
Context-Aware Testing: A New Paradigm for Model
Testing with Large Language Models

Paulius Rauba∗
University of Cambridge
pr501@cam.ac.uk

Nabeel Seedat∗
University of Cambridge
ns741@cam.ac.uk

Max Ruiz Luyten
University of Cambridge
mr971@cam.ac.uk

Mihaela van der Schaar
University of Cambridge
mv472@cam.ac.uk

Abstract

The predominant de facto paradigm of testing ML models relies on either using
only held-out data to compute aggregate evaluation metrics or by assessing the
performance on different subgroups. However, such data-only testing methods
operate under the restrictive assumption that the available empirical data is the
sole input for testing ML models, disregarding valuable contextual information
that could guide model testing. In this paper, we challenge the go-to approach of
data-only testing and introduce context-aware testing (CAT) which uses context as
an inductive bias to guide the search for meaningful model failures. We instantiate
the first CAT system, SMART Testing, which employs large language models to
hypothesize relevant and likely failures, which are evaluated on data using a self-
falsification mechanism. Through empirical evaluations in diverse settings, we
show that SMART automatically identifies more relevant and impactful failures
than alternatives, demonstrating the potential of CAT as a testing paradigm.

1 Introduction

The ability to rigorously test and validate machine learning (ML) models is crucial for their reliable
deployment in real-world applications. Despite solid aggregate performance, ML models are un-
reliable in a variety of real-world scenarios, such as on different subgroups [1–6], or encountering
data deviating from its training distribution [7–10], often resulting in significant financial or societal
consequences. These failures point to deficiencies in the way we test such ML models. To understand
this in greater detail, let’s address two questions: how are we currently testing ML models and can
we do better?

How are we testing? The predominant de facto paradigm of testing ML models relies on using
only held-out data to evaluate the model either on average or by assessing performance on different
subgroups within the dataset. Such data-only methods optimize a given objective function to find
subgroups (or slices of data) within the dataset where a trained model underperforms relative to
aggregate performance. We refer to this relative underperformance as a model failure. However,
data-only methods operate under the restrictive assumption that the available empirical data is the sole
input for testing ML model performance. In practice, this is almost always violated. It is common to
have a priori knowledge of where models are likely to fail, given the problem context.

The restrictive assumption of data-only methods comes at a significant cost. Specifically, data-only
methods, which have been the go-to approach for ML testing, are required to iterate and test the

∗Equal Contribution

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

performance across a large number of possible subgroups. Each subgroup test is equivalent to
evaluating a separate hypothesis about the model’s performance on that specific slice of data. This
raises a subtle but important problem—from the perspective of hypothesis testing, such methods
implicitly test multiple hypotheses (Sec. 3.1). The more subgroups we test, the more hypotheses we
implicitly evaluate. Consequently, this results in critical problems associated with multiple testing: (i)
high false positive and (ii) high false negative rates (Sec. 3.2). A third complementary challenge is
that each data slice tested is (iii) not necessarily practically meaningful. The practical implications
of these drawbacks are quite concerning—they hinder our ability to accurately identify where the
model performs poorly, thereby undermining the reliability of our model evaluations.

Can we do better? To address these three challenges, we propose to loosen the restrictive assumption
of reliance only on data and propose a new paradigm of testing called Context-Aware Testing (CAT)
to offer an alternative to the dominant data-only view (Sec. 3.3). CAT provides a principled approach
to incorporate external knowledge—or context— to the ML testing process. With the view that each
evaluated data slice corresponds to an implicit hypothesis test, we propose that ML evaluation on
observational datasets can be achieved via a context-guided sampling mechanism (Definition 1). This
mechanism is a sampling procedure that uses context as an inductive bias to prioritize specific data
slices to test for which have a higher chance of surfacing meaningful model failures. Therefore, CAT
fundamentally helps to answer the question of “what should we test for?”.

Let’s consider an example of building an ML model to predict prostate cancer [11]. Data-only
methods employ a search procedure over the dataset to find divergence across a large number of
possible feature combinations which may lead to (i) high false positive rates by identifying spurious
underperforming subgroups (e.g. based on eye color or patient ID); (ii) high false negative rates by
failing to identify true underperforming subgroups due to the large number of combinations tested
and applied testing corrections; and (iii) testing subgroups which are not practically meaningful
(e.g. interaction between eye color and height). In contrast, a CAT-based approach would define
and target task-relevant subgroups, limiting the number of tests conducted with better false positive
control and greater statistical power. As we empirically show in Sec. 5, obtaining many false positives
and false negatives is overwhelmingly common in current testing practices.

In bringing CAT to reality, we develop the framework called SMART 2 Testing, which performs
automated ML model evaluation by actively identifying potential failure cases (Sec. 4). SMART uses
large language models (LLMs) to generate contextually relevant failure hypotheses to test. We further
introduce a self-falsification mechanism, to automatically validate the generated failure hypotheses
using the available data, allowing efficient pruning of spurious hypotheses. Finally, SMART generates
comprehensive model reports that provide insights into the identified failure modes, their impact, and
potential root causes, enabling stakeholders to make informed decisions.

Contributions. 1⃝ We identify critical gaps in predominant data-only ML testing, illustrating
they miss important dimensions (Sec. 3). 2⃝ We formalize the Context-Aware Testing paradigm,
providing a principled framework to incorporate context in addition to data into the testing process,
which is then used to guide the generation of targeted tests (Sec. 3). 3⃝ We build the first context-
aware testing system, SMART Testing, which employs LLMs to hypothesize likely and relevant
model failures and empirically refutes them with data using a novel self-falsification mechanism
(Sec. 4). 4⃝ We demonstrate the value of context for effective testing, challenging the de facto
data-only paradigm by showing how SMART identifies impactful model failures while avoiding
false positives across diverse settings, when compared to data-only testing. Additionally, SMART
identifies failures on important societal groups and generates comprehensive model reports (Sec. 5).

2 Related work

To highlight the need for SMART Testing, we contrast it with other ML testing paradigms —
specifically Data-only testing methods which address the same testing problem as SMART. We
provide an overview in Table 6 and an extended discussion in Appendix A.

Data-only testing methods [12–15]: Address the question: “what should we test?”. Data-only
methods search the data to find “slices” where the model’s predictions underperform compared
to average performance, deeming those slices as model failures. Although automated, data-only

2systematic, modular, automated, requirements-responsive, transferable

2

approaches operate only on raw data without accounting for the problem context. Consequently, they
must search across a large space of potential failures, usually covering all subsets of features and
their distinct values. While an exhaustive search may seem beneficial, as we show in Sec. 3, the
reality is that performing many tests on a finite dataset risks discovering slices where model failure is
irrelevant or due to random variability, i.e. the multiple testing problem. SMART Testing addresses
this challenge by prioritizing relevant and likely model failures through contextual awareness.

Orthogonal testing dimensions: While SMART addresses what to test, several other dimensions
of model testing exist that are orthogonal to our approach (detailed in Appendix A). (i) Behavioral
Testing [16, 17, 5] evaluates model behaviors (i.e. responses to data) by operationalizing tests along
pre-defined dimensions (often defined by humans) — rather than discovering the test dimensions.
SMART fundamentally differs by addressing the core issue of “what to test”. (ii) Software functional
testing [18, 19], aims to primarily test functional correctness (e.g. input-output functionality such
as monotonicity), rather than testing for failures. In addition, test cases are either pre-specified or
specified with an approximation of the underlying model to probe for functional correctness.

3 A context-aware testing framework for ML
The prevailing paradigm for testing ML models relies on data-only methods which exclusively use
data to surface model failures. In this section, we explore the limitations of data-only methods by
viewing ML testing as a multiple hypothesis testing problem. We explore why data-only methods
are uniquely prone to finding false positive and false negative model failures. To address this, we
introduce a new paradigm of testing called context-aware testing which relies on external knowledge,
or context, as an inductive bias to better identify where models fail.

3.1 A multiple hypothesis testing view of ML evaluation

Preliminaries. Denote the feature space by X and the label space by Y , and P the joint probability
distribution over X × Y . We wish to test a fixed, trained black-box model f : X → Y , using a finite
dataset D ⊂ X × Y usually split into Dtrain = {(xi, yi)}Ntrain

i=1 and Dtest = {(xi, yi)}Ntest
i=1 . We

assume the existence of a loss function ℓ : Y × Y → R which measures the discrepancy between the
model’s prediction and the true labels point-wise.

The primary goal of ML testing is to identify meaningful failure modes—subgroups (data slices)
of the data distribution where the model’s performance is significantly worse than its average
behavior. Formally, let S ⊆ X × Y denote a data slice and let PS = P(·|(x, y) ∈ S) be the
conditional distribution induced by S. We aim to identify slices where the slice-specific expected
loss µS = E(x,y)∼PS [ℓ(f(x), y)] significantly exceeds the population-level expected loss µP =

E(x,y)∼P [ℓ(f(x), y)]
3.

Testing ML models is a multiple hypothesis testing problem. We are interested in identifying
failure modes that generalize beyond the training dataset. We can interpret the empirical dataset
D as a sample from a broader distribution P , and our goal is to make an inferential claim on the
performance on the data slices with respect to P . Suppose we have a candidate data slice Ŝ ⊆ D .
We can evaluate the empirical slice-specific loss as µ̂S = |Ŝ|−1

∑
(x,y)∈Ŝ ℓ(f(x), y) and compare it

to the empirical loss over the entire dataset µ̂D = |D|−1
∑

(x,y)∈D ℓ(f(x), y). To make an inferential
claim about the model’s performance on the data slice S w.r.t. P , we can follow the frequentist
testing paradigm and formulate a hypothesis test where we evaluate whether the performance is
significantly different. Therefore, H0 : µS = µD and alternative hypothesis H1 : µS ̸= µD,
where µS = E(x,y)∼PS [ℓ(f(x), y)] and µD = E(x,y)∼P [ℓ(f(x), y)] denote the true slice-specific
and population-level losses. In practice, this evaluation could be done by running an appropriate
frequentist statistical test and evaluating whether p < α for each slice, given some pre-defined α.

However, in realistic testing scenarios, we evaluate the model’s performance not just on a single slice
but on a large collection of candidates {Sj}mj=1. This amounts to conducting many simultaneous
hypothesis tests. Accounting for multiple testing is important. A naive testing procedure that does
not adjust for multiplicity could surface a large number of spurious failure modes simply by chance

3while technically any subset of the dataset can be considered a data slice, we are practically interested in
meaningful failures, such as model failures on vulnerable socio-economic groups.

3

(Type I error). Conversely, controlling the false discovery rate [20] may involve adjusting the per-test
significance threshold to α′ ≪ α, potentially sacrificing power to detect true failures (Type II error).

 The multiple hypothesis testing viewpoint reveals a key challenge in ML model evaluation: To
reliably surface meaningful failures, we require a principled procedure for generating a relatively
small number of promising hypotheses (candidate slices) to test.

3.2 The failures of data-only testing

Existing ML testing methodologies are data-only in that they only use the available empirical data
to test for model failures and vary in their optimization objective [14, 12, 13, 21, 15]. However,
data-only methods operate under the restrictive assumption that the available empirical data is the
sole input for testing ML model performance. In practice, this is almost never the case. It is common
to have an a priori understanding of where models are likely to fail given the data distribution,
model class, training algorithm, and deployment context. This restrictive assumption results in three
challenges: ▶ (i) High false positive rate: data-only methods search over a large space of data slices
and each evaluation amounts to an implicit hypothesis test (Sec. 3.1). Therefore, the probability of
observing a false failure increases with every test performed. ▶ (ii) High false negative rate: The
naive testing procedure can be made robust by correcting for the number of tests performed which
reduces the statistical power to detect true failures. ▶ (iii) Lack of meaningful failures: Data-only
methods are fundamentally limited by the fact that not all statistically significant slices are practically
meaningful. We empirically validate these claims in Sec. 5.

 The core limitation of data-only testing is the lack of a principled failure mode discovery procedure
that can incorporate prior knowledge to guide the search for meaningful errors.

3.3 Formulating context-aware testing

To address the limitations of data-only testing, we introduce context-aware testing (CAT), a princi-
pled framework for identifying meaningful model failures using context. This could be the context
implicitly encoded in the dataset (i.e. via meaningful feature names) or available external input (i.e.
external contextual knowledge, such as a string of input information from a human). Let C denote the
space of all possible contextual information and c ∈ C be specific external input. Our core insight is
that we can use C as an inductive bias to select which slices to test for.
Definition 1 (Context-Aware Testing). Let X , Y , P , f , D = {(xi, yi)}Ni=1, and ℓ be defined as in
the standard supervised learning setup. Let C be a space of contexts.

Context-aware testing is defined by two procedures:

1. A context-guided slice sampling mechanism π : C × (X × Y) × N → 2X×Y such that
π(c,D,m) = {S1, . . . ,Sm}, where c is used as an inductive bias for function π to prioritize
slices likely to contain meaningful failures, and m ∈ N are the number of slices to evaluate.

2. A multiple hypothesis testing procedure: ∀Si ∈ π(c,D,m), test H0 : µSi
= µD vs.

H1 : µSi ̸= µD, where µSi = E(x,y)∼PSi
[ℓ(f(x), y)], µD = E(x,y)∼P [ℓ(f(x), y)]

A meaningful failure is characterized by statistical significance and practical relevance.

The targeted sampling mechanism π uses the context C as an inductive bias to prioritize testing of
slices that are (i) more relevant to the deployment context, and (ii) more likely to exhibit significant
performance gaps.

This principled slice selection offers several key advantages over data-only methods: ▶ (i) Improved
false positive control: by limiting the number of tests conducted to m, CAT controls the risk of
spurious discoveries that arise when naively testing all possible slices. ▶ (ii) Improved true positive
rate: The targeted selection of slices likely to contain failures maintains test power by avoiding the
need to aggressively correct for multiple testing. ▶ (iii) Meaningful failures: context-guided sampling
identifies failures that are both statistically significant and practically relevant.

4

 Context-aware testing overcomes the limitations of data-only methods by employing a principled,
context-guided slice sampling mechanism π to prioritize the discovery of meaningful model failures.

The core technical challenge in realizing CAT is the development of an effective context-conditional
sampling algorithm π. In the following section, we propose a concrete instantiation of π using a large
language model to generate plausible failure modes and guide testing of ML models.

4 SMART Testing

Testing feasible
given

Operationalize

Meets criteria
given

Dataset

Input Hypothesis generation
(Step 1)

LLM hypothesis
generation

Self-refine

Testing feasible
given

Operationalization & Falsification
(Step 2)

Prompt

LLM SMART Tester

No

For each

on

Yes Yes

No

Use self
falsification?

Top

Evaluation
& Model
Report

System
output

on

Evaluation
(Step 3)

Split
data

Operationalize

 No

No

(prior LLM knowledge)

External
input

Figure 1: Overview of the SMART Testing Framework showing the four steps. All steps are
automatically executed by an LLM.

We now instantiate the CAT framework outlined in Sec. 3.3 with a method called SMART testing
(systematic, modular, automated, requirements-responsive, and transferable). SMART generates
relevant and likely hypotheses about potential model failures and empirically evaluates these hy-
potheses on available data. SMART follows a four-step procedure: (1) Hypothesis generation; (2)
Operationalization; (3) Self-falsification; (4) Reporting. Table 1 provides an early illustration of what
it practically means to generate hypotheses and test them with SMART. The procedure below details
how the four steps are implemented.

Table 1: Example hypotheses on model failure, justifications, and operationalizations generated by
the SMART framework on a healthcare dataset. The p-values show whether the model’s performance
significantly differs from average performance with |∆Acc| measuring the effect size.

Hypothesis Justification Operationalization p-value |∆Acc| Evidence

f underperforms on elderly pa-
tients.

Elderly patients may have more complex health situations due to age-related
comorbidities, which could make predictions less accurate.

age >= 72 0.000 0.194 Supported

f underperforms on patients with
multiple comorbidities.

The presence of multiple comorbidities could complicate the prediction
model due to interactions between different health conditions.

comorbidities >= 2 0.900 0.0270 Not supported

f underperforms on patients under-
going conservative management.

Conservative management might be chosen for patients with more complex
or less predictable cases, which could lead to worse predictive performance.

treatment_conservative
_management == 1 0.000 0.200 Supported

Step 1: Hypothesis Generation. Recall from Sec. 3.3, we wish to define a sampling mechanism π
to sample slices S which are both relevant and have a high relative likelihood of failure — where π
should be both contextually-aware and able to integrate requirements to guide sampling.

Data Space

...

Process input sequences Generate hypotheses

Operationalize
hypotheses

LLM

Figure 2: SMART uses an LLM to integrate
context C, and data context Dc. Relevant and
likely failure hypotheses are then generated by
LLM (i.e. sampling mechanism). The hypothe-
ses are then operationalized in D and evaluated.
In contrast, data-only methods are not guided
by context and requirements, searching more
exhaustively in D for divergent slices.

We posit that LLMs have the potential to satisfy these
properties due to the following capabilities: ▶ Contex-
tual understanding: LLMs have been pretrained with
a vast corpus of information and hence have extensive
prior knowledge around different contexts and settings
[22–25]. ▶ Integrate requirements: LLMs are adept at
integrating requirements or additional information about
the problem via natural language [26, 24]. ▶ Hypothe-
sis proposers: In proposing likely failure modes, LLMs
have also been shown to be “phenomenonal hypothesis
proposers” [27].

An LLM is defined as a probabilistic mapping l : Σ∗ →
P (Σ), where Σ denotes the vocabulary space, and P (Σ)
represents the probability distributions over Σ. The
model processes input sequences s ∈ Σ∗, each a con-
catenation of tokens representing external (contextual)
input Ce (which can be null) and dataset contextualiza-
tion CD is formalized as s = (Ce, CD). We extract the
contextualized description CD from the dataset D using

5

an extractor function E : D → CD, which captures essential dataset characteristics (e.g. feature
relationships and high-level dataset information). Additionally, we highlight the the LLM will
implicitly extract context based on the context encoded in the dataset (e.g. via meaningful feature
names). Based on input s, the LLM predicts a distribution over Σ from which hypotheses of model
failure and corresponding justifications are sampled.

As depicted in Fig. 2, given Ce and CD, we sample the N most likely hypotheses of failures,
H = {H1, H2, . . . ,HN}, and corresponding justifications J = {J1, J2, . . . , JN}, to provide ex-
plainability. This process is formalized using the LLM’s mapping l as follows:

(Hi, Ji) ∼ l(s),where s = (Ce, CD), ∀i ∈ {1, 2, . . . , N}.

Step 2: Operationalization. The process of operationalizing each hypothesis Hi ∈ H involves
translating its natural language expression into a form that can directly operate on the training dataset
Dtrain (an example is provided in Table 1). To achieve this, we define an interpreter function
I : H → {0, 1}X that maps each natural language hypothesis Hi to a corresponding binary-valued
function gi : X → {0, 1} on the feature space X , where gi(x) = 1 if x satisfies the criteria and
gi(x) = 0 otherwise. Each function gi induces a data slice Si ⊆ Dtrain consisting of data points that
satisfy the criteria of hypothesis Hi, such that Si = {(x, y) ∈ Dtrain : gi(x) = 1}. Therefore, each
hypothesis, after operationalization, corresponds to a specific slice that is being tested on. Steps 1
and 2 serve to practically instantiate π from Sec. 3.3.

...

Hypothesis generation evaluation on data

Figure 3: A self-falsification module within the
SMART framework. A hypothesis generator l gen-
erates plausible hypotheses and justifications for
when the model might fail. This is operationalized
with ϕi and tested against the empirical data.

Step 3: Self-falsification We introduce a novel self-
falsification mechanism to empirically evaluate (or
refute) the generated hypotheses4. Specifically, for
each feasible hypothesis Hi ∈ H, we attempt to fal-
sify the hypothesis with observed empirical data 5.
This involves evaluating the model f over the data
slice Si operationalized from Hi. We then assess
whether the slice performance on f has a signifi-
cant deviation from the model’s overall performance.
For instance, in Table 1, this is done by computing
|∆Acc| and the p-value. The significance of this de-
viation is determined through frequentist statistical
testing, i.e. when p < α for any α which might
also be adjusted for multiple hypothesis testing. This
step effectively “reshuffles/reranks” the hypotheses
based on their likelihood on the observed data. For
example, when benchmarking we select the top n hypotheses based on statistical significance:
H∗ = arg minn

hi∈HT

{pi < α}.

Remark: As shown in Fig. 1, we can exclude the self-falsification from SMART in cases of
small-sample sizes. We denote this ablation of SMART as SMARTNSF .

Step 4. Model Performance Evaluation and Reporting. Finally, SMART automatically generates
a report of the overall performance of the model under varying conditions generated by the LLM,
including a summary report, a complete summary of the tests carried out, intermediate and final
results, and potential failure modes of the ML model.

 SMART is a tabular CAT method which (i) directly searches for model failures, sampling targeted
tests (Sec. 3.3) and (ii) incorporates data, and context into ML testing.

Practical use of SMART.

We highlight the practical use of SMART testing and emphasize SMART’s ease of use and minimal
input requirements needed. In particular, as shown in the example below, users do not need any prior
knowledge to use SMART. Rather, we make use of the context inherently encoded in the dataset,
feature names and task.

4self-falsification is rooted in scientific philosophy and the seminal ideas of Popper [28] who proposed the
principle of falsification—the ability to refute hypotheses with empirical observations—as driving science.

5We assume data for self-falsification is available. If not, discovered slices could guide new data collection.

6

1 import SMART
2 # Instantiate SMART
3 model_tester = SMART(’gpt -4’)
4 # Give desired context (this can be left as an empty string)
5 context = "Find where a model fails for the cancer prediction task."
6 # Load ML model
7 model = XGBoost ()
8 dataset_description = X.describe ()
9 # Test the model

10 model_tester.fit(X, context , dataset_description , model)

Code Listing 1: Use of SMART Testing

5 Illustrating SMART use cases

We now quantitatively evaluate SMART Testing 6 and demonstrate the viability of this new ML
testing paradigm (i.e. CAT), in contrast to data-only testing. Table 2 summarizes our experiments
and takeaways.

Baselines. We compare SMART with a variety of data-only testing baselines namely: Autostrat
[14], Slicefinder [12], Sliceline [13], Pysubgroup [21] and Divexplorer [15]. We also evaluate
SMARTNSF (i.e. no self-falsification) as an ablation. Given space limits, we exemplify the LLM
in SMART by GPT-4 [29] and our ML model to audit is logistic regression. We investigate other
LLMs in the Appendix D.3 and other tabular models in Appendix D.4, observing similar results. We
provide additional experimental details in Appendix C.

Table 2: Summary of experiments and takeaways.

Sec. Experiment Takeaway
Figure 4 Assess robustness to irrelevant features SMART consistently avoids irrelevant features, outperforming data-only methods.
Table 3 Assess ability to identify significant model failures SMART discovers slices with larger performance discrepancies across models.
Table 4 Measure FNR in identifying underperforming subgroups SMART achieves the lowest false negative rates in all settings.
Table 5 Assess robustness to potential LLM biases SMART effectively mitigates biases in identifying underperforming subgroups.
Table 10 Evaluate ability to satisfy testing requirements SMART satisfies most requirements while maintaining statistical significance.
Figure 8 Assess how sample size affects irrelevant feature detection SMART consistently avoids irrelevant features regardless of sample size.
Table 11 Evaluate performance in different deployment environments SMART identifies more significant failure slices in new environments.
Figure 9 Assess impact of sample size on performance SMART consistently outperforms data-only methods across all sample sizes.
Table 12 Evaluate tendency to flag non-existent failures SMART avoids spurious failures, unlike data-only methods.
App. D.3 Compare performance of GPT-3.5 and GPT-4 in SMART SMART using both GPT versions outperform benchmark methods.
Table 13, 14 Evaluate SMART across different tabular ML models SMART identifies larger performance discrepancies across various models.
Table 20 Evaluate SMART the cost of using SMART SMART is cost efficient to generate hypothesis less than 0.5 USD.
Table 21 Compare the overlap of hypotheses w/ open-weight models SMART using open-weight models has a significant overlap of hypotheses.
Table 22 Evaluate SMART’ SMART identifies larger performance discrepancies across various models.
App. D.10 Showcase SMART’s practical output SMART generates comprehensive model reports, providing clear justifications for each hypothesis.

5.1 Robustness to False Positives

Goal. We aim to underscore the role of contextual awareness in preventing false positives in model
testing. In particular, we consider the scenario when dealing with tabular data that may contain many
irrelevant or uninformative features [30], persisting even post-feature selection [31, 32]. We contrast
SMART which explicitly accounts for context, to data-only approaches which are context-unaware
and can only operate on the numerical data.

Setup. We fit a predictive model to the training dataset, varying the number of irrelevant, syntheti-
cally generated features contained in the dataset. The irrelevant features are drawn from different
distributions. We then quantify the proportion of conditions in the identified slices that falsely include
the irrelevant synthetic features. We evaluate using five real-world tabular datasets spanning diverse
domains, namely finance, healthcare, criminal justice and education: loan, breast cancer, diabetes,
COMPAS recidivism [33] and OULAD eduction [34]. These datasets have varying characteristics,
from sample size to number of features and are representative of different contexts pertinent to tabular
ML, to demonstrate the effectiveness of SMART across various real-world contexts

Analysis. Fig. 4 shows the proportions of irrelevant features included in slices for increasing numbers
of irrelevant features. Data-only methods are unaware of context and are shown to spuriously
include high proportions of irrelevant features in their slices; i.e. false positives (FPs). Additionally,
these false discoveries increase for data-only methods as the number of irrelevant features increases.

6Code can be found at: https://github.com/pauliusrauba/SMART_Testing or https://github.
com/vanderschaarlab/SMART_Testing

7

https://github.com/pauliusrauba/SMART_Testing
https://github.com/vanderschaarlab/SMART_Testing
https://github.com/vanderschaarlab/SMART_Testing

1 2 4 8 16
Number of irrelevant features

0

50

100

Pe
rc

en
t o

f
 ir

re
le

va
nt

 fe
at

ur
es Loan Default

1 2 4 8 16
Number of irrelevant features

Breast Cancer

1 2 4 8 16
Number of irrelevant features

COMPAS

1 2 4 8 16
Number of irrelevant features

Education

1 2 4 8 16
Number of irrelevant features

Diabetes
Divexplorer Autostrat PSG_A PSG_B SMART SliceFinder Sliceline

Figure 4: Contextual-awareness in SMART reduces FPs, i.e. reducing the proportion of irrelevant features in
slices. SMART is not sensitive to the number of irrelevant features, unlike data-only methods. ↓ is better

Consequently, the sensitivity to FPs of data-only methods risks that slices identified are neither
empirically relevant nor meaningful. In contrast, SMART, by virtue of contexual-awareness when
generating hypotheses is not sensitive to extraneous and contextually irrelevant features. Importantly,
SMART also maintains its robustness to FPs even with an increasing number of irrelevant features.

Remark. We also assess sensitivity to the number of data samples. Fig. 9, Appendix D.6 shows that
SMART remains robust to variations irrespective of sample size. In contrast, data-only methods have
variable performance with false discoveries sensitive to the sample size.

Avoiding non-existent failure slices. It is important that model testing does not flag failures when
there are none. In Appendix D.5, we demonstrate that SMART’s contextual awareness means that
it is resistant to spurious failure slices that have no underlying relationships. In contrast, data-only
approaches implicitly assume the existence of problematic slices, which we empirically show makes
them prone to spuriously flagging non-existent failure slices.

Takeaway 1. SMART’s contextual awareness ensures testing relevance, thereby reducing false
positives across different scenarios, in contrast to data-only methods.

5.2 Targeting model failures

Goal. We assess whether the identified failure slices persist when evaluated on new, unseen data
across different tabular models. This evaluates the generalization of the identified model failures
across multiple different ML models.

Table 3: Identifying slices with the highest performance
discrepancies. We show differences in accuracies (|∆Acc|)
between the top identified divergent slice and average perfor-
mance across four classifiers (over 5 runs). ↑ is better.

LogisticRegression SVM XGBClassifier MLPClassifier

Autostrat 0.24 ± 0.02 0.24 ± 0.02 0.09 ± 0.09 0.24 ± 0.02
PSG_B 0.23 ± 0.01 0.23 ± 0.01 0.11 ± 0.07 0.23 ± 0.01
PSG_A 0.23 ± 0.01 0.23 ± 0.01 0.11 ± 0.07 0.23 ± 0.01
Divexplorer 0.05 ± 0.11 0.09 ± 0.13 0.14 ± 0.15 0.02 ± 0.05
Slicefinder 0.01 ± 0.00 0.01 ± 0.00 0.00 ± 0.00 0.01 ± 0.01
Sliceline 0.26 ± 0.06 0.26 ± 0.06 0.18 ± 0.09 0.26 ± 0.06
SMARTNSF 0.17 ± 0.01 0.17 ± 0.01 0.09 ± 0.05 0.17 ± 0.01
SMART 0.37 ± 0.03 0.37 ± 0.03 0.26 ± 0.06 0.37 ± 0.03

Setup. We use the prostate cancer dataset
[35] and aim to discover slices indicative of
underperformance. Thereafter, we assess
generalizability of the identified failures
across four different ML models (logis-
tic regression, SVM, XGBoost and MLP).
Specifically, we compare the top identified
slice from each method and compute the ab-
solute difference between the accuracies of
that slice and the remainder of the dataset.
We posit that a testing framework should be able to identify slices with high-performance discrepan-
cies on unseen data across multiple ML models.

Analysis. Table 3 shows that SMART slices exhibit the greatest discrepancies in model accuracies
on unseen test data across different ML models — indicating the discovered failure modes are
generalizable. We find that SMART surfaces slices with greater performance differences compared to
SMARTNSF (ablation without self-falsification), highlighting the importance of the introduced self-
falsification mechanism. In contrast, data-only methods fail to identify slices where the performance
discrepancy is as large as SMART. This limitation can be attributed to the tendency of data-only
methods to overfit the training data, leading to high false discovery rates.

Takeaway 2. SMART discovers failure slices where the model substantially underperforms, gen-
eralizing to unseen test data across different ML models. In contrast, data-only approaches fail to
find slices where the difference in accuracies is as large, highlighting the lack of generalizability and
reliability of their findings.

5.3 Robustness to False Negatives

In our setup, false negatives (FNs) are directly tied to true positives (TPs). i.e. the more true positives
we find, the fewer FNs we miss. Across multiple experiments (Fig. 4, Table 10, Table 3, Table
16), we consistently show that SMART identifies TPs at substantially higher rates than data-only.
For example, in Table 16, SMART identifies an average of 9.6 out of 10 subgroups where the ML

8

model significantly underperforms. The fact that data-driven methods discover fewer such subgroups
implies that they are missing the ones SMART uncovers.

Goal. That said, we conduct an additional experiment to directly assess the false negative rate,
wherein we can control issues (as FNs are naturally unspecified in real data).

Setup. We simulate a dataset to predict recidivism (Y) based on five covariates: gender, race, age,
income, and education. log(P (Yi|Xi=j)

P (Yi ̸=j)) = αj − (δ1Xage + δ2Cincome + δ3Ceducation) + ϵ, where ϵ ∼
N (µ0, σ0). We then train a predictor function f̂ on the data and synthetically introduce underperfor-
mance on certain corrupted subgroups. For an individual i, if they belong to corrupted subgroup j,
the prediction Ŷi is equal to f̂(Xi) with probability 1− p, and a random prediction sampled from
a Bernoulli distribution with probability p. If the individual does not belong to subgroup j, the
prediction is simply f̂(Xi). Finally, we measure how often each testing method identifies that the
model f̂ underperforms on a subgroup.

Table 4: False Negative Rate (FNR) for different meth-
ods at various settings. ↓ is better.

FNR (n=1) FNR (n=2) FNR (n=3)

Autostrat 0.75± 0.44 0.88± 0.22 0.92± 0.15
pysubgroup_beam 0.65± 0.49 0.75± 0.26 0.68± 0.17
pysubgroup_apriori 0.65± 0.49 0.75± 0.26 0.68± 0.17
Divexplorer 0.05± 0.22 0.40± 0.35 0.72± 0.31
Sliceline 0.25± 0.44 0.50± 0.36 0.70± 0.28
SMART 0.00 ± 0.00 0.05 ± 0.15 0.38 ± 0.27

Analysis. Table 4 demonstrates results
where we synthetically manipulate/corrupt
the performance of an ML model on a sin-
gle subgroup (n=1), two subgroups (n=2),
and three subgroups (n=3) out of a total of
five. The results show the average of 20
runs, where the corrupted groups are ran-
domly selected within each run. We find
that SMART consistently is least susceptible to false negatives across all corrupted variables, when
compared to data-only methods which struggle especially once more than one variable is corrupted.
This serves to corroborate our earlier results.

Takeaway 3. SMART is less prone to FNs, compared to data-only methods across all settings.

5.4 Assessing and mitigating potential LLM challenges and biases.

Background. In many settings, we want SMART to be part of a human-in-the-loop model evaluation,
particularly to address challenges with LLMs, such as biases or missing dimensions. Let us first
discuss how SMART addresses some issues by design and then perform an experimental assessment.
▶ Using data to mitigate LLM challenges: We use data in two ways (i) Data usage in the generation
of hypotheses: Before generating explicit hypotheses of where the model is likely to fail, we provide
the LLM with additional information about the data description and model failures of the training
dataset. The hypotheses sampled are therefore reflective of the inductive bias of the LLM as well as
being conditioned on the data itself; (ii) Data usage in falsifying hypotheses: core to SMART is the
self-falsification mechanism where we iteratively generate hypotheses and test them on a validation
dataset. Data is therefore used to filter out hypotheses which are not supported by the data. Hence,
even if ”incorrect” hypotheses about group failures are proposed, this step ensures they are discarded.
▶ SMART provides clear and transparent testing: This is done in two ways: (i) SMART’s model
reports: that document specific failure cases with natural language justifications (see Appendix D.10
for examples). Automatically generated reports can be a useful tool for humans-in-the-loop experts
to audit and validate the testing process, such as evaluating whether tests should be added or removed.
For example, a domain expert (e.g. a clinician) could review the report to assess whether the identified
failure modes are truly relevant and concerning in that specific context. (ii) Tests include justifications:
The justifications for the tests allow human users to inspect the model’s testing procedures, understand
the reasons, and audit for biases or missed dimensions.

Goal. Going beyond the mitigation strategies by design, we also assess SMART’s robustness to prior
biases. Specifically, we assess common ethnicity related biases of LLMs.

Table 5: Proportion of times the corrupted minority subgroup
is correctly identified as the top underperforming subgroup.

Corrupted White Corrupted black
τ Pwhite Pblack Pwhite Pblack

0.01 0.78± 0.04 0.15± 0.04 0.16± 0.04 0.78± 0.04
0.02 0.88± 0.03 0.08± 0.03 0.10± 0.03 0.87± 0.03
0.05 0.98± 0.01 0.00± 0.00 0.00± 0.00 0.98± 0.01
0.10 0.98± 0.01 0.00± 0.00 0.00± 0.00 0.99± 0.01
0.20 0.98± 0.01 0.00± 0.00 0.00± 0.00 1.00± 0.00
0.30 1.00± 0.00 0.00± 0.00 0.00± 0.00 1.00± 0.00
0.50 1.00± 0.00 0.00± 0.00 0.00± 0.00 1.00± 0.00

Setup. We use the same data generat-
ing process as Sec. 5.3.

We train a predictor function f̂ and
simulate a scenario where we inten-
tionally corrupt a model’s predictions
for a proportion τ of a minority sub-
group ("white" or "black" ethnicity).

9

τ ranges from 0 (no corruption) to 1 (completely random predictions for the subgroup). SMART
aims to identify the top underperforming subgroup without bias based on historical patterns. We
measure the proportion of times the top subgroup contains the "white" (Pwhite) or "black" (Pblack)
minority, averaged over 20 runs and 5 seeds, separately corrupting "white" and "black" ethnicities.

Analysis. We show in Table 5 that SMART is able to identify where models underperform even in
scenarios such as ethnicity bias, where LLMs exhibit prior biases from the training dataset. This links
to the above discussion that SMART mitigates such biases by design both using the training dataset
to guide hypothesis generation and using the self-falsification mechanism to empirically evaluate
hypotheses (and discard those that aren’t reflective of the data).

Takeaway 4. SMART mitigates potential biases in the LLM, both by using the real data to guide
hypothesis generation, as well as using the self-falsification mechanism to filter spurious hypotheses.

6 Discussion and limitations

Responding to recent calls for better model testing [36, 6], we formalize Context-Aware Testing; a
new testing paradigm, actively seeking out relevant and likely model failures based on contextual
awareness — going beyond data alone. We develop SMART Testing, using LLMs to hypothesize
likely and relevant model failures providing improved and automated testing of tabular ML models,
compared to data-only methods in various scenarios.

Model reports. SMART produces comprehensive and automated model reports documenting failure
cases and justifications, thereby providing data scientists, ML engineers and stakeholders increased
visibility into model failures. We provide an example SMART report in Appendix D.10.

Practical considerations. Given the potential utility of SMART we highlight the following five
practical considerations: ▶Hypothesis generation. While CAT offers a principled framework for
context-guided testing, LLMs present challenges in hypothesis generation. Although SMART has
mechanisms to address these (see Sec. 5.4), it cannot guarantee the absence of biases. ▶Use with
small datasets. SMART may be limited in some cases by insufficient real data to operationalize
and test hypotheses, suggesting future work could explore targeted data collection or synthetic
data generation to enhance testing. ▶ Extensions to other modalities. SMART is formalized to
test tabular ML models, due to the interpretable and structured features in tabular data to guide
hypothesis generation. While extensions to other modalities such as image and text is beyond the
scope of this work, this is a promising future research direction that would require addressing the
lack of explicitly interpretable features possibly via external metadata and developing new ways to
operationalize hypotheses on unstructured data. That said, tabular data is ubiquitous in real-world
applications [37, 38] with approximately 79% of data scientists working on tabular problems daily,
vastly surpassing other modalities [39, 40]. This highlights the immediate impact and relevance
of SMART. ▶ Need for interpretable/meaningful feature names. Feature names play an important
role in finding model failures (see Appendix Appendix D.9). The need for interpretable/meaningful
feature names (e.g. column labels such as sex, age, race etc) as a source of context is similar to human
requirements of interpretable feature names to understand what the data refers to. While feature
names are typically the de facto in research and industry datasets, in the rare occasions they are not,
this will affect the performance of SMART. ▶ Cost of SMART. SMART is extremely accessible and
cheap to use, approximately <0.10 USD for 5 hypotheses and <0.5 USD for 100 hypotheses for
state-of-the-art models (see Appendix D.7).

Broader impact. Better testing practices can help ensure models are reliable, safe, and beneficial
before being deployed in real-world applications. We hope that our work can help mitigate model
testing risks in real-world applications as well as spur new testing regimes which are context aware.

Acknowledgments and Disclosure of Funding

We would like to thank the reviewers, Fergus Imrie, Nicolas Astorga, Kasia Kobalczyk, Tennison
Liu and Andrew Rashbass for their helpful feedback. PR is supported by GSK, ML is supported by
AstraZeneca, NS by the Cystic Fibrosis Trust. This work was supported by Microsoft’s Accelerate
Foundation Models Academic Research initiative.

10

References
[1] Luke Oakden-Rayner, Jared Dunnmon, Gustavo Carneiro, and Christopher Ré. Hidden strat-

ification causes clinically meaningful failures in machine learning for medical imaging. In
Proceedings of the ACM Conference on Health, Inference, and Learning, pages 151–159, 2020.

[2] Harini Suresh, Jen J Gong, and John V Guttag. Learning tasks for multitask learning: Heteroge-
nous patient populations in the ICU. In Proceedings of the 24th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, pages 802–810, 2018.

[3] Karan Goel, Albert Gu, Yixuan Li, and Christopher Re. Model patching: Closing the sub-
group performance gap with data augmentation. In International Conference on Learning
Representations, 2020.

[4] Angel Alexander Cabrera, Minsuk Kahng, Fred Hohman, Jamie Morgenstern, and Duen Horng
Chau. Discovery of intersectional bias in machine learning using automatic subgroup generation.
In ICLR Debugging Machine Learning Models Workshop, 2019.

[5] Boris van Breugel, Nabeel Seedat, Fergus Imrie, and Mihaela van der Schaar. Can you rely
on your model evaluation? improving model evaluation with synthetic test data. Advances in
Neural Information Processing Systems, 36, 2024.

[6] Nabeel Seedat, Fergus Imrie, and Mihaela van der Schaar. Navigating data-centric artificial
intelligence with DC-Check: Advances, challenges, and opportunities. IEEE Transactions on
Artificial Intelligence, 2023.

[7] Oleg S Pianykh, Georg Langs, Marc Dewey, Dieter R Enzmann, Christian J Herold, Stefan O
Schoenberg, and James A Brink. Continuous learning AI in radiology: Implementation
principles and early applications. Radiology, 297(1):6–14, 2020.

[8] Pang Wei Koh, Shiori Sagawa, Henrik Marklund, Sang Michael Xie, Marvin Zhang, Akshay
Balsubramani, Weihua Hu, Michihiro Yasunaga, Richard Lanas Phillips, Irena Gao, Tony Lee,
Etienne David, Ian Stavness, Wei Guo, Berton A. Earnshaw, Imran S. Haque, Sara Beery, Jure
Leskovec, Anshul Kundaje, Emma Pierson, Sergey Levine, Chelsea Finn, and Percy Liang.
WILDS: A benchmark of in-the-wild distribution shifts. In International Conference on Machine
Learning, pages 5637–5664. PMLR, 2021.

[9] Kayur Patel, James Fogarty, James A Landay, and Beverly Harrison. Investigating statistical
machine learning as a tool for software development. In Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems, pages 667–676, 2008.

[10] Lea Goetz, Nabeel Seedat, Robert Vandersluis, and Mihaela van der Schaar. Generalization—a
key challenge for responsible ai in patient-facing clinical applications. npj Digital Medicine, 7
(1):126, 2024.

[11] Máire A Duggan, William F Anderson, Sean Altekruse, Lynne Penberthy, and Mark E Sherman.
The surveillance, epidemiology and end results (SEER) program and pathology: towards
strengthening the critical relationship. The American Journal of Surgical Pathology, 40(12):e94,
2016.

[12] Yeounoh Chung, Tim Kraska, Neoklis Polyzotis, Ki Hyun Tae, and Steven Euijong Whang.
Slice finder: Automated data slicing for model validation. In 2019 IEEE 35th International
Conference on Data Engineering (ICDE), pages 1550–1553. IEEE, 2019.

[13] Svetlana Sagadeeva and Matthias Boehm. Sliceline: Fast, linear-algebra-based slice finding for
ml model debugging. In Proceedings of the 2021 International Conference on Management of
Data, pages 2290–2299, 2021.

[14] Adebayo Oshingbesan, Winslow Georgos Omondi, Girmaw Abebe Tadesse, Celia Cintas, and
Skyler Speakman. Beyond protected attributes: Disciplined detection of systematic deviations
in data. In Workshop on Trustworthy and Socially Responsible Machine Learning, NeurIPS
2022, 2022.

11

[15] Eliana Pastor, Luca De Alfaro, and Elena Baralis. Looking for trouble: Analyzing classifier
behavior via pattern divergence. In Proceedings of the 2021 International Conference on
Management of Data, pages 1400–1412, 2021.

[16] Marco Tulio Ribeiro, Tongshuang Wu, Carlos Guestrin, and Sameer Singh. Beyond accuracy:
Behavioral testing of nlp models with checklist. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics, pages 4902–4912, 2020.

[17] Paul Röttger, Bertie Vidgen, Dong Nguyen, Zeerak Waseem, Helen Margetts, Janet Pierre-
humbert, et al. Hatecheck: Functional tests for hate speech detection models. In Proceedings
of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th
International Joint Conference on Natural Language Processing (Volume 1: Long Papers),
page 41. Association for Computational Linguistics, 2021.

[18] Maria Christakis, Hasan Ferit Eniser, Jörg Hoffmann, Adish Singla, and Valentin Wüstholz.
Specifying and testing k-safety properties for machine-learning models. In Proceedings of the
Thirty-Second International Joint Conference on Artificial Intelligence, pages 4748–4757, 2023.

[19] Arnab Sharma and Heike Wehrheim. Higher income, larger loan? monotonicity testing of
machine learning models. In Proceedings of the 29th ACM SIGSOFT International Symposium
on Software Testing and Analysis, pages 200–210, 2020.

[20] Yoav Benjamini and Yosef Hochberg. Controlling the false discovery rate: a practical and
powerful approach to multiple testing. Journal of the Royal statistical society: series B
(Methodological), 57(1):289–300, 1995.

[21] Florian Lemmerich and Martin Becker. pysubgroup: Easy-to-use subgroup discovery in python.
In Joint European Conference on Machine Learning and Knowledge Discovery in Databases,
pages 658–662, 2018.

[22] Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, et al. Palm:
Scaling language modeling with pathways. arXiv preprint arXiv:2204.02311, 2022.

[23] Karan Singhal, Shekoofeh Azizi, Tao Tu, S Sara Mahdavi, Jason Wei, Hyung Won Chung,
Nathan Scales, Ajay Tanwani, Heather Cole-Lewis, Stephen Pfohl, et al. Large language models
encode clinical knowledge. Nature, pages 1–9, 2023.

[24] Nabeel Seedat, Nicolas Huynh, Boris van Breugel, and Mihaela van der Schaar. Curated LLM:
Synergy of LLMs and data curation for tabular augmentation in low-data regimes. In Forty-first
International Conference on Machine Learning, 2024.

[25] Nicolas Astorga, Tennison Liu, Nabeel Seedat, and Mihaela van der Schaar. Partially observable
cost-aware active-learning with large language models. Advances in Neural Information
Processing Systems, 38, 2024.

[26] Chengrun Yang, Xuezhi Wang, Yifeng Lu, Hanxiao Liu, Quoc V Le, Denny Zhou, and Xinyun
Chen. Large language models as optimizers. arXiv preprint arXiv:2309.03409, 2023.

[27] Linlu Qiu, Liwei Jiang, Ximing Lu, Melanie Sclar, Valentina Pyatkin, Chandra Bhagavatula,
Bailin Wang, Yoon Kim, Yejin Choi, Nouha Dziri, et al. Phenomenal yet puzzling: Testing
inductive reasoning capabilities of language models with hypothesis refinement. arXiv preprint
arXiv:2310.08559, 2023.

[28] Karl R Popper. Science as falsification. Conjectures and refutations, 1(1963):33–39, 1963.

[29] OpenAI. Gpt-4 technical report, 2023.

[30] Md Rezaul Karim, Md Shajalal, Alexander Graß, Till Döhmen, Sisay Adugna Chala, Alexander
Boden, Christian Beecks, and Stefan Decker. Interpreting black-box machine learning models
for high dimensional datasets. In 2023 IEEE 10th International Conference on Data Science
and Advanced Analytics (DSAA), pages 1–10. IEEE, 2023.

12

[31] Danilo Vasconcellos Vargas, Hirotaka Takano, and Junichi Murata. Contingency training. In
The SICE Annual Conference 2013, pages 1361–1366. IEEE, 2013.

[32] Léo Grinsztajn, Edouard Oyallon, and Gaël Varoquaux. Why do tree-based models still
outperform deep learning on typical tabular data? Advances in Neural Information Processing
Systems, 35:507–520, 2022.

[33] Julia Angwin, Jeff Larson, Lauren Kirchner, and Surya Mattu. Machine bias. ProPublica:
https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing, May
2016.

[34] Jakub Kuzilek, Martin Hlosta, and Zdenek Zdrahal. Open university learning analytics dataset.
Scientific data, 4(1):1–8, 2017.

[35] Prostate Cancer UK PCUK. Cutract. https://prostatecanceruk.org, 2019.

[36] Negar Rostamzadeh, Ben Hutchinson, Christina Greer, and Vinodkumar Prabhakaran. Think-
ing beyond distributions in testing machine learned models. In NeurIPS 2021 Workshop on
Distribution Shifts: Connecting Methods and Applications, 2021.

[37] Vadim Borisov, Tobias Leemann, Kathrin Seßler, Johannes Haug, Martin Pawelczyk, and Gjergji
Kasneci. Deep neural networks and tabular data: A survey. arXiv preprint arXiv:2110.01889,
2021.

[38] Ravid Shwartz-Ziv and Amitai Armon. Tabular data: Deep learning is not all you need.
Information Fusion, 81:84–90, 2022.

[39] Kaggle. Kaggle machine learning and data science survey, 2017. URL https://www.kaggle.
com/datasets/kaggle/kaggle-survey-2017.

[40] Lasse Hansen, Nabeel Seedat, Mihaela van der Schaar, and Andrija Petrovic. Reimagining syn-
thetic tabular data generation through data-centric ai: A comprehensive benchmark. Advances
in Neural Information Processing Systems, 37:33781–33823, 2023.

[41] Dan Hendrycks and Thomas Dietterich. Benchmarking neural network robustness to common
corruptions and perturbations. In International Conference on Learning Representations, 2018.

[42] Greg d’Eon, Jason d’Eon, James R Wright, and Kevin Leyton-Brown. The spotlight: A general
method for discovering systematic errors in deep learning models. In Proceedings of the 2022
ACM Conference on Fairness, Accountability, and Transparency, pages 1962–1981, 2022.

[43] Michael P Kim, Amirata Ghorbani, and James Zou. Multiaccuracy: Black-box post-processing
for fairness in classification. In Proceedings of the 2019 AAAI/ACM Conference on AI, Ethics,
and Society, pages 247–254, 2019.

[44] Sahil Singla, Besmira Nushi, Shital Shah, Ece Kamar, and Eric Horvitz. Understanding failures
of deep networks via robust feature extraction. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 12853–12862, 2021.

[45] Sabri Eyuboglu, Maya Varma, Khaled Saab, Jean-Benoit Delbrouck, Christopher Lee-Messer,
Jared Dunnmon, James Zou, and Christopher Re. Domino: Discovering systematic errors with
cross-modal embeddings. arXiv preprint arXiv:2203.14960, 2022.

[46] Shreya Shankar, Labib Fawaz, Karl Gyllstrom, and Aditya Parameswaran. Automatic and
precise data validation for machine learning. In Proceedings of the 32nd ACM International
Conference on Information and Knowledge Management, pages 2198–2207, 2023.

[47] Neoklis Polyzotis, Martin Zinkevich, Sudip Roy, Eric Breck, and Steven Whang. Data validation
for machine learning. Proceedings of machine learning and systems, 1:334–347, 2019.

[48] Gary S Collins, Johannes B Reitsma, Douglas G Altman, and Karel GM Moons. Transparent
reporting of a multivariable prediction model for individual prognosis or diagnosis (tripod) the
tripod statement. Circulation, 131(2):211–219, 2015.

13

https://www.kaggle.com/datasets/kaggle/kaggle-survey-2017
https://www.kaggle.com/datasets/kaggle/kaggle-survey-2017

Appendix: Context-aware testing: a new
paradigm for testing with large language
models
Table of Contents

A Extended related work 15
A.1 Enhanced overview of relevant literature . 15
A.2 Components of the ML Testing pipeline . 17
A.3 Comparison of the features of slice discovery methods 17

B SMART Details 18
B.1 Contextual understanding . 18
B.2 Operationalizing variables . 18
B.3 Feasibility checks . 20
B.4 Data adjustment queries . 21
B.5 Requirements, automation, and outputs . 21
B.6 Moving outside of IID data . 22
B.7 SMART and multiple testing . 22

C Benchmarks & Experimental Details 23
C.1 Datasets . 23
C.2 Baselines . 23
C.3 LLM prompts . 23

C.3.1 Generic templates. 23
C.3.2 Example prompts: OULAD Education. 24

C.4 Experimental details . 29
C.4.1 Context-aware testing (Sec. 5.1.) . 29
C.4.2 Requirements-constrained testing (Sec. 5.2.) 29
C.4.3 Targeting model failures (Sec. 5.3.) . 30
C.4.4 Adaptive testing for a deployment environment (Sec. 5.4.) 30
C.4.5 Discovery of societally important groups and failure understanding (Sec.

5.5.) . 30

D Additional experiments 31
D.1 Requirements-constrained testing . 31
D.2 Adaptive testing for a deployment environment 32
D.3 Effects of LLMs . 33

D.3.1 Comparison over identified divergent slices 33
D.3.2 Performance across different models 33
D.3.3 Hypothesis generation . 34

D.4 Effects of different tabular machine learning models 35
D.5 On the inductive biases of ML model testing 36
D.6 Context aware sensitivity . 37
D.7 Cost of SMART . 38
D.8 SMART with open-weight models . 38
D.9 Understanding the importance of feature names 38
D.10 Example of a model report . 40

14

A Extended related work

A.1 Enhanced overview of relevant literature

This work primarily engages with works on ML model testing. Consequently, we detail different
paradigms of ML model testing next, which we summarize in Table 6 and Figure 5 showing that none
of the existing paradigms satisfy all the properties for ML testing neither in terms of automation nor
from the perspective of relevance as they are unable to incorporate context and/or requirements.

Table 6: Comparison of ML testing paradigms in terms of how tests are defined, the type of search
space (i.e. relevance based on context and requirements), sensitivity to multiple testing and automation
to enable scalability.

Search space

Paradigm Objective Test definition Context-aware Integrate
Requirements

Automated
testing Outputs Examples

Average testing Overall performance Data split N.A. N.A. . ✔ Single score
Behavioral Test expected behavior Pre-defined (Human) N.A. N.A. ✗ Multi-dimensional score [16, 17, 5]
Data-only Identify divergent groups Search ✗ ✗ ✔ Multi-dimensional score [14, 21, 15, 12, 13]

SMART (Ours) Probe for model failure Search ✔ ✔ ✔
Multi-dimensional score

justifications, report

Existing paradigms in ML model testing. The ML community has predominatly approached ML
model evaluation/testing via the use of held-out test datasets. On the basis of the test dataset a single
performance metric (accuracy, AUC etc) is computed. This single average evaluation may mask
nuances of the model’s performance along various dimensions. One approach to address this is
to create better benchmark datasets when evaluating models on common benchmarking tasks. For
example, manual corruptions like Imagenet-C [41] or by collecting additional real data such as the
Wilds benchmark [8]. Benchmark datasets are labor-intensive to collect and their utility is limited to
the specific benchmark tasks.

What if we want to evaluate models not confined to benchmarking tasks? To test in cases beyond
benchmark tasks, the community has proposed trying to find slices or regions wherein the model
fails (i.e. via stress tests). As mentioned in Sec. 1, this could be ▶ Behavioral testing: which
requires human expertise and intuition to define the test scenarios (e.g. Checklist [16], HateCheck
[17] or 3S-Testing [5]) — which is not automated and does not scale. Moreover, it runs a high risk of
overlooking critical weaknesses due to human cognitive biases. ▶ Data-only testing: which does not
account for context or requirements and searches exhaustively (e.g. Autostrat [14], SliceFinder [12]
or DivExplorer [15]). This may slices focus on arbitrary, less important, or unrealistic/implausible
scenarios that are unlikely to be seen in reality. Moreover, we run the risk of the multiple testing
problem, where by virtue of the large number of tests evaluated, we might discover a divergent group
by chance.

Hypothesis-driven ML model testing. In contrast, a hypothesis-driven approach to ML model testing
brings about the falsifiability approach widely adopted in science. It begins with the formulation of
specific, testable hypotheses based on theoretical understanding, context/domain knowledge, and the
intended application of the model (i.e. requirements). The concept of hypothesis-driven ML model
testing is deeply rooted in work by Popper [28] who proposed the principle of falsifiability as a driver
of scientific progress. The progression of knowledge hinges on the formulation and rigorous testing
of hypotheses which can either be falsified or supported by empirical evidence. In the context of
hypotheses in ML model testing, testable statements about the model’s performance under various
conditions, fairness, and robustness can improve our understanding of the model’s performance. By
rigorously testing these hypotheses, we can uncover the strengths and limitations of ML models.

Contrast to data-only methods on unstructured data.

In this paper, we have discussed data-only methods for slice discovery or blindspot discovery
applicable to structured data. Specifically, we focus on tabular data where metadata in the form of
column names is explicitly encoded into the data. The data-only approaches covered in this work
directly search over the raw feature space to identify slices with similar attributes wherein the model
would exhibit underperforming predictions.

For completeness, we contrast to data-only approaches often applicable to data without explicit
structure and metadata (images, text, audio). There have been numerous methods including [42–45]

15

Figure 5: Contrasting paradigms of ML model testing along (i) Testing relevance which accounts for
requirements and/or context and (ii) Degree of automation and adaptability when carrying out testing.
We desire a new paradigm of ML testing to address both.

to identify slices of unstructured data with systematic failures. They all follow a similar pattern:
(1) the data is embedded (often with a pre-trained) model into a representation space and (2) the
underperforming slices are identified by clustering on the raw embedding space or after dimensionality
reduction. We then need to post-hoc interpret the clusters in order to understand what they represent.
This contrasts the tabular data setting where we find cohesive groups of features that provide an
explicit interpretation. Moreover, in tabular regimes, we do not have access to pre-trained models in
the same way as for domains such as images or text.

Specifically, to context-aware testing we also note that tabular data inherently includes context through
interpretable/meaningful feature names and metadata. This context is not naturally present in images
(which are tensors of pixel intensities). Hence, extending CAT to other domains like images or text
would require incorporating metadata to provide necessary context — which is often unavailable. In
addition, one would need to develop new ways to operationalize hypotheses on unstructured data.

Contrast to software testing.

Going beyond ML model testing, the idea of testing is also prevalent in software systems. For
example, unit tests of functions in a codebase. We highlight that software testing of functional
input-output correctness is also an area proposed in software testing, which could also theoretically
be applied to ML systems. That said, we contrast between SMART and these paradigms in Table 7
below, demonstrating that we tackle a different testing problem.

Table 7: Comparison of SMART testing with software testing works

Criteria SMART Christakis et al. [18] Sharma et al [19] How is SMART different?
Test case genera-
tion

Automatic LLM-
based test cases

Pre-Specified dimen-
sions of functional
correctness (k-safety
properties)

Approximates the
black-box model to
test with a white-box
decision tree model.

SMART uses the LLM to au-
tomatically hypothesize the
test cases & execute them

What is the focus
of testing

Identify model fail-
ures

Assesses I/O func-
tional correctness

SMT solvers find vio-
lations to monotonic-
ity properties . i.e. in-
put increase!=output
increase

SMART failures encompass
a broader range of possibili-
ties

Are tests context-
aware?

Yes No No SMART uniquely incorpo-
rates context awareness into
testing, leading to more real-
istic assessments.

Additionally, a further orthogonal area to ML model testing is that of data validation [46, 47]. In
contrast, to testing an ML model for failures, data validation aims to test input data pipelines for data
quality problems or drift.

16

A.2 Components of the ML Testing pipeline

Step 1:
Test Search

(‘What to test?”)

Step 2:
Operationalize
(“How to test

on data?”)

Step 3:
Evaluation

report
(“How does the

model perform?”)

Approaches:
(i) SMART Testing:

Hypothesis generation
or (ii) Data-only

search

Approaches:
(i) SMART Testing:

Sufficient data or
(ii) Behavioral testing:

Insufficient data
(e.g. van Breugel et al. [5])

Approaches:
SMART Testing

Figure 6: Components of ML Testing — (i) Test search, (ii) Operationalize, (iii) Evaluation report,
with example approaches for each component.

• Test search: First, we need to decide “what to test”. This is a search problem to identify
test dimensions. This could either be done via SMART which is targeted (via context and
requirements) or data-only methods (where the space is larger). Alternatively, if human
experts are available, humans could define the test dimensions.

• Operationalize: Second, we need to operationalize the test and address the challenge of “how
to carry out this test on data”. If we have sufficient data — SMART could operationalize
the tests on the data via an interpreter. Alternatively, if we don’t have sufficient data to run
the test — then SMART could be augmented by behavioral testing approaches such as van
Breugel et al. [5] — which once the test has been defined use synthetic data to augment
small subgroups/slices.

• Evaluation report: Third, we carry out the test and evaluate the model to answer the question,
“how does the model perform’. SMART can be used to produce a comprehensive report of
failures and justifications in an automated manner.

A.3 Comparison of the features of slice discovery methods

Even as we zoom into the task of discovering slices where the model might underperform, we observe
that SMART has features which are not supported by most of other discovery methods. We exemplify
some of these features in Table 8

Table 8: Comparison of slice discovery methods
Criteria SliceFinder Pysubgroup DivExplorer Autostrat SMART Testing

Integrates custom domain knowledge ✗ ✗ ✗ ✗ ✔
Constant slice discovery time ✗ ✗ ✗ ✗ ✔
Performance is resistant to irrelevant data ✗ ✗ ✗ ✗ ✔
Can capture rare slices ✗ ✗ ✗ ✗ ✔
Inherently supports logical ORs ✗ ✗ ✗ ✔ ✔
Resistant to overfitting the training set ✗ ✗ ✗ ✗ ✔

17

B SMART Details

We present a block diagram of the key components of SMART Testing in Figure 7. In addition, for
each component we provide additional motivations and technical details not covered in the main
paper. We further provide more technical information on certain implementation details.

Requirement-drivenContextual understanding Automation

Contextual
knowledge

Test 2
Test 3

Train Test

Contextual failure output

Evaluation score

Summary report

𝑥!
𝑥"
⋮
𝑥#

⋮ ⋮

Input data Evaluation framework

ContextRequirements

ML Model

Evaluation

Context informs model
testing scenarios

Evaluation meets requirements and
incorporates contextual information

The process does not involve
manual human input

The output describes
model failure cases clearly

1 2 3 4

Focus on failure cases
Test n

Figure 7: A strong machine learning testing framework should incorporate textual understanding
during testing, should meet requirements, should be automated, and provide contextual reports with
an emphasis on model failures.

B.1 Contextual understanding

A core component of SMART is leveraging LLMs to strategically identify what to test for in tabular
ML models. This process is anchored on the premise that LLMs can effectively navigate the space of
potential model failure slices, harnessing their contextual understanding to pinpoint slices where the
model is most susceptible to failure. The operation of LLMs within the SMART framework involves
three critical inputs:

1. Context (C): A string describing the overarching scenario and the task at hand.
2. Dataset Information (Dc): Extracted from the training data, this includes a description of

the observations where the model did not fail (ŷ = y), or where it failed ŷ ̸= y). This could
be characterized as a string with a description of the covariates of each group (e.g., mean,
median, mode, and a textual description of the distribution).

Utilizing these inputs, the LLM generates a set of hypotheses (H) and corresponding justifications
(J) regarding potential model failures. The framework also incorporates a self-refine mechanism to
enhance hypothesis generation. This mechanism iteratively refines hypotheses based on the observed
or provided context (C) and data (Dc), re-ranking them by their likelihood. The self-refine mechanism
is introduced in order to generate hypotheses that are more likely to target specific model failures.

B.2 Operationalizing variables

Once the hypotheses have been proposed, it is important to operationalize them. This operationaliza-
tion can be achieved through one of two methods:

1. LLM-based Operationalization: Hypothesizing possible operationalizations (e.g., age >
70 as a way to operationalize “elderly people”). In this case, the previous interactions and
information is provided to the LLM, together with the relevant description of the data. It is
then asked to provide possible ways to operationalize a specific hypothesis. This is done by
passing an “operationalization prompt” which contains the aforementioned information.

18

The following is an example of an operationalization prompt in Python:

1 f"""
2 The following are hypotheses about which people within

a dataset the model might underperform on.
3 Propose specific ranges for each hypothesis. Hypotheses

: {hypotheses }.
4

5 Dataset information: {context }. {context_target}
6

7 The dataset contains {len(unique_values)} columns. The
columns are {’, ’.join(unique_values.keys())}. The values
are {str(unique_values.items ())}

8

9 TASK: Propose specific variable ranges for each
hypothesis such that they are clearly operationalizable and
defined. Use this format: Hypothesis: <>; Operationalization
: <>.

10 """
11

Code Listing 2: Operationalization (LLM knowledge): General template

This is then converted into a specific operationalization for each hypothesis using an external
compiler which maps the strings to a function.

2. Data-driven Operationalization: Utilizing training data to identify optimal splits for given
covariates (e.g., age >= 82.32 as a condition to split data based on the “age” covariate).
This method receives the covariate (or set of covariates) as an input and returns the optimal
split. The optimal split is defined as the split which can identify two groups which have
the largest absolute difference in accuracies given some requirements (e.g. a minimum or
maximum group size in each group). This splitting can be done by any black box splitting
function which takes in a set of inputs and returns a splitting mechanism.

Black-box splitting function for data-driven operationalization. While any black-box splitting
function could perform on the data, we provide details on the specific function used in SMART.

The function implemented is based on a decision tree model, which can be either a regressor or
a classifier, depending on the nature of the outcome variable. In all our experiments, we perform
classification-based tasks.

The function operates by fitting a decision tree to the data and recursively traversing the tree to find
the split that yields the largest absolute difference in the outcome variable’s mean value between
two slices. The split must also satisfy group size constraints, specified as minimum and maximum
group sizes. The traversal process evaluates each potential split, calculating the mean outcome for
each slice and the discrepancy between these means. The optimal split is the one that maximizes this
discrepancy while adhering to the group size requirements.

The function returns a query string that represents this optimal split. This string can then be used
to segment the dataset into the identified slices for further analysis or testing. The following is
pseudocode for the splitting algorithm.

19

Algorithm 1 Optimal splitting mechanism within the SMART framework
Data: dataframe, features, outcome, min_group_size, max_group_size
Result: Optimal query string for data split

1 Function GetOptimalSplitQuery(dataframe, features, outcome, min_group_size,
max_group_size):

2 Validate input features and outcome in dataframe Determine the type of decision tree
model based on outcome type Fit the decision tree model to dataframe using features
and outcome Initialize an empty list conditions for tracking split conditions return
TraverseTree(root, 0, conditions)

3 Function TraverseTree(node, depth, conditions):
4 if node is a leaf then
5 Calculate the discrepancy in outcome between the two slices return the condition and

discrepancy if group size constraints are met
6 end
7 Determine left and right conditions based on the threshold at node return

TraverseTree(node.left, depth + 1, conditions ∪ {left_condition}) // or
the right conditions, depending on which has the greater discrepancy

This splitting mechanism is used for continuous features. A separate black-box splitting mechanism
is developed for categorical features based on iterating on different permutations of these features
and evaluating them that helps with variable selection.

In practice, we employ the LLM-based operationalization for the SMART ablation and the data-
driven operationalization within the original SMART framework. However, we highlight that this
is a design choice that we have found works in practice; there is nothing stopping from using any
operationalization framework within the main SMART framework.

B.3 Feasibility checks

SMART is built on many modules which can be toggled on or off. One of such modules is a module
called “feasibility check” which evaluates whether there are any hypotheses which should be tested
in the first place. The experiments presented in Sec. 5.1 highlight the importance of being able to
identify when no relationship between covariates exist.

The feasibility check contains three steps. First, an LLM is queried to evaluate whether any relation-
ships could exist between the covariates and an outcome variable. For instance, this could be whether
a relationship could exist between loan default and the annual rainfall in a given region. Second,
the answer is self-refined. This helps to evaluate feasibility because, in practice, initial responses
tend to be over-optimistic (such as hypothesizing that annual rainfall is associated with loan default
via a geographic proxy). This self-refinement helps to critically evaluate the previous answer. The
number of steps in the self-refinement process is a hyperparameter. Lastly, the answer (whether or
not a relationship could exist between the two variables and, hence, should be inspected) is converted
to a boolean value via an external function.

The following is pseudocode which implements the feasibility module.

20

Algorithm 2 Feasibility for evaluating slices
Input: unique_values, context, context_target, system_message, n_refine
Output: feasibility_boolean_response

8 Function FeasibilityCheck(unique_values, context, context_target, system_message,
n_refine):
// Construct the feasibility task prompt

9 task ← “Evaluate subgroups for model performance” task ← task∪ “Context: ” ∪ context ∪
“Target: ” ∪ context_target task ← task∪ “Columns: ” ∪ join(unique_values.keys())
// Get initial feasibility response

10 feasibility_response← GetLLMResponse(task, system_message)
// Refine the answer

11 feasibility_response ← SelfRefine(unique_values, context, context_target,
feasibility_response, system_message, n_refine)

// Convert to boolean
12 boolean_task ← “Based on analysis, provide yes/no answer” boolean_task ←

boolean_task∪ “Analysis: ” ∪ feasibility_response
13 feasibility_boolean_response← GetLLMResponse(boolean_task)

B.4 Data adjustment queries

Given that SMART operates with an LLM, sometimes the framework outputs proposals which do
not operationalize on the data well. For instance, even if a column “age” is a categorical variable,
SMART might propose to operationalize the hypothesis “elderly people” as age > 72 which would
cause an error.

To avoid this, we implement an additional data adjustment module which can handle such cases. It
catches the error and re-prompts the LLM to find a group which could be operationalized given the
data structure, and does so iteratively until such a group is found.

The following is a pseudocode function that explains how data adjustment is performed.

Algorithm 3 Pseudocode for adjusting subgroup/slice queries
Data: X (DataFrame), n_subgroups (integer)
Result: Adjusted subgroup queries in the dataset

14 Function AdjustSubgroupQuery(X, n_subgroups):
15 for each subgroup condition do
16 if CheckQueryExistence(X, condition) then
17 UpdateSubgroupCondition(condition)
18 else

// Condition yields no rows, adjust it
19 adjusted_condition ← GetLLMResponse(condition) // Update the condition

in the subgroup
20 UpdateSubgroupCondition(adjusted_condition)
21 end
22 end
23 return

B.5 Requirements, automation, and outputs

Requirements. SMART can natively integrate user requirements into its framework. This is done by
inputting requirements as a string and concatenating it together with the context. Some requirements
are directly integrated into the framework itself (e.g. functionalities for determining the minimum or
maximum sample size of a data split).

Automation. Fig. 1 showcases the pipeline of SMART and which components are automated.
SMART is developed using an “sklearn” style fit, predict framework. The fit method automatically
performs a feasibility check, generates hypotheses, justifications, operationalizes them, performs
self-falsification using empirical data, re-ranks the hypotheses, and saves all intermediate results. The

21

method can then automatically be used on any piece of data to evaluate whether it underperforms on
the groups that have been found to underperform.

Outputs. In addition to SMART outputting subgroups/slices or a scalar number, it can output a
model report. An example report is provided in D.10. We note that this report is simply an example
which employs both the findings of the fitting procedure and an additional LLM to summarize the
outputs. More fine-grained outputs can be constructed.

B.6 Moving outside of IID data

In the paper, we propose that SMART can move outside of IID data and generalize better in the
presence of covariate shift (refer to Sec. D.2). We highlight that this is done by performing an
analysis on the original data and using an LLM propose possible hypotheses and splits for a different
target domain where no data is present (hence, operationalizing only using the LLM with access to
previous operationalizations). The following is an example prompt which is designed to do this.

1 f"""
2 You have access to the following information.
3

4 Dataset information: {context }. {context_target}
5

6 The dataset contains {len(unique_values)} columns. The columns
are {’, ’.join(unique_values.keys())}. The values are {str(

unique_values.items ())}
7

8 However , you are no longer working with the same data as just
described. Rather , this is the context: {new_context }.

9

10 These are the hypotheses: {self._updated_hypotheses }.
11

12 TASK: Propose specific variable ranges for each hypothesis
such that they are clearly operationalizable and defined. Use this
format: Hypothesis: <>; Operationalization: <>.

13 """

Code Listing 3: Operationalization (LLM knowledge): General template

B.7 SMART and multiple testing

The reason why SMART performs testing via hypothesis generation is because testing for all slices is
equivalent to generating and testing a hypothesis on the data. Here, we outline in greater detail how
hypothesis generation is connected to multiple testing.

As outlined in the main manuscript, searching for f failures may bring up the challenge of multiple
hypothesis testing. Specifically, when we evaluate the failure rate of model f across different slices
Si ⊆ D, we are testing the null hypothesis H(i)

0 : µSi
= µD against the alternative H

(i)
1 : µSi

̸= µD.
Then, the probability of making a Type I error increases with each test. This drastically inflates the
family-wise error rate (FWER). For instance, assuming that each slice is independent, the probability
of making one or more Type I errors across all tests is given by 1− (1− α)m, where m is the total
number of slices tested. While this can be addressed by adjusting for multiple testing, we run into
the trade-off between the FWER control and statistical power. As we employ statistical correction
methods to account for Type I errors, we increase the probability of Type II errors.

22

C Benchmarks & Experimental Details

We summarize all experimental details, datasets and benchmarks.

Code can be found at: https://github.com/pauliusrauba/SMART_Testing or https://
github.com/vanderschaarlab/SMART_Testing

C.1 Datasets

We summarize the different datasets we use in this paper in Table 9. The datasets vary in number of
samples, number of features and domain.

Table 9: Summary of the datasets used.

Name n samples n features Domain Task
Loan 5000 8 Finance Loan default
Breast 116 8 Healthcare/Medicine Breast cancer

Compas [33] 4743 8 Criminal justice Criminal recidivism
OULAD [34] 5000 8 Education Exam score

Diabetes 768 8 Healthcare/Medicine Diabetes label
SEER [35] 2000 12 Healthcare/Medicine Prostate cancer morality

CUTRACT [35] 20000 12 Healthcare/Medicine Prostate cancer morality

Note that, depending on the experiment, we might vary the sample size or features used. This can be
because of the added synthetic variables or certain slice discovery algorithms taking too long to run.

C.2 Baselines

We compare SMART testing with the following data-only baselines in Section 5.

• Autostrat [14]. We use the implementation from 7

• Pysubgroup [21]. We use the implementation from 8

• Divexplorer [15]. We use the implementation from 9

• Slicefinder [12]. We use the implementation from 10

• Sliceline [13]. We use the implementation from 11

C.3 LLM prompts

C.3.1 Generic templates.

1 """ Constructs the task description for the LLM."""
2 task = f""" Your task is to propose possible hypotheses as to which

subgroups within the dataset might have worse predictive
performance than on average because of societal bias in the
dataset , insufficient data , other relationships , or others. The
subgroups might be based on any of the provided characteristics ,
as well as on any combination of such characteristics.

3

4 Dataset information: {context }. {context_target}
5

6 The dataset contains {len(unique_values)} columns. The columns are {’,
’.join(unique_values.keys())}.

7

7https://github.com/Adebayo-Oshingbesan/BPS_Autostrat_Code/
8https://github.com/flemmerich/pysubgroup
9https://github.com/elianap/divexplorer

10https://github.com/yeounoh/slicefinder
11https://github.com/DataDome/sliceline

23

https://github.com/pauliusrauba/SMART_Testing
https://github.com/vanderschaarlab/SMART_Testing
https://github.com/vanderschaarlab/SMART_Testing
https://github.com/Adebayo-Oshingbesan/BPS_Autostrat_Code/
https://github.com/flemmerich/pysubgroup
https://github.com/elianap/divexplorer
https://github.com/yeounoh/slicefinder
https://github.com/DataDome/sliceline

8 Task: Create {n} hypotheses as to which subgroups within the dataset
the model will perform worse than on average because of societal
biases or other reasons. Important: Your hypothesis can contain
either one variable or two variables in the condition. Therefore ,
your goal is to find discrepancies in the model’s performance , not
the underlying data outcomes. Justify why you think that for each
of the {n} hypotheses. Format of the output: Hypothesis: <>;

Justification: <>.
9

10 """

Code Listing 4: Generic hypothesis prompt

1 """
2 The following are hypotheses about which people within a dataset the

model might underperform on.
3 Propose specific ranges for each hypothesis. Hypotheses: {hypotheses }.
4

5 TASK: return a dictionary that contains an index number as the key and
the column value as the value. If there are multiple columns in

that hypothesis , return them in a list. There are the column names
: {’, ’.join(unique_values.keys())}.

6 """

Code Listing 5: Generic operationalization prompt

C.3.2 Example prompts: OULAD Education.

1 """
2 ----------INPUT TEXT --------------
3 Your task is to propose possible hypotheses as to which subgroups

within the dataset might have worse predictive performance than on
average because of societal bias in the dataset , insufficient

data , other relationships , or others. The subgroups might be based
on any of the provided characteristics , as well as on any

combination of such characteristics.
4

5 Dataset information:
6 Open University Learning Analytics Dataset (OULAD) contains data about

courses , students and their interactions with Virtual Learning
Environment (VLE) for seven selected courses (called modules).
Presentations of courses start in February and October - they are
marked by B and J respectively. The dataset consists of tables
connected using unique identifiers. All tables are stored in the
csv format.

7

8 The task is to predict the students who are likely to fail or withdraw
from a course.

9

10

11 The dataset contains 14 columns. The columns are gender , region ,
highest_education , imd_band , age_band , num_of_prev_attempts ,
studied_credits , disability , test , group_0 , group_1 , group_2 ,
group_3 , group_4. The values are dict_items ([(’ gender ’, [’M’, ’F
’]), (’region ’, [’South Region ’, ’Scotland ’, ’Yorkshire Region ’, ’
West Midlands Region ’, ’East Anglian Region ’, ’East Midlands
Region ’, ’South East Region ’, ’Wales ’, ’North Western Region ’, ’
London Region ’, ’South West Region ’, ’Ireland ’, ’North Region ’]),
(’highest_education ’, [’Lower Than A Level ’, ’A Level or
Equivalent ’, ’HE Qualification ’, ’No Formal quals ’, ’Post Graduate
Qualification ’]), (’imd_band ’, [’70-80%’, ’40-50%’, ’0-10%’,

’10-20’, ’50-60%’, ’20-30%’, ’60-70%’, ’80-90%’, ’90-100%’,
’30-40%’, nan]), (’age_band ’, [’0-35’, ’35-55’, ’55<=’]), (’
num_of_prev_attempts ’, [0, 1, 2, 3, 5, 4, 6]), (’studied_credits ’,
{’min ’: 30, ’mean ’: 79.77122804326149 , ’max ’: 655}) , (’disability

24

’, [’N’, ’Y ’]), (’test ’, [False , True]), (’group_0 ’, [False , True
]), (’group_1 ’, [True , False]), (’group_2 ’, [True , False]), (’
group_3 ’, [False , True]), (’group_4 ’, [False , True])])

12

13 Task: Create 5 hypotheses as to which subgroups within the dataset the
model will perform worse than on average because of societal

biases or other reasons. Therefore , your goal is to find
discrepancies in the model’s performance , not the underlying data
outcomes. Justify why you think that. Format of the output:
Hypothesis: <>; Justification: <>.

14 """
15

16 ----------OUTPUT TEXT --------------
17 Hypothesis 1: Students with disabilities will have worse predictive

performance than average.
18 Justification: Students with disabilities may face additional

challenges in their learning process , which could affect their
performance in the course. They may require additional support or
accommodations that are not adequately captured in the dataset ,
leading to lower predictive performance for this subgroup.

19

20 Hypothesis 2: Students from lower socioeconomic backgrounds (indicated
by imd_band) will have worse predictive performance than average.

21 Justification: Students from lower socioeconomic backgrounds may have
limited access to resources and support systems that are necessary
for successful completion of the course. This lack of resources

and support may not be adequately captured in the dataset , leading
to lower predictive performance for this subgroup.

22

23 Hypothesis 3: Students with lower levels of education (indicated by
highest_education) will have worse predictive performance than
average.

24 Justification: Students with lower levels of education may have less
prior knowledge and skills that are necessary for success in the
course. This lack of foundational knowledge may not be adequately
captured in the dataset , leading to lower predictive performance
for this subgroup.

25

26 Hypothesis 4: Students who have attempted the course multiple times (
indicated by num_of_prev_attempts) will have worse predictive
performance than average.

27 Justification: Students who have attempted the course multiple times
may have encountered difficulties or challenges in their previous
attempts that hindered their success. These challenges may not be
adequately captured in the dataset , leading to lower predictive
performance for this subgroup.

28

29 Hypothesis 5: Students in certain regions (indicated by region) will
have worse predictive performance than average.

30 Justification: Students in certain regions may have different
educational systems , resources , and support networks that can
impact their performance in the course. These regional differences
may not be adequately captured in the dataset , leading to lower

predictive performance for subgroups based on region.

Code Listing 6: Hypothesis generation: OULAD Dataset

1 """
2 ----------INPUT TEXT --------------
3

4 The following are hypotheses about which people within a dataset the
model might underperform on.

5 Propose specific ranges for each hypothesis. Hypotheses: Hypothesis 1:
Students with disabilities will have worse predictive performance
than average.

25

6

7 Justification: Students with disabilities may face additional
challenges in their learning process , which could affect their
performance in the course. They may require additional support or
accommodations that are not adequately captured in the dataset ,
leading to lower predictive performance for this subgroup.

8

9 Hypothesis 2: Students from lower socioeconomic backgrounds (indicated
by imd_band) will have worse predictive performance than average.

10 Justification: Students from lower socioeconomic backgrounds may have
limited access to resources and support systems that are necessary
for successful completion of the course. This lack of resources

and support may not be adequately captured in the dataset , leading
to lower predictive performance for this subgroup.

11

12 Hypothesis 3: Students with lower levels of education (indicated by
highest_education) will have worse predictive performance than
average.

13 Justification: Students with lower levels of education may have less
prior knowledge and skills that are necessary for success in the
course. This lack of foundational knowledge may not be adequately
captured in the dataset , leading to lower predictive performance
for this subgroup.

14

15 Hypothesis 4: Students who have attempted the course multiple times (
indicated by num_of_prev_attempts) will have worse predictive
performance than average.

16 Justification: Students who have attempted the course multiple times
may have encountered difficulties or challenges in their previous
attempts that hindered their success. These challenges may not be
adequately captured in the dataset , leading to lower predictive
performance for this subgroup.

17

18 Hypothesis 5: Students in certain regions (indicated by region) will
have worse predictive performance than average.

19 Justification: Students in certain regions may have different
educational systems , resources , and support networks that can
impact their performance in the course. These regional differences
may not be adequately captured in the dataset , leading to lower

predictive performance for subgroups based on region ..
20

21 Dataset information:
22 Open University Learning Analytics Dataset (OULAD) contains data about

courses , students and their interactions with Virtual Learning
Environment (VLE) for seven selected courses (called modules).
Presentations of courses start in February and October - they are
marked by B and J respectively. The dataset consists of tables
connected using unique identifiers. All tables are stored in the
csv format.

23 .
24 The task is to predict the students who are likely to fail or withdraw

from a course.
25

26

27 The dataset contains 14 columns. The columns are gender , region ,
highest_education , imd_band , age_band , num_of_prev_attempts ,
studied_credits , disability , test , group_0 , group_1 , group_2 ,
group_3 , group_4. The values are dict_items ([(’ gender ’, [’M’, ’F
’]), (’region ’, [’South Region ’, ’Scotland ’, ’Yorkshire Region ’, ’
West Midlands Region ’, ’East Anglian Region ’, ’East Midlands
Region ’, ’South East Region ’, ’Wales ’, ’North Western Region ’, ’
London Region ’, ’South West Region ’, ’Ireland ’, ’North Region ’]),
(’highest_education ’, [’Lower Than A Level ’, ’A Level or
Equivalent ’, ’HE Qualification ’, ’No Formal quals ’, ’Post Graduate
Qualification ’]), (’imd_band ’, [’70-80%’, ’40-50%’, ’0-10%’,

26

’10-20’, ’50-60%’, ’20-30%’, ’60-70%’, ’80-90%’, ’90-100%’,
’30-40%’, nan]), (’age_band ’, [’0-35’, ’35-55’, ’55<=’]), (’
num_of_prev_attempts ’, [0, 1, 2, 3, 5, 4, 6]), (’studied_credits ’,
{’min ’: 30, ’mean ’: 79.77122804326149 , ’max ’: 655}) , (’disability

’, [’N’, ’Y ’]), (’test ’, [False , True]), (’group_0 ’, [False , True
]), (’group_1 ’, [True , False]), (’group_2 ’, [True , False]), (’
group_3 ’, [False , True]), (’group_4 ’, [False , True])])

28

29 TASK: Propose specific variable ranges for each hypothesis such that
they are clearly operationalizable and defined. Use this format:
Hypothesis: <>; Operationalization: <>.

30 """
31

32 ----------OUTPUT TEXT --------------
33 Hypothesis 1: Students with disabilities will have worse predictive

performance than average.
34 Operationalization: Students with disabilities can be identified by

the "disability" variable in the dataset. To test this hypothesis ,
we can define the range for students with disabilities as those

who have a value of "Y" in the "disability" column.
35

36 Hypothesis 2: Students from lower socioeconomic backgrounds (indicated
by imd_band) will have worse predictive performance than average.

37 Operationalization: Socioeconomic background can be measured using the
"imd_band" variable in the dataset. To test this hypothesis , we

can define the range for students from lower socioeconomic
backgrounds as those who have an "imd_band" value in the range of
"0-30%".

38

39 Hypothesis 3: Students with lower levels of education (indicated by
highest_education) will have worse predictive performance than
average.

40 Operationalization: Education level can be determined using the "
highest_education" variable in the dataset. To test this
hypothesis , we can define the range for students with lower levels
of education as those who have a value of "Lower Than A Level" or
"No Formal quals" in the "highest_education" column.

41

42 Hypothesis 4: Students who have attempted the course multiple times (
indicated by num_of_prev_attempts) will have worse predictive
performance than average.

43 Operationalization: Previous attempts can be measured using the "
num_of_prev_attempts" variable in the dataset. To test this
hypothesis , we can define the range for students who have
attempted the course multiple times as those who have a value
greater than 1 in the "num_of_prev_attempts" column.

44

45 Hypothesis 5: Students in certain regions (indicated by region) will
have worse predictive performance than average.

46 Operationalization: Region can be determined using the "region"
variable in the dataset. To test this hypothesis , we can define
the range for students in certain regions as those who belong to
the regions of "North Region" or "Wales".

Code Listing 7: Operationalization (LLM knowledge): OULAD Dataset

1 """
2 ----------INPUT TEXT --------------
3

4 The following are groups that are defined based on the dataset.
Convert them into a Python dictionary format. Each group should be
represented as a key -value pair in the dictionary , where the key

is an index (0 to 4), and the value is a string representing the
group using Python syntax and logical operators. For multiple

27

conditions , use Python ’s logical ’and’ (’&&’) or ’or’ (’||’).
Ensure the format is a valid Python dictionary.

5

6 Examples:
7 - Single Condition: {0: ’X > 45’}
8 - Multiple Conditions: {1: ’(X > 45) and (Y < 20) ’}
9

10 Groups to summarize: Hypothesis 1: Students with disabilities will
have worse predictive performance than average.

11

12 Operationalization: Students with disabilities can be identified by
the "disability" variable in the dataset. To test this hypothesis ,
we can define the range for students with disabilities as those

who have a value of "Y" in the "disability" column.
13

14 Hypothesis 2: Students from lower socioeconomic backgrounds (indicated
by imd_band) will have worse predictive performance than average.

15 Operationalization: Socioeconomic background can be measured using the
"imd_band" variable in the dataset. To test this hypothesis , we

can define the range for students from lower socioeconomic
backgrounds as those who have an "imd_band" value in the range of
"0 -30%".

16

17 Hypothesis 3: Students with lower levels of education (indicated by
highest_education) will have worse predictive performance than
average.

18 Operationalization: Education level can be determined using the "
highest_education" variable in the dataset. To test this
hypothesis , we can define the range for students with lower levels
of education as those who have a value of "Lower Than A Level" or
"No Formal quals" in the "highest_education" column.

19

20 Hypothesis 4: Students who have attempted the course multiple times (
indicated by num_of_prev_attempts) will have worse predictive
performance than average.

21 Operationalization: Previous attempts can be measured using the "
num_of_prev_attempts" variable in the dataset. To test this
hypothesis , we can define the range for students who have
attempted the course multiple times as those who have a value
greater than 1 in the "num_of_prev_attempts" column.

22

23 Hypothesis 5: Students in certain regions (indicated by region) will
have worse predictive performance than average.

24 Operationalization: Region can be determined using the "region"
variable in the dataset. To test this hypothesis , we can define
the range for students in certain regions as those who belong to
the regions of "North Region" or "Wales ".

25 Column names: gender , region , highest_education , imd_band , age_band ,
num_of_prev_attempts , studied_credits , disability , test , group_0 ,
group_1 , group_2 , group_3 , group_4

26 Column values: dict_items ([(’ gender ’, [’M’, ’F ’]), (’region ’, [’South
Region ’, ’Scotland ’, ’Yorkshire Region ’, ’West Midlands Region ’, ’
East Anglian Region ’, ’East Midlands Region ’, ’South East Region ’,
’Wales ’, ’North Western Region ’, ’London Region ’, ’South West

Region ’, ’Ireland ’, ’North Region ’]), (’highest_education ’, [’
Lower Than A Level ’, ’A Level or Equivalent ’, ’HE Qualification ’,
’No Formal quals ’, ’Post Graduate Qualification ’]), (’imd_band ’,
[’70-80%’, ’40-50%’, ’0-10%’, ’10-20’, ’50-60%’, ’20-30%’,
’60-70%’, ’80-90%’, ’90-100%’, ’30-40%’, nan]), (’age_band ’,
[’0-35’, ’35-55’, ’55<=’]), (’num_of_prev_attempts ’, [0, 1, 2, 3,
5, 4, 6]), (’studied_credits ’, {’min ’: 30, ’mean ’:
79.77122804326149 , ’max ’: 655}) , (’disability ’, [’N’, ’Y ’]), (’
test ’, [False , True]), (’group_0 ’, [False , True]), (’group_1 ’, [
True , False]), (’group_2 ’, [True , False]), (’group_3 ’, [False ,
True]), (’group_4 ’, [False , True])])

28

27 """
28

29 ----------OUTPUT TEXT --------------
30 {
31 0: ’disability == "Y"’,
32 1: ’imd_band in ["0 -30%"]’,
33 2: ’highest_education in ["Lower Than A Level", "No Formal quals"]

’,
34 3: ’num_of_prev_attempts > 1’,
35 4: ’region in ["North Region", "Wales "]’
36 }

Code Listing 8: Interpreter: OULAD Dataset

C.4 Experimental details

We note that all experiments were performed using two compute resources: a server with NVIDIA
RTX A4000 GPU and 18-Core Intel Core i9-10980XE, as well as an Apple M1 Pro 32GB RAM.
We exemplify SMART Testing using GPT-4 [29] as the LLM but run further experiments to test the
sensitivity to the type of language model in Appendix D.3.

C.4.1 Context-aware testing (Sec. 5.1.)

Goal. We aim to underscore the role of context in ML model testing to prevent false positives,
especially when dealing with tabular data where data may contain many irrelevant or uninformative
features [30], persisting even post-feature selection [31, 32]. We contrast SMART which explicitly
accounts for context, in contrast to data-only approaches which are context-unaware only operating
on the data.

Setup. We fit a predictive model to the training dataset, varying the number of irrelevant, synthetically
generated features contained in the dataset — where irrelevant features are drawn from different
distributions. We then quantify the proportion of conditions in the identified slices that falsely include
the irrelevant synthetic synthetically features.

Because different methods are sensitive to different types of irrelevant features, we developed a data
generating processes that encompasses many types of variables. Over many runs, different data-only
methods pick up on some of these variables, showcasing that all methods are susceptible to randomly
sampled irrelevant features in the dataset.

Sampling mechanism. To evaluate the impact of irrelevant features, we enrich the dataset by adding
synthetic categorical variables. The number of new variables is equal to the number of existing
features in the dataset. For each new variable xi, we determine its type by sampling from a Bernoulli
distribution with probability 0.5. If the sampled value is 0, xi is a Bernoulli variable with success
probability 0.1; otherwise, xi is a categorical variable with four categories, following a predefined
probability distribution (e.g., {0.1, 0.3, 0.4, 0.2}):

Type(xi) ∼ Bernoulli(0.5),

xi ∼
{

Bernoulli(0.1) if Type(xi) = 0,

Categorical(0.1, 0.3, 0.4, 0.2) if Type(xi) = 1.

We note that there are synthetic data generating processes that completely break other data-only
methods. As an example, creating a unique ID column for each sample breaks the Autostrat algorithm,
as all the subgroups/slices identified are the unique IDs. The data generating process employed in our
experiment reflects a broad variety of commonly encountered DGPs.

C.4.2 Requirements-constrained testing (Sec. 5.2.)

We test whether each of the methods can fulfil three requirements.

The first requirement involved the use of the variable “age” in each detected slice. This was passed
as an input to SMART. The other methods do not accept context as input and, therefore, it was not

29

possible to fulfil these requirements. The numbers provided for other methods are simply how often
they fulfilled the requirements by chance.

The second and third requirements involved obtaining a minimum and maximum sample size. This
was passed as an input to SMART and the ablated SMART version. Based on this, SMART changed
its hyperparameter within its function which asks to indicate a minimum and maximum sample size
for the discovered slices. As with the previous experiments, this was not adjusted for the other groups
because they do not take textual input.

C.4.3 Targeting model failures (Sec. 5.3.)

In order to evaluate the targeting of model failures, we try four different tabular models with pre-
specified hyperparameters. We find discrepant slices on the training dataset and evaluate them on the
testing dataset.

C.4.4 Adaptive testing for a deployment environment (Sec. 5.4.)

The goal of the adaptive testing experiment is to understand the extent to which SMART, as well as
other data-only methods, can use data in a source domain to generalize to a new, target domain where
a covariate shift has been detected. To this end, the datasets provided have a known covariate shift
and can be evaluated.

Each method was trained on the UK dataset and the discovered slices were evaluated on the US
dataset. No additional context was provided to data-only methods since they do not accept any text or
context as inputs.

In contrast, we have provided SMART with the previously discovered slices and hypotheses, and
have asked to re-evaluate these hypotheses in the context of the US dataset. Specifically, SMART
re-hypothesized possible model failures for the US market but used the UK data to operationalize
the variables. The ablated version, SMARTNSF , achieved the best overall performance on the US
market. The ablated version (i) did not have access to the UK data and the failures of the models;
and (ii) operationalized each covariate using the LLM alone (refer to Sec. B.2 for a discussion on
operationalizations with different SMART versions). This provides evidence that, in the presence
of covariate shift, using inductive knowledge or domain expertise might be more useful to finding
meaningful model failures.

C.4.5 Discovery of societally important groups and failure understanding (Sec. 5.5.)

As discussed in the main paper, SMART provides both possible hypotheses and justifications for
model failures which can be evaluated using a simple “fit” method. Furthermore, SMART prioritizes
meaningful data slices which are of societal importance. Such slices can be inspected for any data
input.

30

D Additional experiments

D.1 Requirements-constrained testing

Goal. Requirements are a crucial, yet neglected part of ML model testing, such as verifying
performance on societally relevant dimensions or verifying specific aspects to meet compliance
requirements. However, no previous testing framework has incorporated the notion of satisfying
requirements when defining the test slices. This experiment illustrates how SMART integrates
requirements provided in natural language, which then influences the hypotheses generated to satisfy
testing requirements.

Setup. We cover three real-world requirements that end-users might have: one based on demographics
and two based on sample size. Requirement 1: Each of the top 10 identified unique slices should
involve the age of a person. Requirement 2: The sample size of the top 10 identified unique slices must
have at least 150 observations. Requirement 3: The sample size of the top 10 identified unique slices
has to be small, within 10 and 150 observations. We exemplify the experiment using a real-world
prostate cancer dataset from the UK [35], as healthcare often mandates certain testing requirements
(e.g. Collins et al. [48]).

Analysis. Table 10 shows that SMART which directly integrates requirements (via natural language),
satisfies the requirements a greater number of times compared to data-only methods, which only
satisfies requirements by chance (hence the low number of times). Beyond satisfying requirements,
the SMART slices also represent model failures that almost always have statistically significant
performance differences from average when evaluated on test data. Finally, while SMARTNSF

(ablation without self-falsification) can satisfy requirements, the number of statistically significant
slices is lower than SMART, thus underscoring the value of our self-falsification mechanism. That
said, SMARTNSF still outperforms data-only baselines.

Table 10: Requirement satisfaction showing how many times the top 10 generated slices satisfied the
requirements (Req) and how many of these slices had statistically significantly different performance
from average (Sig) on a testing dataset. Maximum is 10. ↑ is better.

R1 : Age R2: Min sample size R3: Max sample size

Req Sig Req Sig Req Sig

Autostrat 0.00 ± 0.00 0.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00
PSG_B 2.00 ± 0.00 2.00 ± 0.00 2.00 ± 0.00 2.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00
PSG_A 2.00 ± 0.00 2.00 ± 0.00 2.00 ± 0.00 2.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00
Divexplorer 3.20 ± 2.11 0.95 ± 1.56 0.00 ± 0.00 0.00 ± 0.00 2.70 ± 2.57 1.05 ± 1.75
Slicefinder 4.50 ± 1.72 1.75 ± 0.99 4.55 ± 1.28 3.05 ± 0.80 3.20 ± 1.33 1.10 ± 0.94
Sliceline 1.20 ± 0.40 1.20 ± 0.40 1.35 ± 0.48 1.35 ± 0.48 0.15 ± 0.48 0.15 ± 0.48
SMART_NSF 9.90 ± 0.30 5.65 ± 0.65 6.00 ± 0.00 6.00 ± 0.00 4.15 ± 0.65 2.60 ± 0.86
SMART 9.70 ± 0.56 9.50 ± 0.59 9.85 ± 0.36 9.80 ± 0.51 8.15 ± 1.11 6.10 ± 1.70

Takeaway 2. SMART, unlike data-only methods, identifies slices that have significant performance
differences, whilst also satisfying requirements — an important dimension not even considered by
previous testing methods.

31

D.2 Adaptive testing for a deployment environment

Goal. Deploying an ML model often entails going beyond IID, such as a different deployment
environment. We consider the case of deploying a model to a different country where there is a
covariate shift 12 and evaluate the capabilities of testing frameworks to adapt across the different
environment and identify model failures.

Setup. We use real-world prostate cancer datasets from different country’s cancer registries with
known distribution shifts: SEER (US) [11] and CUTRACT (UK) [35]. We train predictor f on UK
data, while our target deployment environment is the US.

Analysis. ▶ Identifying model failures. Table 11 shows that SMART better tests models at
deployment time using the information provided. SMART identifies a much greater number of
statistically significant model failures (almost all possible), both within the same environment (UK)
and when shifting to a different one (US), even after adjusting for multiple comparisons using
Bonferroni correction.

Table 11: Number of slices identified (out of a maximum of
10) that had significantly divergent performance from average
(higher is better). S_α counts the number of significantly
divergent groups at α = 0.05; S_α/n applies the Bonferroni
correction. ↑ is better.

DUK
train DUK

test DUS
test

Sα Sα/n Sα Sα/n Sα Sα/n

Autostrat 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 0.95 ± 0.22 0.95 ± 0.22
PSGB 2.00 ± 0.00 2.00 ± 0.00 2.00 ± 0.00 2.00 ± 0.00 1.75 ± 0.43 1.50 ± 0.50
PSGA 2.00 ± 0.00 2.00 ± 0.00 2.00 ± 0.00 2.00 ± 0.00 1.75 ± 0.43 1.45 ± 0.50
Divexplorer 1.65 ± 1.88 0.45 ± 0.92 2.00 ± 2.28 0.85 ± 1.53 3.90 ± 2.57 2.75 ± 2.21
Slicefinder 3.65 ± 0.96 2.75 ± 0.62 3.85 ± 1.11 2.70 ± 0.46 6.80 ± 1.03 5.95 ± 1.02
Sliceline 1.00 ± 0.00 1.00 ± 0.00 1.35 ± 0.48 1.35 ± 0.48 1.35 ± 0.48 1.35 ± 0.48
SMART_NSF 8.30 ± 0.46 8.00 ± 0.00 8.45 ± 0.50 8.00 ± 0.00 9.20 ± 0.60 8.35 ± 0.48
SMART 9.60 ± 0.49 9.25 ± 0.54 9.45 ± 0.50 8.85 ± 0.57 8.85 ± 0.79 8.35 ± 0.79

▶ Sample size sensitivity. We also
assess sensitivity to sample size, see
Fig. 8. Both variants of SMART
are shown to consistently outperform
data-only counterparts in identifying
a much greater number of significant
model failures. Within domain (UK):
as expected, we find that for lower
sample sizes, SMARTNSF (without
the self-falsification mechanism) is su-
perior, however, given enough data we
then find that SMART benefits from
the self-falsification.

Deployment environment (US): we find that self-falsification similarly requires sufficient samples;
which we note is expected behavior. Interestingly, in the deployment setting (US), SMARTNSF

generally identifies the greatest number of significant failures (almost all possible) across different
sample sizes. This suggests that under covariate shift, using inductive knowledge (via the LLM) or
domain expertise might be more useful to find meaningful model failures.

10 20 50 100 200 500
Sample Size

0.0

2.5

5.0

7.5

10.0

sli

ce
s d

isc
ov

er
ed

UK Test Results

10 20 50 100 200 500
Sample Size

0.0

2.5

5.0

7.5

10.0
US Results

Autostrat
PSG_B

PSG_A
Divexplorer

Slicefinder
Sliceline

SMART_NSF
SMART

Figure 8: Number of significant groups discovered (out of a total of 10) based on the training dataset
size. SMART can operate under any sample size; self-falsification mechanism requires a larger
sample size to falsify hypotheses. ↑ is better.

Overall, the results highlight the flexibility of SMART to handle different scenarios and sample
sizes. From a practical perspective, while both SMART variants outperform data-only methods, the
implication is that there is nuance in using different SMART variants for different scenarios.

Takeaway 4. SMART identifies more significant divergent failure slices in a deployment setting,
outperforming data-only methods across environments and sample sizes.

12p(X) changes, while p(Y |X) remains the same

32

D.3 Effects of LLMs

In this section, we provide more experimental details which compare the effectiveness of two GPT
models, GPT3.5 and GPT4. We highlight that the goal is not to exhaustively test the framework
with every LLM. Rather, the goal is to showcase that SMART is feasible with at least the capabilities
of GPT-4. We provide this section as a way to measure the sensitivity of the model’s performance
with lower LLMs but highlight that we do not recommend using it with smaller LLMs, especially
LLMs with fewer than 7B parameters.

D.3.1 Comparison over identified divergent slices

The following table reproduces the experiment from Sec. D.2 by directly comparing two models -
GPT3.5 and GPT4. The setup is the same as in the original experiment.

Table 12: Number of slices identified (out of a maximum of 10) that had significantly divergent
performance from average (higher is better). Sα counts the number of significantly divergent groups
at α = 0.05; Sα/n applies the Bonferroni correction.

DUK
train DUK

test DUS
test

Sα Sα/n Sα Sα/n Sα Sα/n

Autostrat 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 0.95 ± 0.22 0.95 ± 0.22
PSGB 2.00 ± 0.00 2.00 ± 0.00 2.00 ± 0.00 2.00 ± 0.00 1.75 ± 0.43 1.50 ± 0.50
PSGA 2.00 ± 0.00 2.00 ± 0.00 2.00 ± 0.00 2.00 ± 0.00 1.75 ± 0.43 1.45 ± 0.50
Divexplorer 1.65 ± 1.88 0.45 ± 0.92 2.00 ± 2.28 0.85 ± 1.53 3.90 ± 2.57 2.75 ± 2.21
Slicefinder 3.65 ± 0.96 2.75 ± 0.62 3.85 ± 1.11 2.70 ± 0.46 6.80 ± 1.03 5.95 ± 1.02
Sliceline 1.00 ± 0.00 1.00 ± 0.00 1.35 ± 0.48 1.35 ± 0.48 1.35 ± 0.48 1.35 ± 0.48
SMART_NSF_GPT4 8.30 ± 0.46 8.00 ± 0.00 8.45 ± 0.50 8.00 ± 0.00 9.20 ± 0.60 8.35 ± 0.48
SMART_GPT4 9.60 ± 0.49 9.25 ± 0.54 9.45 ± 0.50 8.85 ± 0.57 8.85 ± 0.79 8.35 ± 0.79
SMART_NSF_GPT3.5 8.20 ± 0.60 7.15 ± 0.65 8.20 ± 0.75 6.95 ± 0.67 9.25 ± 0.62 8.25 ± 0.43
SMART_GPT3.5 10.00 ± 0.00 9.85 ± 0.36 10.00 ± 0.00 9.75 ± 0.43 7.85 ± 0.48 7.15 ± 0.57

The table provides a measure of the model’s performance on the training dataset from the same
environment (DUK

train), the testing dataset from the same environment (DUK
test), and a different deployment

environment (DUS
test).

Takeaway. Both GPT3.5 and GPT4 provide strong increases over benchmark methods with little
variability between the two LLMs. One of the possible reasons why is that the hypothesis space of
possible model failures is somewhat limited. This can be seen by the similar hypotheses that are
generated by both GPT models.

D.3.2 Performance across different models

In this section, we vary different tabular machine learning model types and identify how well the
ablated and original SMART, identified with GPT3.5 and GPT4, can identify slices with large
performance discrepancies.

Table 13: The differences in accuracies between the top slice identified for each method on a testing
dataset. The p-value computes the p-value associated with the difference in the accuracy. For the
accuracy, higher values imply a greater ability to detect divergent slices (hence, higher is better). For
the p-value, lower is better. Averages +- standard deviations are shown across 5 runs with random
seeds and data splits

Logistic Regression SVM XGBoost Multi-layer Perceptron

|∆Acc| p-value |∆Acc| p-value |∆Acc| p-value |∆Acc| p-value

SMART_NSF_GPT3.5 0.23 ± 0.03 0.00 ± 0.00 0.23 ± 0.03 0.00 ± 0.00 0.12 ± 0.06 0.14 ± 0.27 0.23 ± 0.03 0.00 ± 0.00
SMART_GPT3.5 0.34 ± 0.07 0.00 ± 0.00 0.34 ± 0.07 0.00 ± 0.00 0.28 ± 0.04 0.00 ± 0.00 0.34 ± 0.07 0.00 ± 0.00
SMART_NSF_GPT4 0.10 ± 0.01 0.00 ± 0.00 0.10 ± 0.01 0.00 ± 0.00 0.05 ± 0.04 0.25 ± 0.42 0.10 ± 0.01 0.00 ± 0.00
SMART_GPT4 0.40 ± 0.02 0.00 ± 0.00 0.40 ± 0.02 0.00 ± 0.00 0.29 ± 0.06 0.00 ± 0.00 0.40 ± 0.02 0.00 ± 0.00

SMART with deep learning models. SMART’s targeted sampling of hypotheses, is entirely
independent of the downstream model used. i.e. SMART’s context-guided slice sampling mechanism
is used to generate hypotheses independently of the downstream model.

33

We extend our analysis with Logistic Regression, SVM, XGBoost, and MLP to further include two
tabular deep learning method: TabPFN and TabNet. As shown in Table 14, across all models SMART
is the best at finding subgroups where the models are least reliable.

Table 14: Identifying slices with the highest performance discrepancies. We show differences in accuracies
(|∆Acc|) between the top identified divergent slice and average performance across two state-of-the-art deep
learning classifiers (over 5 runs) on the SEER dataset. ↑ is better. 0.00 implies the evaluation method does not
support the model.

Classifier Evaluation Method

Autostrat PSG_B PSG_A Divexplorer Slicefinder Sliceline SMART

TabPFNClassifier 0.20 ± 0.10 0.19 ± 0.05 0.18 ± 0.05 0.00 ± 0.00 0.00 ± 0.00 0.23 ± 0.05 0.28 ± 0.17
TabNet 0.10 ± 0.09 0.10 ± 0.04 0.10 ± 0.04 0.02 ± 0.04 0.00 ± 0.00 0.17 ± 0.08 0.17 ± 0.12

Takeaway. GPT4 adds additional value when it comes to identifying slices with performance
discrepancies. However, GPT3.5 is still able to find significant performance discrepancies across
divergent slices, competitive and in many cases exceeding the performance of other methods (refer to
Sec. D.4).

D.3.3 Hypothesis generation

A key component which determines the quality of the SMART method is the ability to navigate the
search space by generating hypotheses. Therefore, we overview the kinds of hypotheses which are
generated and how they differ based on the type of LLM used.

The table below provides an example of the top 10 hypotheses and justifications generated by GPT3.5
and GPT4 for the prostate cancer example in the UK, where the goal is to find specific slices where
the model is likely to fail, and propose justifications for them.

Key takeaway. Many of the hypotheses for both models are similar. The underlying difference is in
the ordering and justification of the hypotheses.

34

Table 15: Comparison of Hypotheses and Justifications generated by GPT4 and GPT3.5 for a breast
cancer prediction task. The hypothesis target likely model failures.

GPT4 GPT3.5

Hypothesis Justification Hypothesis Justification

1 Patients with lower
age

The model might perform worse for younger
patients as prostate cancer is more common in
older men, and there might be insufficient data
for younger patients.

Subgroup of patients with older age (above 80) will
have worse predictive performance due to higher
likelihood of comorbidities and weaker immune
systems, leading to higher mortality rates.

Older age is often associated with increased risk of
comorbidities and weaker immune systems, which
can negatively impact the prognosis of prostate can-
cer.

2 Patients with higher
comorbidities

The model might perform worse for patients
with multiple comorbidities as the complexity
of their health condition might not be fully
captured by the model.

Higher Gleason scores indicate more aggressive and
advanced prostate cancer, which is generally asso-
ciated with poorer prognosis and higher mortality
rates.

Subgroup of patients with higher Gleason scores (4
or 5) will have worse predictive performance due
to more aggressive and advanced cancer, leading to
higher mortality rates.

3 Patients who under-
went conservative
management

The model might perform worse for these pa-
tients as the effectiveness of conservative man-
agement might vary greatly among individuals,
and this variability might not be well captured
by the model.

Subgroup of patients with stage 4 cancer will have
worse predictive performance due to the advanced
stage of the disease, indicating metastasis and lim-
ited treatment options.

Stage 4 prostate cancer is characterized by the
spread of cancer to distant organs, indicating a more
advanced and aggressive disease. The limited treat-
ment options available for stage 4 cancer can result
in worse predictive performance.

4 Patients with lower
prostate-specific
antigen levels

The model might perform worse for these pa-
tients as lower PSA levels might be associated
with early-stage prostate cancer, which might
be harder to predict due to lack of symptoms.

Patients with multiple comorbidities often have com-
plex health conditions that can impact the effective-
ness of prostate cancer treatment and management,
leading to worse predictive performance.

Subgroup of patients with multiple comorbidities
(e.g., 3 or 4) will have worse predictive performance
due to the presence of other health conditions that
may complicate the treatment and management of
prostate cancer.

5 Patients with higher
Gleason scores

The model might perform worse for these pa-
tients as higher Gleason scores indicate more
aggressive cancer, which might progress un-
predictably.

Subgroup of patients who received conservative
management as their primary treatment option will
have worse predictive performance due to the poten-
tial delay in receiving more aggressive treatments.

Conservative management may involve watchful
waiting or active surveillance, which can result in
delayed initiation of more aggressive treatments.
This delay in treatment may lead to worse predictive
performance.

6 Patients in stage 4 The model might perform worse for these pa-
tients as stage 4 prostate cancer is advanced
and might progress unpredictably.

Primary hormone therapy is often used to control
the growth of prostate cancer by reducing the levels
of male hormones (androgens). Patients who do not
receive this therapy may have uncontrolled cancer
growth, resulting in worse predictive performance.

Subgroup of patients who did not receive primary
hormone therapy will have worse predictive perfor-
mance due to the potential lack of hormonal control
over the cancer growth.

7 Patients who under-
went radical prosta-
tectomy

The model might perform worse for these pa-
tients as the outcomes of radical prostatectomy
might vary greatly among individuals, and this
variability might not be well captured by the
model.

Subgroup of patients who did not undergo radical ra-
diotherapy will have worse predictive performance
due to the potential lack of localized cancer control.

Radical radiotherapy is a treatment option that aims
to destroy cancer cells in the prostate gland. Pa-
tients who do not undergo this treatment may have
a higher likelihood of localized cancer progression,
leading to worse predictive performance.

8 Patients with lower
Gleason scores

The model might perform worse for these pa-
tients as lower Gleason scores indicate less ag-
gressive cancer, which might progress slower
and be harder to predict.

Radical prostatectomy involves the surgical removal
of the prostate gland. Patients who do not undergo
this procedure may have residual cancer cells in the
prostate, which can contribute to worse predictive
performance.

Subgroup of patients who did not undergo radical
prostatectomy will have worse predictive perfor-
mance due to the potential presence of residual can-
cer cells in the prostate gland.

9 Patients in stage 1 The model might perform worse for these pa-
tients as stage 1 prostate cancer is early-stage
and might be harder to predict due to lack of
symptoms.

Subgroup of patients with higher prostate-specific
antigen (PSA) levels (above 50) will have worse
predictive performance due to the indication of more
advanced cancer.

Higher PSA levels are often associated with more
advanced prostate cancer. Patients with higher PSA
levels may have a worse prognosis and higher mor-
tality rates, leading to worse predictive performance.

10 Patients who under-
went primary hor-
mone therapy

The model might perform worse for these pa-
tients as the outcomes of primary hormone
therapy might vary greatly among individuals,
and this variability might not be well captured
by the model.

The combination of older age, higher Gleason
scores, and stage 4 cancer represents a subgroup
with multiple negative prognostic factors. The cu-
mulative effect of these factors is likely to result in
the worst predictive performance.

Subgroup of patients with a combination of older
age (above 70), higher Gleason scores (4 or 5), and
stage 4 cancer will have the worst predictive perfor-
mance due to the cumulative effect of advanced age,
aggressive cancer, and metastasis.

D.4 Effects of different tabular machine learning models

The primary task of the SMART method is to evaluate a given, trained machine learning model. Thus
far, we have been using a logistic regression model as the basis for evaluation in the main experiments.
However, the results are not sensitive to the type of the tabular model. Therefore, in this section,
we provide additional experiments where we vary the tabular model for the task. Specifically, we
consider the following models initialized with their default hyperparameters for evaluation: Logistic
Regression, Support Vector Machines, Boosting (implemented with XGBoost) and a multi-layer
perceptron with 2 hidden layers and RELU activation functions in the hidden layers.

Goal. The primary goal is to understand whether the framework generalizes to other models which
operate under different mapping mechanisms (e.g. a logistic regression, which is a linear model,
compared to a tree-based model).

Setup. Given that not all the slice discovery or model evaluation algorithms output multiple slices, we
constrain the evaluation to only focus on a single slice which might have discrepant performance. We
use the UK prostate cancer dataset and evaluate the discrepancy of the top identified slice relative to
the average across all identified model types. The discrepancy is calculated as the absolute differences
of the average performance between the two groups, as well as the p-value associated with the
difference. The results show the average performance +- standard deviation of 5 random splits. A
higher absolute difference indicates that the model fails on one of the slices more than average.

Discretizing the inputs. Many of the discovery methods, however, operate only on categorical
data. The previously used dataset, however, has three continuous variables: age, prostate-specific
antigen, and comorbidities. We therefore also assess the quality of these methods to discover slices
on the testing dataset when these three variables are discretized into 10 bins each. The following

35

Table 16: The differences in accuracies between the top slice identified for each method on a testing
dataset. The p-value computes the p-value associated with the difference in the accuracy. For the
accuracy, higher values imply a greater ability to detect divergent slices (hence, higher is better). For
the p-value, lower is better. Averages +- standard deviations are shown across 5 runs with random
seeds and data splits.

Logistic Regression SVM XGBoost Multi-layer Perceptron

|∆Acc| p-value |∆Acc| p-value |∆Acc| p-value |∆Acc| p-value

Autostrat 0.24 ± 0.02 0.00 ± 0.00 0.24 ± 0.02 0.00 ± 0.00 0.09 ± 0.09 0.33 ± 0.46 0.24 ± 0.02 0.00 ± 0.00
pysubgroup_beam 0.23 ± 0.01 0.00 ± 0.00 0.23 ± 0.01 0.00 ± 0.00 0.11 ± 0.07 0.18 ± 0.40 0.23 ± 0.01 0.00 ± 0.00
pysubgroup_apriori 0.23 ± 0.01 0.00 ± 0.00 0.23 ± 0.01 0.00 ± 0.00 0.11 ± 0.07 0.19 ± 0.42 0.23 ± 0.01 0.00 ± 0.00
Divexplorer 0.05 ± 0.11 0.81 ± 0.43 0.09 ± 0.13 0.61 ± 0.53 0.14 ± 0.15 0.47 ± 0.49 0.02 ± 0.05 0.86 ± 0.32
Slicefinder 0.01 ± 0.00 0.00 ± 0.00 0.01 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.01 ± 0.01 0.00 ± 0.00
Sliceline 0.26 ± 0.06 0.00 ± 0.00 0.26 ± 0.06 0.00 ± 0.00 0.18 ± 0.09 0.00 ± 0.01 0.26 ± 0.06 0.00 ± 0.00
SMART_NSF 0.17 ± 0.01 0.00 ± 0.00 0.17 ± 0.01 0.00 ± 0.00 0.09 ± 0.05 0.07 ± 0.16 0.17 ± 0.01 0.00 ± 0.00
SMART 0.37 ± 0.03 0.00 ± 0.00 0.37 ± 0.03 0.00 ± 0.00 0.26 ± 0.06 0.00 ± 0.00 0.37 ± 0.03 0.00 ± 0.00

table reports the performance of all the methods (note: we did not discretize the dataset for SMART
because it can work natively on continuous data).

Table 17: The differences in accuracies between the top slice identified for each method on a testing
dataset when the datasets continuous features are discretized.

Logistic Regression SVM XGBoost Multi-layer Perceptron

|∆Acc| p-value |∆Acc| p-value |∆Acc| p-value |∆Acc| p-value

Autostrat 0.02 ± 0.02 0.38 ± 0.27 0.02 ± 0.02 0.45 ± 0.37 0.02 ± 0.02 0.52 ± 0.32 0.02 ± 0.02 0.43 ± 0.33
PSG_B 0.01 ± 0.01 0.56 ± 0.29 0.01 ± 0.01 0.62 ± 0.38 0.01 ± 0.01 0.55 ± 0.25 0.01 ± 0.01 0.57 ± 0.23
PSG_A 0.01 ± 0.01 0.55 ± 0.29 0.01 ± 0.01 0.61 ± 0.38 0.01 ± 0.01 0.55 ± 0.26 0.01 ± 0.01 0.59 ± 0.26
Divexplorer 0.10 ± 0.08 0.47 ± 0.28 0.11 ± 0.10 0.41 ± 0.36 0.13 ± 0.11 0.38 ± 0.35 0.13 ± 0.10 0.38 ± 0.37
Slicefinder 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00
Sliceline 0.09 ± 0.01 0.05 ± 0.06 0.08 ± 0.02 0.14 ± 0.09 0.11 ± 0.07 0.25 ± 0.24 0.09 ± 0.01 0.06 ± 0.08
SMART_NSF 0.17 ± 0.01 0.00 ± 0.00 0.17 ± 0.01 0.00 ± 0.00 0.09 ± 0.05 0.07 ± 0.16 0.17 ± 0.01 0.00 ± 0.00
SMART 0.37 ± 0.03 0.00 ± 0.00 0.37 ± 0.03 0.00 ± 0.00 0.26 ± 0.06 0.00 ± 0.00 0.37 ± 0.03 0.00 ± 0.00

Takeaway. SMART is able to consistently identify the greatest performing slices across a number of
different tabular models.

D.5 On the inductive biases of ML model testing

Goal. We further observe that data-only testing methods implicitly assume the existence of slices
with discrepancies in performance. While indeed ML models do fail — it is equally as problematic
to highlight failures where there are none.

Setup. To evaluate this we propose a fully synthetic setup. Here, both the dependent vari-
able (Y) and the independent variables (X) are sampled from a predefined random distribu-
tion. Specifically, we predict loan default (Y ∈ {0, 1}) based on a set of independent variables
X = {Nruns,Mpref, Arainfall, Fcolor, Pseason}, which are conceptually and empirically independent of
the outcome of interest. Ideally, if we account for context we should be able to identify these disparate
features should not influence the account and hence without prior relationships we should not flag
spurious slices.

We compare the data-only methods to SMART under three different data generating processes
(scenarios) that capture diverse underlying dynamics denoted as Suniform, Sskewed, and Sinteractions,
where each DGP has a focus on uniform, skewed, and interactive effects, respectively.

The first scenario is given by the variables sampled from the following DGPs:

36

Nruns ∼ Uniform{1, 499},
Mpref ∼ Uniform{1, 5},

Arainfall ∼ Uniform{20000, 99999},
Fcolor ∼ Uniform{1, 6},
Pseason ∼ Uniform{0, 3},

Y ∼ Uniform{0, 1}.

The second scenario is given by the variables sampled from the following DGPs:

Nruns ∼ Uniform{1, 499},
Mpref ∼ Binomial(1, 0.5),

Arainfall ∼ Categorical(0.1, 0.3, 0.4, 0.2),
Fcolor ∼ Binomial(1, 0.1),
Pseason ∼ Binomial(1, 0.05),

Y ∼ Uniform{0, 1}.

The third scenario is given by the variables sampled from the following DGPs:

Nruns ∼ Uniform{1, 499},
Mpref ∼ Binomial(1, 0.5),

Arainfall ∼ Categorical(0.1, 0.3, 0.4, 0.2),
Amusic_hap = Mpref ×Arainfall,

Arun_hap = Nruns ×Mpref,

Y ∼ Uniform{0, 1}.

Analysis. Table 18 shows the number of slices spuriously discovered, while Table 19 outlines the
number of conditions within the slices. We can clearly see the pitfalls of data-only approaches which
detect slices which in reality have no relation to one another — often surfacing few conditions per
group which suggests they arise by chance. The rationale for this failure is simply because data-only
approaches do not and cannot reason about the features and/or understand context and simply aim to
find slices with discrepancies in performance — which of course could arise by chance. In contrast,
we see that SMART by virtue of context-awareness can avoid surfacing groups — which in reality
have no relationships.

Table 18: Number of discovered slices on a synthetic dataset with no prior relationships in three data
generating process scenarios. slices capped at most 20. Average of 50 runs ± standard deviations is
shown.

Method Suniform Sskewed Sinteractions

Autostrat 1.00 ± .0 1.00 ±.0 1.00 ± .0
PSG_B 20.00 ± .0 20.00 ± .0 20.00 ± .0
PSG_A 20.00 ± .0 20.00 ± .0 20.00 ± .0
divexplorer 20.00 ± .0 20.00 ± .0 20.00 ± .0
slicefinder 20.00 ± .0 20.00 ± .0 20.00 ± .0
SMART 0.00 ± .0 0.00 ± .0 0.00 ± .0

D.6 Context aware sensitivity

We provide an additional experiment where we vary the sample size in the training dataset and
observe how that affects the number of slices discovered for each method. We show that the SMART
is not affected by irrelevant features regardless of the sample size of the training dataset. The result is
shown in Figure 9.

37

Table 19: Number of conditions per discovered slice (false positives) in three data generating process
scenarios. Average of 50 runs +- standard deviations is shown. Lower is better.

Method Suniform Sskewed Sinteractions

Autostrat 2.17 ± 0.46 1.73 ± 1.01 1.13 ± 0.35
PSG_B 1.03 ± 0.18 1.90 ± 0.71 1.27 ± 0.45
PSG_A 1.03 ± 0.18 1.90 ± 0.71 1.27 ± 0.45
divexplorer 2.10 ± 0.31 2.87 ± 0.68 2.40 ± 0.50
slicefinder 1.40 ± 0.50 1.50 ± 0.57 1.00 ± 0.00
SMART 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00

30 50 100 200 500
Sample size

0

50

100

Pe
rc

en
t o

f
 ir

re
le

va
nt

 fe
at

ur
es Loan Default

30 50 100 200 500
Sample size

Breast Cancer

30 50 100 200 500
Sample size

COMPAS

30 50 100 200 500
Sample size

Education

30 50 100 200 500
Sample size

Diabetes
Divexplorer Autostrat PSG_A PSG_B SMART SliceFinder

Figure 9: Proportion of irrelevant features (y) for each slice discovery method, based on the sample
size. Lower is better.

D.7 Cost of SMART

We assess the cost of LLM hypothesis generation and scalability to larger datasets. Specifically, we
demonstrate not only that SMART is cheap but also easily scalable to large datasets

• Scalability: SMART’s scalability depends on the number of hypotheses generated, not
dataset size (unlike data-only methods). This allows SMART to easily scale to arbitrarily
large datasets.

• Cost Analysis: In practical terms, cost then also scales primarily with the number of
hypotheses generated, not dataset size. We provide a rough estimate based on token counts
of input and outputs for 2 datasets (SEER and OULAD) in Table 20. This would be less
than 0.1 USD for 5 hypotheses and less than 0.5 USD for 100 hypotheses for state-of-the-art
models.Table 20: Cost of SMART (USD) for different GPT LLMs and different numbers of hypotheses generated. The

cost is estimated based on token counts. Note: GPT-4o models are post our paper and are even cheaper.

Model Cost SEER
5 Hypothesis (USD)

Cost SEER
100 Hypothesis (USD)

Cost OULAD
5 Hypothesis (USD)

Cost SEER
100 Hypothesis (USD)

GPT-4 0.017 0.249 0.022 0.316
GPT-3.5 0.004 0.050 0.005 0.064
GPT-4o Mini 0.0003 0.005 0.0005 0.006
GPT-4o 0.008 0.125 0.011 0.158

D.8 SMART with open-weight models

SMART ideally should be used with the most capable LLM possible.That said, we assess the
differences in hypotheses between open-weight models and GPT-4.

We assess Mistral-7b, Qwen-1.5-7b, Llama-3-8b, Llama-70b, where for the OULAD and SEER
datasets we generate 5 hypotheses and assess overlap to the hypotheses generated by GPT-4. This is
presented in Table 21.

To summarize, the overlap between open-source models and GPT-4 is between 60-80%. We find
that open-source models propose similar hypotheses, but they are not replacements for more capable
models. This highlights that less capable models might propose similar hypotheses, yet they still
catch fewer model failures.

D.9 Understanding the importance of feature names

SMART uses the implicit context encoded in the interpretable feature names as a source of contextual
information to guide hypothesis generation. For instance, in a medical dataset, features with names

38

Table 21: Comparison hypotheses by GPT-4 and overlap w/ open-weight models

Dataset Factors (GPT Hypotheses) Mistral-7b Llama 3-8b Qwen 1.5-7b Llama 70b

O
ul

ad
D

at
as

et Disability ✓ ✓ ✓ ✓
IMD band ✓ ✓ ✓
Age ✓ ✓ ✓
Number of previous attempts ✓ ✓ ✓
Test (boolean)
Oulad Overlap Percentage 60% 70% 60% 60%

SE
E

R
D

at
as

et Age ✓ ✓ ✓
Prostate-specific antigen (PSA)
Comorbidities ✓ ✓ ✓ ✓
Treatment (conservative management) ✓ ✓ ✓ ✓
Cancer stage ✓ ✓
SEER Overlap Percentage 40% 60% 80% 80%

like age, sex, or patient covariate features provide context to guide LLM hypothesis generation. This
contrasts with data-only approaches which only use the numerical data values alone and ignore the
context surrounding the feature names.

We aim to assess the sensitivity to interpretable feature names to provide guidance on the use of
SMART. First, we perform a qualitative study where we limit the data schema by hiding the feature
names (such that they become uninformative) and inspect the hypotheses and justifications generated.
We find that in the limited-schema case, SMART generates hypotheses based on inferences about
the feature information (e.g. "the model might fail on feature_4 if feature_4 represents gender").
In contrast, informative names guide meaningful hypothesis generation. Such hypotheses and
justifications are illustrated in Table 22.

Second, we evaluate whether limiting the data schema by hiding some feature names and leaving
minimal external context affects detection rates of model failures. We compare two versions of
SMART, original and with corrupted feature labels, in identifying data slices with high performance
discrepancies from average (Fig. 10. We find that across two real-world private datasets, hiding the
feature names hinders model evaluation. This highlights that feature names play an important role in
finding model failures.

These results highlight while SMART does not rely on any additional feature descriptions, feature
names play an important role in finding model failures, just as any human requires interpretable
feature names to understand the data . That said, feature names (e.g. column labels such as sex, age,
race etc) are present in almost all tabular datasets both in the research field and in the real world
where data is stored in SQL tables with column names.

Base Corrupt0.00

0.02

0.04

0.06

Di
ffe

re
nc

e
in

 A
cc

.

CUTRACT

Base Corrupt0.00

0.02

0.04

0.06

Di
ffe

re
nc

e
in

 A
cc

.

SEER
Comparison of Base and Corrupt Values

Figure 10: Identifying the importance of feature names as a source of information for context-aware testing.
We compare two versions of SMART on CUTRACT and SEER datasets. The first version, “base”, is the normal
SMART method. The second version, “corrupt”, has feature names changed to uninformative ones. The goal
is to identify slices with the highest performance discrepancies between the average & subgroup prediction,
calculated as the difference in their respective accuracies (y-axis). We see showing feature names enables to find
subgroups that have a higher performance discrepancy from baseline performance than without feature names. ↑
is better.

39

Table 22: Example hypotheses and justifications when dataset column names are hidden. The hypotheses and
justifications for features that do not encode meaningful information lose practical meaning. Context-aware
testing benefits from rich feature names that can be used to guide meaningful hypothesis generation.

Model type Hypothesis Justification

Base The model will perform worse on predicting the risk
of disease for older individuals.

Age is a significant factor in many diseases, and older individuals often have more complex health situations with
multiple comorbidities. This complexity could make it more difficult for the model to accurately predict disease risk.

Base The model will perform worse on predicting the risk
of disease for individuals with lower Gleason scores.

The Gleason score is a grading system used to determine the aggressiveness of prostate cancer. Lower scores indicate
less aggressive cancer, which may be more difficult to predict due to its slower progression and less obvious symptoms.

Corrupted {’1’: [’feature_0’]} If feature_0 represents a characteristic such as race or ethnicity, the model might perform worse for certain subgroups
due to societal biases. For instance, if the dataset is biased towards a particular race or ethnicity, the model’s predictions
for other races or ethnicities might be less accurate.

Corrupted {’2’: [’feature_4’]} If feature_4 represents a characteristic such as gender, the model might perform worse for certain subgroups due to
societal biases. For example, if the dataset is biased towards one gender, the model’s predictions for the other gender
might be less accurate.

D.10 Example of a model report

We show an example of a model report which is automatically generated by SMART. A model report
includes a summary of key hypotheses, justifications, sources, and summary findings as a written
report. A model report fully satisfies the requirements of the user.

In this case, the model is generated to directly match latex output requirements. It is provided in the
shaded box below as a part of the US prostate cancer (SEER) [11] evaluation.

A report on the performance of the model has been concluded. The following are the hypotheses,
their justifications tested on the model with their conclusions on whether the hypothesis was
supported.

Hypothesis Justification Operationalization Hypothesis
Supported

The model may per-
form worse for older
patients

Older patients may have more co-
morbidities and complex health sit-
uations that are not fully captured
by the dataset. Additionally, soci-
etal biases may lead to less aggres-
sive treatment options being pursued
for older patients, which could affect
the model’s predictions.

age > 75 Yes

The model may
perform worse for
patients with lower
prostate-specific
antigen levels

Lower levels of prostate-specific
antigen may be associated with ear-
lier stages of prostate cancer, which
may be harder to predict due to less
data and less obvious symptoms.

prostate_specific_antigen < 10 Yes

The model may per-
form worse for pa-
tients who have un-
dergone conservative
management

Conservative management is a less
aggressive form of treatment, which
may be chosen due to a variety of
factors not captured in the dataset,
such as patient preference or other
health considerations. This could
introduce additional complexity into
the model’s predictions.

treatment_conservative
_management == 1

Yes

The model may per-
form worse for pa-
tients with a higher
number of comorbidi-
ties

Patients with more comorbidities
may have more complex health situ-
ations that are not fully captured by
the dataset. Additionally, these pa-
tients may be more likely to die from
causes other than prostate cancer,
which could confuse the model’s
predictions.

comorbidities > 2 No

The model may per-
form worse for pa-
tients with a higher
Gleason score

A higher Gleason score indicates
more aggressive cancer, which may
be harder to predict due to its rapid
progression and the potential for
other health factors to influence out-
comes.

gleason_score == 4 No

A further analysis was run on the training and testing datasets to understand the effects of each
identified slice. The following are two tables which summarize a part of this information:

40

group_size support p_value_bootstrap num_criteria outcome_diff accuracy_diff

H0 4915.00 0.31 0.00 1.00 0.23 0.05
H1 7749.00 0.48 0.00 1.00 0.26 0.01
H2 1456.00 0.09 0.00 1.00 0.06 0.09
H3 574.00 0.04 0.94 1.00 0.08 0.00
H4 94.00 0.01 0.14 1.00 0.36 0.09

odds_ratio_outcome odds_ratio_acc lift_outcome lift_acc weighted_relative_y weighted_relative_acc

H0 0.82 1.39 1.46 0.94 0.07 -0.02
H1 0.96 1.12 0.48 0.99 -0.13 -0.01
H2 0.99 1.41 1.11 0.89 0.01 -0.01
H3 0.98 1.01 0.85 1.00 -0.00 -0.00
H4 0.48 0.55 1.72 1.10 0.00 0.00

Recommendations:
1. The model appears to be less reliable for older patients (age > 75), patients with lower levels
of prostate-specific antigen (< 10), and those who have undergone conservative management
treatment. It also shows decreased performance for patients with more than two comorbidities
and those with a Gleason score of 4. However, the model is more reliable when these conditions
are not met.
2. Before deploying the model, the end user should be aware of the following: - The model’s
performance may be compromised for older patients and those with multiple comorbidities.
Consider additional validation or alternative models for these groups. - Patients with lower
prostate-specific antigen levels and those who have undergone conservative management treat-
ment may also experience less accurate predictions. Additional clinical insights may be needed
for these cases. - Although the model shows decreased performance for patients with a Gleason
score of 4, this group is relatively small, so the impact on overall model performance may be
limited. However, caution should be exercised when interpreting results for these patients.
Remember, these recommendations are based on the training and test datasets from the UK. If
deploying in a different geographical context, consider revalidating the model with local data.
—
Definitions of the metrics:

• Group Size:
group_size = |slice|

• Support:

support =
|slice|
|dataset|

• Number of Criteria:

num_criteria = Count("and") + 1

• Outcome Difference:

outcome_diff = |avg_outcome_dataset− avg_outcome_slice|

• Accuracy Difference:

accuracy_diff = |accuracy_dataset− accuracy_slice|

• Odds Ratio (Outcome):

odds_ratio_outcome =
p1(1− p1)

p0(1− p0)

• Odds Ratio (Accuracy):

odds_ratio_acc =
p1(1− p1)

p0(1− p0)

(where p1 and p0 are accuracies in the slice and the rest of the dataset, respectively)

41

• Lift (Outcome):
lift_outcome =

p1
p

• Lift (Accuracy):
lift_acc =

p1
p

(where p1 is accuracy in the slice and p is accuracy in the entire dataset)

• Weighted Relative Outcome:

weighted_relative_outcome = support× diff_outcomes

• Weighted Relative Accuracy:

weighted_relative_accuracy = support× diff_accuracy

42

NeurIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract accurately reflects the claims made in the paper. Our paper
introduces the new paradigm of context-aware testing which we discuss in Sec. 3. We
introduce our context-aware testing instantiation SMART in Sec. 4. We experimentally show
how under a variety of different experimental conditions SMART outperforms data-only
benchmarks in Sec. 5. We therefore believe the provided evidence fully supports the claims
that context-aware testing is a new alternative to testing ML models relative to data-only
methods.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We discuss the limitations of our work in Sec. 6. We also provide ways of
addressing these limitations in Sec. 5.4 with an extended discussion on possible biases, miti-
gation strategies, and best practices, including how SMART provides unique opportunities
to address such challenges with features such as model reports or transparent hypothesis
testing and operationalization.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

43

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: The paper makes a claim that context can be used to guide the search for
relevant and meaningful model failures via a context-guided slice sampling mechanism
which uses context to prioritize likely slices. This is defined and discussed in Sec. 3.3.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can appear in either the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The paper provides the key experimental setups in the main experimental
section (Sec. 5) together with additional experimental details in the appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.

44

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We provide details about the algorithms and data in Appendix C, Sec. B and
Sec. D. Code can be found at: https://github.com/pauliusrauba/SMART_Testing
or https://github.com/vanderschaarlab/SMART_Testing
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: All the details on the experiments are either provided within Section 5, with
full details provided in Appendix D.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

45

https://github.com/pauliusrauba/SMART_Testing
https://github.com/vanderschaarlab/SMART_Testing
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

Answer: [Yes]

Justification: Error bars (standard deviation) are included as relevant over multiple seeds for
the experiments in Section 5 and additional experiments in Appendix D.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: All the compute details on the experiments are provided in Appendix C.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have read the code of ethics do not violate any of the dimensions.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts

46

https://neurips.cc/public/EthicsGuidelines

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: Broader impacts of testing and implications are outlined in Sec 1 and 6. We
discuss potential impacts and mitigations in Sec 5.4 and Sec 6.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: Not applicable — our paper presents a new method for reliable and safe ML
model testing.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: Appendix C provides details and citations for all assets (data and baselines)
used in the paper.

47

Guidelines:
• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not produce new assets such as datasets, but uses existing
benchmarks/datasets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: We do not have crowdsourcing experiments or research with humans.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

48

paperswithcode.com/datasets

Answer: [NA]
Justification: We do not have crowdsourcing experiments or research with humans that
would need an IRB.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

49

	Introduction
	Related work
	A context-aware testing framework for ML
	A multiple hypothesis testing view of ML evaluation
	The failures of data-only testing
	Formulating context-aware testing

	SMART Testing
	Illustrating SMART use cases
	Robustness to False Positives
	Targeting model failures
	Robustness to False Negatives
	Assessing and mitigating potential LLM challenges and biases.

	Discussion and limitations
	Appendix
	 Appendix: Context-aware testing: a new paradigm for testing with large language models
	Extended related work
	Enhanced overview of relevant literature
	Components of the ML Testing pipeline
	Comparison of the features of slice discovery methods

	SMART Details
	Contextual understanding
	Operationalizing variables
	Feasibility checks
	Data adjustment queries
	Requirements, automation, and outputs
	Moving outside of IID data
	SMART and multiple testing

	Benchmarks & Experimental Details
	Datasets
	Baselines
	LLM prompts
	Generic templates.
	Example prompts: OULAD Education.

	Experimental details
	Context-aware testing (Sec. 5.1.)
	Requirements-constrained testing (Sec. 5.2.)
	Targeting model failures (Sec. 5.3.)
	Adaptive testing for a deployment environment (Sec. 5.4.)
	Discovery of societally important groups and failure understanding (Sec. 5.5.)

	Additional experiments
	Requirements-constrained testing
	Adaptive testing for a deployment environment
	Effects of LLMs
	Comparison over identified divergent slices
	Performance across different models
	Hypothesis generation

	Effects of different tabular machine learning models
	On the inductive biases of ML model testing
	Context aware sensitivity
	Cost of SMART
	SMART with open-weight models
	Understanding the importance of feature names
	Example of a model report

