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Abstract
Graph neural networks (GNNs) have been proposed for medical image segmentation, by
predicting anatomical structures represented by graphs of vertices and edges. One such type
of graph is predefined with fixed size and connectivity to represent a reference of anatomical
regions of interest, thus known as templates. This work explores the potentials in these GNNs
with common topology for establishing spatial correspondence, implicitly maintained during
segmenting two or more images. With an example application of registering local vertebral
sub-regions found in CT images, our experimental results showed that the GNN-based
segmentation is capable of accurate and reliable localization of the same interventionally
interesting structures between images, not limited to the segmentation classes. The reported
average target registration errors of 2.2±1.3 mm and 2.7±1.4 mm, for aligning holdout test
images with a reference and for aligning two test images, respectively, were by a considerable
margin lower than those from the tested non-learning and learning-based registration
algorithms. Further ablation studies assess the contributions towards the registration
performance, from individual components in the originally segmentation-purposed network
and its training algorithm. The results highlight that the proposed segmentation-in-lieu-of-
registration approach shares methodological similarities with existing registration methods,
such as the use of displacement smoothness constraint and point distance minimization
albeit on non-grid graphs, which interestingly yielded benefits for both segmentation and
registration. We, therefore, conclude that the template-based GNN segmentation can
effectively establish spatial correspondence in our application, without any other dedicated
registration algorithms.
Keywords: Registration, graph neural networks, orthopedic surgery.

1. Introduction

Graph neural networks (GNNs) provide versatility in representing data sampled from non-grid
spatial locations using connected vertices and edges. For medical imaging applications, GNNs
have been proposed to represent the input images and extract features for tasks such as
classification and registration (Sun et al., 2021), as well as used in decoding for segmentation
tasks (Han et al., 2022; Fu et al., 2021), and representing non-grid prediction output for
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segmentation. In the latter, graph templates are designed for the regions of interest (ROIs)
to segment. For example, (Wickramasinghe et al., 2020) deforms a spherical mesh template
to segment the liver. (Kong et al., 2021) and (Kong and Shadden, 2021) used four templates
to describe the four parts of the heart. In (Bongratz et al., 2022) and (Hoopes et al., 2021),
a smoothed cortex model is deformed to segment the cerebral cortex.

In these studies, networks were trained to deform the predefined template meshes
iteratively to fit the object surface in the input image to achieve mesh reconstruction
or segmentation. We observed that the correspondence, defined by the same vertices
before and after mesh deformation, pertains anatomically corresponding locations, but was
understandably discarded for segmentation tasks. In this paper, this correspondence is used
to register the input image with the predefined template mesh (we call it a reference mesh)
and further register the input image pairs.

To demonstrate the application of the proposed registration strategy, we take annotating
spinal vertebrae from CT images as an example, which was previously achieved with convo-
lutional neural networks (CNNs) such as variants of UNet (Li et al., 2021; Lessmann et al.,
2019). While localizing finer vertebral sub-regions is also desirable in a number of surgical
tasks, and recent robot-assisted surgery may also benefit from precise planning of robotic
trajectories, with respect to these local anatomies (Hu et al., 2013; Dillon et al., 2016). Atlas
registration can be considered a suitable method in the absence of a sufficient number of
labeled data sets. It also has the potential to transfer the planned surgical trajectories from
the atlas to new images.

In this work, we first validate both classical intensity-based and recent learning-based
registration algorithms. Moreover, we propose template-based GNNs to represent vertebra
segmentation output and infer the spatial correspondence from the segmented vertebrae, a
denser, more local correspondence between sub-regions without supervision other than the
corresponding segmentation classes (the entire vertebra versus background in this case). This
is enabled by the spatial connectivity from the GNNs, inherent within the common template.
Interestingly, the experiments show that graph-segmentation-derived dense correspondence
achieved significantly lower target registration errors (TREs), compared with the tested
registration algorithms.

The contributions of this paper can be summarized as follows.

• A previous segmentation network (Bongratz et al., 2022) was reused for image registra-
tion tasks.

• Based on predefined reference meshes, strategies for a reference to target registration
and a general pairwise image registration are proposed.

• The proposed method achieves significantly better performance on both target point
localization and atlas segmentation tasks, compared with the tested classical non-
learning and other learning-based registration algorithms.
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Figure 1: (a) Overview of the registration network with a GNN module and a CNN module.
(b) The illustration of feature sampling. (c) Reference to target registration. (d) Pairwise
image registration. Symbols are defined in the text.

2. Registration with a Reference Mesh

In this section, we provide the details of the proposed approach based on CNN and GNN, to
register a reference mesh (i.e. the template in the context of segmentation used in previous
studies), from a reference image to the given voxel image.

The proposed registration method aims to register a set of predefined surface points in
the reference image Iref with those in the target image Itgt. A smoothed surface mesh from
the training data sets is used as the reference mesh, which can be represented by sets of
vertices, edges, and faces, i.e. Mref = (Vref, Eref,F ref). The registration task is to predict
the displacements Dp = fθ(I

tgt,Mref) from the input image and reference mesh, where fθ
is a neural network with parameters θ. Applying the displacement to Mref results in a
deformed mesh Mtgt

p = (Vtgt
p , Etgt

p ,F tgt
p ) for the Itgt. That is, for any vertex vref ∈ Vref,

let the displacement be dp, the moved vertex vtgt
p is calculated by vref + dp. Therefore,

a series of corresponding points Rref,tgt
p = {(vref,vtgt

p ) | vref ∈ Vref,vtgt
p ∈ Vtgt

p } from the
reference image to the target image are generated through the proposed registration method.
For a new target point pref in Iref, the registered corresponding point in Itgt for it can be
obtained by using the piecewise linear interpolator ptgt

p = Φ(Rref,tgt
p ,pref), where Φ(Ra,b,pa)

denotes the interpolated coordinate at pa using a series of paired points in a and b. Figure 1
illustrates this reference-to-target registration process.

More generally, the pairwise registration method registers the set of predefined surface
points from one image It1 to a second image It2, illustrated in Figure 1. Denote the corre-
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sponding deformed meshes as Mt1
p = (Vt1

p , Et1
p ,F t1

p ) and Mt2
p = (Vt2

p , Et2
p ,F t2

p ) respectively.
With the vertex displacement from the input to the target, the proposed registration method
can be applied by registering the reference mesh Mref to It1 and It2 separately, with displace-
ments Dt1 = fθ(I

t1,Mref) and Dt2 = fθ(I
t2,Mref) respectively. For any vertex vref ∈ Vref,

let the moved vertices in the two images be vref+dt1
p and vref+dt2

p . The relative displacement
between the two images for vref is dt2

p − dt1
p and the correspondence between the two moved

vertices is established as vt2
p = vt1

p −dt1
p +dt2

p . Therefore, in the pairwise registration task, for
a point pt1 from It1, the corresponding point in It2 can be predicted as pt2

p = Φ(Rt1,t2
p ,pt1),

where Rt1,t2
p = {(vt1

p ,vt2
p )|vt1

p ∈ Vt1
p ,vt2

p ∈ Vt2
p }.

3. Network Construction and the Training Loss

In this work, the neural network with both CNN and GNN modules from Bongratz et al.
(2022) is adopted, illustrated in Figure 1. The U-Net-like CNN module ingests the input image
and predicts a segmentation mask for the vertebra. The GNN module takes the reference
mesh as input and performs graph convolution with vertex features extracted from the CNN
module to adjust vertex coordinates progressively. Formally, at each graph convolution layer,
denote the vertex vi’s features in GNN as fi,GNN, it is updated by aggregating vertex features
of neighbors and itself from both GNN and CNN modules:

fi,GNN = h

 1

1 + |N (i)|

W0fi + b0 +
∑

j∈N (i)

(W1fj + b1)

 (1)

fi = concat[fi,CNN, f̂i,GNN] (2)

where h is Relu activation layer; W0, b0,W1, b1 are learnable weights; N (i) is the neighbour
vertices of vi ; and fi,CNN is the features extracted from CNN features and f̂i,GNN is previous
graph features. fi,CNN is calculated by concatenating the sampled CNN embeddings H at
multiple points along the vertex normal vector ni:

fi,CNN = concatαk∈α[ϕ(H,vi + αkni)], (3)

with ϕ(H,v) representing the sampled embedding from CNN embedding H at point v and
α is the predefined distances list. Such sampling is expected to provide more context beyond
the surface and facilitate the model training, described as follows.

To train the network fθ, a composed loss functions Bongratz et al. (2022) is adapted:

L = λseg(t)Lseg(Yp, Ygt) + λdelay(t)(λchamferLchamfer(Mtgt
p ,Mtgt

gt )

+ λnorm,interLnorm,inter(Mtgt
p ,Mtgt

gt ) + λnorm,intraLnorm,intra(Mtgt
p )

+ λedge(t)Ledge(Mtgt
p ) + λdispLdisp(Dp,Mtgt

p ))

(4)

where, Lseg(Yp, Ygt) is the binary cross entropy between the predicted and ground truth
vertebral segmentation masks; Lchamfer(Mtgt

p ,Mtgt
gt ) is the curvature-weighted Chamfer loss

that penalizes mismatched vertex positions between the predicted and ground truth meshes;
Lnorm,inter(Mtgt

p ,Mtgt
gt ) is the normal distance loss that penalizes mismatched vertex normal
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vectors between the predicted and ground truth meshes; Lnorm,intra(Mtgt
p ) is the normal

distance loss that promotes the consistency of adjacent face normal vectors in the predicted
mesh; Ledge(Mtgt

p ) is the edge length loss that penalizes long edges of the predicted mesh;
and Ldisp(Dp,Mtgt

p ) is the displacement regularisation loss which calculates the L2 norm of
the predicted vertices displacements. Different from the Laplacian smoothing in Bongratz
et al. (2022), we weighted the vertex displacement by the inverse of the edge length to account
for differences in neighbors at different distances. The definitions of these loss functions are
detailed in Appendix.

To avoid divergence at the initial training stage, frequently found in our preliminary
experiments, a delayed weight strategy was adopted λdelay(t) = 0.5 + arctan[(t− 3000)]/π,
controlled by the number of steps t. A dynamic loss weighting mechanism is also empirically
designed,λseg(t) = λedge(t) = 0.5− arctan[(t− 10000)/1000]/π.

4. Experiments and Results

4.1. Data sets and preprocessing

Three online published spine CT image segmentation data sets were used for training and
testing, namely Lumbar vertebra segmentation CT image data sets (LumSeg), Spine and
Vertebrae Segmentation Datasets (SpiSeg), and xVertSeg data sets (xVertSeg). The mixed
data contain a total of 35 subjects with 175 lumbar vertebrae, and for each case, the original
CT image and the voxel-labeled masks are given. The data were randomly divided into
a training set of 24 subjects and a holdout test set of 11 subjects. All the results in the
paper were based on the test set, without using a validation set for hyperparameter tuning,
which may further improve the performance. All images and segmentation ground truth were
resampled at a voxel dimension of 0.5mm× 0.5mm× 0.5mm, which are randomly cropped,
from the vertebral center, to a size of 128× 192× 192 in advance.

The ground truth surface meshes were obtained by using the marching cube algorithm
(Lorensen and Cline, 1987) based on the segmentation labels, followed by a Laplacian
smoothing filter with the trimesh Python library. To validate sub-region registration, all
vertices of the mesh were divided into 10 categories based on 9 boundary planes selected
manually. An example of the selected planes is shown in the Appendix. Examples of the
labeled mesh can be found in the GT of 3(a) and the symbols represent spinous process
(SP), left lamina (LL), right lamina (RL), left articular process (LAP), right articular process
(RAP), left transverse process (LTP), right transverse process (RTP), left pedicle (LP), right
pedicle (RP) and vertebral body (VB). We selected a registration target point for each
category of the test data set mesh by averaging the coordinates of all vertices of this category.

An image from the training data sets was randomly selected as the predefined reference and
the surface mesh was extracted with the marching cubes algorithm. The Laplacian smoothing
algorithm was applied to the reference mesh to remove the unsmooth and personalized details.
The experimental results were compared with three image registration baselines, the iterative
intensity-based method NiftyReg (Modat et al., 2010), the learning-based method WeaklySup
(Hu et al., 2018a,b; Fu et al., 2020) and VoxelMorph (Balakrishnan et al., 2019). NiftyReg
was implemented with SSD as the similarity measure regularised by bending energy, with
otherwise default configurations. Segmentation BCE loss was used to train WeaklySup and
the combined loss of BCE and the similarity loss SSD was adopted for training VoxelMorph.
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(a) Reference to target registration.
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(b) Arbitrary image pair registration.
Figure 2: The TREs results of Ours, WeaklySup, VoxelMorph, and NiftyReg. Detailed data
can be found in the Appendix.

Both WeaklySup and VoxelMorph were trained in a weakly-supervised algorithm, with the
same supervising labels, training set, and reference case. Results from a wider permutation of
algorithms and loss functions are reported in Table 4 and Table 5 in the Appendix. All results
are reported on the same test set. The official implementation of NiftyReg and VoxelMorph,
and a PyTorch adaptation of WeaklySup (Yang et al., 2022) were used. All experiments were
performed on NVIDIA GPU Quadro P5000.

4.2. Reference to target registration

The alignment between the fixed reference image and images in the test set was first quantified
and the TREs based on the geometric centers of individual sub-regions are summarised in
Figure 2(a) and also in Table 3. Compared with the results from NiftyReg, the TREs are
statistically lower for all sub-regions. The improvement over the learning-based algorithms
was less evident, with lower TREs observed in eight out of ten sub-regions when compared
with WeaklySup, indicating a comparable registration performance in this task. More
registration results can be found in the Appendix.

4.3. Arbitrary image pair registration via reference

In this experiment, 100 vertebral pairs were randomly sampled from the test set, and the
sub-region TREs are illustrated in Figure 2(b). Our registration model achieved an average
TRE on all sub-regions of 2.68±1.44 mm and outperformed WeaklySup (4.37±2.67 mm),
VoxelMorph (4.79±2.68 mm) and NiftyReg (9.35±4.38 mm).

The choice of the predefined reference may be a source of bias, however, previous studies
showed that segmentation tasks did not seem sensitive to such a smoothed mesh template
(Bongratz et al., 2022). It was found to be a much stronger bias if the two test images are used
as respective the reference and the target during test time - without using the intermediate
predefined reference, as opposed to the two correspondence composing approaches described
above. This indeed led to much higher TREs (9.44±15.36 mm). Results from the models
trained with a variable reference (randomly sampled reference during training) are summarised
in Section 4.5.
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4.4. Vertebra and sub-region segmentation

For reference purposes, we also report the results based on segmentation metrics on both the
sub-regions and the entire vertebra. Hausdorff distance (HD), the average symmetric surface
distance (ASSD), and Dice score are summarised in Table 1 and Figure 3(a). More examples
are provided in Appendix. Interestingly, our model achieves better results than the baselines.
Some segmentation examples can be seen in Figure 3(b) and Table 2.
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(b) Vertebrae segmentation errors.
Figure 3: Examples of sub-regions (a) and vertebra segmentation errors with a color error
bar (b). Further examples are provided in Appendix.

4.5. Ablation studies

To better understand 1) the importance of network architecture and loss function design and
2) their respective contributions to both segmentation and registration tasks, we provide a set
of ablation studies to compare the results when the following modification was independently
made, summarised in Table 3. Variable ref.: This model was trained with a variable
reference randomly from the training set, rather than a fixed reference and it was tested
without using a fixed reference in pairwise registration experiments. w/o norm. feat.:
Graph features were only interpolated from the voxel features by the mesh vertices which
means α = [0] in Equation 3. Constant λvox: The weight for voxel segmentation loss was
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Table 1: Sub-regions segmentation HD results in mm with average±standard deviation,
details also described in the text. Statistically significant results are in bold (paired t-tests
with Bonferroni correction in the multiple comparisons at a significance level α=0.001).

SP RL LL RTP LTP
Ours 0.97±1.29 0.78±0.56 0.84±0.55 1.06±1.23 1.44±2.27
WeaklySup 2.46±1.29 2.73±1.09 2.58±0.90 4.04±3.98 3.65±2.48
VoxelMorph 2.23±2.65 3.98±2.74 2.81±1.85 3.77±3.04 4.38±3.02
NiftyReg 4.98±2.92 5.59±3.69 5.67±4.24 6.78±4.78 8.46±4.51

RAP LAP RP LP VB
Ours 1.37±2.61 0.95±0.67 1.62±0.97 1.52±0.82 0.96±0.40
WeaklySup 3.12±2.66 2.54±0.99 2.77±1.42 2.57±1.36 3.32±2.34
VoxelMorph 3.08±2.93 2.15±1.03 2.27±2.00 1.87±1.46 3.46±2.49
NiftyReg 5.11±3.30 4.68±2.84 3.69±2.96 3.81±3.36 8.88±5.98

Table 2: Vertebra segmentation results.

Models HD (mm) ASSD (mm) Dice (%)
Ours 1.14±0.49 0.54± 0.11 93.25± 1.47

WeaklySup 3.22±1.76 1.19± 0.46 86.50± 5.21
VoxelMorph 3.26± 1.97 0.98± 0.44 91.12±4.10

NiftyReg 7.97± 4.65 2.52± 1.48 71.82±15.50

set to a constant value during the training. Classical chamfer: Classical chamfer loss was
used which is equal to set κ(· | κmax) = 1 in Equation (6). Laplacian: Uniform weights were
used when calculating the displacement regularisation loss which means w(v,vnbr) =

1
N (v) in

Equation (12) and it is equal to using the Laplacian smooth on the predicted displacements
(Nealen et al., 2006). w/o disp. reg.: The model was trained without displacement
regularisation loss. Constant λedge: A constant weight for edge length loss was used when
training.

Table 3: Ablation study results. TRE-reference and TRE-pair denote the performance from
reference-to-target registration and pairwise registration experiments, described in Secs. 4.2
and 4.3, respectively. Other metrics are described in the text. The best results are in bold.

TRE-reference TRE-pair HD ASSD Dice
Ours 2.15±1.33 2.68±1.44 1.14±0.49 0.54±0.11 93.25±1.47
Variable ref. 5.48±2.81 5.48±5.39 3.16±0.84 0.98±0.20 87.22±3.75
w/o norm. feat. 2.42±1.51 3.09±1.60 1.40±0.63 0.61±0.15 93.10±2.25
Constant λvox 2.80±1.62 3.04±1.52 1.84±1.05 0.74±0.27 92.71±2.94
Classical chamfer 3.06±1.64 3.45±1.71 1.96±0.85 0.75±0.20 91.82±2.16
Laplacian 2.28±1.39 2.78±1.51 1.10±0.47 0.53±0.11 92.71±2.68
w/o disp. reg. 3.53±1.68 4.06±2.02 1.52±0.62 0.65±0.15 93.19±2.22
Constant λedge 3.03±1.49 3.22±1.58 1.41±0.83 0.61±0.20 93.81±2.19
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5. Discussion

The proposed method uses GNN-represented meshes to describe object surfaces and predict
vertex displacements between a reference mesh and one or more target images. Although
the same structure as the previous network (Bongratz et al., 2022) is adopted, based on the
vertices correspondence before and after the mesh deformation, the output result is used to
establish the spatial correspondence between the reference mesh and the target image or
between a pair of target images. This paper takes vertebral CT image registration as an
example since the atlas registration can be applied in spinal surgery planning. It may be
applicable in other atlas registration tasks, such as other orthopedic image registration or
some soft tissue organ registration. However, those with unlabeled data sets driven only
by intensity-based loss were not investigated in this work. As described in (Bongratz et al.,
2022), the network is not guaranteed to be free of self-intersections. But probably because of
the use of a structure specific reference mesh, they were not observed in the experiments.
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6. Appendix

6.1. Loss Functions

6.1.1. Segmentation Loss

The binary cross entropy between the predicted and ground truth vertebral segmentation
masks Lseg(Yp, Ytgt) is defined as:

Lseg(Yp, Ytgt) = − 1

N

N∑
i=1

(Ygt,i log Yp,i + (1− Ygt,i) log(1− Yp,i)) (5)

where Ygt is the binary mask and Yp is the predicted soft mask with values between [0, 1].
The subscript i represents the value at voxel i which iterates over all voxels in the image.

6.1.2. Curvature-weighted Chamfer Loss

The curvature-weighted Chamfer loss that penalizes mismatched vertex positions between
the predicted and ground truth meshes is defined as Lchamfer(Mtgt

p ,Mtgt
gt ):

Lchamfer(Mtgt
p ,Mtgt

gt ) =
1∣∣∣Vtgt
gt

∣∣∣
∑

u∈Vtgt
gt

κ(u | κmax) min
v∈Vtgt

p

∥u− v∥2

+
1∣∣∣Vtgt
p

∣∣∣
∑

v∈Vtgt
p

κ(ũ | κmax) min
u∈Vtgt

gt

∥v − u∥2,
(6)

with ũ being the closest vertex in Vtgt
gt to v, i.e. ũ = argminu∈Vtgt

gt
∥v − u∥2. κ(· | κmax)

is the curvature function defined in Bongratz et al. (2022) with discrete mean curvature
function κ̄(·) defined in Cohen-Steiner and Morvan (2003):

κ(v | κmax) = min(1 + κ̄(v), κmax). (7)

6.1.3. Inter-mesh Normal Distance Loss

The normal distance loss that penalizes mismatched vertex normal vectors between the
predicted and ground truth meshes is defined as Lnorm,inter(Mtgt

p ,Mtgt
gt ):

Lnorm,inter(Mtgt
p ,Mtgt

gt ) =
1∣∣∣Vtgt
gt

∣∣∣
∑

u∈Vtgt
gt

1− cos(n(u),n(ṽ))

+
1∣∣∣Vtgt
p

∣∣∣
∑

v∈Vtgt
p

1− cos(n(v),n(ũ)),

(8)

with ṽ being the closest vertex in Vtgt
p to u and ũ being the closest vertex in Vtgt

gt to v, i.e.
ṽ = arg min

v∈Vtgt
p

∥u− v∥2 and ũ = arg min
u∈Vtgt

gt

∥v − u∥2. n(v) is the normal vector for vertex v,

which is the averaged normal vectors of the faces that v belongs to.
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6.1.4. Intra-mesh Normal Distance Loss

The normal distance loss that evaluates the consistency of adjacent face normal vectors in
the predicted mesh is defined as Lnorm,intra(Mtgt

p ):

Lnorm,intra(Mtgt
p ) =

1∣∣∣Etgt
p

∣∣∣
∑

f1∩f2=e

e∈Etgt
p

1− cos(n(f1),n(f2)), (9)

where faces f1, f2 shares the edge e and have the face normal vectors n(f1),n(f2) respectively.

6.1.5. Edge Length Loss

Ledge(Mtgt
p ) calculates the average of the edge lengths in the predicted mesh:

Ledge(Mtgt
p ) =

1∣∣∣Etgt
p

∣∣∣
∑

(v1,v2)=e∈Etgt
p

∥v1 − v2∥2 (10)

6.1.6. Displacement Regularisation Loss

Ldisp(Dp,Mtgt
p ) is defined as the sum of the derivative of displacements to constrain the

predicted transformation to be smooth (Rueckert et al., 1999):

Ldisp(Dp,Mtgt
p ) =

1∣∣∣Vtgt
p

∣∣∣
∑

v∈Vtgt
p

∥dp(v)−
∑

vnbr∈N (v)

w(v,vnbr)dp(vnbr)∥2, (11)

w(v,vnbr) =
1

∥v − vnbr∥
(

∑
v′∈N (v)

1

∥v − v′∥
)−1. (12)

For each vertex v, the difference between the displacement dp(v) and the averaged displace-
ments of its neighbors which are weighted by the inverse of the edge length is computed as
the displacement derivative.

6.2. Additional experimental results

An example of the manually labeled sub-regions is shown in Figure 4. All vertices of the
mesh were divided into 10 categories based on 9 boundary planes selected manually.

The choice of loss used for training or implementing baseline models may affect the
registration results. We experimented with some potential loss combinations on the reference
to target registration and pairwise image registration tasks. The results are shown in Table 4
and Table 5, where the model is named as the network name-loss combination.
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Figure 4: An example of the manually labeled sub-regions.
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(a) Examples of sub-regions segmentation results.
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(b) Example of vertebrae segmentation. The surface distance error is illustrated
with red color.
Figure 5: Examples of vertebrae and sub-region segmentation results.
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