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ABSTRACT

Learning discriminative spatiotemporal representation is the key problem of video
understanding. Recently, Vision Transformers (ViTs) have shown their power in
learning long-term video dependency with self-attention. Unfortunately, they ex-
hibit limitations in tackling local video redundancy, due to the blind global com-
parison among tokens. UniFormer has successfully alleviated this issue, by uni-
fying convolution and self-attention as a relation aggregator in the transformer
format. However, this model has to require a tiresome and complicated image-
pretraining phrase, before being finetuned on videos. This blocks its wide usage
in practice. On the contrary, open-sourced ViTs are readily available and well-
pretrained with rich image supervision. Based on these observations, we propose a
generic paradigm to build a powerful family of video networks, by arming the pre-
trained ViTs with efficient UniFormer designs. We call this family UniFormerV2,
since it inherits the concise style of the UniFormer block. But it contains brand-
new local and global relation aggregators, which allow for preferable accuracy-
computation balance by seamlessly integrating advantages from both ViTs and
UniFormer. Without any bells and whistles, our UniFormerV2 gets the state-of-
the-art recognition performance on 8 popular video benchmarks, including scene-
related Kinetics-400/600/700 and Moments in Time, temporal-related Something-
Something V1/V2, untrimmed ActivityNet and HACS. In particular, it is the first
model to achieve 90% top-1 accuracy on Kinetics-400, to our best knowledge.
The models will be released afterward.

1 INTRODUCTION

Spatiotemporal representation learning is a fundamental task in video understanding. Recently,
Vision Transformers (ViTs) have achieved remarkable successes in the image domain (Dosovitskiy
et al., 2021; Wang et al., 2021b; Liu et al., 2021; Li et al., 2022a). Therefore, researchers make a great
effort to transfer image-based ViTs for video modeling (Bertasius et al., 2021; Arnab et al., 2021;
Yan et al., 2022), by extending Multi-Head Self-Attention (MHSA) along the temporal dimension.
However, the spatiotemporal attention mechanism in these approaches mainly focuses on capturing
global video dependency, while lacking the capacity of tackling local video redundancy. As a result,
these models bear a large computational burden to encode local video representations in the shallow
layers, leading to unsatisfactory accuracy-efficiency balance in spatiotemporal learning.

To tackle these problems, researchers introduce a concise UniFormer (Li et al., 2022a), which unifies
convolution and self-attention as Multi-Head Relation Aggregator (MHRA) in a transformer fashion.
By modeling local and global relations respectively in shallow and deep layers, it can not only learn
discriminative spatiotemporal representation but also largely reduce computation burden. However,
as a new architecture for video modeling, UniFormer does not have any image-based pretraining as
a start. To obtain a robust visual representation, it has to go through a tedious supervised pretraining
phase by learning images from scratch, before finetuning on videos. Alternatively, we notice that
there are various open-sourced image ViTs (Wightman, 2019; Touvron et al., 2021), which have been
well-pretrained on huge web datasets under rich supervision such as image-text contrastive learning
(Radford et al., 2021) and mask image modeling (He et al., 2022; Bao et al., 2021). These models
exhibit great generalization capacity on a range of vision tasks (Luo et al., 2022; Chen et al., 2022;
Shen et al., 2021). Hence, we are motivated by a natural question: Can we integrate advantages
from both ViTs and UniFormer for video modeling?
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Figure 1: Comparison on video modeling paradigm. UniFormerV1 requires costly image pre-
training, while directly inserting temporal MHSA into ViTs struggles for accuracy-FLOPs balance.
UniFormerV2 can effectively and efficiently arm well-pretrained ViTs with concise UniFormer de-
signs, thus integrating advantages from both models for spatiotemporal representation learning. To
our best knowledge, it is the first model that achieves 90.0% top-1 accuracy on Kinetics-400.

In this paper, we propose a generic paradigm to construct a powerful family of video networks, by
arming the image-pretrained ViTs with efficient video designs of UniFormer. We called the resulting
model UniFormerV2 (Fig. 1), since it inherits the concise style of UniFormer but equips local
and global UniBlocks with new MHRA. In the local UniBlock, we flexibly insert a local temporal
MHRA before the spatial ViT block. In this case, we can largely reduce temporal redundancy
as well as leverage the well-pretrained ViT block, for learning local spatiotemporal representation
effectively. In the global UniBlock, we introduce a query-based cross MHRA. Unlike the costly
global MHRA in the original UniFormer, our cross MHRA can summarize all the spatiotemporal
tokens into a video token, for learning global spatiotemporal representation efficiently. Finally,
we re-organize local and global UniBlocks as a multi-stage fusion architecture. It can adaptively
integrate multi-scale spatiotemporal representation to capture complex dynamics in videos.

We deploy our paradigm on ViTs that are pretrained on three popular supervision, including super-
vised learning, contrastive learning, and mask image modeling. All the enhanced models have great
performance on video classification, showing the generic property of our UniFormerV2. Moreover,
we develop a compact Kinetics-710 benchmark, where we integrate action categories of Kinetics-
400/600/700, and remove the repeated and/or leaked videos in the training sets of these benchmarks
for fairness (i.e., the total number of training videos is reduced from 1.14M to 0.66M). After training
on K710, our model can simply achieve higher accuracy on K400/600/700 via only 5-epoch fine-
tuning. Finally, extensive experiments show that, our UniFormerV2 achieves state-of-the-art perfor-
mance on 8 popular video benchmarks, including scene-related datasets (i.e., Kinetics-400/600/700
(Carreira & Zisserman, 2017; Carreira et al., 2018; 2019) and Moments in Time (Monfort et al.,
2020)), temporal-related datasets (i.e., Something-Something V1/V2 (Goyal et al., 2017b)), and
untrimmed datasets (i.e., ActivityNet (Heilbron et al., 2015) and HACS (Zhao et al., 2019)). To our
best knowledge, it is the first model to achieve 90.0% top-1 accuracy on Kinetics-400.

2 RELATED WORK

Vision Transformer. Following Transformer in NLP (Vaswani et al., 2017), Vision Transformer
(ViT) (Dosovitskiy et al., 2021) has made great successes in various vision tasks, including object
detection Carion et al. (2020); Zhu et al. (2021), semantic segmentation Xie et al. (2021); Cheng
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et al. (2021), low-level image processing Liang et al. (2021); Cui et al. (2022), action recognition
(Bertasius et al., 2021; Arnab et al., 2021), temporal localization (Zhang et al., 2022) and multi-
modality learning (Radford et al., 2021; Wang et al., 2022). To make ViT more efficient and ef-
fective, researchers introduce scale and locality modeling in different ways, such as multi-scale
architectures (Wang et al., 2021b; Fan et al., 2021), local window (Liu et al., 2021), early convo-
lution embedding (Xiao et al., 2021; Yuan et al., 2021a) and convolutional position encoding (Chu
et al., 2021; Dong et al., 2022). Alternatively, UniFormer (Li et al., 2022a) unifies convolution and
self-attention as relation aggregator in a transformer manner, thus reducing large local redundancy.

Video Learning. 3D Convolutional Neural Networks (CNNs) once played a dominant role in video
understanding (Tran et al., 2015; Carreira & Zisserman, 2017). Due to the difficult optimization
problem of 3D CNNs, great efforts have been made to factorize 3D convolution in the spatiotempo-
ral dimension (Tran et al., 2018; Qiu et al., 2017; Feichtenhofer et al., 2019) or channel dimension
(Tran et al., 2019; Feichtenhofer, 2020; Kondratyuk et al., 2021). However, the local receptive field
limits 3D convolution to capture long-range dependency. The global attention motivates researchers
to transfer image-pretrained ViTs to video tasks (Bertasius et al., 2021; Neimark et al., 2021; Zhang
et al., 2021b; Arnab et al., 2021; Bulat et al., 2021; Patrick et al., 2021). To make the video trans-
former more efficient, prior works introduce hierarchical structure with pooling self-attention (Fan
et al., 2021), local self-attention (Liu et al., 2022) or unified attention (Li et al., 2022a). Though
these novel models are adept at temporal modeling, they rely on tiresome image pretraining. In
contrast, various well-pretrained ViTs with rich supervision are open-sourced (Wightman, 2019). In
this paper, we aim to extend efficient UniFormer designs to ViT, arming it as a strong video learner.

3 METHOD

Overall Framework. We propose to arm an image ViT with video designs of UniFormer (Li et al.,
2022a), leading to UniFormerV2. On one hand, spatial interactions in well-pretrained ViT can be
fully leveraged and preserved to enhance spatial modeling. On the other hand, hierarchical temporal
interactions in efficient UniFormer can be flexibly adopted to enhance temporal modeling. Our
overall architecture is shown in Fig. 2. It firstly projects input videos into tokens, then conducts
local and global modeling by the corresponding UniBlocks. Finally, a multi-stage fusion block will
adaptively integrate global tokens of different stages to further enhance video representation.

Specifically, we first use 3D convolution (i.e., 3×16×16) to project the input video as L spatiotem-
poral tokens Xin ∈ RL×C , where L=T×H×W (T , H , and W respectively denote temporal,
height, and width). Following the original ViT design (Dosovitskiy et al., 2021), we perform spatial
downsampling by a factor of 16. For better temporal modeling, we conduct temporal downsampling
by a factor of 2. Next, we construct the local and global UniBlocks. For our local block, we re-
formulate the image-pretrained ViT block, by inserting the local temporal MHRA (Li et al., 2022a)
before it. In this case, we can effectively leverage the robust spatial representation of ViT as well
as efficiently reduce local temporal redundancy. Moreover, we introduce a global UniBlock on top
of each local UniBlock, which can capture full spatiotemporal dependency. For computational effi-
ciency, we design a query-based cross MHRA to aggregate all the spatiotemporal tokens as a global
video token. All these tokens with different-level global semantics from multiple stages are further
fused for discriminative video representation.

3.1 LOCAL UNIBLOCK

To efficiently model temporal dependency upon the well-learned spatial representation, we propose
a new local UniBlock, by inserting a local temporal MHRA before the standard ViT block,

XT = LT MHRA
(
Norm

(
Xin

))
+Xin, (1)

XS = GS MHRA
(
Norm

(
XT

))
+XT , (2)

XL = FFN
(
Norm

(
XS

))
+XS . (3)

LT MHRA and GS MHRA refer to MHRA with local temporal affinity and global spatial affinity
respectively. FFN consists of two linear projections separated by GeLU (Hendrycks & Gimpel,
2016). Additionally, following the normalization in UniFormer (Li et al., 2022a), we adopt Batch
Norm (BN) (Ioffe & Szegedy, 2015) before local MHRA, and Layer Norm (LN) (Ba et al., 2016)
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Figure 2: Overall framework of our UniFormerV2. There are three key blocks, i.e., local and
global UniBlocks, and multi-stage fusion block. All these designs are efficient and effective.

before global MHRA and FFN. Note that GS MHRA and FFN come from the image-pretrained
ViT block. In general, MHRA (Li et al., 2022a) learn token relation via multi-head fusion:

Rn(X) = AnVn(X), (4)
MHRA(X) = Concat(R1(X); R2(X); · · · ; RN (X))U, (5)

where Rn(·) refers to the relation aggregator in the n-th head. An is an affinity matrix that describes
token relation and Vn(·) is a linear projection, while U ∈ RC×C is a learnable fusion matrix. For our
local UniBlock, we insert LT MHRA to reduce local temporal redundancy, which shares a similar
design insight with the original UniFormer (Li et al., 2022a). Hence, the affinity in LT MHRA is
local with a learnable parameter matrix an ∈ Rt×1×1 in the temporal tube t× 1× 1,

ALT
n (Xi,Xj) = ai−j

n , where j ∈ Ωt×1×1
i . (6)

This allows to efficiently learn the local temporal relation between one token Xi and other tokens
Xj in the tube. Alternatively, GS MHRA belongs to the original ViT block. Therefore, the affinity
in GS MHRA refers to a global spatial self-attention in the single frame 1×H ×W ,

AGS
n (Xi,Xj) =

exp{Qn(Xi)
TKn(Xj)}∑

j′∈Ω1×H×W
exp{Qn(Xi)TKn(Xj′)}

, (7)

where Qn(·) and Kn(·) ∈ RL× C
N are different linear projections in the n-th head.

Discussion. (I) Note the spatiotemporal affinity in our local UniBlock is decomposed as local tem-
poral one ALT

n in Eq. (6), and global spatial one AGS
n in Eq. (7). In this case, we can not only

leverage the efficient video processing design of UniFormer but also inherit the effective image pre-
training of ViT. Alternatively, such local affinity in the original UniFormer (Li et al., 2022a) is jointly
spatiotemporal, i.e., Alocal

n (Xi,Xj) = ai−j
n , where j belongs to a 3D tube Ωt×h×w

i . The parameter
matrix has to learn from scratch, which inevitably increases the training cost. (II) Compared with
UniFormer, we abandon its Dynamic Position Encoding (DPE) in the local UniBlock, since the po-
sition encoding in the ViT block has characterized token locations. Table 9b also reveals an extra
DPE in the local UniBlock does not help. (III) Instead of applying global temporal modeling as
in TimeSformer (Bertasius et al., 2021), we use local affinity for temporal characterization, largely
reducing the computation burden by tackling temporal redundancy in the UniFormer style.

3.2 GLOBAL UNIBLOCK

To explicitly conduct long-range dependency modeling on the spatiotemporal scale, we introduce
a global UniBlock in our UniFormerV2. Specifically, this global UniBlock consists of three basic
components including DPE, MHRA, and FFN as follows,

XC = DPE
(
XL

)
+XL, (8)

XST = C MHRA
(
Norm (q) ,Norm

(
XC

))
, (9)

XG = FFN
(
Norm

(
XST

))
+XST . (10)
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Figure 3: Multi-Stage Fusion Block.

The DPE is instantiated as depth-wise spatiotemporal convolution (Li et al., 2022a). We design the
global C MHRA in a cross-attention style to efficiently construct a video representation,

RC
n (q,X) = AC

n (q,X)Vn(X), (11)

C MHRA(q,X) = Concat(RC
1 (q,X); RC

2 (q,X); · · · ; RC
N (q,X))U. (12)

RC
n (q, ·) is the cross relation aggregator, which can convert a learnable query q ∈ R1×C into a video

representation, via modeling dependency between this query q and all the spatiotemporal tokens X.
First, it computes the cross affinity matrix AC

n (q,X) to learn relation between q and X,

AC
n (q,Xj) =

exp{Qn(q)
TKn(Xj)}∑

j′∈ΩT×H×W
exp{Qn(q)TKn(Xj′)}

. (13)

Then, it uses the linear projection to transform X as spatiotemporal context Vn(X). Subsequently,
it aggregates such context Vn(X) into the learnable query, with guidance of their affinity AC

n (q,X).
Finally, the enhanced query tokens from all the heads are further fused as a final video representation,
by linear projection U ∈ RC×C . Note the query token is zero-initialized for stable training.

Discussion. We further discuss the distinct design of our global UniBlock, compared to the one
in the original UniFormer (Li et al., 2022a). (I) We add the global UniBlock on top of the local
UniBlock, extracting multi-scale spatiotemporal representations in token form. Such design helps
strengthen the discriminative video representation without compromising the pretrained architec-
ture. (II) The typical global spatiotemporal attention is computationally heavy, due to its quadratic
complexity. To pursue better accuracy-computation balance, we introduce a cross-attention style of
global MHRA in UniFormerV2, thus largely reducing the computation complexity from O(L2) to
O(L), where L is the number of tokens. More importantly, since the query q is learnable, it can
adaptively integrate the spatiotemporal context from all L tokens to boost video recognition. (III)
The global UniBlock inherits DPE design from UniFormer, and we find it also helps in Table 9c.

3.3 MULTI-STAGE FUSION BLOCK

We propose a multi-stage fusion block to integrate all video tokens from each global UniBlock as
in Fig. 3. For simplicity, we denote the i-th global block as XG

i = Gi(qi,X
L
i ). Given the tokens

XL
i from the local UniBlock, the global block transforms the learnable query q into a video token

XG
i . In this paper, we explore four fusion strategies to integrate the video tokens from all the global

blocks {XG
i }Ni=1 into a final video representation F, and employ the sequential way to conduct

fusion regarding efficacy and efficiency.

The studied fusion methods are given below. (a) Sequential: We sequentially use the video token
from the previous global block XG

i−1 as the query token in the current global block qi, where XG
i =

Gi(X
G
i−1,X

L
i ). (b) Parallel: We concatenate all the global tokens {XG

i }Ni=1 in parallel, and use
a linear projection UF ∈ RN×C to obtain the final token, where F = Concat(XG

1 , ...,X
G
N )UF .

(c) Hierarchical KV: We use the video token from the previous global block XG
i−1 as a part of

contextual tokens in the current global block, where XG
i = Gi(qi, [X

G
i−1,X

L
i ]). (d) Hierarchical

Q: We use the video token from the previous global block XG
i−1 as a part of query tokens in the

current global block, i.e., XG
i = Gi([X

G
i−1,qi],X

L
i ).
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Method Image Pretrain Video FT Frame× Param. FLOPs K400
Ready Data Pretrain Epoch Crop×Clip (M) (T) Top-1 Top-5

SlowFast+NL (Feichtenhofer et al., 2019) N/A None % 196 80×3×10 60 7.0 79.8 93.9
X3D-XXL 312↑ (Feichtenhofer, 2020) N/A None % 256 24×3×10 20 5.8 80.4 94.6
UniFormerV1-B (Li et al., 2022a) % IN-1K % 110 32×3×4 50 3.1 83.0 95.4
Swin-L 384↑ (Liu et al., 2022) % IN-21K % 30 32×5×10 200 105.4 84.9 96.7
MViTv2-L 312↑ (Li et al., 2021) % IN-21K % 105 40×3×5 218 42.2 86.1 97.0
TimeSformer-L (Bertasius et al., 2021) " IN-21K % 15 96×3×1 121 7.1 80.7 94.7
Mformer-HR 336↑ (Patrick et al., 2021) " IN-21K % 35 16×3×10 109 28.8 81.1 95.2
UniFormerV2-B/16 " IN-21K % 55 16×3×4 115 3.6 83.4 96.2
UniFormerV2-L/16 " IN-22K % 55 32×3×2 355 12.2 85.4 97.0
Methods with web-scale data. WTS contains 60M unpublished video-text pairs. ALIGN contains 1.8B image-text pairs.
ViViT-H/14×2 (Arnab et al., 2021) % JFT-300M % 30 32×3×4 654 47.8 84.9 95.8
TokenLearner-L/10 (Ryoo et al., 2021) % JFT-300M % 30 64×3×4 450 48.9 85.4 96.3
MTV-H (Yan et al., 2022) % JFT-300M % 30 32×3×4 1000+ 44.5 85.8 96.6
Florence 384↑ (Yuan et al., 2021b) % FLD-900M % 30 32×3×4 647 N/A 86.5 97.3
CoCa 576↑ (Yu et al., 2022) % JFT-3B+ALIGN % N/A N/A 1000+ N/A 88.9 -
CoVeR 448↑ (Zhang et al., 2021a) % JFT-300M % 20† 16×3×1 431 17.6 86.3 -
CoVeR 448↑ (Zhang et al., 2021a) % JFT-3B % 20† 16×3×1 431 17.6 87.1 -
MTV-H (Yan et al., 2022) % IN-21K WTS-60M 30 32×3×4 1000+ 44.5 89.1 98.2
MTV-H 280↑ (Yan et al., 2022) % IN-21K WTS-60M 30 32×3×4 1000+ 73.6 89.9 98.3
EVL-L/14 (frozen) 336↑ (Lin et al., 2022) " CLIP-400M % 53 32×3×1 67 19.1 87.7 -
X-CLIP-L/14 336↑ (Ni et al., 2022) " CLIP-400M % 30 16×3×4 453 37.0 87.7 -
UniFormerV2-L/14 (frozen) 336↑ " CLIP-400M K710-0.66M 5 8×1×3 51 4.7 87.8 98.0
UniFormerV2-L/14 (frozen) 336↑ " CLIP-400M K710-0.66M 5 32×3×1 51 18.8 88.8 98.1
UniFormerV2-B/16 " CLIP-400M K710-0.66M 5 8×1×3 115 0.4 85.2 96.7
UniFormerV2-B/16 " CLIP-400M K710-0.66M 5 8×3×4 115 1.8 85.6 97.0
UniFormerV2-L/14 " CLIP-400M K710-0.66M 5 8×3×4 354 8.0 88.8 98.1
UniFormerV2-L/14 " CLIP-400M K710-0.66M 5 32×3×2 354 16.0 89.3 98.2
UniFormerV2-L/14 336↑ " CLIP-400M K710-0.66M 5 32×3×2 354 37.6 89.7 98.3
UniFormerV2-L/14 336↑ " CLIP-400M K710-0.66M 5 64×3×2 354 75.3 90.0 98.4

Table 1: Comparison with the state-of-the-art on Kinetics-400. FT indicates the video finetuning.
† marks co-finetuning with K400+SSV2+MiT+IN-1K. Our UniFormerV2 outperforms most of the
current methods in terms of accuracy and/or efficiency. It firstly achieves 90.0% top-1 accuracy on
K400. More explanations of model comparison can be found in the text.

Method Frame×Crop×Clip Param. (M) FLOPs (T) K600 K700
Top-1 Top-5 Top-1 Top-5

SlowFast+NL (Feichtenhofer et al., 2019) 80×3×10 60 7.0 81.8 95.1 71.0 89.6
MoViNet-A6 (Kondratyuk et al., 2021) 120×1×1 31 0.4 83.5 96.2 72.3 -
MViTv2-L 312↑ (Li et al., 2021) 40×3×3 218 42.2 87.5 97.8 79.4 94.9
CoVeR 448↑ (Zhang et al., 2021a) 16×3×1 431 431 87.9 - 79.8 -
MTV-H (Yan et al., 2022) 32×3×4 1000+ 44.5 89.6 98.3 82.2 95.7
CoCa 576↑ (Yu et al., 2022) N/A 1000+ N/A 89.4 - 82.7 -
UniFormerV2-L/14 (frozen) 336↑ 32×3×1 51 18.8 89.1 98.2 80.6 95.2
UniFormerV2-L/14 32×3×2 354 16.0 89.5 98.3 81.5 95.7
UniFormerV2-L/14 336↑ 32×3×2 354 37.6 89.9 98.5 82.1 96.1
UniFormerV2-L/14 336↑ 64×3×2 354 75.3 90.1 98.5 82.7 96.2

Table 2: Comparison with the state-of-the-art on Kinetics-600/700.

Finally, we dynamically integrate the final tokens from both local and global blocks, effectively
promoting recognition performance in empirical studies (Table 12). Specifically, we extract the
class token FC from the final local UniBlock, and add it with the video token F by weighted sum,
i.e., Z = αF+ (1− α)FC , where α is a learnable parameter processed by the Sigmoid function.

4 EXPERIMENTS

Datasets. To verify the learning capacity of our UniFormerV2, we conduct experiments on 8 popular
video benchmarks, including the trimmed videos less than 10 seconds, and the untrimmed videos
more than 1 min. For the trimmed video benchmarks, we divide them into two categories. (a) Scene-
related datasets: Kinetics family (Kay et al., 2017) (i.e., Kinetics-400, 600 and 700) and Moments in
Time V1 (Monfort et al., 2020). (b) Temporal-related datasets: Something-Something V1/V2 (Goyal
et al., 2017b). For the untrimmed video recognition, we choose ActivityNet (Heilbron et al., 2015)
and HACS (Zhao et al., 2019). More dataset details can be found in Appendix A.

Kinetics-710 for Post-Pretraining We propose a unified video benchmark for post-pretraining Uni-
FormerV2. Different from (Yan et al., 2022) that exploits a web-scale video dataset (i.e., 60M
video-text pairs), we build a much smaller video benchmark based on the Kinetics-400/600/700.
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Method Modality ViT Image Pretrain Frame× Param. FLOPs MiT V1
Ready Data Crop×Clip (M) (T) Top-1 Top-5

AssembleNet-101 (Ryoo et al., 2020) RGB+Flow % N/A None N/A 53 0.8 34.3 62.7
MoViNet-A6 (Kondratyuk et al., 2021) RGB % N/A None 120×1×1 31 0.3 40.2 -
ViViT-L/16×2 FE (Arnab et al., 2021) RGB " " IN-21K 32×3×1 612 11.9 38.5 64.2
MTV-H (Yan et al., 2022) RGB " % IN-21K 32×3×4 1000+ 44.5 45.6 74.7
MTV-H 280↑ (Yan et al., 2022) RGB " % IN-21K 32×3×4 1000+ 73.6 47.2 75.7
CoVeR 448↑ (Zhang et al., 2021a) RGB " % JFT-3B 16×3×1 431 17.6 46.1 -
UniFormerV2-B/16 RGB " " CLIP-400M 8×3×4 115 1.8 42.7 71.5
UniFormerV2-L/14 RGB " " CLIP-400M 8×3×4 354 8.0 47.0 76.1
UniFormerV2-L/14 336↑ RGB " " CLIP-400M 8×3×4 354 18.8 47.8 76.9

Table 3: Comparison with the state-of-the-art on Moments in Time V1.

Method Image Pretrain Video Pretrain FT Frame× Param. FLOPs SSV2
Ready Data Data Epoch Epoch Crop×Clip (M) (T) Top-1 Top-5

VideoMAE-B (Tong et al., 2022) N/A None SSV2 2400 40 16×3×2 87 1.1 70.3 92.7
VideoMAE-L (Tong et al., 2022) N/A None SSV2 2400 40 32×3×1 305 4.3 75.3 95.2
MViTv1-B (Fan et al., 2021) N/A None K400 200 100 64×3×1 36.6 1.4 67.7 90.9
MaskFeat-L 312↑ (Wei et al., 2022) N/A None K400 905 40 40×3×4 218 28.3 74.4 94.6
MViTv2-B (Li et al., 2021) % IN-21K K400 100 100 32×3×1 51.1 0.7 72.1 93.4
UniFormerV1-B (Li et al., 2022a) % IN-1K K400 110 50 32×3×1 50 0.8 71.2 92.8
Swin-B (Liu et al., 2022) % IN-21K K400 30 60 32×3×1 89 1.0 69.6 92.7
CoVeR 448↑ (Zhang et al., 2021a) % JFT-3B None 0 20† 16×3×1 431 17.6 70.8 -
ViViT-L/16×2 FE (Arnab et al., 2021) " IN-21K K400 30 35 32×3×14 612 47.6 65.4 89.8
MTV-B 320↑ (Yan et al., 2022) " IN-21K K400 30 100 32×3×4 310 11.2 68.5 90.4
TimeSformer-HR (Bertasius et al., 2021) " IN-21K None 0 15 16×3×1 121 5.1 62.5 -
EVL-L/14 (Lin et al., 2022) " CLIP-400M None 0 46 32×3×1 67 9.6 66.7 -
UniFormerV2-B/16 " CLIP-400M None 0 22 16×3×1 163 0.6 69.5 92.3
UniFormerV2-B/16 " CLIP-400M None 0 22 32×3×1 163 1.1 70.7 93.2
UniFormerV2-L/14 " CLIP-400M None 0 15 16×3×1 574 2.6 72.1 93.6
UniFormerV2-L/14 " CLIP-400M None 0 15 32×3×1 574 5.2 73.0 94.5

Table 4: Comparison with the state-of-the-art on Something-Something V2. The methods with-
out image pretraining are marked in gray. † marks co-finetuning with K400+SSV2+MiT+IN-1K.

Concretely, we merge the training set of these Kinetics datasets, and then delete the repeated videos
according to Youtube IDs. Note we also remove testing videos from different Kinetics datasets
leaked in our combined training set for correctness. As a result, the total number of training videos
is reduced from 1.14M to 0.66M. Additionally, we merge the action categories in these three Kinet-
ics datasets, which leads to 710 classes in total. Hence, we call this video benchmark Kinetics-710.
More detailed descriptions can be found in Appendix F. In our experiments, we empirically show
the effectiveness of our Kinetics-710. For post-pretraining, we simply use 8 input frames and adopt
the same hyperparameters as training on the individual Kinetics dataset. After that, no matter how
many frames are input (16, 32, or even 64), we only need 5-epoch finetuning for more than 1% top-1
accuracy improvement on Kinetics-400/600/700, as shown in Table 9e.

Implement Details. Unless stated otherwise, we follow most of the training recipes in UniFormer
(Li et al., 2022a), and the detailed training hyperparameters can be found in Appendix A. We build
UniFormerV2 based on ViTs pretrained with various supervisions (see Table 8), showing the gener-
ality of our design. For the best result, we adopt CLIP-ViT (Radford et al., 2021) as the backbone by
default, due to its robust representation pretrained by vision-language contrastive learning. For most
datasets, we insert the global UniBlocks in the last 4 layers of ViT-B/L to perform the multi-stage
fusion. But for Sth-Sth V1/V2, we insert the global UniBlocks in the last 8/16 layers of ViT-B/L
for better temporal modeling. The corresponding ablation studies are shown in Table 9. Finally, we
adopt sparse sampling (Wang et al., 2016) with the resolution of 224 for all the datasets.

4.1 COMPARISON TO STATE-OF-THE-ART

Kinetics. Table 1 presents the state-of-the-art comparison on Kinetics-400. (1) The first part lists
the models pretrained on open-source datasets like ImageNet (Deng et al., 2022). On one hand,
compared with UniFormerV1-B (Li et al., 2022a), our UniFormerV2-B only uses 50% fine-tuning
epochs but achieves a better accuracy, showing the importance of inheriting the pretrained weights.
On the other hand, compared with TimeSformer-L (Bertasius et al., 2021), our model achieves 2.7%
performance gain with 50% FLOPs, showing the importance of adopting the UniFormer designs.
Besides, compared with Swin-L (Liu et al., 2022), our UniFormerV2-L based on BeiT (Bao et al.,
2021) that pretrained on ImageNet-22K, achieves comparable results but with 12% FLOPs. (2)
The second part shows the methods using web-scale data. On one hand, compared with MTV-H

7



Under review as a conference paper at ICLR 2023

Method Frame Top-1 Top-5
TSN-R50(Wang et al., 2016) 16 19.9 47.3
TSM-R50(Lin et al., 2019) 16 47.2 77.1
TEA-R50 (Li et al., 2020b) 16 51.9 80.3
CT-Net-R50 (Li et al., 2020a) 16 52.5 80.9
TDN-R101 (Wang et al., 2021a) 16 55.3 88.3
UniFormerV1-S (Li et al., 2022a) 16 57.1 84.9
UniFormerV1-B (Li et al., 2022a) 32 61.0 87.6
UniFormerV2-B/16 16 56.8 84.2
UniFormerV2-B/16 32 59.4 86.2
UniFormerV2-L/14 16 60.5 86.5
UniFormerV2-L/14 32 62.7 88.0

Table 5: Results on Something-Something V1.
Method Frame Top-1
DSN-R34 (Zheng et al., 2020) 32 82.6
MARL-R152 (Wu et al., 2019) 32 85.7
NSNet-Swin-L (Xia et al., 2022) 32 90.2
UniFormerV2-L/14 16 94.3
UniFormerV2-L/14 32 94.7

Table 6: Results on ActivityNet.

Method Frame Top-1
CSN-R152 (Tran et al., 2019) 32 91.5
TimeSformer (Bertasius et al., 2021) 8 91.8
ViViT-B (Arnab et al., 2021) 32 91.9
UniFormerV2-L/14 16 95.5
UniFormerV2-L/14 32 95.4

Table 7: Results on HACS.
Type Method Data K400 SSV2

TimeSformer IN-21K 78.7 59.5

SL ViT IN-21K 81.6 67.5
DeiT III IN-21K 82.7 66.5

CL DINO IN-1K 78.7 65.8
CLIP CLIP-400M 84.4 69.5

MIM MAE IN-1K 78.8 65.1
BeiT IN-22K 82.2 67.7

Table 8: Different pretrained ViTs. Our
UniFormerV2 based on different open-
sourced ViTs beat TimeSformer, especially
for Something-Something.

(ensembling 4 models) (Yan et al., 2022), our single model only requires 1% video post-pretraining,
16% finetuning epochs and 35% model parameters to achieve competitive accuracy. On the other
hand, under the same CLIP-400M pretraining, our UniFormerV2-L (frozen) only uses 25% FLOPs
to achieve the competitive accuracy compared with EVL-L (frozen) (Lin et al., 2022), and obtains
1.1% accuracy improvement with similar FLOPs. Finally, our UniFormerV2 is the first model to
achieve 90.0% top-1 accuracy on K400, to our best knowledge. For Kinetics-600 and 700, our
UniFormerV2 also obtains the state-of-the-art performance (90.1% and 82.7%, see Table 2).

Moments in Time. Due to complex inter-class and intra-class variation, MiT is more challenging
than Kinetics. As shown in Table 3, our model beats most of the recent methods, i.e., compared with
ViViT-L (Arnab et al., 2021), UniFormerV2-B obtains 4.2% performance gain but only with 19%
model parameters and 15% FLOPs. Compared with MTV-H (Yan et al., 2022), UniFormerV2-L
only uses 35% model parameters and 25% FLOPs to achieve 1.2% top-5 accuracy improvement.

Something-Something. In Table 4, we show the results on Sth-SthV2. First, our model outperforms
those standard models based on the well-pretrained image ViT on hand. For example, under the same
CLIP-400M pretraining and the same number of sampled frames, our UniFormerV2-B obtains 4%
higher accuracy with only 11% FLOPs, compared with EVL-L (Lin et al., 2022). Second, we
compare our model with those models whose backbone is specially designed. Since the pretraining
is unavailable for these models, they have to perform a tedious training phrase, consisting of image-
pretraining, video pretraining and video finetuning. Alternatively, our UniFormerV2 can work well
with only video finetuning, e.g., our model only uses 22 epochs to achieve the performance of
UniFormerV1 (Li et al., 2022a), which requires 110+50=160 video epochs to obtain results. Finally,
we compare UniFormerV2 with those models which do not apply image pretraining. Such models
require a huge number of training epochs, e.g., VideoMAE-B (Tong et al., 2022) contains 2400 video
pretraining epochs and 40 video finetuning epochs, much longer than our UniFormerV2-B with a
similar accuracy (only 22 video finetuning epochs, i.e., 0.9 % training epochs of VideoMAE-B). For
Sth-Sth V1 in Table 5, we reach the new state-of-the-art performance (62.7%). The above results
reveal the effectiveness and efficiency of our UniFormerV2 for temporal modeling.

ActivityNet and HACS. For the untrimmed videos, it is essential to capture long-range temporal in-
formation, since the action may occur multiple times at arbitrary moments. As shown in Table 6 and
7, our UniFormerV2 significantly outperforms the previous best results on the large-scale untrimmed
benchmark ActivityNet and HACS by 4.5% and 3.6%, respectively. These results demonstrate the
strong long-term modeling capacity of our UniFomrerV2.

4.2 ABLATION STUDIES

To evaluate the effectiveness of UniFormerV2, we investigate each key structure design, as shown in
Table 8 and Table 9. All the models are directly finetuned from CLIP-ViT-B/16 by default. We utilize
‘8×4×3’ and ‘16×1×3’ testing strategies for Kinetics and Something-Something respectively.
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Global Local T-Down K400 SSV2
% % % 83.1 45.1
" % % 84.4 63.3
% " % 83.6 67.7
" " % 84.4 68.7
" " " 84.4 69.5
(a) Components of UniFormerV2.

Design SSV2
Temporal MHSA 65.2
Temporal Convolution 67.5
ST-Adapter 68.0
Local MHRA 69.1
Local MHRA + DPE 69.1
Local MHRA × 2 69.5

Layers Reduction SSV2
1-12 4.0 68.9
1-12 2.0 69.1
1-12 1.5 69.5
1-12 1.0 69.5
1-8 1.5 67.9
1-4 1.5 67.6

(b) Local UniBlock.
Layers DPE K400 SSV2
9-12 % 84.2 68.1
9-12 " 84.4 68.5
5-12 " 84.4 69.5
1-12 " 84.4 69.4

(c) Global UniBlock.

Design SSV2
Sequential 69.5
Parallel 69.1
Hierarchical KV 68.9
Hierarchical Q 69.5
(d) Multi-Stage Fusion.

Pretraining Finetuning K400 K600 K700
None Individual 84.4 85.0 75.8
K400/600/700 K400/600/700 85.6 86.0 75.6
K710 K400/600/700 85.6 86.3 76.1
K710 Individual 85.6 86.3 76.3

(e) Different Training Scripts.
Table 9: Ablation studies. T-Down means temporal downsampling, and we double the frames to
maintain similar GFLOPs. ST-Adapter is proposed in Pan et al. (2022). Compared with simple
co-training, our K710 pretraining saves 33% cost with consistent improvement (see Appendix A).

Pretraining Sources. To demonstrate the generality of our UniFormerV2 design, we apply it on
the ViTs with different pertaining methods, including supervised learning (Dosovitskiy et al., 2021;
Touvron et al., 2022), contrastive learning(Caron et al., 2021; Radford et al., 2021) and mask image
modeling (He et al., 2022; Bao et al., 2021). Table 8 shows that all the models beat TimeSformer
(Bertasius et al., 2021), especially for Something-Something that relies on strong temporal model-
ing. It also reflects that a better-pretrained ViT is helpful for stronger video performance.

Different Components. In Table 9a, note the global UniBlock is crucial for the scene-related
benchmark (e.g., K400), since this block can effectively provide holistic video representation for
classification. Alternatively, the local UniBlock is critical for the temporal-related benchmark (e.g.,
SSV2), since this block can effectively describe detailed video representation for classification. Be-
sides, using temporal downsampling with double input frames (similar FLOPs) is also helpful for
distinguishing fine-grained videos like SSV2, due to the larger temporal receptive field.

Local UniBlock. To explore the structure of local UniBlock, we conduct experiments in Table 9b. It
reveals that convolution is better than self-attention for temporal modeling, and our local MHRA is
more powerful than both of them in SSV2. Following ST-Adapter (Pan et al., 2022), we add another
local MHRA after the spatial MHRA for better performance. Besides, we add local MHRA in all
the layers and reduce the channel by 1.5 times for the best accuracy-flops trade-off.

Global UniBlock and Multi-stage Fusion. In Table 9c, we find that the features in the deep layers
are critical for capturing long-term dependency, while the DPE and the middle information are
necessary for identifying the motion difference. For the fusion strategy, Table 9d shows that the
simplest sequential fusion is adequate for integrating multi-stage features.

Training Recipes. We compare different training and finetuning methods in Table 9e. Note that
when co-training with K400, K600 and K700, we remove the leaked videos in the validation set
and introduce three classification heads. K710 maintains only about 60% of the total training videos
(0.66M vs. 1.14M for K400+K600+K700), but it improves classification performance significantly
for Kinetics. Meanwhile it saves about 33% training cost (see Appendix A). Besides, direct training
on it works better than a Kinetics co-training, especially for K600 (+1.3% vs. +1.0%) and K700
(+0.5 vs. -0.2%). Though co-finetuning shared the backbone and saved parameters, we adopt indi-
vidual finetuning for each dataset considering the best performance.

5 CONCLUSION

In this paper, we propose a powerful video model, namely UniFormerV2. It arms image-pretrained
ViTs with efficient UniFormer designs for video learning. By novel local and global video relation
aggregators, it is capable of conducting effective spatiotemporal modeling with a tractable complex-
ity. Besides of seamlessly integrating advantages from both ViTs and UniFormer, we also introduce
multi-scale token fusion for further enhancing video representation. Our UniFormerV2 achieves
state-of-the-art performance on 8 popular video benchmarks, and firstly reaches 90% top-1 accu-
racy on Kinetics-400, to our best knowledge.
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Reproducibility. To ensure all the results can be reproduced, we give the details of the datasets,
model and training hyperparameters in our experiments (see Table 10 and Table 11). For Kinetics-
710, we provide its label list in Table 20 for reproduction. All the codes are based on the UniFormer
(Li et al., 2022b) repository.
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Dataset Training Validation Average #Actions#Samples #Samples Length
Kinetics-710 (ours) 658,340 66,803 10s 710

Kinetics-400 (Carreira & Zisserman, 2017) 240,436 19,787 10s 400246,245* 20,000*

Kinetics-600 (Carreira et al., 2018) 366,006 27,935 10s 600392,622* 30,000*

Kinetics-700 (Carreira et al., 2019) 529,573 33,861 10s 700545,317* 35,000*

Moments in Time (Monfort et al., 2020) 802,244 33,899 3s 339802,264* 33,900*
Something-Something V1 (Goyal et al., 2017b) 86,017 11,522 4.0s 174
Something-Something V2 (Goyal et al., 2017b) 168,913 24,777 4.0s 174
ActivityNet (Heilbron et al., 2015) 10,024 4,926 117s 200
HACS (Zhao et al., 2019) 37,452 5,953 149s 200

Table 10: Dataset descriptions. * indicates the original video number.

K710 K400/600/700 MiT ANet&HACS SSV1/V2
Optimization
Optimizer AdamW (Loshchilov & Hutter, 2017a)
Momentum β1, β2 = 0.9, 0.999
Weight decay 0.05
Learning rate schedule cosine decay (Loshchilov & Hutter, 2017b)
Start learning rate 1e-6
End learning rate 1e-6
Batch size 512 256 512 64 128
Learning rate (Base) 2e-5 2e-6 2e-5 - 4e-5
Learning rate (Large) 1e-5 1.5e-6 1e-5 5e-6 2e-5
Warmup epochs (Goyal et al., 2017a) 5 1 5 5 5
Total epochs (Base) 55 5 24 - 22
Total epochs (Large) 40 5 18 20 15
Data augmentation
Inception-style cropping Szegedy et al. (2015)

Scale [0.08, 1.00]
Jitter aspect ratio [0.75, 1.33]

Color jitter 0.4
Rand augment (Cubuk et al., 2020) rand-m7-n4-mstd0.5-inc1
Repeated sampling (Hoffer et al., 2020) 1 1 1 2 2
Regularisation
Dropout (Srivastava et al., 2014)

Backbone 0.5
Global branch 0.5

Drop path (Huang et al., 2016)
Backbone - - - 0.2 0.2
Global branch - - - 0.4 0.4

Table 11: Training hyperparameters for our experiments. “-” indicates that the related method
is not used. Values constant in all the datasets are listed once. Datasets are denoted as follows: K
(Kinetics), MiT (Moments in Time), ANet (ActivityNet), SS (Something-Something).

A ADDITIONAL IMPLEMENTATION DETAILS

Datasets. In Table 10, we give more details of our datasets. Kinetics family (Kay et al., 2017)
is the most widely-used benchmark, includes Kinetics-400, 600 and 700. Since some videos are
unavailable on YouTube, the Kinetics datasets are gradually shrinking over time. We report the
video number of our version for a more fair comparison. Moments in Time V1 (Monfort et al., 2020)
contains 0.8M 3-second video clips annotated with 339 classes, which suggests capturing the gist of
a dynamic scene. Something-Something V1/V2 Goyal et al. (2017b) consist of 174 actions interacted
with everyday objects. They require strong temporal modeling to distinguish confusing actions such
as opening/closing something. ActivityNet (Heilbron et al., 2015) and HACS (Zhao et al., 2019) are
two large-scale untrimmed video benchmark. They respectively contain about 20K and 50K videos
in 200 human daily living actions. For these two datasets, we sample those video clips containing
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Figure 4: More visualizations. Frames are sampled from Kinetics according to different sampling
strategies in different methods. For UniFormerV1, it samples double frames and downsamples the
temporal resolution in the patch embedding.

action for training, thus we do not add another background class. While for testing, we sample the
frames sparsely from the whole untrimmed videos.

Implementation Details. For the scene-related datasets, we only insert the global UniBlocks in
the last 4 layers of ViT-B/L to perform multi-stage fusion, since the local UniBlocks and temporal
downsampling do not further improve the results in Table 9a. But for Something-Something V1/V2,
we adopt all the designs and insert the global UniBlocks in the last 8/16 layers of ViT-B/L for better
temporal modeling. Besides, when finetuning those models with large-scale dataset pretraining, it
is necessary to initialize the new parameters properly. For stable training, we zero initialize some
of the layers, including the last point-wise convolutions in the local temporal MHRA, the query
tokens and output projection layers in the query-based cross MHRA, the last linear layers in the
FFN of the global UniBlock, and the learnable fusion weights. What’s more, we provide the detailed
hyperparameters in Table 11. Most of the training scripts follow UniFormer (Li et al., 2022a), but
differently, we do not apply Mixup (Zhang et al., 2018), CutMix (Yun et al., 2019), Label Smoothing
(Szegedy et al., 2016) and Random Erasing (Zhong et al., 2020). When finetuning the full models on
Kinetics directly from image pretraining, we adopt the same hyperparameters as in K710 pretraining.
If the backbone is frozen, we use a larger learning rate (4e-4) without warmup.

Training Cost. In table 9e, we compare different training scripts. When finetuning Kinetics-400,
600 and 700 individually, we train the models for 55 epochs, and the total training data is about
0.24 + 0.366 + 0.529 ≈ 1.14M. When pretraining with Kinetics-710 (0.66M), we only finetune the
models for 5 epochs. Thus the percentage of saving cost is as follows,

1− 0.66× 55 + 1.14× 5

1.14× 55
≈ 0.33 (14)

Thus we save almost 33% of the training cost. More importantly, for the models with more frames
(16, 32, or even 64), we only need to finetune the K710 pretrained models with 8 frames. Our
training scripts are very efficient while effective for the Kinetics family.

B VISUALIZATIONS

In Figure 4, we compared UniFormerV2 with the typical ViT-based model, i.e., TimeSformer (Berta-
sius et al., 2021), and UniFormerV1 (Li et al., 2022a) through visualization. Since UniFormerV1
is a multi-scale architecture, we show its features at the bottom of 4 stages. For TimeSformer and
UniFormerV2, they are based on ViTs with a fixed resolution, thus we show their features every 3
layers. We use CAM (Zhou et al., 2016) to show the most discriminative features that the network
locates. The red parts indicate where the models focus more on, while the blue parts are ignored.

It reveals that both UniFormerV1 and UniFormerV2 are good at capturing local details, but Uni-
FormerV1 may lose information in deeper layers due to the shrinking resolution, thus it fails to
activate the discriminative parts. In contrast, TimeSformer only learns local features in the shallow
layers, thus struggling to focus on meaningful areas. As for UniFormerV2, it surprisingly maintains
local details even in the deep layers. More importantly, it can observe the whole video and learn to
concentrate more on the woman’s leg, which helps recognize the action. These results demonstrate
that our UniFormerV2 is effective to capture local details and long-term dependency.
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Method #Frame K400
Only Global 8×3×4 81.8
Local+Global 8×3×4 84.4

Table 12: Output token combination.

Pretrain #Frame SSV1 SSV2
CLIP-400M 16×3×1 56.8 69.5
CLIP-400M+K400 16×3×1 55.8 68.4

Table 13: K400 pretraining.

#Query #Frame SSV2
1 16×3×1 69.5
4 16×3×1 69.1

16 16×3×1 68.6

Table 14: Query Number.

Method Param. (M) FLOPs (G) SSV2
Mean Pooling 86 422 45.1
Divided Space-Time MHSA 114 555 63.4
Joint Space-Time MHSA 86 539 65.8
Temporal Convolution 86 422 65.6
Temporal Shift 86 422 65.7
Temporal Transformer 128 423 61.5
Local MHRA (Ours) 105 511 67.7

Table 15: Different modules.

Method Pretrain Frame× Param. FLOPs K400 K600 K700
Crop×Clip (M) (T) Top-1 Top-5 Top-1 Top-5 Top-1 Top-5

UniFormerV2-B/16

CLIP-400M

8×1×3 115 0.4 84.0 96.3 84.8 96.8 75.4 92.6
UniFormerV2-B/16 8×3×4 115 1.6 84.4 96.3 85.0 97.0 75.8 92.8
UniFormerV2-L/14 8×1×3 354 2.0 87.3 97.7 87.8 97.6 80.0 95.0
UniFormerV2-L/14 8×3×4 354 8.0 87.7 98.3 88.0 97.7 80.3 95.2
UniFormerV2-B/16

CLIP-400M
+K710

8×1×3 115 0.4 85.2 96.7 85.6 97.0 75.8 92.4
UniFormerV2-B/16 8×3×4 115 1.8 85.6 97.0 86.1 97.2 76.3 92.7
UniFormerV2-L/14 8×1×3 354 2.0 88.4 97.9 88.6 98.1 80.4 95.2
UniFormerV2-L/14 8×3×4 354 8.0 88.8 98.1 89.0 98.2 80.8 95.4
UniFormerV2-L/14 16×3×1 354 4.0 88.9 98.0 89.2 98.2 80.9 95.4
UniFormerV2-L/14 16×3×4 354 16.0 89.1 98.2 89.4 98.3 81.2 95.6
UniFormerV2-L/14 32×3×1 354 16.0 89.2 98.2 89.3 98.2 81.3 95.6
UniFormerV2-L/14 32×3×2 354 16.0 89.3 98.2 89.5 98.3 81.5 95.7
UniFormerV2-L/14 32×3×4 354 32.0 89.5 98.2 89.5 98.3 81.4 95.8
UniFormerV2-L/14 336↑ 32×3×2 354 37.6 89.7 98.3 89.9 98.5 82.1 96.1
UniFormerV2-L/14 336↑ 32×3×4 354 75.3 89.7 98.3 89.9 98.5 82.2 96.1
UniFormerV2-L/14 336↑ 64×3×2 354 75.3 90.0 98.4 90.1 98.5 82.7 96.2
UniFormerV2-L/14 336↑ 64×3×4 354 150.6 90.0 98.4 90.1 98.5 82.7 96.3
UniFormerV2-L/14 (frozen) 336↑ CLIP-400M 8×1×3 51 4.7 86.7 93.4 87.4 97.7 79.6 94.6
UniFormerV2-L/14 (frozen) 336↑ CLIP-400M

+K710

8×1×3 51 4.7 87.8 98.0 88.2 98.0 79.7 94.7
UniFormerV2-L/14 (frozen) 336↑ 32×3×1 51 18.8 88.8 98.1 89.1 98.2 80.6 95.2
UniFormerV2-L/14 (frozen) 336↑ 32×3×4 51 75.3 88.9 98.2 89.2 98.2 80.8 95.4

Table 16: More results on Kinetics-400, 600 and 700.

C MORE ABLATION STUDIES

We conduct more ablation studies based on CLIP-ViT-B/16 (Radford et al., 2021).

Output token combination. When only using global token for classification, the top-1 accuracy
drops from 84.4% to 81.8% in Table 12. It shows that both local and global output tokens are
essential for maintaining performance.

Kinetics pretraining for Something-Something. Different from the prior works (Li et al., 2022a;
Fan et al., 2021), in Table 13, we find that extra Kinetics pretraining harms the representation inher-
ited from CLIP, leading to lower performance.

Query number. In Table 14, we try to increase the query number. However, more queries lead to
severe overfitting, thus the performance drops.

Different modules. In Table 15, we compare our local MHRA with popular temporal modules,
including simple mean pooling (Wang et al., 2016), divided and joint space-time MHSA (Bertasius
et al., 2021), temporal convolution (Tran et al., 2018), temporal shift (Lin et al., 2019) and temporal
transformer (Sharir et al., 2021). All the modules are inserted before all the spatial MHSA, except
that the 6-layer temporal transformer is added after the backbone. The results shows that our local
MHRA beats the previous methods, achieving 2.0% to 22.6% higher top-1 accuracy. It demonstrate
the effectiveness of our local MHRA for temporal modeling.
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Method Pretrain Frame× Param. FLOPs MiT
Crop×Clip (M) (T) Top-1 Top-5

UniFormerV2-B/16 CLIP-400M 8×3×4 115 1.8 42.2 71.3
UniFormerV2-B/16 CLIP-400M 32×3×4 115 7.2 42.2 71.5
UniFormerV2-B/16 CLIP-400M+K710 8×3×4 115 1.8 42.6 71.6
UniFormerV2-B/16 CLIP-400M+K710+K400 8×3×4 115 1.8 42.6 71.7
UniFormerV2-B/16 CLIP-400M+K710+K700 8×3×4 115 1.8 42.4 71.2
UniFormerV2-L/14 CLIP-400M 8×3×4 354 8.0 46.2 76.0
UniFormerV2-L/14 CLIP-400M 16×3×4 354 16.0 46.2 76.2
UniFormerV2-L/14 CLIP-400M 32×3×4 354 32.0 46.4 76.2
UniFormerV2-L/14 CLIP-400M+K710 8×3×4 354 8.0 46.7 76.2
UniFormerV2-L/14 CLIP-400M+K710+K400 8×3×4 354 8.0 47.0 76.1
UniFormerV2-L/14 336↑ CLIP-400M 8×3×4 354 18.8 47.2 76.5
UniFormerV2-L/14 336↑ CLIP-400M+K710 8×3×4 354 18.8 47.6 76.7
UniFormerV2-L/14 336↑ CLIP-400M+K710+K400 8×3×4 354 18.8 47.8 76.9

Table 17: More results on Moments in Time V1.

Method Frame× Param. FLOPs SSV1 SSV2
Crop×Clip (M) (T) Top-1 Top-5 Top-1 Top-5

UniFormerV2-B/16 16×3×1 163 0.6 56.8 84.2 69.5 92.3
UniFormerV2-B/16 16×3×2 163 1.1 57.2 84.3 69.7 92.5
UniFormerV2-B/16 32×3×1 163 1.1 59.4 86.2 70.7 93.2
UniFormerV2-B/16 32×3×2 163 2.2 59.5 86.2 71.0 93.2
UniFormerV2-L/14 16×3×1 574 2.6 60.5 86.5 72.1 93.6
UniFormerV2-L/14 16×3×2 574 5.2 60.9 86.8 72.2 93.7
UniFormerV2-L/14 32×3×1 574 5.2 62.7 88.0 73.0 94.5
UniFormerV2-L/14 32×3×2 574 10.3 62.9 88.3 73.1 94.5

Table 18: More results on Something-Something. All models are directly finetuned from CLIP.

Dataset Pretrain Frame 3×2 3×4 3×10
Top-1 Top-5 Top-1 Top-5 Top-1 Top-5

ActivityNet

CLIP-400M+K400 8 92.8 99.0 92.8 99.1 93.0 99.1
CLIP-400M+K400 16 93.5 99.4 93.5 99.5 93.6 99.5
CLIP-400M+K710+K400 16 93.9 99.4 94.1 99.5 94.3 99.5
CLIP-400M+K710+K700 16 94.0 99.4 94.2 99.5 94.3 99.6
CLIP-400M+K710+K400 32 94.3 99.6 94.5 99.6 94.7 99.5

HACS
CLIP-400M+K400 16 94.7 99.8 94.7 99.8 94.9 99.9
CLIP-400M+K710+K400 16 95.3 99.9 95.2 99.8 95.5 99.8
CLIP-400M+K710+K700 16 94.7 99.7 94.7 99.8 94.9 99.8
CLIP-400M+K710+K400 32 95.2 99.8 95.3 99.8 95.4 99.8

Table 19: More results on ActivityNet and HACS. All models are based on UniFormerV2-L/14.

D ADDITIONAL RESULTS

In Table 16, Table 17, Table 18 and Table 19, we give more results on the 8 video benchmarks, i.e.,
Kinetics-400/600/700, Moments in Time, Something-Something V1/V2, ActivityNet and HACS.

E MORE DISCUSSIONS

Local UniBlock vs. ST-Adapter (Pan et al., 2022). Our Local UniBlock is motivated by the style
of UniForme r(Li et al., 2022a), i.e., we treat temporal depth-wise convolution as local temporal
relation aggregator. Hence, like UniFormer, we introduce extra BatchNorm (Ioffe & Szegedy, 2015)
before the first linear projection V(·). Alternatively, ST-adapter does not have this design, since
it simply treats temporal depth-wise convolution as adaptation. With such motivation, it further
introduces extra activation function for enhancing such adaptation, while our local UniBlock does
not need it. In fact, we have also made comparisons in Table 9b. It shows that our local MHRA
beats ST-Adapter (69.1% vs. 68.0%).

Global UniBlock vs. Perceiver (Jaegle et al., 2021), DETR (Carion et al., 2020) and
Flamingo(Alayrac et al., 2022). Our Glocal UniBlock is also motivated by the style of UniFormer
(Li et al., 2022a). But differently, to decrease the global computation in UniFormer, we change
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self-attention MHRA as cross-attention MHRA in our UniFormerV2. Hence, our Global UniBlock
consists of Dynamic Position Embedding (DPE), cross MHRA and FFN. On the contrary, none
of those works belong to such an operation combination, without insight of UniFormer in video
learning. In fact, these methods often use the standard cross-style transformer block including self
MHRA, cross MHRA and FFN.

Limitations. In UniFormerV2, we propose the effective designs to arm pretrained ViT as spatiotem-
poral learners. Although its training is more efficient compared to non-trivial video backbones, its
performance tends to depend on the scale of pretraining data, as shown in Table 8. Hence, it would
be interesting to explore our UniFormerV2 on huge image foundation models pretrained by massive
datasets, for further evaluating its scalability and generalization capacity.

F LABEL LIST OF KINETICS-710

To generate our Kinetics-710, we align labels in different Kinetics datasets by filtering symbols and
replacing synonyms. The final label list is shown in Table20. Compared with Kinetics-700, there are
8 and 2 unique labels in Kinetics-400 and Kinetics-600 respectively. When finetuning the models
pretrained on Kinetics-710, it is vital to load the pretrained weight of the classification layer, thus
we map the weight according to the label list.
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Table 20: Labels of Kinetics-710.

Label K4 K6 K7
luge × ✓ ✓
yoga ✓ ✓ ✓
vault ✓ × ×
squat ✓ ✓ ✓
lunge ✓ ✓ ✓
zumba ✓ ✓ ✓
situp ✓ ✓ ✓
sewing × ✓ ✓
cumbia × ✓ ✓
crying ✓ ✓ ✓
dining ✓ ✓ ✓
digging ✓ × ✓
chasing × × ✓
sieving × × ✓
staring × ✓ ✓
karaoke × ✓ ✓
burping × ✓ ✓
packing × ✓ ✓
licking × ✓ ✓
winking × ✓ ✓
arguing × ✓ ✓
ironing ✓ ✓ ✓
drawing ✓ ✓ ✓
archery ✓ ✓ ✓
jogging ✓ ✓ ✓
singing ✓ ✓ ✓
yawning ✓ ✓ ✓
writing ✓ ✓ ✓
push up ✓ ✓ ✓
tai chi ✓ ✓ ✓
sailing ✓ ✓ ✓
welding ✓ ✓ ✓
smoking ✓ ✓ ✓
parkour ✓ ✓ ✓
texting ✓ ✓ ✓
bowling ✓ ✓ ✓
kissing ✓ ✓ ✓
busking ✓ ✓ ✓
gargling ✓ × ✓
spraying ✓ × ✓
coughing × × ✓
saluting × × ✓
shouting × × ✓
sleeping × ✓ ✓
smashing × ✓ ✓
tackling × ✓ ✓
shopping × ✓ ✓
pinching × ✓ ✓
huddling × ✓ ✓
bottling × ✓ ✓
drooling × ✓ ✓
tickling ✓ ✓ ✓
knitting ✓ ✓ ✓
unboxing ✓ ✓ ✓
shot put ✓ ✓ ✓
marching ✓ ✓ ✓
capoeira ✓ ✓ ✓
pull ups ✓ ✓ ✓
laughing ✓ ✓ ✓
hurdling ✓ ✓ ✓
sneezing ✓ ✓ ✓
clapping ✓ ✓ ✓

Label K4 K6 K7
krumping ✓ ✓ ✓
slapping ✓ ✓ ✓
decoupage × × ✓
arresting × × ✓
surveying × × ✓
fly tying × ✓ ✓
capsizing × ✓ ✓
tiptoeing × ✓ ✓
using atm × ✓ ✓
waking up × ✓ ✓
fidgeting × ✓ ✓
tie dying × ✓ ✓
wrestling ✓ ✓ ✓
whistling ✓ ✓ ✓
high kick ✓ ✓ ✓
abseiling ✓ ✓ ✓
high jump ✓ ✓ ✓
trapezing ✓ ✓ ✓
skydiving ✓ ✓ ✓
bandaging ✓ ✓ ✓
side kick ✓ ✓ ✓
jetskiing ✓ ✓ ✓
long jump ✓ ✓ ✓
hopscotch ✓ ✓ ✓
dodgeball ✓ ✓ ✓
crocheting × × ✓
ski ballet × × ✓
geocaching × ✓ ✓
bulldozing × ✓ ✓
cosplaying × ✓ ✓
spelunking × ✓ ✓
jaywalking × ✓ ✓
head stand × ✓ ✓
contorting × ✓ ✓
plastering ✓ ✓ ✓
bartending ✓ ✓ ✓
beatboxing ✓ ✓ ✓
applauding ✓ ✓ ✓
pole vault ✓ ✓ ✓
barbequing ✓ ✓ ✓
snowkiting ✓ ✓ ✓
making tea ✓ ✓ ✓
auctioning ✓ ✓ ✓
snorkeling ✓ ✓ ✓
testifying ✓ ✓ ✓
high fiving × × ✓
moving baby × × ✓
shoot dance × × ✓
pirouetting × ✓ ✓
coloring in × ✓ ✓
sawing wood × ✓ ✓
calculating × ✓ ✓
waving hand × ✓ ✓
watching tv × ✓ ✓
calligraphy × ✓ ✓
carving ice × ✓ ✓
bodysurfing × ✓ ✓
lifting hat × ✓ ✓
bathing dog × ✓ ✓
chewing gum × ✓ ✓
parasailing ✓ ✓ ✓
sipping cup ✓ ✓ ✓

Label K4 K6 K7
skiing mono ✓ ✓ ✓
ski jumping ✓ ✓ ✓
driving car ✓ ✓ ✓
tap dancing ✓ ✓ ✓
hockey stop ✓ ✓ ✓
tobogganing ✓ ✓ ✓
cooking egg ✓ ✓ ✓
slacklining ✓ ✓ ✓
pushing car ✓ ✓ ✓
ice skating ✓ ✓ ✓
ice fishing ✓ ✓ ✓
celebrating ✓ ✓ ✓
windsurfing ✓ ✓ ✓
riding mule ✓ ✓ ✓
waxing legs ✓ ✓ ✓
deadlifting ✓ ✓ ✓
bee keeping ✓ ✓ ✓
pumping gas ✓ ✓ ✓
tapping pen ✓ ✓ ✓
headbanging ✓ ✓ ✓
bookbinding ✓ ✓ ✓
flying kite ✓ ✓ ✓
fixing hair ✓ ✓ ✓
egg hunting ✓ ✓ ✓
mowing lawn ✓ ✓ ✓
triple jump ✓ ✓ ✓
milking cow ✓ ✓ ✓
doing nails ✓ ✓ ✓
dyeing hair ✓ ✓ ✓
eating cake ✓ ✓ ✓
paragliding ✓ ✓ ✓
headbutting ✓ ✓ ✓
bobsledding ✓ ✓ ✓
kitesurfing ✓ ✓ ✓
petting cat ✓ ✓ ✓
waxing back ✓ ✓ ✓
making slime × × ✓
steering car × × ✓
rolling eyes × × ✓
moving child × × ✓
pouring milk × × ✓
grooming cat × × ✓
doing sudoku × × ✓
closing door × × ✓
pouring wine × × ✓
cutting cake × × ✓
milking goat × × ✓
playing oboe × × ✓
filling cake × × ✓
sanding wood × × ✓
jumping sofa × × ✓
taking photo × × ✓
silent disco × × ✓
ironing hair × ✓ ✓
planing wood × ✓ ✓
gold panning × ✓ ✓
pillow fight × ✓ ✓
combing hair × ✓ ✓
laying stone × ✓ ✓
photobombing × ✓ ✓
playing lute × ✓ ✓
land sailing × ✓ ✓
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Label K4 K6 K7
scrapbooking × ✓ ✓
tasting wine × ✓ ✓
docking boat × ✓ ✓
photocopying × ✓ ✓
clam digging × ✓ ✓
ice swimming × ✓ ✓
roasting pig × ✓ ✓
pouring beer × ✓ ✓
smoking pipe × ✓ ✓
lock picking × ✓ ✓
steer roping × ✓ ✓
hugging baby × ✓ ✓
embroidering × ✓ ✓
longboarding × ✓ ✓
laying tiles × ✓ ✓
playing gong × ✓ ✓
base jumping × ✓ ✓
playing polo × ✓ ✓
moon walking × ✓ ✓
opening door × ✓ ✓
tasting food ✓ ✓ ✓
shaving legs ✓ ✓ ✓
pumping fist ✓ ✓ ✓
making sushi ✓ ✓ ✓
snowmobiling ✓ ✓ ✓
tasting beer ✓ ✓ ✓
golf driving ✓ ✓ ✓
waxing chest ✓ ✓ ✓
faceplanting ✓ ✓ ✓
eating chips ✓ ✓ ✓
playing harp ✓ ✓ ✓
spinning poi ✓ ✓ ✓
front raises ✓ ✓ ✓
reading book ✓ ✓ ✓
shaking head ✓ ✓ ✓
snowboarding ✓ ✓ ✓
scuba diving ✓ ✓ ✓
bending back ✓ ✓ ✓
drop kicking ✓ ✓ ✓
using segway ✓ ✓ ✓
ice climbing ✓ ✓ ✓
tossing coin ✓ ✓ ✓
cheerleading ✓ ✓ ✓
blowing nose ✓ ✓ ✓
pushing cart ✓ ✓ ✓
water skiing ✓ ✓ ✓
making pizza ✓ ✓ ✓
punching bag ✓ ✓ ✓
feeding fish ✓ ✓ ✓
riding camel ✓ ✓ ✓
shaving head ✓ ✓ ✓
throwing axe ✓ ✓ ✓
grooming dog ✓ ✓ ✓
curling hair ✓ ✓ ✓
air drumming ✓ ✓ ✓
training dog ✓ ✓ ✓
disc golfing ✓ ✓ ✓
hula hooping ✓ ✓ ✓
washing hair ✓ ✓ ✓
cartwheeling ✓ ✓ ✓
changing oil ✓ ✓ ✓
hammer throw ✓ ✓ ✓

Label K4 K6 K7
washing feet ✓ ✓ ✓
diving cliff ✓ ✓ ✓
golf putting ✓ ✓ ✓
motorcycling ✓ ✓ ✓
breakdancing ✓ ✓ ✓
drinking beer ✓ × ×
swinging legs ✓ × ×
bull fighting × ✓ ×
tossing salad ✓ × ✓
playing cards ✓ × ✓
slicing onion × × ✓
stacking dice × × ✓
helmet diving × × ✓
dealing cards × × ✓
treating wood × × ✓
eating nachos × × ✓
being excited × × ✓
vacuuming car × × ✓
petting horse × × ✓
stacking cups × × ✓
poaching eggs × × ✓
yarn spinning × ✓ ✓
card stacking × ✓ ✓
rope pushdown × ✓ ✓
smelling feet × ✓ ✓
card throwing × ✓ ✓
playing darts × ✓ ✓
chopping meat × ✓ ✓
making cheese × ✓ ✓
crossing eyes × ✓ ✓
cracking back × ✓ ✓
building lego × ✓ ✓
using inhaler × ✓ ✓
jumping jacks × ✓ ✓
using puppets × ✓ ✓
sucking lolly × ✓ ✓
cutting apple × ✓ ✓
lighting fire × ✓ ✓
surfing water ✓ ✓ ✓
playing organ ✓ ✓ ✓
hoverboarding ✓ ✓ ✓
feeding birds ✓ ✓ ✓
blowing glass ✓ ✓ ✓
building shed ✓ ✓ ✓
setting table ✓ ✓ ✓
doing laundry ✓ ✓ ✓
braiding hair ✓ ✓ ✓
mopping floor ✓ ✓ ✓
tying bow tie ✓ ✓ ✓
cutting nails ✓ ✓ ✓
skiing slalom ✓ ✓ ✓
making a cake ✓ ✓ ✓
chopping wood ✓ ✓ ✓
somersaulting ✓ ✓ ✓
riding a bike ✓ ✓ ✓
surfing crowd ✓ ✓ ✓
holding snake ✓ ✓ ✓
water sliding ✓ ✓ ✓
playing cello ✓ ✓ ✓
throwing ball ✓ ✓ ✓
eating hotdog ✓ ✓ ✓
robot dancing ✓ ✓ ✓

Label K4 K6 K7
ripping paper ✓ ✓ ✓
crawling baby ✓ ✓ ✓
cleaning pool ✓ ✓ ✓
brushing hair ✓ ✓ ✓
sanding floor ✓ ✓ ✓
belly dancing ✓ ✓ ✓
feeding goats ✓ ✓ ✓
shaking hands ✓ ✓ ✓
swing dancing ✓ ✓ ✓
carrying baby ✓ ✓ ✓
bending metal ✓ ✓ ✓
playing poker ✓ ✓ ✓
grinding meat ✓ ✓ ✓
shining shoes ✓ ✓ ✓
folding paper ✓ ✓ ✓
blasting sand ✓ ✓ ✓
arm wrestling ✓ ✓ ✓
rock climbing ✓ ✓ ✓
catching fish ✓ ✓ ✓
playing drums ✓ ✓ ✓
cracking neck ✓ ✓ ✓
tying necktie ✓ ✓ ✓
juggling fire ✓ ✓ ✓
golf chipping ✓ ✓ ✓
javelin throw ✓ ✓ ✓
skateboarding ✓ ✓ ✓
laying bricks ✓ ✓ ✓
playing piano ✓ ✓ ✓
playing flute ✓ ✓ ✓
salsa dancing ✓ ✓ ✓
eating burger ✓ ✓ ✓
skipping rope ✓ ✓ ✓
climbing tree ✓ ✓ ✓
washing hands ✓ ✓ ✓
playing chess ✓ ✓ ✓
tango dancing ✓ ✓ ✓
using computer ✓ × ×
cleaning floor ✓ × ×
exercising arm ✓ × ✓
baby waking up ✓ × ✓
waxing armpits × × ✓
mixing colours × × ✓
carving marble × × ✓
peeling banana × × ✓
breaking glass × × ✓
laying decking × × ✓
brushing floor × × ✓
herding cattle × × ✓
blending fruit × × ✓
seasoning food × × ✓
checking watch × × ✓
massaging neck × ✓ ✓
leatherworking × ✓ ✓
acting in play × ✓ ✓
chiseling wood × ✓ ✓
square dancing × ✓ ✓
sausage making × ✓ ✓
using a wrench × ✓ ✓
weaving fabric × ✓ ✓
breathing fire × ✓ ✓
rolling pastry × ✓ ✓
cutting orange × ✓ ✓
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Label K4 K6 K7
needle felting × ✓ ✓
skipping stone × ✓ ✓
scrubbing face × ✓ ✓
flint knapping × ✓ ✓
shuffling feet × ✓ ✓
throwing knife × ✓ ✓
fixing bicycle × ✓ ✓
making bubbles × ✓ ✓
counting money ✓ ✓ ✓
applying cream ✓ ✓ ✓
blowing leaves ✓ ✓ ✓
shoveling snow ✓ ✓ ✓
brush painting ✓ ✓ ✓
making the bed ✓ ✓ ✓
playing tennis ✓ ✓ ✓
playing violin ✓ ✓ ✓
tapping guitar ✓ ✓ ✓
picking apples ✓ ✓ ✓
doing aerobics ✓ ✓ ✓
drinking shots ✓ ✓ ✓
bungee jumping ✓ ✓ ✓
shearing sheep ✓ ✓ ✓
juggling balls ✓ ✓ ✓
stretching arm ✓ ✓ ✓
news anchoring ✓ ✓ ✓
smoking hookah ✓ ✓ ✓
massaging back ✓ ✓ ✓
weaving basket ✓ ✓ ✓
making snowman ✓ ✓ ✓
checking tires ✓ ✓ ✓
planting trees ✓ ✓ ✓
spray painting ✓ ✓ ✓
stretching leg ✓ ✓ ✓
clean and jerk ✓ ✓ ✓
peeling apples ✓ ✓ ✓
dancing ballet ✓ ✓ ✓
making jewelry ✓ ✓ ✓
grooming horse ✓ ✓ ✓
playing guitar ✓ ✓ ✓
sword fighting ✓ ✓ ✓
washing dishes ✓ ✓ ✓
roller skating ✓ ✓ ✓
massaging feet ✓ ✓ ✓
cleaning shoes ✓ ✓ ✓
bench pressing ✓ ✓ ✓
riding scooter ✓ ✓ ✓
sweeping floor ✓ ✓ ✓
brushing teeth ✓ ✓ ✓
trimming trees ✓ ✓ ✓
baking cookies ✓ ✓ ✓
massaging legs ✓ ✓ ✓
crossing river ✓ ✓ ✓
eating carrots ✓ ✓ ✓
taking a shower ✓ × ×
cooking chicken ✓ × ✓
shredding paper ✓ × ✓
metal detecting × × ✓
lighting candle × × ✓
using megaphone × × ✓
playing piccolo × × ✓
entering church × × ✓
playing mahjong × × ✓

Label K4 K6 K7
flipping bottle × × ✓
splashing water × × ✓
carrying weight × × ✓
spinning plates × × ✓
fencing (sport) × ✓ ✓
curling (sport) × ✓ ✓
separating eggs × ✓ ✓
playing ocarina × ✓ ✓
playing netball × ✓ ✓
polishing metal × ✓ ✓
jumping bicycle × ✓ ✓
trimming shrubs × ✓ ✓
playing marbles × ✓ ✓
blowdrying hair × ✓ ✓
dyeing eyebrows × ✓ ✓
laying concrete × ✓ ✓
playing pinball × ✓ ✓
dumpster diving × ✓ ✓
putting on sari × ✓ ✓
playing maracas × ✓ ✓
delivering mail × ✓ ✓
preparing salad × ✓ ✓
vacuuming floor × ✓ ✓
chiseling stone × ✓ ✓
breaking boards × ✓ ✓
climbing ladder ✓ ✓ ✓
hurling (sport) ✓ ✓ ✓
throwing discus ✓ ✓ ✓
recording music ✓ ✓ ✓
playing trumpet ✓ ✓ ✓
sled dog racing ✓ ✓ ✓
stomping grapes ✓ ✓ ✓
carving pumpkin ✓ ✓ ✓
unloading truck ✓ ✓ ✓
watering plants ✓ ✓ ✓
playing ukulele ✓ ✓ ✓
cleaning toilet ✓ ✓ ✓
folding napkins ✓ ✓ ✓
playing cymbals ✓ ✓ ✓
riding unicycle ✓ ✓ ✓
playing cricket ✓ ✓ ✓
climbing a rope ✓ ✓ ✓
scrambling eggs ✓ ✓ ✓
opening present ✓ ✓ ✓
folding clothes ✓ ✓ ✓
waiting in line ✓ ✓ ✓
finger snapping ✓ ✓ ✓
riding elephant ✓ ✓ ✓
waxing eyebrows ✓ ✓ ✓
shuffling cards ✓ ✓ ✓
walking the dog ✓ ✓ ✓
driving tractor ✓ ✓ ✓
strumming guitar ✓ × ×
filling eyebrows ✓ × ✓
playing rounders × × ✓
squeezing orange × × ✓
making latte art × × ✓
opening coconuts × × ✓
playing checkers × × ✓
sword swallowing × ✓ ✓
playing dominoes × ✓ ✓
putting on shoes × ✓ ✓

Label K4 K6 K7
tagging graffiti × ✓ ✓
raising eyebrows × ✓ ✓
threading needle × ✓ ✓
popping balloons × ✓ ✓
cooking scallops × ✓ ✓
backflip (human) × ✓ ✓
falling off bike × ✓ ✓
playing scrabble × ✓ ✓
visiting the zoo × ✓ ✓
mosh pit dancing × ✓ ✓
shucking oysters × ✓ ✓
looking at phone × ✓ ✓
throwing tantrum × ✓ ✓
tying shoe laces × ✓ ✓
dancing macarena ✓ ✓ ✓
playing bagpipes ✓ ✓ ✓
eating ice cream ✓ ✓ ✓
playing monopoly ✓ ✓ ✓
flipping pancake ✓ ✓ ✓
getting a tattoo ✓ ✓ ✓
building cabinet ✓ ✓ ✓
playing clarinet ✓ ✓ ✓
eating spaghetti ✓ ✓ ✓
drumming fingers ✓ ✓ ✓
eating doughnuts ✓ ✓ ✓
playing trombone ✓ ✓ ✓
moving furniture ✓ ✓ ✓
contact juggling ✓ ✓ ✓
playing recorder ✓ ✓ ✓
wrapping present ✓ ✓ ✓
hitting baseball ✓ ✓ ✓
playing kickball ✓ ✓ ✓
cleaning gutters ✓ ✓ ✓
cleaning windows ✓ ✓ ✓
peeling potatoes ✓ ✓ ✓
playing keyboard ✓ ✓ ✓
looking in mirror × × ✓
walking on stilts × × ✓
playing billiards × × ✓
curling eyelashes × × ✓
playing beer pong × ✓ ✓
directing traffic × ✓ ✓
twiddling fingers × ✓ ✓
marriage proposal × ✓ ✓
making horseshoes × ✓ ✓
cracking knuckles × ✓ ✓
adjusting glasses × ✓ ✓
tightrope walking × ✓ ✓
playing laser tag × ✓ ✓
installing carpet × ✓ ✓
lawn mower racing × ✓ ✓
standing on hands × ✓ ✓
playing pan pipes × ✓ ✓
playing ping pong × ✓ ✓
falling off chair × ✓ ✓
playing blackjack × ✓ ✓
mushroom foraging × ✓ ✓
playing harmonica ✓ ✓ ✓
cutting pineapple ✓ ✓ ✓
sharpening knives ✓ ✓ ✓
playing badminton ✓ ✓ ✓
getting a haircut ✓ ✓ ✓
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Label K4 K6 K7
playing saxophone ✓ ✓ ✓
making a sandwich ✓ ✓ ✓
playing xylophone ✓ ✓ ✓
reading newspaper ✓ ✓ ✓
jumping into pool ✓ ✓ ✓
arranging flowers ✓ ✓ ✓
frying vegetables ✓ ✓ ✓
sharpening pencil ✓ ✓ ✓
playing accordion ✓ ✓ ✓
eating watermelon ✓ ✓ ✓
jumpstyle dancing ✓ ✓ ✓
playing paintball ✓ ✓ ✓
playing nose flute × × ✓
getting a piercing × ✓ ✓
wading through mud × ✓ ✓
wood burning (art) × ✓ ✓
using circular saw × ✓ ✓
assembling bicycle × ✓ ✓
blowing bubble gum × ✓ ✓
repairing puncture × ✓ ✓
poking bellybutton × ✓ ✓
putting on mascara × ✓ ✓
throwing snowballs × ✓ ✓
riding snow blower × ✓ ✓
shining flashlight × ✓ ✓
using a microscope × ✓ ✓
kicking field goal ✓ ✓ ✓
playing ice hockey ✓ ✓ ✓
playing controller ✓ ✓ ✓
cutting watermelon ✓ ✓ ✓
dancing charleston ✓ ✓ ✓
hugging (not baby) ✓ ✓ ✓
springboard diving ✓ ✓ ✓
playing basketball ✓ ✓ ✓
dunking basketball ✓ ✓ ✓
playing volleyball ✓ ✓ ✓
playing didgeridoo ✓ ✓ ✓
inflating balloons ✓ ✓ ✓
extinguishing fire ✓ ✓ ✓
pushing wheelchair ✓ ✓ ✓
chopping vegetables × ✓ ×
pulling rope (game) × × ✓
picking blueberries × × ✓
playing road hockey × × ✓
uncorking champagne × × ✓
polishing furniture × × ✓
playing with trains × ✓ ✓
pushing wheelbarrow × ✓ ✓
shaping bread dough × ✓ ✓
alligator wrestling × ✓ ✓
building sandcastle × ✓ ✓
doing jigsaw puzzle × ✓ ✓
opening wine bottle × ✓ ✓
putting on eyeliner × ✓ ✓
passing soccer ball × ✓ ✓
playing rubiks cube × ✓ ✓
using a power drill × ✓ ✓
putting on lipstick × ✓ ✓
kicking soccer ball ✓ ✓ ✓
cooking on campfire ✓ ✓ ✓
gymnastics tumbling ✓ ✓ ✓
clay pottery making ✓ ✓ ✓

Label K4 K6 K7
swimming backstroke ✓ ✓ ✓
skiing crosscountry ✓ ✓ ✓
answering questions ✓ ✓ ✓
assembling computer ✓ ✓ ✓
sticking tongue out ✓ ✓ ✓
biking through snow ✓ ✓ ✓
playing bass guitar ✓ ✓ ✓
shooting basketball ✓ ✓ ✓
blowing out candles ✓ ✓ ✓
rock scissors paper ✓ ✓ ✓
riding mountain bike ✓ × ×
playing slot machine × × ✓
swimming with sharks × × ✓
playing shuffleboard × × ✓
using a paint roller × ✓ ✓
home roasting coffee × ✓ ✓
battle rope training × ✓ ✓
changing gear in car × ✓ ✓
swimming front crawl × ✓ ✓
wading through water × ✓ ✓
walking through snow × ✓ ✓
attending conference × ✓ ✓
casting fishing line × ✓ ✓
opening refrigerator × ✓ ✓
hand washing clothes × ✓ ✓
playing field hockey × ✓ ✓
juggling soccer ball ✓ ✓ ✓
dribbling basketball ✓ ✓ ✓
country line dancing ✓ ✓ ✓
canoeing or kayaking ✓ ✓ ✓
running on treadmill ✓ ✓ ✓
walking with crutches × × ✓
pulling espresso shot × × ✓
letting go of balloon × × ✓
being in zero gravity × × ✓
roasting marshmallows × ✓ ✓
using bagging machine × ✓ ✓
talking on cell phone × ✓ ✓
putting on foundation × ✓ ✓
using a sledge hammer × ✓ ✓
swinging baseball bat × ✓ ✓
making balloon shapes × ✓ ✓
dancing gangnam style ✓ ✓ ✓
cooking sausages ✓ ✓ ✓
snatch weight lifting ✓ ✓ ✓
swinging on something ✓ ✓ ✓
swimming with dolphins × × ✓
shooting off fireworks × × ✓
throwing water balloon × ✓ ✓
historical reenactment × ✓ ✓
swimming breast stroke ✓ ✓ ✓
bouncing on trampoline ✓ ✓ ✓
shooting goal (soccer) ✓ ✓ ✓
riding mechanical bull ✓ ✓ ✓
making paper aeroplanes × ✓ ✓
using remote controller ✓ ✓ ✓
massaging person’s head ✓ ✓ ✓
gospel singing in church × ✓ ✓
punching person (boxing) ✓ ✓ ✓
petting animal (not cat) ✓ ✓ ✓
pretending to be a statue × × ✓
listening with headphones × × ✓

Label K4 K6 K7
putting wallpaper on wall × × ✓
playing american football × × ✓
carving wood with a knife × × ✓
bouncing on bouncy castle × ✓ ✓
putting in contact lenses × ✓ ✓
archaeological excavation × ✓ ✓
swimming butterfly stroke ✓ ✓ ✓
tying knot (not on a tie) ✓ ✓ ✓
person collecting garbage ✓ ✓ ✓
trimming or shaving beard ✓ ✓ ✓
giving or receiving award ✓ ✓ ✓
breading or breadcrumbing ✓ ✓ ✓
opening bottle (not wine) ✓ ✓ ✓
sign language interpreting ✓ ✓ ✓
mountain climber (exercise) × ✓ ✓
playing hand clapping games × ✓ ✓
presenting weather forecast ✓ ✓ ✓
bouncing ball
(not juggling) × × ✓

changing wheel
(not on bike) ✓ ✓ ✓

catching or throwing
frisbee ✓ ✓ ✓

riding or walking
with horse ✓ ✓ ✓

catching or
throwing softball ✓ ✓ ✓

playing squash
or racquetball ✓ ✓ ✓

decorating the christmas
tree ✓ ✓ ✓

catching or throwing
baseball ✓ ✓ ✓

exercising with
an exercise ball ✓ ✓ ✓

passing American football
(in game) ✓ ✓ ✓

passing American football
(not in game) ✓ ✓ ✓
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