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Abstract

Diffusion models are relatively easy to train but require many steps to
generate samples. Consistency models are far more difficult to train, but
generate samples in a single step.
In this paper we propose Multistep Consistency Models: A unification
between Consistency Models (Song et al., 2023) and TRACT (Berthelot
et al., 2023) that can interpolate between a consistency model and a diffusion
model: a trade-off between sampling speed and sampling quality. Specifically,
a 1-step consistency model is a conventional consistency model whereas a
∞-step consistency model is a diffusion model.
Multistep Consistency Models work really well in practice. By increasing
the sample budget from a single step to 2-8 steps, we can train models
more easily that generate higher quality samples, while retaining much of
the sampling speed benefits. Notable results are 1.4 FID on Imagenet 64
in 8 sampling steps and 2.1 FID on Imagenet128 in 8 sampling steps with
consistency distillation, using simple losses without adversarial training.
We also show that our method scales to a text-to-image diffusion model,
generating samples that are close to the quality of the original model.

1 Introduction

Diffusion models have rapidly become one of the dominant generative models for image,
video and audio generation (Ho et al., 2020; Kong et al., 2021; Saharia et al., 2022). The
biggest downside to diffusion models is their relatively expensive sampling procedure: whereas
training uses a single function evaluation per datapoint, it requires many (sometimes hundreds)
of evaluations to generate a sample.

Recently, Consistency Models (Song et al., 2023) have reduced sampling time significantly,
but at the expense of image quality. Consistency models come in two variants: Consistency
Training (CT) and Consistency Distillation (CD) and both have considerably improved
performance compared to earlier works. TRACT (Berthelot et al., 2023) focuses solely on
distillation with an approach similar to consistency distillation, and shows that dividing the
diffusion trajectory in stages can improve performance. Despite their successes, neither of
these works attain performance close to a standard diffusion baseline.

Here, we propose a unification of Consistency Models and TRACT, that closes the perfor-
mance gap between standard diffusion performance and low-step variants. We relax the
single-step constraint from consistency models to allow ourselves as much as 4, 8 or 16
function evaluations for certain settings. Further, we generalize TRACT to consistency
training and adapt step schedule annealing and synchronized dropout from consistency
modelling. We also show that as steps increase, Multistep CT becomes a diffusion model.
We introduce a unifying training algorithm to train what we call Multistep Consistency
Models, which splits the diffusion process from data to noise into predefined segments. For
each segment a separate consistency model is trained, while sharing the same parameters.
For both CT and CD, this turns out to be easier to model and leads to significantly improved
performance with fewer steps. Surprisingly, we can perfectly match baseline diffusion model
performance with only eight steps, on both Imagenet64 and Imagenet128.

Another important contribution of this paper that makes the previous result possible, is a
deterministic sampler for diffusion models that can obtain competitive performance on more
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1.0
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Figure 1: This figure shows that Multistep Consistency Models interpolate between (single
step) Consistency Models and standard diffusion. Top at t = 0: the data distribution which
is a mixture of two normal distributions. Bottom at t = 1: standard normal distribution.
Left to right: the sampling trajectories of (1, 2, 4, ∞)-step Consistency Models (the latter is
in fact a standard diffusion with DDIM) are shown. The visualized trajectories are real from
trained Multistep Consistency Models. The 4-step path has a smoother path and will likely
be easier to learn than the 1-step path.

complicated datasets such as ImageNet128 in terms of FID score. We name this sampler
Adjusted DDIM (aDDIM), which essentially inflates the noise prediction to correct for the
integration error that produces blurrier samples.

In terms of numbers, we achieve performance rivalling standard diffusion approaches with
as little as 8 and sometimes 4 sampling steps. These impressive results are both for
consistency training and distillation. A remarkable result is that with only 4 sampling steps,
multistep consistency models obtain performances of 1.6 FID on ImageNet64 and 2.3 FID
on Imagenet128.

2 Background: Diffusion Models

Diffusion models are specified by a destruction process that adds noise to destroy data:
zt = αtx+ σtεt where εt ∼ N (0, 1). Typically for t→ 1, zt is approximately distributed as
a standard normal and for t→ 0 it is approximately x. In terms of distributions one can
write the diffusion process as: q(zt|x) = N (zt|αtx, σt).
Following (Sohl-Dickstein et al., 2015; Ho et al., 2020) we will let σ2

t = 1 − α2
t (variance

preserving). As shown in Kingma et al. (2021), the specific values of σt and αt do not really
matter. Whether the process is variance preserving or exploding or something else, they can
always be re-parameterized into the other form. Instead, it is their ratio that matters and
thus it can be helpful to define the signal-to-noise ratio, i.e. SNR(t) = α2

t /σ
2
t . To sample

from these models, one uses the denoising equation:

q(zs|zt,x) = N (zs|µt→s(zt,x), σt→s) (1)

where x is approximated via a learned function that predicts x̂ = f(zt, t). Note here

that σ2
t→s =

(
1
σ2
s
+

α2
t|s
σ2
t|s

)−1 and µt→s = σ2
t→s

(αt|s
σ2
t|s
zt +

αs

σ2
s
x
)
as given by (Kingma et al.,

2021). In (Song et al., 2021b) it was shown that the optimal solution under a diffusion
objective is to learn E[x|zt], i.e. the expectation over all data given the noisy observation
zt. One than iteratively samples for t = 1, 1− 1/N, . . . , 1/N and s = t− 1/N starting from
z1 ∼ N (0, 1). Although the amount of steps required for sampling depends on the data
distribution, empirically generative processes for problems such as image generation use
hundreds of iterations making diffusion models one of the most resource consuming models
to use (Luccioni et al., 2023).

Consistency Models In contrast, consistency models (Song et al., 2023; Song & Dhariwal,
2023) aim to learn a direct mapping from noise to data. Consistency models are constrained
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Figure 2: Qualititative comparison between a multistep consistency and diffusion model.
Top: ours, samples from aDDIM distilled 16-step concistency model (3.2 secs). Bottom:
generated samples usign a 100-step DDIM diffusion model (39 secs). Both models use the
same initial noise.

to predict x = f(z0, 0), and are further trained by learning to be consistent, minimizing:
||f(zt, t)− nograd(f(zs, s))||, (2)

where zs = αsx+ σsε and zt = αtx+ σtε, (note both use the same ε) and s is closer to the
data meaning s < t. When (or if) a consistency model succeeds, the trained model solves for
the probability ODE path along time. When successful, the resulting model predicts the
same x along the entire trajectory. At initialization it will be easiest for the model to learn
f near zero, because f is defined as an identity function at t = 0. Throughout training, the
model will propagate the end-point of the trajectory further and further to t = 1. In our
own experience, training consistency models is much more difficult than diffusion models.

Consistency Training and Distillation Consistency Models come in two flavours: Con-
sistency Training (CT) and Consistency Distillation (CD). In the paragraph before, zs was
given by the data which would be the case for CT. Alternatively, one might use a pretrained
diffusion model to take a probability flow ODE step (for instance with DDIM). Calling this
pretrained model the teacher, the objective for CD can be described by:

||f(zt, t)− nograd(f(DDIMt→s(xteacher,zt), s))||, (3)

where DDIM now defines zs given the current zt and (possibly an estimate of) x.

An important hyperparameter in consistency models is the gap between the model evaluations
at t and s. For CT large gaps result in a bias, but the solutions are propagated through
diffusion time more quickly. On the other hand, when s → t the bias tends to zero but
it takes much longer to propagate information through diffusion time. In practice a step
schedule N(·) is used to anneal the step size t− s = 1/N(·) over the course of training.

DDIM Sampler The DDIM sampler is a linearization of the probability flow ODE that
is often used in diffusion models. In a variance preserving setting, it is given by:

zs = DDIMt→s(x,zt) = αsx+ (σs/σt)(zt − αtx) (4)

In addition to being a sampling method, the DDIM equation will also prove to be a useful
tool to construct an algorithm for our multistep diffusion models.

Another helpful equations is the inverse of DDIM (Salimans & Ho, 2022), originally proposed
to find a natural way parameterize a student diffusion model when a teacher defines the
sampling procedure in terms of zt to zs. The equation takes in zt and zs, and produces x
for which DDIMt→s(x, zt) = zs. It can be derived by rearranging terms from the DDIM
equation:

x = invDDIMt→s(zs,zt) =
zs − σs

σt
zt

αs − αt σsσt
. (5)
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3 Multistep Consistency Models

In this section we describe multi-step consistency models. First we explain the main
algorithm, for both consistency training and distillation. Furthermore, we show that multi-
step consistency converges to a standard diffusion training in the limit. Finally, we develop
a deterministic sampler named aDDIM that corrects for the missing variance problem in
DDIM.

3.1 General description

Algorithm 1 Training Multistep CMs
Sample x ∼ pdata, ε ∼ N (0, I), train iteration i
Nper segment =
round(Nteacher(i)/student_steps)
step ∼ U(0, student_steps− 1)
nrel ∼ U(1, Nper segment)
tstep = step/student_steps

xteacher =

{
x if training
fteacher(zt, t) if distillation

xvar = ||xteacher − x||2/d
t = tstep + nrel/T and s = t− 1/T
zt = αtx+ σtε
zs = aDDIMt→s(xteacher,zt, xvar)
x̂ref = nograd(f(zs, s))
x̂ = f(zt, t)
ẑref,tstep = DDIMs→tstep(x̂ref ,zs)
x̂diff = invDDIMt→tstep(ẑref,tstep ,zt)− x̂
Lt = wt · ||x̂diff || for instance wt = SNR(t) + 1

Multistep consistency splits up diffusion
time into equal segments to simplify the
modelling task. Recall that a consistency
model must learn to integrate the full ODE
integral. This mapping can become very
sharp and difficult to learn when it jumps
between modes of the target distribution
as can be seen in Figure 1. A consistency
loss can be seen as an objective that aims
to approximate a path integral by minimiz-
ing pairwise discrepancies. Multistep consis-
tency generalizes this approach by breaking
up the integral into multiple segments. Orig-
inally, consistency runs until time-step 0,
evaluated at some time t > 0. A consis-
tency model should now learn to integrate
the DDIM path until 0 and predict the cor-
responding x. Instead, we can generalize
the consistency loss to targets ztstep instead
of x (≈ z0). It turns out that the DDIM equation can be used to operate on ztstep for
different times tstep, which allows us to express the multi-step consistency loss as:

||DDIMt→tstep(f(zt, t),zt)− ẑref,tstep ||, (6)

where ẑref,tstep = DDIMs→tstep(nograd f(zs, s), zs) and where the teaching step zs =
aDDIMt→s(x, zt) is an approximation of the probability flow ODE. For now it suffices
to think of aDDIM as DDIM. It will be described in detail in section 3.2. In fact, one can
drop-in any deterministic sampler (or integrator) in place of aDDIM in the case of distillation.

A model can be trained directly on this loss in z space, however make the loss more
interpretable and relate it more closely to standard diffusion, we re-parametrize the loss to
x-space using:

||x̂diff || = ||f(zt, t)− invDDIMt→tstep(ẑref,tstep ,zt)||. (7)

This allows the usage of existing losses from diffusion literature, where we have opted for
v-loss (equivalent to SNR+ 1 weighting) because of its prior success in distillation (Salimans
& Ho, 2022).

As noted in (Song et al., 2023), consistency in itself is not sufficient to distill a path (always
predicting 0 is consistent) and one needs to ensure that the model cannot collapse to
these degenerate solutions. Indeed, in our specification observe that when s = tstep then
ẑref,tstep = DDIMs→tstep(zs, x̂) = zs. As such, the loss of the final step cannot be degenerate
because it is equal to:

||f(zt, t)− invDDIMt→s(zs,zt)||. (8)

Many-step CT is equivalent to Diffusion training Consistency training learns to
integrate the probability flow through time, whereas standard diffusion models learn a path
guided by an expectation x̂ = E[x|zt] that necessarily has to change over time for non-trivial
distributions. There are two simple reasons that for many student steps, Multistep CT
converges to a diffusion model. 1) At the beginning of a step (specifically t = tstep + 1

T ) the
objectives are identical. Secondly, 2) when the number of student steps equals the number
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of teacher steps T , then every step is equal to the diffusion objective. This can be observed
by studying Algorithm 1: let t = tstep + 1/T . For consistency training, aDDIM reduces to
DDIM and observe that in this case s = tstep. Hence, under a well-defined model f (such
as a v-prediction one) DDIMs→tstep does nothing and simply produces ẑref,tstep = zs. Also
observe that ẑtstep = ẑs. Further simplification yields:

w(t)||xdiff || = w(t)|| invDDIMt→s(zs, zt)− x̂|| = w(t)||x− x̂|| (9)

Where ||x− x̂|| is the distance between the true datapoint and the model prediction weighted
by w(t), which is typical for standard diffusion. Interestingly, in (Song & Dhariwal, 2023) it
was found that Euclidean (`2) distances typically work better than for consistency models
than the more usual squared Euclidean distances (`2 squared). We followed their approach
because it tended to work better especially for smaller number of student steps, which is
a deviation from standard diffusion. Because multistep consistency models tend towards
diffusion models, we can state two important hypotheses:

1. Finetuning Multistep CMs from a pretrained diffusion checkpoint will lead to quicker
and more stable convergence.

2. As the number of student steps increases, Multistep CMs will rival diffusion model
performance, giving a direct trade-off between sample quality and duration.

Note that this trade-off requires training a new Multistep CM for each of the desired student
steps, but given that one starts from a pretrained model, one expects that finetuning requires
a fraction of the original training budget.

Algorithm 2 Sampling from Multistep CMs
Sample z1 ∼ N (0, I), T = student_steps
for t in (T

T
, . . . , 1

T
) where s = t− 1

T
do

zs = DDIMt→s(f(zt, t),zt)
end for

What about training in continuous
time? Diffusion models can be easily
trained in continuous time by sampling
t ∼ U(0, 1), but in Algorithm 1 we have
taken the trouble to define t as a discrete
grid on [0, 1]. One might ask, why not let
t be continuously valued. This is certainly
possible, if the model f would take in an additional conditioning signal to denote in which
step it is. This is important because its prediction has to discontinuously change between
t ≥ tstep (this step) and t < tstep (the next step). In practice, we often train Multistep
Consistency Models starting from pre-trained with standard diffusion models, and so having
the same interface to the model is simpler. In early experiments we did find this approach
to work comparably.

3.2 The Adjusted DDIM (aDDIM) sampler.

Algorithm 3 Generating Samples with aD-
DIM

For all t, precompute xvar,t = η||x− x̂(zt)||2/d,
or set xvar,t = 0.1/(2 + α2

t/σ
2
t ).

Sample zT ∼ N (0, I), choose η ∈ (0, 1)
for t in (T

T
, . . . , 1

T
) where s = t− 1/T do

x̂ = f(zt, t)
ε̂ = (zt − αtx̂)/σt
zs,var = (αs − αtσs/σt)2 · xvar,t

zs = αsx̂+
√
σ2
s + (d/||ε̂||2)zs,var · ε̂

end for

Popular methods for distilling diffusion mod-
els, including the method we propose here,
rely on deterministic sampling through nu-
merical integration of the probability flow
ODE. In practice, numerical integration of
this ODE in a finite number of teacher steps
incurs error. For the DDIM integrator (Song
et al., 2021a) used for distilling diffusion
models in both consistency distillation (Song
et al., 2023) and progressive distillation (Sal-
imans & Ho, 2022; Meng et al., 2022) this
integration error causes samples to become
blurry. To see this quantitatively, consider a
hypothetical perfect sampler that first sam-
ples x∗ ∼ p(x|zt), and then samples zs using

z∗s = αsx
∗ + σs

zt − αtx∗

σt
= (αs −

αtσs
σt

)x∗ +
σs
σt
zt. (10)
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Figure 3: Comparison of sampling methods for the small ImageNet 64 (left) and ImageNet 128
(right) models without distillation. The Heun (with sampler adds a second order correction
to DDIM.

If the initial zt is from the correct distribution p(zt), the sampled z∗s would then also be
exactly correct. Instead, the DDIM integrator uses

zDDIM
s = (αs − αtσs/σt)x̂+ (σs/σt)zt, (11)

with model prediction x̂. If x̂ = E[x|zt], we then have that

E
[
||z∗s ||2 − ||zDDIM

s ||2
∣∣zt] = trace(Var[zs|zt]), (12)

where Var[zs|zt] is the conditional variance of zs given by

Var[zs|zt] = (αs − αtσs/σt)2 ·Var[x|zt], (13)

and where Var[x|zt] in turn is the variance of p(x|zt).
The norm of the DDIM iterates is thus too small, reflecting the lack of noise addition in the
sampling algorithm. Alternatively, we could say that the model prediction x̂ ≈ E[x|zt] is
too smooth.

Currently, the best sample quality is achieved with stochastic samplers, which can be tuned
to add exactly enough noise to undo the oversmoothing caused by numerical integration.
However, current distillation methods are not well suited to distilling these stochastic samplers
directly. Alternatively, deterministic 2nd order samplers are also not ideal, as they require
an additional forward pass during distillation.

Here we therefore propose a new deterministic sampler that aims to achieve the norm
increasing effect of noise addition in a deterministic way, with a single evaluation. It turns
out we can do this by making a simple adjustment to the DDIM sampler, and we therefore
call our new method Adjusted DDIM (aDDIM). Our modification is heuristic and is not more
theoretically justified than the original DDIM sampler. However, empirically we find aDDIM
to work very well leading to improved FID scores (Fig. 3) and thus a stronger deterministic
teacher.

aDDIM performs on par with the 2nd order Heun sampler on Imagenet64 and outperforms
it on Imagenet128. Indicating that a noise correction works just as well or better than a 2nd

order correction. Interestingly, we also found that the 2nd order Heun sampler (Karras et al.,
2022) only works well with the noise schedule introduced in the same work (see App. A.4 for
more details).

Instead of adding noise to our sampled zs, we simply increase the contribution of our
deterministic estimate of the noise ε̂ = (zt−αtx̂)/σt. Assuming that x̂ and ε̂ are orthogonal,
we achieve the correct norm for our sampling iterates using:

zaDDIM
s = αsx̂+

√
σ2
s + tr(Var[zs|zt])/||ε̂||2 · ε̂. (14)

In practice, we can estimate tr(Var[zs|zt]) = (αs − αtσs/σt)2 · tr(Var[x|zt]) empirically on
the data by computing beforehand tr(Var[x|zt]) = η||x̂(zt)−x||2 for all relevant timesteps t.
Here η is a hyperparameter which we set to 0.75. Alternatively, we obtain equally good results
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Figure 4: Another qualititative comparison between a multistep consistency and teacher,
using the same prompt. Top: ours, a distilled 16-step concistency model (3.2 secs). Bottom:
generated samples using a 100-step DDIM diffusion model (39 secs). Both models use the
same initial noise.

by approximating the posterior variance analytically with tr(Var[x|zt])/d = 0.1/(2 +α2
t /σ

2
t ),

for data dimension d, which can be interpreted as 10% of the posterior variance of x if
its prior was factorized Gaussian with variance of 0.5. In either case, note that Var[zs|zt]
vanishes as s→ t: in the many-step limit the aDDIM update thus becomes identical to the
original DDIM update. For a complete description see Algorithm 3.

Note that aDDIM only replaced the teacher steps. The student model uses a vanilla DDIM
step which learns to predict the trajectory of the teacher with aDDIM. The student DDIM
step only serves as a convenient output parameterization, and the student could just as well
predict zs directly.

4 Related Work

Multistep Consistency Models are a direct combination of (Song et al., 2023; Song &
Dhariwal, 2023) and TRACT (Berthelot et al., 2023). Compared to consistency models, we
propose to operate on multiple stages, which simplifies the modelling task and improves
performance significantly. On the other hand, TRACT limits itself to distillation and uses
the self-evaluation from consistency models to distill models over multiple stages. The
stages are progressively reduced to either one or two stages and thus steps. The end-goal of
TRACT is again to sample in either one or two steps, whereas we believe better results can
be obtained by optimizing for a slightly larger number of steps. We show that this more
conservative target, in combination with our improved sampler and annealed schedule, leads
to significant improvements in terms of image quality that closes the gap between sample
quality of standard diffusion and low-step diffusion-inspired approaches.

Earlier, DDIM (Song et al., 2021a) showed that deterministic samplers degrade more gracefully
than the stochastic sampler used by Ho et al. (2020) when limiting the number of sampling
steps. Karras et al. (2022) proposed a second order Heun sampler to reduce the number of
steps (and function evaluations), while Jolicoeur-Martineau et al. (2021) studied different
SDE integrators to reduce function evaluations. Progressive Distillation (Salimans & Ho,
2022; Meng et al., 2022) distills diffusion models in stages, which limits the number of model
evaluations during training while exponentially reducing the required number of sampling
steps with the number stages.

Other methods inspired by diffusion such as Rectified Flows (Liu et al., 2023a) and Flow
Matching (Lipman et al., 2023) have also tried to reduce sampling times. In practice however,
flow matching and rectified flows are generally used to map to a standard normal distribution
and reduce to standard diffusion. As a consequence, on its own they still require many
evaluation steps. In Rectified Flows, a distillation approach is proposed that does reduce
sampling steps more significantly, but this comes at the expense of sample quality.

7
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Table 1: Imagenet performance with multistep consistency training (CT) and consistency
distillation (CD), started from a pretrained diffusion model. A baseline with the aDDIM
sampler on the base model is included.

Small Large
ImageNet64 ImageNet128 ImageNet64 ImageNet128

Steps Train Distill Train Distill Train Distill

Base Consistency Model 1 7.2 4.3 16.0 8.5 6.4 3.2 14.5 7.0
MultiStep CM (ours) 2 2.7 2.0 6.0 3.1 2.3 1.9 4.2 3.1
MultiStep CM (ours) 4 1.8 1.7 4.0 2.4 1.6 1.6 2.7 2.3
MultiStep CM (ours) 8 1.5 1.6 3.3 2.1 1.5 1.4 2.2 2.1
MultiStep CM (ours) 16 1.5 1.5 3.4 2.0 1.6 1.4 2.3 2.0

Diffusion (aDDIM) 512 1.5 2.2 1.4 2.2

Table 2: Ablation of CD on Image128 with and without
annealing the teacher steps on ImageNet128. Annealing the
teacher stepsize improves the performance.
Steps (64 → 1280) (step = 128) (step = 256) (step = 1024)

1 7.0 8.8 7.6 10.8
2 3.1 5.3 3.6 3.8
4 2.3 5.0 3.5 2.6
8 2.1 4.9 3.2 2.2

Table 3: Comparison between
PD (Salimans & Ho, 2022) and
CT/CD on ImageNet64 on the
small model.
Steps CT (ours) CD (ours) PD

1 7.2 4.3 10.7
2 2.7 2.0 4.7
4 1.8 1.7 2.4
8 1.5 1.6 1.8

Adversarial distillation Distillation to a few steps was very difficult to do using only
simple distance metrics. Therefore, many works resort to a form of adversarial training. For
example Luo et al. (2023) distill the knowledge from the diffusion model into a single-step
model and Zheng et al. (2023) use specialized architectures to distill the ODE trajectory
from a pre-created noise-sample pair dataset. A very similar approach to ours is Consistency
Trajectory Models (CTMs) (Kim et al., 2023), which are trained to arbitrarily integrate to a
given timestep. This is implemented by modifying the inputs of the denoising network to
include an endpoint of the integration. Although CTMs produce very high quality image
samples in a few steps, their performance relies on adversarial training: Without it, CTMs
cannot produce great samples and have a considerable gap in FID score. In contrast, our
Multistep CMs can be trained with simple distance metrics and still achieve very good FID
scores under a few sampling steps. A possible explanation is that it is much easier to learn a
handful of fixed integration trajectories (Multistep CMs) instead of every possible integration
with arbitrary endpoints (CTMs). Another advantage of Multistep CMs is that the inputs
to the denoising network are not changed, making fine-tuning of existing diffusion models to
Multistep CMs very straightforward.

5 Experiments

Our experiments focus on a quantitative comparison using the FID score on ImageNet as
well as a qualitative assessment on large scale Text-to-Image models. These experiments
should make our approach comparable to existing academic work while also giving insight in
how multi-step distillation works at scale.

5.1 Evaluation on ImageNet

Table 4: Ablation of the aDDIM
teacher on ImageNet64.
Student Steps DDIM aDDIM

1 3.91 4.35
2 1.99 2.02
4 1.77 1.68
8 1.70 1.58
16 1.72 1.54

For our ImageNet experiments we trained diffusion
models on ImageNet64 and ImageNet128 in a base
and large variant. We initialize the consistency models
from the pre-trained diffusion model weights which we
found to greatly increase robustness and convergence.
Both consistency training and distillation are used.
Classifier Free Guidance (Ho & Salimans, 2022) was
used only on the base ImageNet128 experiments. For
all other experiments we did not use guidance because
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it did not significantly improve the FID scores of the
diffusion model. All consistency models are trained for 200, 000 steps with a batch size of
2048 and a teacher step schedule that anneals from 64 to 1280 in 100.000 train steps with an
exponential schedule.

In Table 1 the performance improves when the student step count increases. There are
generally two patterns we observe: As the student steps increase, performance improves.
This validates our hypothesis that more student steps are a useful trade-off between sample
quality and speed. Conveniently, this happens very early: even on a complicated dataset
such as ImageNet128, our base model variant is able to achieve 2.1 FID with just 8 student
steps.

Table 5: Literature Comparison on ImageNet.
Method NFE FID non-adv

Imagenet 64 x 64

DDIM (Song et al., 2021a) 10 18.7 X
DFNO (LPIPS) (Zheng et al., 2023) 1 7.83 X
TRACT (Berthelot et al., 2023) 1 7.43 X

2 4.97 X
4 2.93 X
8 2.41 X

Diff-Instruct 1 5.57
PD (Salimans & Ho, 2022) 1 10.7 X

(reimpl. with aDDIM) 2 4.7 X
4 2.4 X
8 1.7 X

PD Stochastic (Meng et al., 2022) 1 18.5 X
2 5.81 X
4 2.24 X
8 2.31 X

CD (LPIPS) (Song et al., 2023) 1 6.20 X
2 4.70 X
3 4.32 X

PD (LPIPS) (Song et al., 2023) 1 7.88 X
2 5.74 X
3 4.92 X

iCT-deep (Song & Dhariwal, 2023) 1 3.25 X
iCT-deep 2 2.77 X
CTM (Kim et al., 2023) 1 1.9

2 1.7
DMD (Yin et al., 2023) 1 2.6
MultiStep-CT (ours) 2 2.3 X

4 1.6 X
8 1.5 X

MultiStep-CD (ours) 1 3.2 X
2 1.9 X
4 1.6 X
8 1.4 X

Imagenet 128 x 128

VDM++ (Kingma & Gao, 2023) 512 1.75 X
PD (Salimans & Ho, 2022) 2 8.0 X

(reimpl. with aDDIM) 4 3.8 X
8 2.5 X

MultiStep-CT (ours) 2 4.2 X
4 2.7 X
8 2.2 X

MultiStep-CD (ours) 2 3.1 X
4 2.3 X
8 2.1 X

To draw a direct comparison between Pro-
gressive Distillation (PD) (Salimans & Ho,
2022) and our approaches, we reimplement
PD using aDDIM and we use same base ar-
chitecture, as reported in Table 3. With our
improvements, PD can attain better perfor-
mance than previously reported in literature.
However, compared to MultiStep CT and
CD it starts to degrade in sample quality
at low step counts. For instance, a 4-step
PD model attains an FID of 2.4 whereas CD
achieves 1.7.

In Tbl. 4 we ablate the effect of using ad-
justed DDIM as a teacher. Empirically, we
observe that the adjusted sampler is impor-
tant when more student steps are used. In
contrast, vanilla DDIM works better when
few steps are taken and the student does not
get close to the teacher as measured in FID.

Further we ablate whether annealing the
step schedule is important to attain good
performance. As can be seen in Tbl. 2, it is
especially important for low multistep mod-
els to anneal the schedule. In these experi-
ments, annealing always achieves better per-
formance than tests with constant teacher
steps at 128, 256, 1024. As more student
steps are taken, the importance of the an-
nealing schedule decreases.

Literature Comparison Compared to
existing works in literature, we achieve
SOTA FID scores in both ImageNet64 and
Imagenet128 with 4-step and 8-step gen-
eration. Interestingly, we achieve approx-
imately the same performance using single
step CD compared to iCT-deep (Song &
Dhariwal, 2023), which achieves this result
using direct consistency training. Since di-
rect training has been empirically shown to be a more difficult task, one could conclude that
some of our hyperparameter choices may still be suboptimal in the extreme low-step regime.
Conversely, this may also mean that multistep consistency is less sensitive to hyperparameter
choices.

In addition, we compare on ImageNet128 to our reimplementation of Progressive Distillation.
Unfortunately, ImageNet128 has not been widely adopted as a few-step benchmark, possibly
because a working deterministic sampler has been missing until this point. For reference we
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Table 6: Text to Image performance. Note that when 8/16-step Consistency is compared to a
teacher model that is only guidance distilled at 256 steps, there is practically no performance
loss. Method NFE FID30k FID5k CLIP non-adv

SDv1.5 (Rombach et al., 2022) low g (from DMD) 512 8.8 - X
high g (from DMD) 512 13.5 0.322 X

DMD (low guidance) (Yin et al., 2023) 1 11.5 -
(high guidance) 1 14.9 0.32

UFOGen (Xu et al., 2023) 1 12.8 22.5 0.311
4 22.1 0.307

InstaFlow-1.7B (Liu et al., 2023b) 1 11.8 22.4 0.309 X
PeRFlow (Yan et al., 2024) 4 11.3 X

Teacher Diffusion Model g=0.5 (ddpm) 256 7.9 13.6 0.305 X
guidance distilled (ddim) 256 8.2 13.8 0.300 X

Multistep-CD (teacher g=0.5) 4 8.7 14.4 0.298 X
8 8.1 13.8 0.300 X
16 7.9 13.9 0.300 X

Teacher Diffusion Model g=3 (ddpm) 256 12.7 18.1 0.315 X
guidance distilled (ddim) 256 13.9 19.0 0.312 X

Multistep-CD (teacher g=3) 4 12.4 18.1 0.311 X
8 13.9 19.6 0.311 X
16 14.4 20.0 0.312 X

also provide the recent result from (Kingma & Gao, 2023). Further, with these results we
hope to put ImageNet128 on the map for few-step diffusion model evaluation.

5.2 Evaluation on Text to Image modelling

In addition to the analysis on ImageNet, we study the effects on text-to-image models. We
distill a 16-step consistency model from a base teacher model. In Table 6 one can see that
Multistep CD is able to distill its teacher almost perfectly in terms of FID. The loss of clip
score can be attributed to the guidance distillation, which a baseline 256-step student model
also has trouble distilling. Compared to the guidance-distilled baseline, the 16-CD model
has no loss in performance measured in CLIP and FID on the low guidance setting (and
for the high guidance setting only a minor degradation in FID). Even the 8-step CD model
attains an impressive FID score of 8.1, which is well below the existing literature.

In Figure 2 and 6 we compare samples from our 16-step CD aDDIM distilled model to the
original 100-step DDIM sampler. Because the random seed is shared we can easily compare
the samples between these models, and we can see that there are generally minor differences.
In our own experience, we often find certain details more precise, at a slight cost of overall
construction. Another comparison in Figure 4 shows the difference between a DDIM distilled
model (equivalent to η = 0 in aDDIM) and the standard DDIM sampler. Again we see many
similarities when sharing the same initial random seed.

6 Conclusions

In conclusion, this paper presents Multistep Consistency Models, a simple unification between
Consistency Models (Song et al., 2023) and TRACT (Berthelot et al., 2023) that closes the
performance gap between standard diffusion and few-step sampling. Multistep Consistency
gives a direct trade-off between sample quality and speed, achieving performance comparable
to standard diffusion in as little as eight steps. The main limitation of multistep consistency is
that one pays the price of several function evaluations to generate a sample. Here, adversarial
approaches generally perform better when only one or two evaluations are permitted, but
they come the cost of more difficult training dynamics.

Broader Impacts This paper proposes a method to speed up sampling from diffusion
models. Although generative models may be used for positive applications such as enhancing
human creativity or drug discovery, they may also be used to create deepfakes or misinfor-
mation. Hence, enabling faster sampling may amplify both the positive and the negative
impacts of generative modelling.
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A Experimental Details

A.1 Setup

In this paper we follow the setup from simple diffusion (Hoogeboom et al., 2023). Following
their approach, we use a standard UViTs. These are UNets with MLP blocks instead of
convolutional layers when a block has self-attention, making the entire block a transformer
block. This contains the details for the architecture and how to define diffusion process.
There are some minor specifics which we share per experiment below. All runs are initialized
using the parameters of a pretrained diffusion models.

Multistep Consistency Hyperparameters For all ImageNet runs (small/large,
1 through 16 step) we use a log-linear interpolated schedule from 64 teacher
steps to 1280 teacher steps, annealed over 100000 training iterations which means
Nteacher(i) = exp(log 64 + clip(i/100.000, 0, 1) · (log 1280− log 64)). The batch size is 2048.
We use a xvar_frac of 0.75 for aDDIM. And we use a huber epsilon of 1e-4. The model is
trained for 200000 steps. The interpolation starts quite low and takes a long time, and these
settings are somewhat excessive for the larger student step models such as the 8- or 16-step
model. However, fixing these settings for the model allowed for clean comparisons. These
runs anneal the teacher steps using

For the text-to-image model, we ran consistency distillation where we kept the teacher steps
fixed at 256 and used an xvar_frac of 0.75. Note that the xvar_frac should always be
computed on the conditional output, not the guided output (so guidance zero). We used a
huber epsilon of 1, which is essentially a scalar-scaled l2 squared loss for the normalized [-1,
1] domain of interest. We train these models for 30000 steps at a batch size of 2048.

ImageNet64 For the ImageNet64 experiments, the levels of the UViT small are as follows.
Down: 3 ResNet blocks with 256 channels, 3 Transformer Blocks with 512 channels both
stages ending with an average pool. Middle: 16 transformer blocks with 1024 channels,
mlp expansion factor is 4. Up, matching the down blocks, starting a stage with a nearest
neighbour upsampling and obviously no pooling. Dropout is applied to the middle with a
factor of 0.2. For the large variant, all channels are multiplied by 2, and dropout is applied to
all transformers albeit with a lower factor of 0.1. The network is trained with an interpolated
cosine schedule from noise resolution 32 to 64 at a resolution of 64 (this is practically identical
to a normal cosine schedule). The small and large model have 394M and 1.23B parameters,
respectively.

ImageNet128 For the ImageNet128 experiments, the UViT is the same as the UViT for
ImageNet64, but with an extra 3 ResNet Blocks at the resolution 128x128 with 128 channels
at both the start and the end of the UViT. For completeness, down: 3 ResNet blocks with
128 channels, 3 ResNet blocks with 256 channels, 3 Transformer Blocks with 512 channels
both stages ending with an average pool. Middle: 16 transformer blocks with 1024 channels,
mlp expansion factor is 4. Up, matching the down blocks, starting a stage with a nearest
neighbour upsampling and no pooling. The small and large model have 397M and 1.25B
parameters, respectively.

Different from before, dropout is applied to the middle with only a factor of 0.1. For the
large variant, all channels are multiplied by 2, and dropout is applied to all blocks (both
convolutional and transformer) except for the ones at the resolution of 128, also at a factor
of 0.1. The network is trained with an interpolated cosine schedule from noise resolution
32 to 128 at a resolution of 128, with a multiscale loss (Hoogeboom et al., 2023) that 2× 2
average pools once.

Text-to-Image The text-to-image model is directly trained on 512×512, with a multiscale
loss and an interpolated cosine schedule starting at noise resolution 32 and ending at 512.
The UViT has the following stages, down: 3 ResNet blocks at 128 channels, 3 ResNet blocks
at 256 channels, 3 ResNet blocks at 1024 channels, 3 transformer blocks at 2048 channels,
average pool at the end of each stage. Mid: 16 transformer blocks with 4096 channels and
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dropout ratio 0.1. Up: identical to reversed down with nearest neighbour instead of average
pooling.

A.2 Compute resources

All small model variants are run on 64 TPUv5e chips. For ImageNet64 CT takes 2.7 training
steps per second and CD takes 2.5 steps per sec. For ImageNet128 CT takes 2.2 training
steps per second and CD takes 1.7 steps per sec.

The large variants are trained on 256 TPUv5e chips. For ImageNet64 CT takes 2.9 training
steps per second and CD takes 2.5 steps per sec. For ImageNet128 CT it takes 2.2 training
steps per second and CD takes 1.8 steps per second. The text to image experiment is also
run on 256 TPUve chips and takes 0.71 steps per second to train, and is only trained for
30000 iterations.

All models use a batch size of 2048 during training.

A.3 Datasets

The models in this paper are trained on ImageNet dataset (Russakovsky et al., 2015). The
text to image model is trained on a privately licensed text-to-image dataset, comparable
with public text-to-image datasets but filtered for content.

A.4 Teacher sampling

100 200 300 400 500
function evaluations

1.5

2.0

2.5

3.0

FI
D

DDIM
noisy DDIM
heun
adjustedDDIM

100 200 300 400 500
function evaluations

1.6

1.8

2.0

2.2

FI
D

DDIM
noisy DDIM
heun
adjustedDDIM

Figure 5: Comparison of different sampling methods for the cosine schedule (left) and the
sigma schedule used by Karras et al. (2022) (right) on Imagenet64. Note that aDDIM with
a (shifted) cosine schedule is the best performing model overall except for the 64 function
evaluation.

Fig. 5 compares various samplers including the 2nd order Heun sampler. Additionally, a
stochastic version of DDIM is included (noise DDIM) where we add random Guassian noise
directly to the model prediction. This direct noise injection breaks the determinism of
DDIM and is therefore not a useful sampler for consistent distillation. However, it behaves
very similarly to the aDDIM which seems to indicate that our heuristic noise correction is
accurately simulating the positive effects of noise injection in the sampler.

Interestingly, we observe a significant difference in the relative quality of various sampling
methods depending on the noise schedule used at evaluation. The Heun sampler favors the
schedule introduced by Karras (Karras et al., 2022) while the noisy methods seem to work
better with a standard cosine schedule. One possible explanation is that the asymptotic
behavior of the cosine schedule favours the noise injection methods. Previous work has
indicated that the asymptotic behavior a noise schedule is important to fully capture the data
distribution (Lin et al., 2024). We consider investigating the interaction between schedules
and samplers and interesting opportunity for future work.
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A.5 Additional results

In Figure 6, some additional results are shown for the same prompt. Again, the distilled
model is very similar to the original teacher model with minor variations.

Figure 6: Another qualititative comparison between a multistep consistency and diffusion
model. Top: ours, samples from aDDIM distilled 16-step concistency model (3.2 secs).
Bottom: generated samples using a 100-step DDIM diffusion model (39 secs). Both models
use the same initial noise.
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