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BETag: Behavior-enhanced Item Tagging with Finetuned Large
Language Models

Anonymous Author(s)∗

Abstract
Tags play a critical role in enhancing product discoverability, opti-
mizing search results, and enriching recommendation systems on
e-commerce platforms. Despite the recent advancements in large
language models (LLMs), which have shown proficiency in pro-
cessing and understanding textual information, their application
in tag generation remains an under-explored yet complex chal-
lenge. To this end, we introduce a novel method for automatic
product tagging using LLMs to create behavior-enhanced tags (BE-
Tags). Specifically, our approach begins by generating base tags
using an LLM. These base tags are then refined into BETags by
incorporating user behavior data. This method aligns the tags with
users’ actual browsing and purchasing behavior, enhancing the ac-
curacy and relevance of tags to user preferences. By personalizing
the base tags with user behavior data, BETags are able to capture
deeper behavioral insights, which is essential for understanding
nuanced user interests and preferences in e-commerce environ-
ments. Moreover, since BETags are generated offline, they do not
impose real-time computational overhead and can be seamlessly
integrated into downstream tasks commonly associated with rec-
ommendation systems and search optimization. Our evaluation of
BETag across three datasets— Amazon (Scientific), MovieLens-1M,
and FreshFood—shows that our approach significantly outperforms
both human-annotated tags and other automated methods. These
results highlight BETag as a scalable and efficient solution for per-
sonalized automated tagging, advancing e-commerce platforms by
creating more tailored and engaging user experiences.

CCS Concepts
• Information systems → Business intelligence; Social tag-
ging systems; Language models; Recommender systems.
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1 Introduction
In the fast-evolvingworld of e-commerce, businesses strive to create
seamless and efficient online shopping experiences. To achieve
this, vast amounts of information are collected and processed to
improve customer interactions, optimize product management, and
enhance operational workflows. A critical part of this process is
the ability to organize and categorize products effectively, which
enables customers to navigate extensive inventories with ease.

One such solution is product tagging, a crucial and common
element in the current e-commerce ecosystem. Effective tagging
ensures that products are easily searchable and discoverable and
allows customers to find desired items swiftly and precisely. How-
ever, tags obtained through human manual annotation tend to
be subjective and costly, often requiring significant time and re-
sources [14]. As the scale of e-commerce platforms grows, so does
the complexity of managing product information, prompting the
need for advanced, automated solutions that ensure consistency,
accuracy, and speed. Traditional methods, like rule-based tagging
and keyword matching, rely on predefined heuristics, including
regular expression matching, pattern-based tagging, and attribute
extraction to assign tags [18]. These approaches standardize tags by
mapping varied product descriptions to consistent labels through
techniques like synonym mapping and phrase detection [17]. How-
ever, they require significant effort to design and maintain, making
them less scalable as system complexity grows.

More recent approaches utilize large language models (LLMs)
to capture semantic and contextual nuances from product descrip-
tions, titles, and user reviews [9]. LLMs can discern detailed product
attributes and generate tags that reflect both explicit and implicit
features. Despite their strengths, traditional LLM-based tagging
methods have notable limitations, particularly in capturing inter-
product relationships and adapting to dynamic customer prefer-
ences. Prior approaches often require significant effort to aggregate
product IDs along with textual information, imposing restrictions
and demanding complex loss function designs, making real-time
inference less feasible. This can result in tags that, while seman-
tically accurate, may not fully align with evolving user needs or
market trends.

To overcome these challenges, this paper proposes Behavior-
enhanced Item Tagging with Finetuned Large Language Mod-
els, a novel framework that integrates user behavioral data into the
model finetuning process, using LoRA in an unsupervised manner.
The approach enables LLMs to generate more contextually rele-
vant tags, named Behavior-enhanced Tags (BETags). The proposed
methodology focuses on leveraging finetuned LLMs to enhance
tagging accuracy and interpretability by integrating user data and
establishing an automated tagging pipeline capable of supporting
advanced recommendation systems. BETags are evaluated upon
four downstream tasks, including different recommendation and
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retrieval scenarios, using metrics such as Hit Rate (HR@k) and
Normalized Discounted Cumulative Gain (NDCG@k).

In summary, this work makes the following main contributions:

• Our approach incorporates user behavioral data into the
tagging process, allowing for the creation of contextually
relevant tags that better align with real-world user prefer-
ences.

• Our method introduces a fully automated tagging pipeline
that only requires session data. By integrating session data
into the LLM’s original causal task, our approach enables
themodel to naturally comprehend session knowledgewith-
out additional design efforts, offering a more efficient and
adaptable solution that aligns with evolving user needs and
market trends.

• Our BETags’ effectiveness is validated through four dif-
ferent downstream tasks. Additionally, combining BETags
with retrievers is able to achieve significantly lower time
complexity while maintaining comparable performance to
well-known recommendation models.

2 Related Works
2.1 Automatic Tagging System
Traditional tagging systems often rely on multi-label text classifi-
cation models, which treat human-annotated tags as ground-truth
labels and use item descriptions as input to predict these labels.
These models have been widely adopted in conventional tagging
frameworks, assuming that the human-defined tags fully capture
the item’s attributes. Binary Relevance (BR) [19] is a straightfor-
ward method that decomposes multi-label classification into multi-
ple independent binary classification tasks. Classifier Chains (CC)
[15] extend BR by arranging classifiers in a chain structure, where
the prediction depends on the predictions of previous labels. ML-
KNN [20] is an adaptation of the k-nearest neighbors algorithm
for multi-label learning, calculating the probability of each label
being relevant based on neighboring instances, making it suitable
for small datasets. While effective in structured text categorization
tasks, these models can be sub-optimal for real-world e-commerce
scenarios, where item descriptions are sparse, vary in quality, or
do not provide sufficient context for accurate tagging. Treating
human-annotated tags as definitive ground truth without consid-
ering contextual factors or dynamic user preferences results in
rigid tagging systems that may not adapt well to changing catalog
features or evolving customer behaviors.

Using advanced language models for tagging, TagGPT [9] intro-
duces a zero-shot multimodal tagging framework using prompt-
based LLMs and unsupervised sentence embeddings to generate
tags from diverse data automatically. This system introduces a post-
processing module designed to improve the overall quality and
efficiency of its tagging system. The module first removes tags that
are too common or rare, as high-frequency tags may lack distinctive-
ness, and low-frequency tags may be insignificant. Next, it reduces
the system’s scale by fusing semantically similar tags, which is
achieved by encoding all tags using an unsupervised pre-trained
text encoder and calculating their cosine similarity.

In addition to handling noise and redundancy, the framework
enables multimedia content tagging without requiring domain-
specific training. However, while TagGPT effectively manages indi-
vidual item information, it primarily focuses on single-item tagging
and may overlook underlying item-item interactions that could be
revealed through user browsing behaviors, potentially limiting its
adaptability in dynamic environments.

2.2 LLM in Text-Related Tasks
Large language models (LLMs) are highly versatile, excelling at
leveraging commonsense knowledge and reasoning. Researchers
have explored their capabilities across a broad spectrum of text-
related tasks, leveraging their proficiency in interpreting complex
contexts, generating coherent narratives, and capturing subtle re-
lationships. LLM-Rec [12] enhances item textual content by gen-
erating detailed tags and paraphrased descriptions, boosting even
simple models with enriched text. TallRec [1] demonstrates how
LLMs can be efficiently fine-tuned for domain-specific recommen-
dation tasks using LoRA [7], maintaining effectiveness while reduc-
ing computational overhead. GPT4Rec [11] generates hypothetical
search queries based on user history using multi-beam genera-
tion, improving relevance and diversity in recommendations. P5
[2] highlights the adaptability of LLMs by unifying different tasks
into a text-based framework, allowing LLMs to handle multiple
tasks with minimal fine-tuning. Overall, LLMs offer powerful capa-
bilities for text generation and can easily adapt to varied scenarios
through lightweight parameter-efficient finetuning, maintaining
their rich understanding and reasoning skills. While traditional tag-
ging methods provide a foundation for structured categorization,
they often struggle to adapt to the dynamic and evolving nature
of e-commerce. Several advanced models have made attempts to
address these challenges, yet they fall short in capturing deeper user
behavior patterns and item-item interactions. Our proposed method
leverages the strengths of LLMs, known for their proficiency in
text-related tasks, to create a tagging approach that overcomes
these limitations, offering a more beneficial tagging solution.

3 Methodology
In this study, we propose BETag, a framework for an automated
behavior-enhanced tagging system designed to generate enhanced
tags by integrating user behavior data. Our goal is to generate a set
of BETags that not only capture the semantic attributes of items
but also align closely with user preferences and behaviors. As il-
lustrated in Figure 1, BETag follows a multi-step process. First, we
generate base tags by leveraging LLMs to produce initial semantic
tags. Next, we apply behavior-enhanced finetuning to incorporate
user behavioral data, followed by the final tag generation, where BE-
Tags are created based on both item characteristics and behavioral
insights. The details of each process are explained in the following
sections.

3.1 Problem Formulation
The core objective of our methodology is to develop an automated
tagging system that leverages item context (e.g., title, description)
and user behavior data to generate personalized, behavior-enhanced
tags (BETags). BETags could be utilized in downstream tasks such

2
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Finetune

Base Tag Generation

Friendship, Survival, Prison DramaWhat tags should I use for the item {title}. 
The description of the item: {description}.

Finetuning Example

Base Tags
Collect

Items

Input Prompt

Users

User Behavior Sequence 

Serial Killer Thriller, FBI Investigation, ...   

Psychological Thriller, Mind Games, ...  
Format

Classic Mystery, Psychological Thriller, ...

Behavior-enhanced Finetuning

Behavior-enhanced Tag Generation

Coming of Age, Quirky Characters, ...
Redemption story, Alcoholism Recovery, ... BETags

CollectItems

Input Prompt

Finetuned LLM

Coming of Age, Family Dynamics, ...  

High School Drama, Forbidden Love...

Multi-beam
Generation

Finetuned LLM

Aggregate

Figure 1: Overall framework

as recommendation systems and search optimization, enhancing
the relevance and accuracy of these systems.

3.1.1 User Historical Behavior Sequences. Given an item setI, each
user 𝑢 ∈ U is associated with a historical behavior sequence that
captures the user’s most recent 𝑛 interactions with items in chrono-
logical order. This sequence is denoted as 𝑆 = (𝑠1, 𝑠2, . . . , 𝑠 𝑗 , . . . , 𝑠𝑛),
where each 𝑠 𝑗 ∈ I represents the 𝑗-th item the user interacted with.

3.1.2 Tagging System. The tagging system for items is defined by
{ (T𝑖 , 𝑐𝑖 ) | 𝑖 ∈ I }, where tags for each item are represented as a
multiset (T𝑖 , 𝑐𝑖 ). Here, T𝑖 denotes the underlying set of distinct tags
for item 𝑖 and 𝑐𝑖 : T𝑖 → Z+ is a function that indicates the number
of occurrences of each tag 𝑡 , with 𝑐𝑖 (𝑡) representing the count of
tag 𝑡 .

3.2 Base Tag Generation
The purpose of base tag generation is to leverage an LLM’s ability
to understand and summarize item attributes into concise, general-
izable tags that describe key product features. Base tag generation
forms the first step in the BETag framework, where LLMs are em-
ployed to generate initial product tags. Specifically, tags are derived
by prompting the LLM with item-specific information such as the
product’s title, description, and relevant metadata. Each item is pro-
cessed independently, without regard for its relationship to other
items or user-item interaction data.

We employ a straightforward prompting approach akin to that
used by Lyu et al. [12]. The base tags of an item 𝑖 are obtained by:

T base
𝑖 = LLM

(
promptbase (𝑑𝑖 ), 𝜖

)
, (1)

where promptbase (·) denotes the template used to format the prompt
using the descriptive content 𝑑𝑖 , and LLM(·, 𝜖) denotes the LLM
tag generation process with 𝜖 representing randomness introduced
in the sampling processes for auto-regressive generation.

These base tags will be used for further refinement and person-
alization in subsequent steps. Note that the base tag generation is
limited by its lack of contextualization across items since it only
focuses on the item information itself. Consequently, while the base
tags accurately capture the semantic characteristics of items, they
lack the ability to generalize effectively across different contexts
and fail to incorporate user behavior.

3.3 Behavior-enhanced Finetuning
To address the limitations of the base tag generation, where item-
item interactions and user behavior are not considered, Behavior-
enhanced finetuning refines the LLM by incorporating user behav-
ioral data, improving the contextual relevance of item tags. User
behavior sequences are formatted into finetuning examples, en-
abling the LLM to learn relationships between items based on users’
interaction histories. This design allows the fine-tuned LLM to cap-
ture context-specific knowledge and generate behavior-enhanced
tags that better reflect users’ preferences and browsing patterns.

Specifically, given a user behavior sequence 𝑆 = (𝑠1, 𝑠2, . . . , 𝑠𝑛)
from the training set, the base tags for each item in the sequence,
(T base

𝑠1 ,T base
𝑠2 , . . . ,T base

𝑠𝑛
), are extracted. These base tags represent

simplified item descriptions, concatenated into a single string sepa-
rated by commas for fine-tuning purposes. The tags for different
items are arranged on separate lines in the order of the user’s inter-
actions, preserving the temporal order.

3
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For clarity, a finetuning example is illustrated in Figure 2, where
a sequence of five items, each with its corresponding set of base
tags, is transformed into the structured format used for finetuning
the LLM. We finetune the LLM with its parameters denoted by Φ,

You are a helpful recommendation assistant tasked with predicting
the next likely item based on user interactions.
Given a sequence of previously interacted items, where each item
is represented by multiple tags (comma-separated), predict the
tags for the item the user is most likely to interact with next.

1. Serial Killer Thriller, FBI Investigation, Small Town Mystery
2. Psychological Thriller, Mind Games, Wealth and Isolation
3. Historical Drama, Romance, Tragedy, Epic Adventure
4. Historical Drama, WWII Holocaust, Humanitarianism
5. Classic Mystery, Psychological Thriller, Murder Mystery

Finetuning Prompt:

Finetuning Answer:

Figure 2: An example of behavior-enhanced finetuning on
Movielens-1M

using the following objective:

Φ∗ = argmax
Φ

∑︁
𝑦∈Dtrain

|𝑦 |∑︁
𝑡=1

log 𝑃Φ (𝑦𝑡 | 𝑥,𝑦<𝑡 ), (2)

where Dtrain denotes the training set, and 𝑦 represent the output
tokens, with 𝑦𝑡 being the 𝑡-th token and 𝑦<𝑡 denoting the sequence
of tokens preceding the 𝑡-th token. In our case, 𝑥 represents the in-
put prompt, which is a static task-guiding instruction, as illustrated
in Figure 2. We observed that including this instruction helped the
LLM converge more efficiently, requiring fewer training epochs.
The output 𝑦 is tokenized from the finetuning example derived
from a user behavior sequence, as described earlier and depicted in
Figure 2.

The probability distribution 𝑃Φ (𝑦𝑡 | ·) is parameterized by the
LLM, where Φ represents its parameters. Only a small portion of Φ
is updated during finetuning using parameter-efficient techniques,
LoRA [7], as outlined in other methods finetuning LLM for domain-
specific adaptation for recommendation [12, 21].

The structured format used for finetuning allows the model to
learn item-item interactions based on how items are encountered
in the user’s behavior sequence. As a result, the LLM can generate
more context-aware and behavior-enhanced tags during inference,
improving the personalization of item tags.

3.4 BETag Generation
The BETag Generation phase outlines the process of generating
product tags that capture item-item interactions. This step builds
on the initial base tags by incorporating additional user behavior
history to create more sophisticated and interconnected tags. The
process involves the behavior-enhanced finetuned LLM to predict
tags for the next item in a user’s behavior history. The BETags are
designed to reflect relationships between products, which helps
identify cross-selling opportunities and improve search and nav-
igation efficiency. This method aims to provide high-quality tags
that not only enhance the accuracy of recommendations but also

address the limitations of the base tags by leveraging the broader
context of item interactions and user behaviors.

To generate BETags for a given item, the item’s base tags are
used as the input prompt to the finetuned LLM. These base tags,
which serve as simple descriptors, are concatenated into a single
string, with each tag separated by commas or other appropriate
delimiters. This structured prompt is then provided to the model
for inference.

In contrast to the finetuning stage, where user-item interaction
sequences are considered, the BETag generation process focuses
solely on individual items. The finetuned model utilizes its learned
understanding of item relationships to generate behavior-enhanced
tags without the presence of user behavior sequences. As illustrated
in Figure 3, the input consists of the item’s base tags, ensuring that
the generated BETags capture both the item’s inherent character-
istics and its potential associations with other items in a broader
context. Note that the second line is left blank since we only fo-
cus on the considered item, and no user behavioral data is used
explicitly in the BETag generation phase.

Inspired by Li et al. [11], we employ multi-beam generation to
obtain BETags. Specifically, for each beam 𝑏 ∈ {1, · · · ,𝑚}, the tags
are generated as:

T BE
𝑖,𝑏

= LLMΦ∗
(
promptBE

(
T base
𝑖

)
, 𝜖𝑏

)
, (3)

where promptBE (·) denotes the template used to format the prompt,
and LLMΦ∗ (·, 𝜖𝑏 ) denotes the tag generation process using the
behavior-finetuned LLM with 𝜖𝑏 representing randomness intro-
duced in the sampling processes for the 𝑏-th beam.

The final BETags (T BE
𝑖

, 𝑐BE
𝑖

) for item 𝑖 are then aggregated from
the tags generated in each beam, where

T BE
𝑖 =

𝑚⋃
𝑏=1

T BE
𝑖,𝑏

, (4)

𝑐BE𝑖 (𝑡) =
𝑚∑︁
𝑏=1

�
𝑡 ∈ T BE

𝑖,𝑏

�
, (5)

⟦·⟧ denotes an indicator function and𝑚, the number of beams for
behavior-enhanced tag generation, is treated as a hyperparameter.

As illustrated in Figure 3, the generation for each beam is termi-
nated upon producing a newline character. Increasing the number
of beams allows for the generation of a greater number of tags per
item, thereby enhancing the overall tag diversity.

3.5 Downstream Applications
The BETags can be used as supplementary information for var-
ious downstream tasks, such as recommendation systems, item
classification, or search optimization.

To assess the effectiveness of our tagging methodology, we con-
duct experiments across multiple retrieval and recommendation-
related tasks in diverse real-world application scenarios. Each task
reflects a distinct combination of user- or item-based paradigms,
focusing on either retrieval or recommendation applications. Our
goal is to evaluate whether integrating BETags into existing re-
trieval/recommendation models enhances performance compared
to using native tags (e.g., human-annotated or genre-based) and
other automated tagging systems.
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You are a helpful recommendation assistant tasked with ...

1. Serial Killer Thriller, FBI Investigation, Small Town Mystery
2. 

Generation Prompt:

Psychological Thriller, Mystery, Mind Games, Hannibal Lecter
BETags #1:

Crime Drama, Criminal Minds, Hannibal Lecter
BETags #2:

Action-Packed, Post-Apocalyptic Future, Survival Thriller
BETags #3:

Figure 3: An example of behavior-enhanced tag generation
on Movielens-1M

3.5.1 Item-based Retrieval. In item-based retrieval tasks, the sys-
tem aims to retrieve the next relevant item by using the tags associ-
ated with the current item as a query. Traditional retrieval systems
typically handle tags as terms within a document, representing the
item, and perform tag-query matching to retrieve relevant items.
This method is computationally efficient, offering low latency and
minimal resource consumption, which makes it well-suited for
real-time applications.

Formally, given a tagging system, as defined in Section 3.1.2,
retrievers rank items based on a query 𝑄 = (T𝑖 , 𝑐𝑖 ) composed of
tags for the current item 𝑖 . The ranking function 𝑅 representing the
retriever generally takes the form:

ŷ = 𝑅 (D, 𝑄) , (6)

where D = { (T𝑖′ , 𝑐𝑖′ ) | 𝑖′ ∈ I } are the items to be retrieved, repre-
sented by their tags, and ŷ ∈ R | I | denotes the predicted ranking
scores for items.

For the retriever 𝑅, we experiment with BM25 [16], and BiRank
[4]. Details on how the ranking scores are calculated are provided
in Appendix A. Additionally, as discussed in Appendix A, the re-
triever functions along with a given tagging system 𝑅(D, ·) can
be formulated as a linear method and can be precomputed offline.
This feature, combined with the BETag tagging system, makes the
retrieval application scenarios highly efficient in terms of latency
and computational resources.

3.5.2 User-based Retrieval. In user-based retrieval tasks, the objec-
tive is to retrieve the next item based on a user’s behavior history.
The tags from items the user has interacted with are aggregated to
form a query. Specifically, the query 𝑄user = (T user, 𝑐user) is con-
structed by aggregating the tags of items from the user’s behavior
sequence 𝑆 = (𝑠1, 𝑠2, . . . , 𝑠𝑛), defined as:

T user =
𝑛⋃
𝑗=1

T𝑠 𝑗 , (7)

𝑐user (𝑡) =
𝑛∑︁
𝑗=1

𝑤 𝑗𝑐𝑠 𝑗 (𝑡), (8)

where 𝑐𝑠 𝑗 : T user → Z+ with 𝑐𝑠 𝑗 (𝑡) = 𝑐𝑠 𝑗 (𝑡) if 𝑡 ∈ T𝑠 𝑗 , 𝑐𝑠 𝑗 (𝑡 ′) = 0
if 𝑡 ′ ∉ T𝑠 𝑗 . Here 𝑤𝑖 , representing the interaction weights, can be
either uniform, 𝑤uniform

𝑖
= 1/𝑛, or linear, 𝑤 linear

𝑖
= 2𝑖

𝑛 (𝑛−1) . The

weighting scheme is treated as a hyperparameter, selected based
on model performance.

The next item is then retrieved based on the score function:

ŷ = 𝑅(D, 𝑄user), (9)

where D = { (T𝑖′ , 𝑐𝑖′ ) | 𝑖′ ∈ I } are the tag-represented items to be
retrieved.

3.5.3 User-based Recommendation. Recommender systems that
learn item ID embeddings have demonstrated robust performance
across various recommendation tasks. Incorporating textual em-
beddings from pre-trained encoders further enhances their ability
to generalize and improve the quality of recommendations. In this
context, BETags provide augmented textual information, enrich-
ing item embeddings and improving the overall recommendation
process by introducing behavior-enhanced, semantically rich tags.

To leverage BETags effectively in this framework, we assign the
generated BETags as the textual features for each item. We first
select the top-𝑘 tags T̃𝑖 based on their occurrences as:

T̃𝑖 = arg max
T′⊆T, | T′ |=𝑘

∑︁
𝑡 ∈T′

𝑐𝑖 (𝑡), (10)

The textual item embedding for an item 𝑖 is derived from tags T̃𝑖
using a pretrained language model and is further combined with a
learnable ID embedding as its item embedding.

3.5.4 Item-based Recommendation. For item-based recommenda-
tions, our objective is to predict the next item based on the current
item. We employ a sliding window approach on the existing user
behavior sequences in the training set. By creating pseudo users
with only one interacted item, we can train the recommender to
leverage the context of the current item for predicting subsequent
items.

4 Experiments
In this section, we conduct experiments to answer the following
research questions:

• RQ1: How do the BETags improve the performance of
downstream user- and item-based tasks in recommendation
and retrieval systems?

• RQ2: To what extent do the LLM finetuning and multi-
beam generation contribute individually to the performance
improvements observed in downstream tasks when using
BETags?

• RQ3: How does increasing the number of beams in multi-
beam generation impact the performance, and how is this
improvement linked to changes in tag distribution?

• RQ4: How does BETag address the item-tag sparsity issue
typically encountered in tags generated by LLMs?

4.1 Experiment Setup
Datasets. The tasks were conducted on three real-world datasets,

FreshFood, MovieLens-1M, and Amazon (Scientific). FreshFood is a
session-based dataset derived from a Taiwanese e-commerce plat-
form for fresh food, where sessions are treated as users to align with
the other datasets. The interaction type is user browsing history,
with native tags represented by human-annotated keywords for
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Table 1: Statistics of the datasets. “Repeatable" indicates
whether the dataset allows repeated interactions between
users and items.

Scientific Movielens-1M FreshFood
#Users 11,041 5,954 27,059
#Items 5,327 2,803 357
#Inters. 76,896 985,332 167,176
#Inters./user 6.96 165.49 6.18
#Inters./item 14.44 351.53 468.28
User-Item Sparsity 98.88% 94.10% 98.83%
Repeatable True False True

each item. MovieLens-1M is a well-known public dataset consisting
of movie reviews, with native tags including genres and human-
annotated keywords; plot summaries, obtained from IMDb, are used
as item descriptions. Finally, Amazon (Scientific) contains product
reviews in the scientific category, and the items are represented by
their product descriptions without any native tags available.

Baselines. The evaluation compares different tagging systems,
with the baselines consisting of native tags from each dataset and
TagGPT [9], which utilizes an LLM for automatic tagging followed
by post-processing steps, including frequency filtering and semantic
fusion. For retrieval tasks, we include a Popular baseline, a common
strategy used in e-commerce that ranks items based on popularity.
In recommendation tasks, we use SASRec [8], a well-known and
effective ID-based recommender, as the baseline model.

Data Splitting Strategy. Following previous work by Hou et al.
[6], we employ the widely used leave-one-last-item strategy for data
splitting, where the last item for each user is used for testing, the
second-to-last item for validation, and the remainder for training. To
prevent data leakage, the LLMfinetuning for the tagging system and
the downstream recommendation modules use the same training
set.

Evaluation Settings. We use two standard Top-N evaluation met-
rics, Hit Rate@10, and NDCG@10, to assess recommendation per-
formance [3, 5], later denoted as H@10 and N@10 for simplicity. For
user-based tasks, we follow established practices [6, 8]. If user in-
teractions are non-repeatable, each positive item is paired with 100
negative items that the user has not interacted with. In repeatable
cases, 100 negative items are randomly sampled from the overall
item pool. The repeatability of each dataset is detailed in Table 1.
For item-based tasks, 100 negative items are randomly selected
from the item pool for each evaluation.

We evaluate our BETag in two scenarios: using retrievers and
recommenders, each tailored for tasks including item-based and
user-based recommendations.

Retriever Modules. For retrievers, we employ BM25 [16] and Bi-
Rank [4], both of which rely solely on textual information without
using item IDs, meaning user-item interactions are not directly con-
sidered. BiRank optimizes ranking in bipartite graphs by leveraging
item-text relations for graph construction. It iteratively updates
ranking scores until convergence, suitable for item retrieval. BM25,
a widely used ranking function in information retrieval, estimates
document relevance through term frequency and inverse document

frequency (TF-IDF). It adjusts for term saturation and document
length, offering efficiency in ranking large text collections. More
details for how these two retrievers are integrated into the retrieval
process can be found in Appendix A.

Recommendation Modules. For the recommender, we select the
transductive settings of UniSRec [6] as our recommender, which
is built on SASRec but utilizes the associated description text of
items to learn transferable representations across various recom-
mendation scenarios, with tags serving as augmented descriptions
for each item.

4.2 Main Results (RQ1)
4.2.1 Retrieval Tasks. The performance of BETag in both user-
based and item-based retrieval tasks consistently surpassed Native
tags and TagGPT, shown in Table 2.

In the user-based task, where BM25 and BiRank rely on user
behavior sequence, BETag achieved the highest H@10 and N@10
scores, demonstrating better alignment with user preferences. Sim-
ilarly, in the item-based task, which involves less input information
and thus lower overall performance, BETag continued to outper-
form both native tags and TagGPT across both models. Additionally,
the integration of BETag with retrievers like BM25 and BiRank of-
fers significant advantages in terms of latency and computational
efficiency, as these models can leverage offline-generated tags, re-
ducing real-time computational overhead while maintaining high
retrieval accuracy.

4.2.2 Recommendation Tasks. Table 3 presents the results for the
baseline model SASRec, as well as versions of the UniSRec model
utilizing different text inputs: Native Tags, TagGPT, and the pro-
posed BETag. The comparison between these models shows clear
trends in performance. SASRec generally provides solid results,
especially on the Movielens-1M dataset, but is often outperformed
by the other models in specific scenarios. UniSRec with Native
Tags performs well, particularly in user-based recommendations
for Movielens-1M, but struggles somewhat on other datasets.

However, the standout performer across all approaches is us-
ing BETag with UniSRec. BETag consistently achieves the highest
scores in both H@10 and N@10 metrics, especially on the Scien-
tific dataset, where it shows a significant improvement over other
models. This superior performance indicates that our proposed ap-
proach to tagging and recommendation significantly enhances the
model’s ability to recommend relevant items. In particular, BETag’s
robust performance on both user-based and item-based recommen-
dations highlights its versatility and the effectiveness of its tagging
mechanism in improving recommendation quality.

In summary, while SASRec and UniSRec (with Native Tags and
TagGPT) demonstrate strong results, especially in certain datasets
and metrics, the proposed BETag method consistently surpasses
them, particularly in complex recommendation tasks such as those
presented by the Scientific dataset. This suggests that BETag offers
a more reliable and precise approach to generating high-quality
recommendations in various domains.
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Table 2: Retrieval task performance

User-Based Item-Based

Scientific Movielens-1M FreshFood Scientific Movielens-1M FreshFood
H@10 N@10 H@10 N@10 H@10 N@10 H@10 N@10 H@10 N@10 H@10 N@10

Popular 0.2871 0.1672 0.3866 0.2115 0.4158 0.2292 0.2871 0.1672 0.3467 0.1784 0.4158 0.2292
BM25
- Native Tags - - 0.3488 0.1910 0.5145 0.3216 - - 0.3179 0.1718 0.3990 0.2361
- TagGPT 0.3430 0.2241 0.2929 0.1601 0.4666 0.3165 0.2862 0.1930 0.2104 0.1116 0.2928 0.1896
- BETag (Ours) 0.4883 0.3098 0.4723 0.2791 0.5152 0.3350 0.4249 0.2747 0.3779 0.2160 0.4603 0.2712
BiRank
- Native Tags - - 0.3939 0.2200 0.5287 0.3493 - - 0.2927 0.1563 0.4062 0.2432
- TagGPT 0.3741 0.2409 0.3095 0.1663 0.4832 0.3284 0.3040 0.2024 0.2244 0.1170 0.3260 0.2026
- BETag (Ours) 0.4681 0.2991 0.4667 0.2732 0.5526 0.3569 0.4239 0.2735 0.3764 0.2176 0.4791 0.2779

Table 3: Recommendation task performance

User-Based Item-Based

Scientific Movielens-1M FreshFood Scientific Movielens-1M FreshFood
H@10 N@10 H@10 N@10 H@10 N@10 H@10 N@10 H@10 N@10 H@10 N@10

SASRec 0.5057 0.3342 0.7335 0.4904 0.5698 0.3399 0.3930 0.2409 0.6636 0.4304 0.5396 0.3157
UniSRec
- Native Tags - - 0.7462 0.5039 0.5689 0.3271 - - 0.6634 0.4244 0.4680 0.2639
- TagGPT 0.5308 0.3400 0.7474 0.5066 0.5618 0.3254 0.4415 0.2754 0.6547 0.4254 0.5168 0.3041
- BETag (Ours) 0.5801 0.3742 0.7523 0.5106 0.5741 0.3417 0.4740 0.2972 0.6703 0.4344 0.5590 0.3245

4.3 Discussion and Analysis
4.3.1 Evaluating the Contribution of LLM Finetuning and Multi-
Beam Generation to BETag Performance (RQ2). To address RQ2,
we investigate the individual contributions of LLM finetuning and
multi-beam generation to the performance of BETags on item-based
retrieval tasks. We conduct experiments with four variations: the
full BETag method, without LLM finetuning, without multi-beam
generation, and without both, examining the extent of performance
degradation when these components are excluded. The results are
summarized in Table 4.

First, when we omit LLM finetuning, tags are generated using a
non-behaviorally finetuned LLM through multiple generations.This
setup isolates the impact of multi-beam generation, with notable
performance drops in retrieval tasks using BM25 and BiRank. In-
terestingly, datasets with lower user-item sparsity (where more
behavioral data is available for finetuning) show a larger decrease
in performance, underscoring the importance of behavior-driven
LLM finetuning.

Conversely, when we exclude multi-beam generation, tags are
generated with a behaviorally finetuned LLM using single-beam
generation. This setting isolates the contribution of finetuning.
Similar to the results without finetuning, performance drops are
observed across BM25 and BiRank.

Finally, when both LLM finetuning and multi-beam generation
are excluded, performance drops even further, demonstrating that
both components significantly enhance the base tags generated in
the initial step of BETag. This finding highlights that either LLM
finetuning or multi-beam generation alone leads to a marked im-
provement over naive base tags, but the combination of both yields

Table 4: Evaluation of LLM finetuning and multi-beam gen-
eration in BETag Performance on item-based retrieval tasks

Scientific Movielens-1M FreshFood
H@10 N@10 H@10 N@10 H@10 N@10

BM25
- BETag (Ours) 0.4249 0.2747 0.3779 0.2160 0.4603 0.2712
- w/o Finetuning 0.3582 0.2562 0.2382 0.1288 0.2918 0.1898
- w/o Multi-beam 0.2234 0.1508 0.2093 0.1138 0.3493 0.2153
- w/o Both 0.1570 0.1064 0.1740 0.0848 0.2270 0.1437
BiRank
- BETag (Ours) 0.4239 0.2735 0.3764 0.2176 0.4791 0.2779
- w/o Finetuning 0.3907 0.2723 0.2430 0.1309 0.3210 0.2001
- w/o Multi-beam 0.2863 0.1821 0.2277 0.1203 0.3693 0.2213
- w/o Both 0.2059 0.1340 0.1426 0.0744 0.2432 0.1564

the best results. Similar results for user-based recommendations
are also shown in Appendix B.

4.3.2 Exploring the Effect of Beam Count on BETag Performance and
Diversity (RQ3). To gain further insight into the impact of multi-
beam generation on BETag, we analyze its influence on item-based
retrieval tasks and tag distribution properties.

Figure 4 illustrates the performance (N@10) over the number of
beams used in generating BETags, with two curves representing
BM25 and BiRank, respectively. As the number of beams increases,
we observe a significant rise in performance for both retrievers,
with the improvement starting to saturate around 10 beams.
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In Figure 5, we examine how multi-beam generation affects
the distribution of item tags using the FreshFood dataset. Specif-
ically, we plot the occurrences vector 𝐴𝑖 of an item’s tags over
different numbers of beams, excluding zero entries for clarity. The
results show that as the number of beams increases, the tag dis-
tribution stabilizes. Without multi-beam generation, some critical
tags, which appear frequently with a higher number of beams, are
absent. Furthermore, the number of tags with non-zero occurrences
grows with more beams, indicating an increase in tag diversity. This
growth reflects a richer and more varied set of item-tag connec-
tions, alleviating the item-tag sparsity issue commonly observed in
LLM-generated tagging systems.

Figure 4: N@10 over #beams in item-based retrieval

Figure 5: Tag distributions for an item in the FreshFood

4.3.3 Reducing Item-Tag Sparsity in Automated Product Tagging
(RQ4). The issue of item-tag sparsity is a significant challenge in
the automatic generation of tags using LLMs. LLM-generated tags,
while effective in capturing semantic meaning, often produce a large
proportion of tags that are attached to only a single item, limiting
their applicability in many practical scenarios. For instance, in
movie tagging, semantically similar phrases like “Teenage rebellion,”
“Youth rebellion,” and “Youthful rebellion” may be treated as distinct,
leading to a fragmented tag space.

To mitigate this issue, previous methods such as TagGPT have
employed postprocessing techniques, including frequency filter-
ing and semantic fusion. Semantic fusion groups tags with close
meanings by applying a threshold on the cosine similarity of their
embeddings.

Our BETag approach also addresses the item-tag sparsity issue.
Figure 6 presents a comparison of the tag popularity distribution

(a) TagGPT (b) BETag

(c) w/o Finetuning (d) w/o Multi-beam

Figure 6: Popularity on MovieLens-1M

[9] in the MovieLens-1M dataset. In Figure 6a, we compare the tag
distribution between TagGPT’s postprocessed tags and raw LLM-
generated tags (denoted “Raw Tag”). Similarly, Figure 6b contrasts
the popularity distribution of BETag against Raw Tags. This shows
that BETag effectively mitigates item-tag sparsity, resulting in a
more balanced distribution of tags across items.

This improvement is driven by two core components: behavior
finetuning and multi-beam generation. Figure 6c shows the tag
distribution when comparing BETag without behavior finetuning
to Raw Tags. Multi-beam generation generates more tags per item,
thereby covering a wider range of item attributes, leading to more
tags being shared among different items. Figure 6d presents the
comparison between BETag without multi-beam generation and
Raw Tags, where finetuning plays a crucial role in reducing the
chance of generating distinct unseen tags, resulting in the smooth-
ing effect. These two mechanisms collectively help BETag address
item-tag sparsity by expanding tag coverage while maintaining
precision.

5 Conclusion
We present BETag, a novel automated tagging pipeline that in-
tegrates real-world user behavior data to generate personalized,
behavior-enhanced tags. By addressing item-tag sparsity issues in
LLM-based tagging methods, BETag enhances tags’ accuracy and
contextual relevance, aligning them more closely with user prefer-
ences. We have successfully validated BETag with three different
datasets and two common tasks: retrieval and recommendation.
BETag enhances the performance of downstream tasks, surpassing
state-of-the-art models while significantly reducing computational
complexity for real-world applications. It has demonstrated its effec-
tiveness in improving search relevance, product discoverability, and
personalized recommendations. Its scalability and efficiency make
it a practical solution for e-commerce platforms, enhancing user
experiences and system performance without imposing real-time
computational burdens.
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A Retrievers
Given a set of documents D = { (T𝑖 , 𝑐𝑖 ) | 𝑖 ∈ I } are the items to
be retrieved, represented by their tags, the overall domain for tags
across all item is identified as:

T =
⋃

(T𝑖 ,𝑐𝑖 ) ∈D
T𝑖 . (11)

A query used to retrieve the item is denoted by 𝑄 = (T𝑞, 𝑐𝑞)
that consists of tags in the overall tag domain, where T𝑞 ⊆ T and
𝑐𝑞 : T𝑞 → Z+ denotes the occurrences, namely weights of each
tag in the query.

The ranking function𝑅 representing the retriever generally takes
the form:

ŷ = 𝑅 (D, 𝑄) , (12)
where ŷ ∈ R | I | denotes the predicted ranking scores for items.

Given the item set I = { 𝑖1, 𝑖2, . . . , 𝑖 | I | } and overall tag domain
T = { 𝑡1, 𝑡2, . . . , 𝑡 | T | }, we first vectorize the given documents as
matrix 𝐴 ∈ R | I |× |T | and the query as vector q ∈ R | T | , where

𝐴 𝑗,𝑘 = 𝑐𝑖 𝑗 (𝑡𝑘 ), (13)
q𝑘 = 𝑐𝑞 (𝑡𝑘 ). (14)

We are going to show the ranking functions, no matter BM25 or
BiRank, can be formulated as a linear method following the form:

ŷ =𝑊 𝑅 (𝐴)q, (15)

where𝑊 𝑅 : R | I |× |T | → R | I |× |T | and q ∈ R | T | .
With this property, given the tagging system as documents, we

can always compute𝑊 𝑅 (𝐴) offline. Furthermore, this format allows
the methods to be easily parallelized with GPU, making the online
recommendation extremely efficient.

A.1 BM25
BM25 [16], one of the most widely used baseline search engines, is
adopted as one of our retrieval model for the downstream recom-
mendation tasks.

The BM25 model can be represented by a linear matrix𝑊 BM25 ∈
R | I |× |T | given documents { (T𝑖 , 𝑐𝑖 ) | 𝑖 ∈ I } with item set I =

{ 𝑖1, 𝑖2, . . . , |I | } and overall tag domain T = { 𝑡1, 𝑡2, . . . , 𝑡 | T | }:

𝑊 BM25
𝑗,𝑘

= IDF(𝑡𝑘 ) ·
𝑐𝑖 𝑗 (𝑡𝑘 ) · (𝑘1 + 1)

𝑐𝑖 𝑗 (𝑡𝑘 ) + 𝑘1
(
1 − 𝑏 + 𝑏

∑
𝑡 ∈T𝑖 𝑗

𝑐𝑖 𝑗 (𝑡 )
1
|I |

∑
𝑖′ ∈I

∑
𝑡 ′ ∈T𝑖′ 𝑐𝑖′ (𝑡

′ )

) ,
(16)
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where 𝑘1, 𝑏 are free parameters account for the saturation of term
frequency and the document length. Here, the IDF(·) is the inverse
document frequency, given as:

IDF(𝑡) = ln
(
|I | − 𝑁 (𝑡) + 0.5

𝑁 (𝑡) + 0.5
+ 1

)
, (17)

𝑁 (𝑡) =
∑︁
𝑖∈I

⟦𝑡 ∈ T𝑖⟧, (18)

where 𝑁 : T → Z+ denotes the number of items that contains
tag 𝑡 . The ranking scores of all items, denoted by ŷ ∈ R | I | , is then
calculated as:

ŷ =𝑊 BM25q. (19)

A.2 BiRank
BiRank [4] is a random-walk based algorithm similar to PageRank
[13] but addresses the ranking problem on bipartite graphs. BiRank
can be applied to general ranking scenario by constructing bipartite
graph and task-specific query as the initial ranking scores for ver-
tices, followed by BiRank iteration until convergence. The authors
also further extended BiRank to rank on user-item-aspect tripartite
graphs as TriRank for personalized recommendation ranking.

To align with other retrieval models such as BM25, we adopt the
BiRank setting on item-aspect, i.e. item-tag, bipartite graph for our
downstream recommendation tasks.

Given the documents D = { (T𝑖 , 𝑐𝑖 ) | 𝑖 ∈ I } with item set I =

{ 𝑖1, 𝑖2, . . . , |I | } and the overall tag domain T = { 𝑡1, 𝑡2, . . . , 𝑡 | T | },
the bipartite graph is constructed as G = (I ∪ T , E). Here I
and T become the vertex sets of items and tags respectively, and
E = { (𝑖, 𝑡) | 𝑡 ∈ T𝑖 , 𝑖 ∈ I } represents the edge set. 𝐴 ∈ R | I |× |T | ,
vectorized matrix representing the documents, is then used to de-
note weighted adjacency of the graph.

The corresponding BiRank transition matrix is the symmetric
normalization of the adjacency:

𝑆 = 𝐷
−1/2
𝑖

𝐴𝐷
−1/2
𝑡 , (20)

where 𝐷𝑖 , 𝐷𝑡 are the diagonal matrices denoting the weighted de-
grees of item nodes, tag nodes respectively.

The iterative ranking process with q as the query for tag nodes
and zero vector for item nodes can be obtained as:

ŷ = 𝛼 (1 − 𝛽)
( ∞∑︁
𝑖=0

(𝛼𝛽𝑆𝑆⊤)𝑖
)
𝑆q, (21)

where 𝛼, 𝛽 are two hyperparameters of BiRank.

B More Discussions
Evaluating the Contribution of LLM Finetuning and Multi-Beam

Generation to BETag Performance for User-based Recommendations.
Using BETag for the recommender consistently shows the best
results across all datasets and metrics, confirming that the combi-
nation of finetuning and multi-beam search improves recommenda-
tion performance (as detailed in Table 5). The drop in performance
when either component is removed highlights the importance of
each. When fine-tuning is excluded, the performance decreases
across all datasets, particularly on Movielens-1M. This suggests
that finetuning helps the model adapt to the datasets, enhancing
the accuracy of its recommendations. Similarly, the removal of

Table 5: Evaluation of LLM finetuning andmulti-beam gener-
ation in BETag Performance on user-based recommendations

Scientific Movielens-1M FreshFood
N@10 H@10 N@10 H@10 N@10 H@10

UniSRec
- BETag (Ours) 0.5801 0.3742 0.7523 0.5106 0.5741 0.3417
- w/o Finetuning 0.5769 0.3715 0.7386 0.4881 0.5625 0.3355
- w/o Multi-beam 0.5712 0.3692 0.7484 0.5004 0.5571 0.3250
- w/o Both 0.5623 0.3653 0.7309 0.4899 0.5539 0.3215

multi-beam search also leads to noticeable declines in performance,
especially for the FreshFood dataset. This indicates that multi-beam
search likely plays a crucial role in refining the model’s ability
to explore multiple potential outcomes before selecting the best
recommendation, thus improving the overall hit rate and ranking
performance.

The third ablated version, without both finetuning and multi-
beam search, performs the worst in every case, further underscoring
the importance of both techniques working together to maximize
the model’s effectiveness. This shows that each contributes inde-
pendently to the model’s performance, but their combination is
crucial for achieving optimal results.

In conclusion, the ablation study demonstrates that both fine-
tuning and multi-beam search are key components of the BETag
model, each contributing significantly to its strong recommenda-
tion performance across various datasets. Their combined effect is
most evident in the model’s superior ranking and hit rate results,
particularly on complex datasets like Movielens-1M and Scientific.
Without these components, the model’s ability to recommend rele-
vant items effectively is notably reduced.

C Case Study
To illustrate the qualitative performance of BETag, we present a
comparative case study using two examples from the MovieLens-
1M dataset (Tender Mercies and The Godfather) and two examples
from the Amazon (Scientific) dataset (Sanding Roll and PLA Fila-
ment). As shown in Table 6, we compare the human-annotated na-
tive tags, the LLM-generated base tags, and the behavior-enhanced
BETags.

For the MovieLens-1M dataset, native tags for these films, com-
posed of human-annotated genre labels (e.g., “Drama", “Romance"),
tend to be concise but limited in their semantic depth. In contrast,
LLM-generated base tags, though still sparse, provide richer se-
mantic associations, capturing aspects such as“musical drama" or
“family dynamics," which offer an accurate understanding of the
film’s themes. BETags further expand on these associations, incor-
porating broader semantic elements. For example, Tender Mercies is
tagged with “Coming of Age," reflecting personal growth and trans-
formation that align with the film’s core narrative, even though
such themes may not be immediately apparent from the movie’s
plot alone.

Further, we explore two items from the Amazon (Scientific)
dataset: Sanding Roll and PLA Filament. In this dataset, the item
information is more limited, consisting primarily of titles, brands,
and categories. As a result, the generated base tags experience even
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greater sparsity due to the nature of the dataset. Nevertheless, these
base tags accurately capture the items’ semantic properties based
on the available information. Notably, for the “Sanding Roll" (full
title: “4 1/2-Inch x 10yd 80 Grit Adhesive-Backed Sanding Roll"),
the BETag surprisingly includes specifications such as “4 1/2-inch"
and “10-yard," which were not present in the base tags. The in-
clusion is reflective of user purchasing behavior, indicating that
these specifications are commonly associated with the item. This
demonstrates how BETags adapt to user tendencies, though minor
discrepancies, such as incorrectly tagging “120 grit" instead of “80
grit," occasionally occur.

Overall, base tags successfully capture core semantic properties
based on item information, while BETags provide broader, behavior-
driven semantic connections. This broader semantic representation
allows BETags to establish more nuanced connections across items,
enhancing the relevance and engagement of recommendations in
various scenarios.

D Implementation Details.
Dataset Preprocessing. For the Amazon (Scientific) dataset, we

followed the preprocessing steps outlined by Li et al. [10]. In the
MovieLens-1M dataset, only users with at least 20 interactions and
items with at least 30 interactions were retained. Plot summaries
for each movie, retrieved from OMDb 1, were used as input for base
tag generation in this dataset. For the FreshFood dataset, which
contains user browsing data from an e-commerce platform in Tai-
wan specializing in fresh food, we crawled item details such as
titles, descriptions, and keywords from the website. These key-
words, referred to as native tags, were used as baseline tags. Few
items no longer available on the platform were filtered out during
the preprocessing stage.

BETag Finetuning and Generation. For the base tag generation, we
employed the gpt-3.5-turbo model across all datasets. The finetun-
ing of BETag was conducted using the MaziyarPanahi/Llama-3-8B-
Instruct-v0.82 model for the MovieLens-1M and Amazon (Scientific)
datasets. For the FreshFood dataset, we utilized the yentinglin/Llama-
3-Taiwan-8B-Instruct3 model, whichwas finetuned on a large corpus
of Traditional Mandarin.

We employed LoRA[7] with a rank of 64 for parameter-efficient
finetuning. Due to computational constraints, the models were
quantized into NF4 format, with finetuning performed in 16-bit
floating-point precision on an Nvidia V100 32GB GPU. Each LLM
was finetuned individually for the respective datasets, using a learn-
ing rate of 10−4 over 15 epochs.

During finetuning, user behavior sequences were limited to a
maximum length of 15 interactions (𝑛 = 15). Instead of using only
the most recent interactions for training, we applied a random
cropping strategy, where a window of 15 interactions was ran-
domly selected from each user’s full interaction history during each
training epoch. This approach differs from the inference stage in
downstream tasks, where only the most recent interactions are
considered.

1https://www.omdbapi.com
2https://huggingface.co/MaziyarPanahi/Llama-3-8B-Instruct-v0.8
3https://huggingface.co/yentinglin/Llama-3-Taiwan-8B-Instruct

Downstream Tasks. For the downstream tasks, we performed a
grid search using BETag with a range of beam sizes𝑚 ∈ {1, . . . , 40}
for multi-beam generation. The optimal beam size was selected
based on performance on the validation set, where the second-to-
last interaction in each user behavior sequence was used to evaluate
model effectiveness.

In item-based retrieval tasks, two different methods were ex-
plored. For BM25, we conducted a grid search over the parameters
𝑘1 ∈ {0, 0.5, 1.0, 1.5, 2.0} and 𝑏 ∈ {0, 0.25, 0.5, 0.75}. For BiRank, we
set 𝛼 = 𝛽 , and we sampled ten values from the range [0.1, 0.9] for
grid search.

For user-based retrieval tasks, we explored different methods
of weighting the user interactions, comparing uniform weighting
against linear weighting, and selected the best-performing strategy
based on validation results.
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Table 6: Qualitative results of BETag

Title Item Information Native Tags Base Tags TagGPT BETag

Tender Mercies (1983) Alchoholic former country singer Mac Sledge makes friends
with a young widow and her son. The friendship enables
him to find inspiration to resume his career.

Drama,
Romance,
Western,
Music

Country music drama,
Redemption story,
Alcoholism recovery,
Intergenerational friendship,
Small-town life,
Musical inspiration,
Heartwarming film

Redemption story,
Alcoholism recovery,
Resilience,
Country music,
Heartfelt performances,
Friendship,
Musical drama

Coming of age,
Quirky characters,
Family dynamics,
High school drama,
Teen romance,
Love triangle,
Forbidden love

The Godfather (1972) Don Vito Corleone, head of the Corleone mafia, refuses a
rival’s request to use his influence to sell drugs, sparking
a violent conflict between the old ways and modern crime.
His son Michael, a WWII hero, initially reluctant to join the
family business, is drawn into a mob war that threatens to
tear the Corleone family apart.

Action,
Crime,
Drama,
Mafia

Mafia drama,
Organized crime,
Family loyalty,
Power struggle,
Generational conflict,
New York setting,
Betrayal and revenge,
Legacy and tradition

Mafia drama,
Power struggle,
Organized crime,
Generational conflict,
Family loyalty,
Loyalty and betrayal,
Crime family,
New york city

Mafia drama,
Organized crime,
Friendship,
Adventure,
Psychological thriller,
Brotherhood,
Historical drama,
Survival

PORTER-CABLE 740000801
4 1/2-Inch x 10yd 80 Grit
Adhesive-Backed Sanding
Roll

’brand’: ’PORTER-CABLE’, ’category’: ’Industrial & Scien-
tific Abrasive & Finishing ProductsManual Sanding Products
Sanding Rolls’

- Adhesive-backed sanding roll,
80 grit for effective sanding,
Industrial-grade sanding product,
Portable and convenient roll design,
Suitable for manual sanding tasks,
Brand: porter-cable,
High-quality abrasive material

Adhesive-lined for secure sealing,
Long 36-yard roll,
Additive manufacturing product,
Reliable porter-cable brand,
High-quality manual sanding product,
Ideal for additive manufacturing,
Industrial & Scientific

Adhesive-backed sanding roll,
Easy application and removal,
Porter-cable brand,
Versatile 4 1/2-inch width,
Durable 10-yard length,
120 grit sandpaper,
Manual sanding products

SainSmart PLA-151 PLA Fila-
ment (Red)

’brand’: ’SainSmart’, ’category’: ’Industrial & Scientific Addi-
tive Manufacturing Products 3D Printing Supplies 3D Print-
ing Filament’

- High-quality PLA filament,
Sainsmart brand,
Red color option,
Industrial grade,
Ideal for 3D printing,
Reliable printing supplies,
Additive manufacturing material

High-quality PLA filament,
Industrial grade,
Compatible with 3D printers,
Vivaplex brand,
Ideal for industrial 3D printing,
Reliable printing results,
Industrial strength adhesive

High precision printing,
Consistent dimensional accuracy,
High-quality PLA filament,
Vibrant yellow color,
Ideal for additive manufacturing,
Compatible with various 3D printers,
1.75 mm diameter
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