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ABSTRACT

Protein Language Models (PLMs) have emerged as performant and scalable tools
for predicting the functional impact and clinical significance of protein-coding
variants, but they still lag experimental accuracy. Here, we present a novel fine-
tuning approach to improve the performance of PLMs with experimental maps of
variant effects from Deep Mutational Scanning (DMS) assays using a Normalised
Log-odds Ratio (NLR) head. We find consistent improvements in a held-out pro-
tein test set, and on independent DMS and clinical variant annotation benchmarks
from ProteinGym and ClinVar. These findings demonstrate that DMS is a promis-
ing source of sequence diversity and supervised training data for improving the
performance of PLMs for variant effect prediction.

1 INTRODUCTION

The pace of discovery of new human genetic variants is rapidly increasing, led by genome se-
quencing of large human cohorts (Lek et al.,|2016; Backman et al.,|2021). However, the functional
characterisation of these human variants has not scaled at the same pace, limiting their impact for
clinical diagnosis and drug target discovery, and ultimately hampering our ability to understand and
treat human diseases (Landrum et al.| 2018)). Missense variants are the most common type of coding
variant, causing single amino acid changes in proteins that can have a wide range of consequences,
from severe disease-causing protein function disruptions to no significant effect. Predicting the im-
pact of missense mutations on protein function and the downstream clinical consequences remains
a crucial challenge (Karczewski et al., 2020).

Over the last few years, advancements in deep learning have led to significant improvements for
tackling the missense variant effect prediction challenge (Frazer et al.l 2021; |(Cheng et al.l 2023;
Gao et al.,[2023). Protein Language Models (PLMs) have demonstrated state-of-the-art (SOTA) per-
formance in accuracy and generalisability at various protein variant effect prediction tasks (Brandes
et al., 2023} [Lin et al.l |2023bj [Rives et al., |2021), but there are still gaps in their performance for
clinical variant classification and correlation with experimental assays (Livesey & Marshl 2023)).

In this study, we improve the performance of PLMs for variant effect prediction using experimen-
tal scores from Deep Mutational Scanning (DMS). We first introduce a rescaling and normalisa-
tion pipeline to integrate DMS assays from multiple proteins into a common functional scale. We
then present a novel lightweight fine-tuning approach for PLMs named Normalised Log-odds Ratio
(NLR) that can efficiently learn from DMS data by adding parameter-free layers on top of the lan-
guage modelling head of PLMs. We finally evaluate the performance improvements of our approach
on held-out test proteins and independent DMS and clinical annotation benchmarks, while ensuring
low sequence similarity between training and evaluation proteins to assess model generalisation.



Machine Learning for Genomics Explorations workshop at ICLR 2024

2 BACKGROUND

Deep Mutational Scanning (DMS) is an experimental technique that leverages high-throughput
DNA sequencing and fitness selection assays to exhaustively measure the effect of variants in a pro-
tein region (Fowler & Fields|, 2014)), providing comprehensive maps of protein variant effects that
can be used to understand the clinical relevance of human genetic variants (Findlay et al.l 2018;
Radford et al.,|2023)). Recognising the rapidly expanding volume of DMS data and the challenges
with data compilation and reproducibility, the Atlas of Variant Effects (AVE) alliance (Fowler et al.,
2021)) developed MaveDB, an open-source repository of DMS assays (Esposito et al.,|2019; Rubin
et al., [2021). More recently, ProteinGym has emerged as an independent collection of manually
curated DMS assays, providing a standardised framework for benchmarking protein fitness predic-
tion and design (Notin et al.l 2023)). Despite the wide adoption of DMS datasets for benchmarking
variant effect prediction models (Livesey & Marsh, |2023), one of the remaining challenges in com-
bining DMS scores across assays and proteins is that their scale is highly dependent on experimental
methods and selection assays, requiring rescaling and normalisation (Dunham & Beltrao), 2021)).

Protein Language Models (PLMs) are pre-trained on large corpora of naturally evolved pro-
tein sequences using self-supervision and have shown great promise predicting the impact of mis-
sense variants without additional supervision (i.e. zero-shot) (Meier et al.,|2021). The Evolutionary
Scale Modelling (ESM) family of PLMs (Rives et al., 2021; |Meier et al., 2021} |Lin et al., |2023b)
pre-trained with masked language modelling on the UniRef database (UniProt Consortium} 2023)
demonstrated the ability to encode functional and structural patterns crucial for variant effect and
structural predictions. More recently, AlphaMissense (Cheng et al., 2023), pre-trained on the Pro-
tein Data Bank (PDB) (wwPDB Consortium, |2019) and fine-tuned on population frequency data,
achieved SOTA results in predicting the clinical pathogenicity of human missense variants. The
success of PLMs in zero-shot variant effect predictions has led to the use of fine-tuning approaches
to improve performance on specific tasks, including protein stability (Umerenkov et all [2023),
pathogenicity (Lin et al.l 2023a), protein-protein interactions (Sledzieski et al., 2023)), secondary
structure and sub-cellular location (Schmirler et al., 2023)), and protein fitness (Rives et al., 2021}
Hsu et al.| 2022; Jagota et al.| 2023)).

3 METHODS

3.1 TRAINING AND EVALUATION DATASETS

Normalisation of DMS datasets from MaveDB. We downloaded a total of 308 score-sets from
113 experiments in MaveDB (https://www.mavedb.org) in July 2023. We selected experiments of
type Protein coding, manually mapped targets to 80 unique gene names and reassigned variants
to UniProt sequence positions. We then categorised variants into nonsense, missense and synony-
mous types using the hgvs_pro column, and filtered out indels (insertions and deletions) and multiple
amino acid variants. We filtered out viral proteins and selected datasets with at least one synony-
mous, one nonsense, and over 50 missense variants, resulting in 103 datasets for 30 proteins (Table
@. To normalise functional scores across all datasets, we converted them to log-scales and rescaled
the distribution so that the mean score of synonymous variants (S,,,,) was 0 and the mean score for
nonsense variants (Syonsense) Was -1, using equationE](Figure E]A Figure @]) Values were further
capped in the [-2, 2] range to limit outliers.

B Sraw — mean(Seyn) 0

mean(Ssyn) - mean(snonsense)

Snorm,

We then selected scores for missense variants and aggregated assays for each protein. In the case of
duplicated scores for the same protein variant in multiple assays, we calculated the mean score. The
final dataset contained 142,696 missense variants covering 8,636 unique protein positions in the 30
genes. We clustered the 30 protein sequences using MMseqs2 (version 14) (Steinegger & Soding,
2017) with 20% coverage and 20% sequence identity thresholds, yielding 29 unique clusters (only
CCRS and CXCR4 were clustered together). We selected the 5 proteins with most ClinVar labels
(TP53, GCK, CBS, HMBS, and BRCA1) for model testing (Table @ The remaining clusters were
used to select variants in 25 proteins for model training and cross-validation.


https://www.mavedb.org
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Figure 1: Methods overview. A) Preparation of normalised DMS functional scores from a subset
of MaveDB experiments. The mean scores of synonymous and nonsense variants are used to create
a common scale across assays and proteins. B) Fine-tuning pipeline for ESM-1v models using the
Normalised Log-odds Ratio (NLR) head. C) Performance evaluation on two independent bench-
marks: DMS assays from ProteinGym, and pathogenic and benign missense variants from ClinVar.

Benchmarking DMS datasets from ProteinGym. ProteinGym provides functional scores for
two types of variants: amino acid substitutions and indels. Since ProteinGym does not provide
scores for synonymous or nonsense variants, the normalisation approach needed for model training
that we propose here was not possible. However, ProteinGym assays can still be used for bench-
marking using correlation metrics. We downloaded ProteinGym substitution scores for a subset of
43 DMS assays with open licenses from the ProteinGym website (https://proteingym.org)) in Novem-
ber 2023. We then removed 19 assays with sequence similarity to our 25 MaveDB training proteins
using the same procedure described above and selected variants with single amino acid substitutions,
resulting in a final benchmark dataset of 24 assays and 115,093 missense variants (Figure[T|C).

ClinVar pathogenic and benign variants. ClinVar is a public archive of human genetic vari-
ants and interpretations of their significance to disease (Landrum et al) [2018). We downloaded
the complete set of 862,666 variant annotations in the variant_summary.txt file (version 2023_04)
from ClinVar’s FTP website (https://ftp.ncbi.nlm.nih.gov/pub/clinvar). We then selected missense
variants mapped to protein transcripts (HGVSp column), with at least one reviewer star (ReviewSta-
tus column), and with clinical significance (CLNSIG column) labels as Benign and Likely benign
(considered as benign in this study), and variants labelled as Pathogenic and Likely pathogenic (con-
sidered as pathogenic), similar to previous work (Cheng et al.| [2023; [Lin et al., [2023a). We then
removed 430 proteins with sequence similarity to our 25 MaveDB training proteins using the same
procedure described above. The final ClinVar dataset contains 114,221 missense variants in 11,298
proteins (Figure[T|C). To evaluate per-protein performance of our models, we constructed a balanced
dataset by selecting proteins with at least 10 benign and 10 pathogenic labels, similar to/Cheng et al.
(2023)), resulting in 37,142 variant annotations for 361 proteins.


https://proteingym.org/
https://ftp.ncbi.nlm.nih.gov/pub/clinvar/
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3.2 NORMALISED LOG-0ODDS RATIO

We present a Normalised Log-odds Ratio (NLR) framework (Figure [IB), which allows efficient
fine-tuning on DMS data by adding parameter-free layers on top of PLMs. The key components of
the NLR architecture are shown in Figure[S2) and include:

1. Training instances: Individual amino acid substitutions with corresponding DMS scores.

2. Variant representation: For each training instance we provide the wildtype protein as input,
allowing efficient computation of all missense variant effects within a protein in a single forward
pass during inference. We also experimented masking input tokens to encourage model regulari-
sation, but simply using the raw wildtype sequence outperformed the masking strategies explored

(Appendix[A.2.1).

3. Encoder: We chose ESM as our baseline models and initialised the encoder weights from
their corresponding checkpoints. In contrast to most fine-tuning approaches (Schmirler et al.,
2023; |Lin et al.l 2023a), NLR fine-tunes both the pre-trained transformer encoder blocks and
the masked language modelling head. We used ESM-1v (esm1v_t33_650M_UR90S_[1-5]) for
most experiments but also benchmarked NLR when using ESM-2 (esm2_t33_650M_URS50D)
and ESM-1b (esm1b_t33_650M_URS50S) as pre-trained models.

4.1 NLR - Log-odds Ratio computation: NLR follows the inference approach of existing zero-shot
variant effect prediction methods, scoring all possible amino acid substitutions in a sequence by
calculating the log-odds ratio between reference and alternate amino acid probabilities at each
mutated position (e.g. Meier et al.| (2021)); |Cheng et al.| (2023))). However, NLR performs this
computation during both, fine-tuning and inference phases. This is facilitated by the NLR head
which, given a wildtype sequence, computes the matrix of log-odds ratios in a differentiable form.
As visualised in Figure[S2] this computation results in a matrix of sequence length by vocabulary
size after each forward pass, providing a score for all possible amino acid substitutions.

4.2 NLR - Normalisation: To address the distinct scale between log-odds ratios and DMS scores,
NLR applies a normalisation layer to each log-odds ratio matrix during training. After exploring
the effect of different approaches, such as instance normalisation (Ulyanov et al.,[2016)), min-max
normalisation between -2 and 2 proved superior to other methods tested (Appendix [S2).

5. Loss and output During training, the predicted score for a specific variant is retrieved by in-
dexing the corresponding position in the normalised log-odds ratio matrix. This score is then
compared to the ground-truth DMS score to compute the mean squared error (MSE) loss for
backpropagation.

Training and evaluation. We used the subset of 25 MaveDB proteins for model training and ex-
plored hyperparameters and architecture choices with 5-fold cross-validation due to varied zero-shot
correlation across proteins (Appendix[A.T)). We fine-tuned all model parameters as early experiments
exhibited larger performance gains than freezing transformer encoder blocks (Appendix[A.2.2). Af-
ter conducting cross-validation experiments, the final models were trained using the entire dataset,
consisting of DMS data for 109,215 variants from 25 proteins. Final runs were trained for 2,000 op-
timization steps to prevent overfitting, which was observed during the cross-validation experiments
(Appendix [A.T). Since ESM-1v is a five-model ensemble, five independent runs were performed,
each starting with a different ESM-1v checkpoint. At inference time, new variants were scored by
averaging the log-odds ratio scores across the five model predictions.

4 RESULTS

We ran inference with pre-trained and NLR fine-tuned models on the five MaveDB test proteins, the
24 ProteinGym DMS assays and the 114,221 ClinVar pathogenic and benign variants. As shown
in Figure 2JA, NLR fine-tuning of ESM-1v improves the performance of missense variant effect
predictions across all benchmarks.

Improved MaveDB DMS predictions. Our MaveDB test set was composed of five human genes
(TP53, GCK, CBS, HMBS and BRCA1) with associated DMS data, which went through the fil-
tering and standardisation procedure presented in this study. From the results in Figure [2JA, we
find that NLR fine-tuning of ESM-1v ensemble improves the micro-averagecﬂ Spearman correlation

"Micro-averaging of metrics applies weights per protein proportional to their relative number of variants,
while macro-averaging applies equal weight per protein.
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across proteins in our MaveDB test set from 0.478 to 0.503 (+5.2%, [Figure 2]A). In Table [S4] the
performance is stratified by each of the five ESM-1v model checkpoints, displaying improvements
from 5.4% to 9.4% across all model versions. These results indicate that the fine-tuning improve-
ments on individual model checkpoints are larger than the ensemble of ESM-1v models. Figure 2B
displays the performance of ESM-1v per protein, exhibiting improvements after fine-tuning on all
five proteins in the test set. We also assessed the impact of the number of proteins used for training
(Appendix [A.3). We observed an upward trend in model performance with increasing number of
training proteins, indicating that NLR fine-tuning can scale with more available DMS data.

Improved ProteinGym DMS predictions. Our ProteinGym benchmark was composed of 24
DMS assays which differed from the five proteins in the MaveDB test set in two ways: they included
DMS data for non-human proteins and we did not apply our MaveDB pre-processing pipeline. From
the results in Figure 2A we find that NLR fine-tuning of ESM-1v improves the average Spearman
correlation across assays in ProteinGym from 0.331 to 0.396 (+19.6%, [Figure 2]A). Figure[2C reveals
that this improvement extends to nearly all DMS studies, both human and non-human. Notably, the
improvements were larger for viral proteins, which were excluded from the training set and had the
lowest zero-shot correlation.
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Figure 2: Results after NLR fine-tuning of ESM-1v models across benchmarks. A) Performance
in the five MaveDB test proteins. ProteinGym DMS assays and ClinVar pathogenic variants. B)
Spearman correlation in MaveDB test proteins. Mean =+ standard deviation (std) of 50 bootstrapped
samples. C) Spearman correlation in ProteinGym DMS assays. Mean =+ std of 50 bootstrapped
samples. D) Per-protein auROC for ClinVar proteins with over 10 benign and 10 pathogenic variants.

Improved ClinVar pathogenicity classification. We analysed 114,221 variants from 11,298 pro-
teins, calculating the area under the receiver operator characteristic curve (auROC) between pre-
dicted log-odds ratios and ClinVar labels. Fine-tuning increased auROC from 0.891 to 0.902
(+1.23%, Figure 2JA). As seen in Figure[S3B, after fine-tuning, log-odds ratio scores for pathogenic
variants became more negative, and benign scores more positive, resulting in improved pathogenic-
benign variant separation. We further used the balanced ClinVar subset with proteins having at least
10 benign and 10 pathogenic labels to examine the fine-tuning effect on individual proteins. As
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shown in Figure 2D, fine-tuning consistently improved variant classification for most proteins. No-
tably, the improvements were larger for proteins with lower baseline auROCs (below 0.8), while
proteins with strong zero-shot performance saw minimal gains. This analysis revealed a micro-
averaged auROC increase from 0.860 to 0.877 (+1.98%), and a macro-averaged auROC rise across
proteins from 0.880 to 0.891 (+1.25%).

NLR fine-tuning improves other ESM models. We further assessed the impact of NLR fine-
tuning with ESM-1b and ESM-2. ESM-1b shares the same architecture as ESM-1v but was trained
on different corpora and not directly optimised for variant effect predictions (Rives et al., [2021])).
ESM-2 introduced improvements in architecture, number of training parameters and pre-training
data, outperforming previous ESM models on protein structure prediction (Lin et al.,2023b). Across
all benchmarks, ESM-1b and ESM-2 exhibited performance improvements after NLR fine-tuning
(Table[I). Notably, performance gains were higher for ESM-1b and ESM-2 compared to the ensem-
ble of ESM-1v models on our DMS benchmarks, with up to 25.6% increase in average Spearman
correlation on ProteinGym for ESM-1b. This indicates that NLR’s benefits extend beyond specific
architectures and may be more significant in single-model settings.

Table 1: Performance of ESM models in each evaluation benchmark before (Zero-Shot) and after
NLR fine-tuning (+ NLR ft).

MaveDB ProteinGym ClinVar

(avg Spearman) (avg Spearman) (auROC)
ESM-1v Zero-Shot 0.478 0.331 0.891
ensemble + NLR ft 0.503 0.396 0.902
ESM-1b Zero-Shot 0.451 0.309 0.913
+ NLR ft 0.498 0.388 0.919
ESM-2 (650M) | Zero-Shot 0.482 0.317 0.884
+ NLR ft 0.509 0.393 0.894

5 DISCUSSION

We have presented a novel approach to enhance variant effect predictions from PLMs by fine-tuning
on DMS datasets. We applied score normalisation across DMS assays to tackle challenges in data
integration and introduced a novel lightweight fine-tuning Normalised Log-odds Ratio head that
allows PLMs to efficiently learn from DMS data without adding task-specific parameters. After
NLR fine-tuning, we observed moderate but consistent improvements across variant effect predic-
tion benchmarks, proteins and ESM models, highlighting the robustness of the approach. Despite
fine-tuning with DMS data from a limited set of 25 proteins, we observed accuracy improvements
in the classification of the clinical significance of variants from 11,298 proteins in ClinVar, and
in the correlation with experimental measurements from independent DMS assays in ProteinGym
and MaveDB. The improvements were more pronounced for proteins with a lower zero-shot per-
formance and lesser representation in the pre-training datasets (for example, viral proteins). These
findings demonstrate that our fine-tuning approach improves the performance of PLMs beyond self-
supervision on naturally selected protein sequences.

This study focused on the ESM family of PLMs, which utilises single protein sequences as input.
Other models like MSA Transformer, EVE, and AlphaMissense (Rao et al.,|[2021;|Frazer et al., 2021}
Cheng et al.| 2023) leverage Multiple Sequence Alignments (MSAs) in the input space. Alignment-
based PLMs can perform better in proteins with a limited number of homologs in protein sequence
databases, such as viral proteins, overcoming some of the performance gaps of ESM models. No-
tably, AlphaMissense has recently achieved SOTA performance on multiple missense variant effect
prediction tasks, with reported ClinVar accuracy and DMS correlations superior to the NLR fine-
tuned models in this study. Adapting NLR fine-tuning to MSA-based PLMs is a promising avenue
for future work. Although we used DMS data from a limited set of 25 proteins, we observed that
NLR fine-tuning can continue to scale model performance with more DMS data. We believe that
NLR fine-tuning provides a lightweight and efficient approach to improve PLMs variant effect pre-
dictions as the volume, quality, and standards of DMS data continue to grow.
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A APPENDIX

A.1 FINE-TUNING DETAILS

Experimental setup. The base model for hyperparameter search and ablations was the first ESM-
1v model checkpoint (esm1v_t33_650M_UR90S_1). Experiments ran for a maximum of 10 epochs,
saving checkpoints based on peak micro-averaged Spearman correlation on the validation fold. We
used an effective batch size of 128 samples across 8 V100s (32GB), training in Distributed Data
Parallel mode, with two samples per device and accumulating gradients for 8 steps. All experiments
performed learning rate warmup from O to the peak learning rate over 200 steps, and the peak
learning rate was chosen via grid search (le-5, 2e-5, 5e-5, and le-4). Cross-validation experiments
revealed an optimal learning rate of 2e-5, exhibiting overfitting after 2,000 optimization steps.

Cross-validation. Five-fold cross-validation was performed on the training set (25 proteins from
MaveDB) to compare model architectures and hyperparameter settings. DMS data for 5 proteins was
kept in each validation fold while 20 proteins were used for model training. The cross-validation
scheme grouped variant instances by protein cluster to assess generalisation to unseen and dissimilar
proteins. In each run, the absolute improvement in Spearman correlation over the zero-shot model
was computed at each step (¢):

improvement(t) = Spearman(t) — Spearman(t = 0) (S1)

where Spearman(t=0) represents the correlation before starting model fine-tuning and
Spearman(t) represents the correlation after ¢ optimization steps. We save the model checkpoint
at the step (t,,4.) With peak Spearman improvement.

Log-odds ratio matrix normalisation. During NLR fine-tuning, the log-odds ratio matrix is com-
puted for each training instance, and min-max normalisation is then independently applied to each
matrix: Y_x

Xscated = 30— (rangemaz — rangemin) + rangemin (82)

Xmax - szn

where X is the log-odds ratio matrix, X,,;, and X,,,, are its minimum and maximum values
(masking out padded positions), and range,, i, and range,, ., define the desired normalised range,
-2 and 2, respectively, aligning with DMS scores. Normalisation was only performed during fine-
tuning but not at inference time.

A.2 REGULARISATION EXPERIMENTS

Training instances are defined by the wildtype protein sequence and a single DMS variant score.
Each DMS variant score corresponds to a specific amino acid substitution at a certain position, and
its corresponding prediction is sampled from the log-odds ratio matrix. Given the large number
of DMS scores per protein sequence, the model is repeatedly exposed to the same input sequence
during training which could make it prone to overfitting. To test for this, we explored the effect of
two regularisation strategies: input masking and layer freezing.

A.2.1 INPUT MASKING

Randomly masking a percentage of input tokens for each variant instance has the potential to prevent
the model relying on local, noise-based correlations between the amino acid sequence and the DMS
output distribution. To test this we experimented with masking 5, 15 and 30% of input tokens
for each instance during training, while at inference time, only the variant position was masked
and the remaining context was shown to the model. Despite the potential for regularisation, no
positive effects were observed when masking the input sequences (see Table [ST). This result may
be attributed to (1) a potential mismatch between the training and validation input distribution, since
masked tokens are seen in a higher proportion during training than inference, when only the variant
position was masked, and (2) strong dependencies between the effects of single nucleotide variants
and specific motifs within the context of those variants. The latter scenario could result in masking
of crucial information during training that prevents effective learning.
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Table S1: Peak Spearman correlation improvement across folds in MaveDB (mean =+ std) when
randomly masking input tokens.

Inputed tokens masked (%) improvement(tmaz)

0 0.033 £ 0.008
5 0.022 £ 0.009
15 0.019 £ 0.004
30 0.017 £ 0.007

A.2.2 LAYER FREEZING

Layer freezing has the potential to regularise the model by preserving the information learned during
pre-training in the frozen layers while fine-tuning the remaining encoder blocks. However, while
progressively freezing ESM-1v we did not observe any clear improvements (see Table [S2). It is
worth noting that the high variance across folds might hinder more general conclusions about the
potential optimal number of layers frozen. However, three important conclusions were taken from
this analysis:

1. As aresult of the experiment freezing 33 layers, it was clear that tuning transformer encoder
blocks is essential to obtain higher improvements on Spearman correlation, and exclusively
tuning the language modelling head only provides a minor improvement.

2. Only unfreezing one encoder block performed worse than the rest of the experiments, sug-
gesting that modelling this task requires a higher number of trainable parameters and learn-
ing higher-order token interactions.

3. From the results above, it was not clear that any number of frozen transformer encoder
block experiments outperformed the fully unfrozen model. However, future experiments
with parameter-efficient fine-tuning strategies (Hu et al., [2021) could reveal an optimal
number of parameters to tune for this task.

Table S2: Peak Spearman correlation improvement across folds in MaveDB (mean +std) when
freezing layers.

Layers frozen improvement(tmqz)

0 0.033 £ 0.008
12 0.027 £ 0.015
16 0.027 £ 0.014
20 0.027 £0.014
24 0.028 £0.012
28 0.031 £0.015
32 0.022 £ 0.019
33f 0.001 £ 0.007

T Only the Language Modelling head was fine-tuned.

A.3 DATA SCALING

We conducted experiments to evaluate how performance improvement scales with the number of
training proteins that have DMS data. Analogous to regularisation experiments, we performed five-
fold cross-validation on the training set. However, in each run, we randomly selected a subset
of n proteins from the training folds, and conducted experiments with n being 2, 5, 10, 15 or
20 and ran all the experiments for five epochs. The results, which are displayed in Figure [S4}
demonstrate that the improvements of NLR fine-tuning scale with the number of proteins with DMS
data. Furthemore, when increasing the amount of DMS data, we observed a consistent upward trend
in improvement across all folds. Overall, these results indicate that NLR fine-tuning can effectively
scale the performance of Protein Language Models (PLMs) in variant effect prediction as the number
of DMS assays openly available contines to grow.

10
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A.4 TABLES AND FIGURES

Table S3: List of proteins and DMS assays from MaveDB used in this study.

Gene Uniprot ID |Organism MaveDB URN Data split
BRCA1 P38398 Homo sapiens 00000003-a-2,00000097-e-1,00000097-f-1,00000081-a-1,00000097-g- [Test
1,00000097-h-1,00000097-0-1,00000097-d-1,00000097-a-1,00000097-
b-1,00000097-c-1,00000097-i-1,00000097-j-1,00000003-a-1,00000097-
1-1,00000097-m-1,00000097-n-1,00000097-0-1,00000097-p-
1,00000097-g-1,00000097-k-1,00000097-t-1,00000097-u-1,00000097-
v-1,00000097-w-1,00000097-x-1,00000097-r-1,00000097-s-
1,00000097-y-1,00000097-z-1
CBS P35520 Homo sapiens 00000005-a-2,00000005-a-1,00000005-a-3,00000005-a-4,00000005-a- [Test
5,00000005-2-6
GCK P35557 Homo sapiens 00000096-a-1,00000096-b-1 Test
HMBS P08397 Homo sapiens 00000108-a-1,00000108-a-2,00000108-a-3 Test
ITP53 P04637 Homo sapiens 00000059-a-1 ITest
IACE2 Q9BYF1 Homo sapiens (00000069-a-1,00000069-a-2 ITrain
ICALM1 PODP23 Homo sapiens 00000001-c-1 ITrain
ICCR5 P51681 Homo sapiens 0000004 7-c-1,00000047-a-1,00000047-b-1 [Train
ICD86 P42081 Homo sapiens 00000046-a-1 ITrain
ICXCR4 P61073 Homo sapiens 00000048-c-1,00000048-b-1,00000048-a-1 [Train
CYP2C9 |P11712 Homo sapiens 00000095-b-1,00000095-a-1 [Train
DHFR POABQ4 Escherichia coli 00000063-a-1,00000063-b-1 Train
HMGCR  |P04035 Homo sapiens 00000035-a-1,00000035-a-3 ITrain
HSP90 P02829 Saccharomyces 00000074-a-1,00000039-a-4,00000039-a-5,00000011-a-1,00000039-a- [Train
cerevisiae 6,00000039-a-7,00000040-a-1,00000040-a-4,00000040-a-3,00000040-
2-2,00000039-a-1,00000039-a-3,00000039-a-2
LDLRAP1 |Q5SW96 |Homo sapiens 00000036-a-1,00000036-a-2 ITrain
LamB P02943 Escherichia coli 00000064-a-1,00000064-b-1 [Train
MTHFR  |P42898 Homo sapiens 00000049-a-1,00000049-a-3,00000049-a-4,00000049-a-2,00000049-a- [Train
8,00000049-a-5,00000049-a-6,00000049-a-7
NUDT15 |Q9NV35 Homo sapiens 00000055-a-1,00000055-b-1 [Train
PRKN 060260 Homo sapiens 00000114-a-1 ITrain
PTEN P60484 Homo sapiens 00000013-a-1,00000054-a-1 ITrain
ISCN5A Q14524 Homo sapiens 00000098-a-1 ITrain
ISUMO1 P63165 Homo sapiens 00000001-b-2 [Train
ITPK1 Q9H3S4 Homo sapiens 00000001-d-1 ITrain
TPMT P51580 Homo sapiens 00000013-b-1 ITrain
UBE2| P63279 Homo sapiens 00000001-a-3,00000001-a-4 [Train
UBE4B Q9ES00 Mus musculus 00000004-a-2,00000004-a-3 [Train
UBI4 POCG63 Saccharomyces 00000037-a-1 [Train
cerevisiae
KOR Q9BQB6  [Homo sapiens 00000078-a-1,00000078-b-1 [Train
AP1 P46937 Homo sapiens 00000002-a-1,00000002-a-2 [Train
avGFP P42212 Aequorea victoria (00000080-a-1,00000080-a-2 ITrain

11
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Table S4: Micro-averaged Spearman correlation across MaveDB test proteins stratified by ESM-1v
model versions. Improvement is reported as % of increase over Zero-Shot baseline.

ESM-1v checkpoint | Zero-Shot NLR fine-tuned % improvement

L 0.444 0.476 72
2 0.438 0.479 94
3 0.456 0.481 55
4 0.456 0.487 6.8
5 0.452 0.490 g4
Ensemble 1-5 0.478 0.503 5.2
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Figure S1: Normalisation of DMS functional scores. A) Distribution of DMS functional scores for
missense, nonsense, and synonymous variants in MaveDB for the PTEN protein after score rescaling
and normalisation, shown as density functions. B) Stacked histogram of DMS functional scores for
all missense variants in the 30 proteins of the final normalised MaveDB dataset. C) Distributions
of normalised DMS functional scores for each of the 30 proteins in the MaveDB dataset, shown as
half-violin plots.

12



Machine Learning for Genomics Explorations workshop at ICLR 2024

Sequence length

(5) Output L 01 | 009 | -031 | -088 | -053 | 097 | 041 | 009 | -031 | -088 | -053 | 097
> A 027 | 00 | 043 | 002 | 001 | -084 | -027 | -1.12 | 043 | 0.02 | 001 | -0.64 -
S Prediction:
H 0.22
3
S 041 [ -071 | 00 | 00 | -1.56 011 | -0.71 | -0.50 | 0.00 | -1.56 | 0.22
F 035 | 023 | 127 | 14 | 099 | 00 | -035 | 023 | 127 [ 24 | -099 [ -1.8

ESM1v LM head ‘
L)

‘ 33x ESM1v Transformer encoder blocks ‘

(2) variant
Representation

(1) Training
AIt‘M‘T|A|I‘I‘K‘E-V‘S‘R‘N‘K‘R‘R‘ DMS variant score:

instance
vt [ [T [ [ ¢ [ R v]s [w [ [« [ ]

Figure S2: Diagram of the fine-tuning ESM-1v architecture with Normalised Log-odds Ratio (NLR)
head. (1) Training instance with a single amino acid swap and its DMS label. (2) Input token repre-
sentation for the wild-type sequence. (3) ESM-1v pre-trained encoder blocks + Language Modelling
head. (4) Fine-tuning blocks, including log-odds ratio matrix calculation and normalisation layers.
(5) Output matrix with the chosen cell reflecting the predicted score for the input variant.
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Figure S3: A) DMS vs. predicted log-odds ratios for each variant in the MaveDB test set, stratified
by gene. In blue are the scores from the zero-shot ESM-1v, while in red are the NLR fine-tuned
scores. A linear fit is displayed together with the score distribution and the Spearman correlation is
shown for each distribution. B) Predicted log-odds ratios from ESM-1v vs. NLR-finetuned ESM-1v,
for each variant in the ClinVar benchmark. In blue and red are the benign and pathogenic variants,
respectively.
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Figure S4: Peak Spearman correlation improvement across validation folds in MaveDB as a function
of the number of training proteins. Left-side panel exhibits the improvement as a box-plot distri-
bution across validation folds. The right-side panel shows the improvement stratified by validation
fold.
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