
0.1. SCAFFOLD has Options I and II to update the control variate, and we use Option II with
global learning rate 7y (= 1.0). FedDyn has the hyper-parameter o (= 0.1) in the regularization.
FedAdam uses Adam optimizer to aggregate the updated models at the server-side, and we use the

19

Published as a conference paper at ICLR 2022

Network speed Model teomp. teomm. t
2 Mbos VGG1 64y 1.64 sec. 470.2 sec. 471.84 sec.
P VGG16pegpara (7=0.1) 2.34sec. 47.2sec. 49.54 sec. (x 9.52)
10 Mbps VGG1 64y 1.64 sec. 94.04 sec. 94.68 sec.
P VGGl 6pegpara (7=0.1) 2.34sec. 9.44sec. 11.78 sec. (x 8.04)
50 Mbps VGG1 64y, 1.64 sec. 18.61 sec. 20.25 sec.

VGG16pegpara (7=0.1) 2.34sec. 1.88 sec. 4.22 sec. (x 4.80)

Table 7: The required time during one round. We denote the computation time, the communication
time, and the total time during one round as tcomyp., tcomm., and ¢, respectively. We set the network
speeds as 2, 10, and 50 Mbps.

Network speed Model Training time
VGG1 66y, 880.77 min.
ZMbps g o (v=0.1) 94.95 min. (x 9.28)
VGG 6or. 176.74 min.
10Mbps aor 6. onrn (v=0.1) 22.58 min. (x 7.83)
50 Mbps VGG1 60y, 37.80 min.

VGG16regpara (7=0.1) 8.09 min. (x 4.67)

Table 8: The real training time to achieve the target accuracy. We set the network speeds as 2, 10,
and 50 Mbps, and the required rounds for VGG16,,;. is 112, FedPara (v = 0.1) is 115 to achieve
the same target accuracy in the CIFAR-10 IID setting.

parameters 31 = 0.9, B2 = 0.99, the global learning rate n, = 0.01, and the local learning rate
n = 10~ for Adam optimizer.

D ADDITIONAL EXPERIMENTS

In this section, we simulate the computation time, the communication time, and total training time
in Section D.1, experiment about other models in Section D.2, and compare our method and the
quantization approach in Section D.3.

D.1 TRAINING TIME

We can compute the elapsed time during one round in FL by ¢ = tcomp. + teomm., Where teomp. s
the computation time of training the model on local data for several epochs and .y, 1S the com-
munication time of downloading and uploading the updated model. We estimate the computation
time by measuring the elapsed time during local epochs. We compute the communication time by

2-model size (Mbyte) . . .
notwork speed (Mbyte/s)’ considering upload and download of the model in one round.

Since it is challenging to experiment in a real heterogeneous network environment, we follow the
simple standard network simulation setting widely used in the communication literature (Zhu et al.,
2020; Jeon et al., 2020). They assume the homogeneous link quality by the average quality to
simplify complex network environments in FL communication simulation, i.e., the network speeds
are identical for all clients.

We compare the elapsed time per round of VGG164;. and VGG16reqpara On different network
speeds such as 2, 10, and 50 Mbps. As shown in Table 7, the communication time is larger than the
computation time indicating that the communication is a bottleneck in FL as expected. Although
VGG16regpara takes more computation time than VGG1 6., due to the weight composition time,
VGG16reqpara decreases the communication time by about ten times and the total time by 4.80
to 9.52 times. Table 8 shows the total training time to achieve the same accuracy on the CIFAR-
10 IID setting. Although FedPara needs three rounds more than the original parameterization,
VGG1 6regpara requires 4.67 to 9.68 times less training time than VGG1 6, because of communi-
cation efficient parameterization.

20

Published as a conference paper at ICLR 2022

84.0f , — e
65.5
X
547.0
< (A VGG160r.
2850/ —— VGG16reqpara (Y=0.1)
=N —— VGG16regpara(Y=0.4)
i VGG16¢eaara (V=0.9)
100086 172 259 345
Communication Cost [GB]
(a) CIFAR-10 IID
7400~
58.0
X
542.0
< ;[VGG160r.
26.0 —— VGG16reqpara (Y=0.1)
— VGG16redpara(y=0.6)
’,' VGG16fedpara(y=0.9)
10.0}

0 86 172 259 345
Communication Cost [GB]

(d) CIFAR-10 non-IID

51.0

40.8

w
o
o]

Acc. [%]

————— VGG160rs.

—— VGG16reqpara (Y=0.1)

—— VGG16redpara(Y=0.6)
VGG16fegpara(Y=0.9)

N
o
N

100055 10 165 220

Communication Cost [GB]

(b) CIFAR-100 IID

47.0

w
N
)

N
©
o]

Acc. [%]

= V661601

—— VGG16redpara(y=0.1)

—— VGG16redpara(Y=0.6)
VGG16regpara (Y=0.9)

=
©
N

100096 180 270 360

Communication Cost [GB]

(e) CIFAR-100 non-IID

72.0

56.5

41.0

Acc. [%]

***** VGG16,s .
—— VG616reqpara (y=0.1)
—— VGG16regpara(Y=0.6)
j VGG16redpara(¥=0.9)
100013 272 409 545
Communication Cost [GB]

(c) CINIC-10 IID

25.5(/

Acc. [%]

24.2 L —— VGG16regpara(y=0.1)
/ —— VGG16regpara(y=0.6)
VGG16Fegpara(y=0.9)

1000138 256 384 512

Communication Cost [GB]

(f) CINIC-10 non-IID

Figure 7: (a-f) Accuracy [%] (y-axis) vs. communication costs [GBytes] (z-axis) of VGG16,,;. and
VGG16regpara- Broken black line represents VGG1 6,,;., red solid line VGG1 6pcgpara With low 7,
blue solid line VGG1 6zcgpara With mid v, and yellow solid line VGG1 6¢eqpar, With high v

Model Acc. of 200 rounds Acc. of 1000 rounds (gain)

Original 83.68 84.1 (+0.42)
FedPara(y =0.1) 82.88 83.35 (+0.47)
FedPara(y =0.2) 82.53 83.34 (+ 0.81)
FedPara(y =0.3) 83.11 83.94 (+ 0.83)
FedPara(y = 0.4) 84.05 84.59 (+ 0.54)
FedPara(y = 0.5) 83.82 84.57 (+ 0.75)
FedPara(y = 0.6) 83.63 84.16 (+ 0.53)
FedPara(y = O 7) 83.79 84.24 (+ 0.45)
FedPara(y = 0.8) 83.40 84.00 (+ 0.6)

Table 9: The accuracy of VGG16 with original and our parameterization on the CIFAR-10 IID
setting during 200 and 1000 rounds.

D.2 OTHER MODELS

VGG16 As shown in Figure 7, we compare VGG16,; and VGGI6pegpars With three dif-
ferent v values. Note that a higher v uses more parameters than a lower v. Compared to
VGG164i., VGGl 6reqpara achieves comparable accuracy and even higher accuracy with a high
. VGGl 6regpara also requires fewer communication costs than VGG1 64y,

We also investigate how much accuracy is increased for longer rounds. Table 9 shows that the
accuracy is increased in the long round experiment, but the tendency of the 1000 round training is
consistent with the 200 round training.

ResNetl8 We demonstrate the consistent effectiveness of our method with another architecture,
ResNet18. For ResNet 18, we train without replacing batch normalization layers, set v of the
first layer, the second layer, and the 1 x 1 convolution layers as 1.0, and adjust of remaining layers
to control the ResNet 18rcgpara size; v = 0.1 for small model size, v = 0.6 for mid model size,
and v = 0.9 for large model size. To train the ResNet 18p.qpara in FL, we set the batch size to 10.

As revealed in Figure 8a, ResNet 18¢.gpara has comparable accuracy and uses fewer communica-
tion costs than ResNet 18, of which the results are consistent with the VGG16 experiments.
Figure 8b shows the communication costs required for model training to achieve the same tar-

21

Published as a conference paper at ICLR 2022

93.0 144.4

72.2f/

515/

----- ResNet18,r;

Acc. [%]

30.8 —— ResNet18regpara(y=0.1) 33.2
l —— ResNet18eqpara(y=0.6)

ResNet18regpara (Y=0.9)

10~00 86 172 259 345 ResNet18,,;. ResNet18pedpara ReSNet1l8pegpara ResNetl8redpara
Communication Cost [GB] (y=0.1) (y=0.6) (y=0.9)

Communication Cost [GB]

(a) Accuracy (b) Communication Costs

Figure 8: (a) Accuracy [%] (y-axis) vs. communication costs [GBytes] (z-axis) of ResNet 18,
and ResNet 18r.qpara With three v values. (b) Size comparison of transferred parameters, which
is expressed as communication costs [GBytes] (y-axis), for the same target accuracy 90%. (a, b):
Black represents ResNet 18, and red, blue, and yellow represents ResNet 18rcgpars With low,
mid, and high ~, respectively.

Model Acc. # parameters (ratio)
VGG16pyusrrerfish 82.07 0.33
VGG16pysrerfish 82.42 0.44

VGG1 6regpara (7 = 0.2) 82.53 0.15
VGG16pegpara (Y =0.4) 84.05 0.29

Table 10: The accuracy of VGG16pyrrerrisn and VGGl 6regpara On CIFAR-10 IID setting. #
parameters is the the ratio of each model parameter when the number of parameters of VGG1 6. is
set 1.0.

get accuracy. Our ResNet18regpara Needs 1.17 to 5.1 times fewer communication costs than
ResNet18,,., and the results demonstrate that FedPara is also applicable to the ResNet struc-
ture.

Pufferfish Pufferfish (Wang et al., 2021) is similar to our method, where they use partially pre-
factorized networks and employ the hybrid architecture by maintaining original size weights to
minimize the accuracy loss due to the low-rank constraints. Since this work can be directly applied
in the FL setup, we compare the parameterization of PufferFish and FedPara as follows.

We train VGG 16 with PufferFish and FedPara on the CIFAR-10 IID dataset in FL, and evaluate the
models according to varying the number of parameters. As shown in Table 10, our FedPara has
higher accuracy with fewer parameters compared with PufferFish. Although PufferFish is superior
to the naive low-rank pre-decomposition method due to its hybrid architecture, we think the hybrid
architecture of PufferFish still suffers from the low-rank constraints on the top layers. However, our
method is free from such limitations both theoretically and empirically.

LSTM We train LSTMyyi., LSTMjow, and LSTMregpara On the Shakespeare dataset. The parameters
ratio of LSTMjoy and LS TMpegpara are about 16% and 19% of the LSTM,,;. parameters, respectively.
Table 11 shows that LSTMgcgpara Outperforms LSTMjqy, and LSTMy,;. on the IID setting. In the non-
IID setting, L.STMregpara accuracy is higher than LSTM.y, and slightly lower than LSTM,,;, with
only 19% of parameters. Therefore, our parameterization can be applied to general neural networks.

D.3 QUANTIZATION

FedPAQ (Reisizadeh et al., 2020) is a quantization approach to reduce communication costs for
FL. To compare the accuracy and transferred size per round, we train VGG1 6 on the CIFAR-10 IID
setting. We consider both downlink and uplink to evaluate communication costs. We quantize the
model from 32 bits floating-point numbers to 16 bits floating-point numbers.

22

Published as a conference paper at ICLR 2022

Model Acc. (IID) Acc. (non-IID) # parameters (ratio)
LSTMori. 60.17 52.66 1.0
LS TMjow 54.59 51.24 0.16
LSTMregpara (v = 0.0) 63.65 51.56 0.19

Table 11: The accuracy of LSTMs on IID and non-IID setting. # parameters is the the ratio of each
model parameter when the number of parameters of LSTM,,;. is set 1.0.

Model Acc. Transferred size per round
FedAvg 83.68 122MB
FedPAQ 82.67 91.4MB

FedPara (v =0.5) 83.82 46.4MB
+ FedPAQ 83.58 34.74MB

Table 12: The accuracy of VGG16 on CIFAR-10 IID setting for original, quantization, and our
parameterization models.

Table 12 shows the comparison between FedPara and FedPAQ as well as those integration. Com-
pared to FedPAQ, FedPara transfers 1.96 times lower bits per round because FedPAQ only re-
duces the uplink communication cost. Compared with FedAvg, FedPara achieves 0.14% higher
accuracy, but FedPAQ 1.01% lower accuracy. FedPara can transfer the full information of up-
dated weights to the server, whereas FedPAQ loses the updated weight information due to the
quantization. Furthermore, since the way FedPara reduces communication costs is different from
quantization, we integrate FedPara with FedPAQ as an extension. Combining our method with
FedPAQ reduces communication costs by 25% further from our FedPara without the integration
while having a minor accuracy drop, 0.1%, from that of FedAvg.

23

