
GAT-Edge: Graph Attention Neural Network with Adjacent Edge Features

Anonymous ACL submission

Abstract
Edge features are a crucial component of graph001
data as they provide a wealth of information002
that can enhance model performance. In this003
paper, we propose an improved model called004
GAT-Edge, which builds upon the graph atten-005
tion network by optimizing the attention mech-006
anism to incorporate edge feature information.007
By leveraging adjacent edge features in the008
graph, our model can assist downstream tasks009
such as node classification. The connection be-010
tween nodes in graph data is often enriched by011
the adjacent edges, which provide more effec-012
tive and abundant information. To exploit this,013
our model combines edge features and node014
features in the attention calculation, convolv-015
ing them together to generate new attention016
coefficients. This approach facilitates efficient017
information transmission and aggregation be-018
tween nodes, leading to improved performance.019
We apply our new model to several citation020
networks commonly used in the field of graph021
neural networks for node classification, and022
compare it with the current mainstream graph023
convolution neural network models. Our re-024
sults demonstrate that our model achieved bet-025
ter accuracy, highlighting the importance and026
research value of mining adjacent edge features027
in graphs.028

1 Introduction029

A series of deep learning models represented by030

fully connected neural networks, convolutional neu-031

ral networks (Lecun et al., 1998) and generative032

additive networks (Goodfellow et al., 2014) help033

us explore the information hidden behind the data,034

so to better understand the world. However, most035

of the popular deep learning models are strictly036

defined on structure data, which is difficult to be di-037

rectly extended to non-structure data such as graph038

data. Therefore, graph convolution neural network039

(GCN) (Kipf and Welling, 2017), graph attention040

network (GAT) (Veličković et al., 2018), Graph-041

Sage (Hamilton et al., 2017) and other methods042

have been proposed, effectively expanding the ap- 043

plication of deep learning in graph data. 044

Graph data typically consists of nodes and edges, 045

where nodes represent real-world entities and ad- 046

jacent edges represent their interactions or rela- 047

tionships. For instance, social networks can be 048

modeled as graphs, with users represented as nodes 049

and their relationships as edges. Each node is typi- 050

cally associated with a multi-dimensional feature 051

vector, such as user data, to capture its characteris- 052

tics. Adjacent edges in a graph can be represented 053

by eigenvectors to capture communication, interac- 054

tion, and other behaviors among (n) users. Graph 055

data is irregular in structure, making traditional ma- 056

chine learning methods unsuitable. However, with 057

advances in deep learning and computing power, 058

graph neural networks (GNNs) have become a pop- 059

ular and efficient method for processing graph data. 060

GNNs extend the methods of local receptive 061

fields, weight sharing, and spatial downsampling 062

from Euclidean structure data, such as images, 063

to non-Euclidean structured data, such as graphs. 064

The self-attention mechanism used in the trans- 065

former model in natural language processing has 066

been adapted for information aggregation between 067

nodes, leading to the development of the graph at- 068

tention network (GAT). GAT is based on the idea 069

of a convolutional neural network and uses the 070

Laplace matrix to complete the definition of spec- 071

tral domain transformation on a graph. In contrast 072

to the graph convolutional neural network (GCN), 073

which convolutes using the Laplacian matrix, GAT 074

aggregates node information using the attention 075

mechanism. This allows GAT to fuse information 076

from both node features and graph topology, mak- 077

ing it more effective in information aggregation. 078

Moreover, GAT’s adaptability enables it to effec- 079

tively capture correlations between node content 080

and information aggregation. 081

To solve above problems, we propose an im- 082

proved model called GAT-Edge, which builds upon 083

1

the graph attention network by optimizing the at-084

tention mechanism to incorporate edge feature in-085

formation. Our contributions can be summarized086

as follows:087

• The paper improves the original attention088

mechanism of GAT by incorporating edge fea-089

ture information to address the lack of struc-090

tural information processing.091

• To introduce edge features, the paper splices092

them into two node features and increases the093

dimension of the mapping matrix to calculate094

a new attention coefficient.095

• Using the improved attention mechanism,096

each neural network hidden layer calculates097

multi-head attention, summarizes the informa-098

tion according to the structure of GAT, and099

finally classifies nodes.100

• The paper manually constructs a three-101

dimensional feature vector from directed102

edges, experimental results demonstrate that103

the GAT-Edge model significantly improves104

the accuracy index of node classification and105

highlights the importance of exploring edge106

features in graph data.107

2 Rwlated Work108

2.1 Graph Neural Network109

GNN(Scarselli et al., 2009), initially proposed by110

Scarselli et al. (2009) , connects node features111

through a latent function (Thang et al., 2022). Wu112

(Wu et al., 2021) categorize GNN models into113

four groups: cyclic GNNs, Graph Convolutional114

Neural Networks, graph Autoencoders, and Spatio-115

Temporal Graph Convolutional Networks. GCN116

has spectral and spatial modes. Spectral CNN has117

limitations like eigenvalue sensitivity and topology118

specificity (Denton et al., 2014). Subsequent mod-119

els, e.g., Chebnetp (Hammond et al., 2011) and120

AGCN (Li et al., 2018), simplify computations and121

enhance relationships between nodes.122

2.2 Attention Mechanism123

The self-attention mechanism(Bahdanau et al.,124

2016), pioneered by Bahdanau et al. (2016) for125

Seq2Seq models in machine translation, addresses126

limitations in processing long sequences. The127

mechanism computes attention to each hidden128

layer, mitigating gradient vanishing. The trans-129

former model (Vaswani et al., 2017) popularized130

Symbol Description
N(v) Neighbor set of node v
n The total number of nodes in the graph data
m The total number of adjacent edges in the graph data
A Adjacency matrix of graph data
d The dimension of node feature vectors on a graph
c Dimension of adjacent edge feature vectors on a graph
X ∈ Rn×d The characteristic matrix of nodes on a graph
xv ∈ Rd The feature vectors of node v on the graph
Xe ∈ Rm×c The characteristic matrix of adjacent edges on a graph
xe
uv ∈ Rc The feature vectors of adjacent edges between node u and node v on the graph

H ∈ Rn×b Node feature matrix of hidden layers
hv ∈ Rb The feature vectors of node v in the hidden layer
K Number of hidden layers
W,We Trainable parameters and parameter matrices in graph neural networks

Table 1: Basic statistical information of the three
datasets

self-attention in NLP and extended it to computer 131

vision, aiding image understanding and text-image 132

interactions (Xu et al., 2015). In graph data, GAT 133

introduced self-attention to enhance node commu- 134

nication (Wei et al., 2022). An efficient method 135

for spectral-based information filtering was pro- 136

posed (Vaswani et al., 2017). Multi-head attention 137

improves attention stability and learning (Vaswani 138

et al., 2017). This mechanism helps the model filter 139

graph noise and improve signal-to-noise ratio (Lee 140

et al., 2018). 141

2.3 Edge Features in GNN 142

Several methods aim to incorporate edge features 143

in graph data. Message Passing Neural Network 144

(MPNN) (Gilmer et al., 2017) involves two stages, 145

but it doesn’t recognize node-edge correlations. 146

Edge-Enhanced Graph Neural Network (EGNN) 147

introduces edge weights into self-attention, but it 148

only uses the original edge features in the first layer, 149

causing information decay with layers (Gong and 150

Cheng, 2019). In summary, they have limitations 151

in recognizing node-edge correlations, introducing 152

edge weights at multiple layers, and handling large 153

directed graphs. 154

3 GAT-Edge 155

3.1 GAT 156

Given a graph G = {V,E}, where vi ∈ V is a 157

node, i = 1, ..., n. eij ∈ E represents the edge 158

between vi and vj . For a directed graph eij = 1 159

means there is an edge from vi to vj , otherwise 160

eij = 0. Table 1 gives the notations used in this 161

article. 162

GAT introduced the attention mechanism from 163

NLP into GNN, proposing the graph attention net- 164

work. It uses self-attention to impose varying 165

weights on each first-order neighbor node and em- 166

ploys a mask attention mechanism to focus on 167

2

the first-order neighbor nodes while constructing a168

mask matrix to filter out greater-than-second-order169

interference. Weight allocation is recalculated us-170

ing the softmax function.171

αij = softmaxj(bij) =
exp(bij)∑

k∈Ni
exp(bik)

(1)172

Among them, bij represents attention coefficient173

between node vi and node vj , Ni represents the set174

of all first-order neighbor nodes of vi . When calcu-175

lating the attention coefficient in GAT, the feature176

vector xj of node vi and the feature vector xj of177

node vj using trainable parameter matrices W for178

mapping, respectively. Due to the fact that the at-179

tention between two nodes is actually asymmetric,180

i.e. eij ̸= eji, therefore, concatenate the mapping181

results of two vectors. Afterwards, a single-layer182

feedforward neural network aT is used to map the183

concatenated vectors onto real numbers. Finally,184

using LeakyReLU for activation, the attention co-185

efficient was obtained:186

bij = LeakyReLU(aT [Wxi||Wxj]) (2)187

Then, the weighted sum of neighbor information188

is performed on the nodes. The specific details of189

weighting are as follows:190

h
′
i = σ(

∑
j∈Ni

αijWhij) (3)191

Among them, hj represents the input vector of192

node vj in this layer, while h
′
i represents the output193

vector of node vi in this layer. σ is the softmax194

function. However, a single attention mechanism is195

often not stable, so GAT introduces a multi-head at-196

tention mechanism to stabilize the weights between197

nodes, thereby improving the model’s representa-198

tion ability. For the output vector of the middle199

hidden layer, GAT uses K independently trained200

W k to calculate attention and weight separately.201

Then concatenate the results calculated by each in-202

dependent attention head to obtain the final output203

vector of this layer. Namely:204

h
′
i(K) = ||Kk=1σ(

∑
j∈Ni

αk
ijW

h
j) (4)205

3.2 GAT-Edge206

GAT excels in various graph deep learning tasks207

but, like traditional GCN, focuses on node charac-208

teristics for convolution, neglecting the importance209

of adjacent edges. In social networks, capturing 210

interaction information from edges is crucial. By 211

assessing edge information to update node infor- 212

mation weights, hidden node representations can 213

be trained more effectively for better downstream 214

task performance. Directed graphs offer more real- 215

world fidelity than undirected ones, but traditional 216

graph convolution networks struggle with directed 217

graphs due to Laplacian matrix symmetry. While 218

GAT works with directed graphs, it aggregates in- 219

formation vertex by vertex without clear edge direc- 220

tion in input features. To address these limitations 221

and incorporate edge features while distinguishing 222

edge directions in directed graphs, this paper pro- 223

poses an attention mechanism building upon the 224

graph attention network. 225

3.2.1 Construction of edge features 226

Edge features are represented by constructing edge 227

feature vectors. This paper suggests dividing the 228

edge feature vector into two parts: one for edge 229

direction and the other for edge information. 230

The part storing the direction information can 231

be represented by a two-dimensional vector: the 232

direction vector from node i to the adjacent edge 233

of node j is marked as [1, 0] on the adjacent edge 234

of node i, and [0, 1] on the adjacent edge of node j. 235

We can get edge feature information by calculating 236

the similarity coefficient of between two nodes, 237

the in-degree, out-degree, the degree distribution 238

of two nodes, or the Mahalanobis distance of two 239

nodes in vector space. 240

3.2.2 Improvement of attention mechanism 241

The attention mechanism allows the central node 242

to selectively aggregate information from neigh- 243

bor nodes, enhancing local graph convolution ef- 244

ficiency. However, current graph attention mecha- 245

nisms neglects edge features. Incorporating edge 246

features into the attention mechanism enhances 247

information transmission efficiency, improves net- 248

work node learning, and strengthens structural in- 249

formation learning. 250

The attention mechanism of introducing edge 251

features proposed in this paper is as follows: 252

bij = LeakyReLU
(
aT [

Whi

∣∣∣∣Whj

∣∣∣∣Wexe
ij

])
(5) 253

The proposed enhancement involves treating the 254

adjacent edge feature vector between two nodes as 255

equally important as the node feature vector in the 256

3

attention calculation. This ensures that the atten-257

tion coefficient incorporates both node-node associ-258

ations and adjacent edge features. This strengthens259

the selection of valuable neighbor information by260

the attention mechanism without polluting node261

information and impacting downstream tasks. Un-262

der this new mechanism, the weight calculation for263

information aggregation is defined as follows:264

αij = softmaxj (bij) =

exp
(
LeakyReLU

(
aT

[
Whi

∣∣∣∣Whj

∣∣∣∣Wexe
ij

]))∑
k∈Ni

exp (LeakyReLU (aT [Whi||Whk||Wexe
ik]))

(6)

265

3.2.3 Model architecture266

To apply GAT-Edge model for node classification,267

the process is as follows:268

Feature processing and construction: Align the269

graph data’s adjacency matrix with the node vector270

matrix and normalize it. Construct the edge eigen-271

vector matrix, determine edge direction based on272

the adjacency matrix, and fill in direction vectors.273

Create a mask matrix to limit weighted aggregation274

to first-order neighbors.275

Calculate multi-head attention: Using the pro-276

cessed node feature matrix, adjacency matrix, adja-277

cent edge feature matrix, and mask matrix as inputs278

to the convolution layer, compute multi-head atten-279

tion for each adjacent edge. Calculate final weights280

using multi-head attention.281

Update central node feature vector: Weight and282

aggregate first-order neighbors based on calculated283

weights and the mask matrix. The central node’s284

feature vector is updated, serving as the output for285

this hidden layer and input for the next one.286

Output node prediction: Apply a fully connected287

neural network to the last hidden layer’s output288

vector and use softmax to make the final node pre-289

diction.290

3.2.4 The computational complexity of the291

model292

In the process of node mapping, the main function293

of Whj is to map the vector of dimension d to294

the space of dimension d
′
, so the computational295

complexity is O(d× d
′
). Because each node needs296

to be mapped with features, the actual computa-297

tional complexity caused by the mapping process298

of nodes is O(n× d× d
′
).299

In the mapping process of edge features, the300

main function of Wexe
ij is to map a dimensional301

vector c to a dimensional vector space c
′
, so its 302

computational complexity is O(c× c
′
). Similarly, 303

each adjacent edge needs to be mapped, so the 304

actual computational complexity is O(m× c× c
′
). 305

In the calculation of the attention mechanism, 306

the main function of aT (•) is to map the vector of 307

a dimension 2× d
′

to a real number. Unlike GAT, 308

because it needs to map edge eigenvectors to real 309

numbers, its actual computational complexity is 310

O
(
d
′
+ c

′
)

. In the actual calculation process, the 311

attention coefficient needs to be calculated for each 312

adjacent edge, so the computational complexity of 313

this process is O(m×
(
d
′
+ c

′
)
). 314

Subsequent calculations are mainly weighted 315

summation operations, so the computational com- 316

plexity of the model will not be affected in 317

essence. To sum up, the computational complex- 318

ity of the GAT-Edge model is O
(
n× d× d

′
)
+ 319

O
(
m× c× c

′
)
+O(m×

(
d
′
+ c

′
)
). 320

Compared with the GCN with O
(
n3

)
, GAT- 321

Edge significantly reduces the computational com- 322

plexity, thus supporting large-scale computing. 323

However, compared with the GAT model, the GAT- 324

Edge model has increased the computational com- 325

plexity a little bit due to the introduction of edge 326

features in attention calculation. 327

4 Experiments 328

4.1 Data Sets 329

The experiments were conducted on three real- 330

world academic paper citation networks: Cora, 331

Citeseer, and PubMed. The Cora dataset com- 332

prises 2708 nodes and 5429 adjacent edges, with 333

each node corresponding to a machine learning aca- 334

demic paper. These papers are divided into seven 335

categories. Each paper is represented by a 1433- 336

dimensional word vector, with 0 and 1 values indi- 337

cating word presence or absence, after stemming, 338

stop-word removal, and filtering low-frequency 339

words. 340

The Citeseer and PubMed datasets underwent a 341

similar preprocessing process. Citeseer has 3327 342

academic paper nodes, 4732 adjacent edges, and 343

3703-dimensional feature word vectors. PubMed 344

consists of 19717 academic paper nodes, 44338 345

adjacent edges, and 500-dimensional feature word 346

vectors. Papers in Citeseer are divided into six 347

categories, while PubMed has three categories. 348

Due to limited computing resources, a random 349

4

Cora Citeseer Sub PubMed
Number of nodes 2708 3327 4000
Number of edges 5429 4932 12415
Number of features on each node 1433 3703 500
Average degree of nodes 2.00 1.48 3.10
Network density 0.0014 0.0008 0.0016
Number of features on each edge 3 3 3
Categories of nodes 7 6 3
Number of nodes in training set 1625 1996 2400
Number of nodes in validation set 542 666 800
Number of nodes in test set 541 665 800

Table 2: Basic statistical information of the three
datasets.

Figure 1: Box plots of node degree

walk sampling method was used to create a sub-350

graph of PubMed data with 4000 nodes as a sub-351

stitute for the full PubMed dataset during model352

training. The summary statistics of these three353

graph data are shown in Table 2.354

The three citation network datasets are relatively355

sparse, with the largest Sub PubMed dataset having356

an average node degree of only 3.1, meaning each357

node has an average of three first-order neighbors.358

The smallest Citeseer dataset has an average node359

degree of less than 1.5, indicating that its topologi-360

cal structure relies less on graph information and361

more on node eigenvectors. In terms of network362

density, all three datasets are relatively low, which363

is very common in real graph data.364

Figure 1 shows the node degrees which ranges365

from 0 to 10, decreasing rapidly with higher de-366

grees. Sub-PubMed has a relatively flatter distri-367

bution with more high-degree nodes compared to368

Cora and Citeseer. There are many outliers, with369

the largest node having a degree of about 200, even370

336 in Cora.371

The edge features for these three academic paper372

citation networks are constructed as follows. For373

position vectors, it fills with either [0,1] or [1,0]374

based on the direction of the original adjacent edge.375

Edge feature vectors are obtained by calculating the376

Figure 2: The correlation coefficient of the node features

correlation coefficient of feature vectors between 377

two nodes, creating a three-dimensional vectors to 378

represent edge information. 379

Since it is necessary to use the correlation co- 380

efficient of feature vectors between nodes to con- 381

struct edge features, it’s intuitive to expect that 382

if node features effectively represent node cate- 383

gories, the correlation coefficient of feature vectors 384

for nodes with the same category label should be 385

higher, while nodes with different category labels 386

should have a lower correlation coefficient. We cal- 387

culate the correlation coefficients between nodes 388

with the same label and those with different labels 389

in the three datasets. The results are as expected as 390

shown in Figure 2. 391

4.2 Hyperparameter Setting and Running 392

Environment 393

The neural network, while powerful, requires man- 394

ually setting hyperparameters, making it a cumber- 395

some process, especially for large-scale datasets. 396

Key hyperparameters for the GAT-Edge model in- 397

clude batch size, hidden layer size, number of at- 398

tention heads, learning rate, L2 regularization coef- 399

ficient. 400

The learning rate is a crucial parameter, balanc- 401

ing convergence speed and overfitting. The right 402

learning rate improves model performance. Neu- 403

ral network size depends on hidden layer neuron 404

count and depth. Wider networks, meaning more 405

neurons in the hidden layer and fewer layers, are 406

often better at capturing information, while depth 407

incurs more computational cost. 408

Neural networks, due to their strong learning 409

capacity, are susceptible to overfitting. To combat 410

5

Model parameter Value
Batch Size 1
Hidden layers 2
Number of neurons in hidden layer 8
Number of heads of multiple attention mechanisms 8
Activate function LeakyReLU
Optimizer Adam
Drop out 0.6
Learning rate 0.01
Coefficient of L2 loss 0.0001

Table 3: Specific super parameter settings.

this, regularization terms like L1 and L2 regular-411

ization are added to the loss function, ensuring the412

network doesn’t learn noisy data.413

L1 : J(w, b) =
1

m

m∑
i=1

L
(
ŷ(i), y(i)

)
+

λ

2m
||w||1

(7)414

L2 : J(w, b) =
1

m

m∑
i=1

L
(
ŷ(i), y(i)

)
+

λ

2m
||w||22

(8)415

L1 regularization pushes weights towards 0,416

whereas L2 regularization shrinks weights close to417

0. L2 is preferred in neural networks as it encour-418

ages neurons to capture more features. It punishes419

high neuron weights, preventing overfitting. Given420

the edge feature addition, the original GAT’s L2421

weight of 0.0005 is reduced to 0.0001 for better422

accuracy.423

Table 3 outlines the experiment’s specific param-424

eter settings:425

The running environment of the experiment is426

Ubuntu 16.04 LTS, CUDA 11.2, a TITAN V 12GB427

GPU, Python 3.6.5, and TensorFlow-gpu version428

1.14.0.429

4.3 Comparison Results430

This paper compares the GAT-Edge model’s per-431

formance with GCN, GAT, MPNN, AGNN and432

SPLINE. GCN, GAT and MPNN have been in-433

troduced in Section 2. AGNN (Attention-based434

Graph Neural Network, (Thekumparampil et al.,435

2018)) introduces an attention mechanism in the436

propagation layer to differentiate the attention of437

neighboring nodes during the aggregation process438

of central node features. SPLINE(Fey et al., 2017)439

utilizes Continuous B-Spline kernels to make the440

computation time independent from the kernel size441

due to the local support property of the B-spline442

basis functions.443

Method Cora Citeseer Sub PubMed
GCN 82.38%(2.5%) 74.89%(1.3%) 86.11%(0.8%)
GAT 86%(0.6%) 74.73%(1.1%) 85.62%(1.1%)
MPNN 85.9%(1.4%) 73.46%(1.1%) 84.69%(0.4%)
AGNN 85.60%(0.9%) 73.88%(1.1%) 86.56%(0.4%)
SPLINE 86.76%(1.2%) 74.62%(1.7%) 86.68%(0.8%)
GAT-Edge 87.31%(0.8%) 76.50%(1%) 87.05%(1.5%)

Table 4: Summary of experimental results.

Cora Citeseer Sub PubMed
GAT-Edge Vs GAT 3.88* 3.48* 2.33*
GAT-Edge Vs GCN 5.68* 2.96* 1.67
GAT-Edge Vs SPLINE 1.17 2.95* 0.68
GAT-Edge Vs MPNN 2.75* 6.42* 4.78*
GAT-Edge Vs Agnn 4.61* 5.44* 1.01

*significant at 5% level

Table 5: Independent sample t-test of experimental re-
sults.

Each dataset is randomly divided into training, 444

validation, and test sets in a 3:1:1 ratio with 10 445

random seeds. The datasets are split 10 times, and 446

each model, including the comparisons, is run 10 447

times. Because our datasets do not have imbalance 448

problem, multi-class classification accuracy is used 449

as the evaluation metric. It is summarized in Table 450

4. 451

The average performance of the GAT-Edge 452

model on the three datasets surpasses the compari- 453

son models based on the results of ten experiments. 454

This indicates the effectiveness of mining opposing 455

information in node classification using GAT-Edge. 456

To mitigate potential experiment bias, this paper 457

considers conducting an independent sample t-test 458

to assess whether the GAT-Edge’s performance is 459

significantly better than the other models. The null 460

hypothese for the hypothesis test is as follows: 461

H0: The accuracy of GAT-Edge model on the 462

data set is not higher than that of the other model; 463

The results of the hypothesis test are shown in 464

Table 5: 465

It can be seen from Table 5 that in most cases 466

(11 out of 15), the null hypotheses are rejected at 467

5% significance level, so we believe that GAT-Edge 468

significantly improved the prediction accuracy on 469

the three data sets. 470

5 Conclusion 471

This paper introduces the GAT-Edge model, which 472

addresses a significant gap in graph neural net- 473

works (GNN) research by incorporating edge fea- 474

tures and direction to enhance graph data repre- 475

sentation. While traditional GNNs focus on ag- 476

6

gregating node information for downstream tasks,477

GAT-Edge goes beyond by considering edge at-478

tributes.479

GAT-Edge leverages an attention mechanism to480

guide information aggregation, leading to superior481

performance in node classification experiments on482

Cora, Citeseer, and Sub PubMed datasets when483

compared to existing GNN methods.484

6 Limitations485

The GAT-Edge has some limitations: it may re-486

quire substantial memory space and computa-487

tional resources when handling a large number488

of high-dimensional edge features. Additionally,489

the model’s reliance on correlation coefficients for490

edge feature construction can lead to instability491

with limited data.492

Moreover, the model doesn’t account for essen-493

tial topological graph characteristics like ternary494

closure and shortest path, which could enhance its495

capacity to process graph data.496

Finally, the paper could explore more efficient497

and interpretable methods for introducing edge fea-498

tures, offering promising avenues for further re-499

search.500

Acknowledgement501

This work is supported by National Natural Sci-502

ence Foundation of China (No. 72171229), and the503

MOE Project of Key Research Institute of Humani-504

ties and Social Sciences (No. 22JJD110001).505

References506

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua507
Bengio. 2016. Neural machine translation by508
jointly learning to align and translate. Preprint,509
arXiv:1409.0473.510

Emily L Denton, Wojciech Zaremba, Joan Bruna, Yann511
LeCun, and Rob Fergus. 2014. Exploiting linear512
structure within convolutional networks for efficient513
evaluation. In Advances in Neural Information Pro-514
cessing Systems, volume 27. Curran Associates, Inc.515

Matthias Fey, Jan Eric Lenssen, Frank Weichert, and516
Heinrich Müller. 2017. Splinecnn: Fast geomet-517
ric deep learning with continuous b-spline kernels.518
CoRR, abs/1711.08920.519

Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley,520
Oriol Vinyals, and George E. Dahl. 2017. Neural521
message passing for quantum chemistry. In Pro-522
ceedings of the 34th International Conference on523
Machine Learning, volume 70 of Proceedings of Ma-524
chine Learning Research, pages 1263–1272. PMLR.525

Liyu Gong and Qiang Cheng. 2019. Exploiting edge fea- 526
tures for graph neural networks. In 2019 IEEE/CVF 527
Conference on Computer Vision and Pattern Recog- 528
nition (CVPR), pages 9203–9211. 529

Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, 530
Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron 531
Courville, and Yoshua Bengio. 2014. Generative 532
adversarial networks. Preprint, arXiv:1406.2661. 533

Will Hamilton, Zhitao Ying, and Jure Leskovec. 2017. 534
Inductive representation learning on large graphs. In 535
Advances in Neural Information Processing Systems, 536
volume 30. Curran Associates, Inc. 537

David K. Hammond, Pierre Vandergheynst, and Rémi 538
Gribonval. 2011. Wavelets on graphs via spectral 539
graph theory. Applied and Computational Harmonic 540
Analysis, 30(2):129–150. 541

Thomas N. Kipf and Max Welling. 2017. Semi- 542
supervised classification with graph convolutional 543
networks. Preprint, arXiv:1609.02907. 544

Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. 1998. 545
Gradient-based learning applied to document recog- 546
nition. Proceedings of the IEEE, 86(11):2278–2324. 547

John Boaz Lee, Ryan Rossi, and Xiangnan Kong. 2018. 548
Graph classification using structural attention. In 549
Proceedings of the 24th ACM SIGKDD International 550
Conference on Knowledge Discovery & Data Mining, 551
KDD ’18, page 1666–1674, New York, NY, USA. 552
Association for Computing Machinery. 553

Ruoyu Li, Sheng Wang, Feiyun Zhu, and Junzhou 554
Huang. 2018. Adaptive graph convolutional neu- 555
ral networks. Proceedings of the AAAI Conference 556
on Artificial Intelligence, 32(1). 557

Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus 558
Hagenbuchner, and Gabriele Monfardini. 2009. The 559
graph neural network model. IEEE Transactions on 560
Neural Networks, 20(1):61–80. 561

Duong Chi Thang, Hoang Thanh Dat, Nguyen Thanh 562
Tam, Jun Jo, Nguyen Quoc Viet Hung, and Karl 563
Aberer. 2022. Nature vs. nurture: Feature vs. struc- 564
ture for graph neural networks. Pattern Recognition 565
Letters, 159:46–53. 566

Kiran K. Thekumparampil, Chong Wang, Sewoong Oh, 567
and Li-Jia Li. 2018. Attention-based graph neu- 568
ral network for semi-supervised learning. Preprint, 569
arXiv:1803.03735. 570

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob 571
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz 572
Kaiser, and Illia Polosukhin. 2017. Attention is all 573
you need. In Advances in Neural Information Pro- 574
cessing Systems, volume 30. Curran Associates, Inc. 575

Petar Veličković, Guillem Cucurull, Arantxa Casanova, 576
Adriana Romero, Pietro Liò, and Yoshua Ben- 577
gio. 2018. Graph attention networks. Preprint, 578
arXiv:1710.10903. 579

7

https://arxiv.org/abs/1409.0473
https://arxiv.org/abs/1409.0473
https://arxiv.org/abs/1409.0473
https://arxiv.org/abs/1711.08920
https://arxiv.org/abs/1711.08920
https://arxiv.org/abs/1711.08920
https://arxiv.org/abs/1406.2661
https://arxiv.org/abs/1406.2661
https://arxiv.org/abs/1406.2661
https://doi.org/10.1016/j.acha.2010.04.005
https://doi.org/10.1016/j.acha.2010.04.005
https://doi.org/10.1016/j.acha.2010.04.005
https://arxiv.org/abs/1609.02907
https://arxiv.org/abs/1609.02907
https://arxiv.org/abs/1609.02907
https://arxiv.org/abs/1609.02907
https://arxiv.org/abs/1609.02907
https://www.sciencedirect.com/science/article/pii/S0167865522001489
https://www.sciencedirect.com/science/article/pii/S0167865522001489
https://www.sciencedirect.com/science/article/pii/S0167865522001489
https://arxiv.org/abs/1803.03735
https://arxiv.org/abs/1803.03735
https://arxiv.org/abs/1803.03735
https://arxiv.org/abs/1710.10903

FeiFei Wei, Mingzhu Ping, and KuiZhi Mei. 2022.580
Structure-based graph convolutional networks with581
frequency filter. Pattern Recognition Letters,582
164:161–165.583

Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong584
Long, Chengqi Zhang, and Philip S. Yu. 2021. A585
comprehensive survey on graph neural networks.586
IEEE Transactions on Neural Networks and Learning587
Systems, 32(1):4–24.588

Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho,589
Aaron Courville, Ruslan Salakhudinov, Rich Zemel,590
and Yoshua Bengio. 2015. Show, attend and tell:591
Neural image caption generation with visual attention.592
In Proceedings of the 32nd International Conference593
on Machine Learning, volume 37 of Proceedings of594
Machine Learning Research, pages 2048–2057, Lille,595
France. PMLR.596

8

https://www.sciencedirect.com/science/article/pii/S0167865522003348
https://www.sciencedirect.com/science/article/pii/S0167865522003348
https://www.sciencedirect.com/science/article/pii/S0167865522003348

	Introduction
	Rwlated Work
	Graph Neural Network
	Attention Mechanism
	Edge Features in GNN

	GAT-Edge
	GAT
	GAT-Edge
	Construction of edge features
	Improvement of attention mechanism
	Model architecture
	The computational complexity of the model

	Experiments
	Data Sets
	Hyperparameter Setting and Running Environment
	Comparison Results

	Conclusion
	Limitations

