GAT-Edge: Graph Attention Neural Network with Adjacent Edge Features

Anonymous ACL submission

Abstract

Edge features are a crucial component of graph
data as they provide a wealth of information
that can enhance model performance. In this
paper, we propose an improved model called
GAT-Edge, which builds upon the graph atten-
tion network by optimizing the attention mech-
anism to incorporate edge feature information.
By leveraging adjacent edge features in the
graph, our model can assist downstream tasks
such as node classification. The connection be-
tween nodes in graph data is often enriched by
the adjacent edges, which provide more effec-
tive and abundant information. To exploit this,
our model combines edge features and node
features in the attention calculation, convolv-
ing them together to generate new attention
coefficients. This approach facilitates efficient
information transmission and aggregation be-
tween nodes, leading to improved performance.
We apply our new model to several citation
networks commonly used in the field of graph
neural networks for node classification, and
compare it with the current mainstream graph
convolution neural network models. Our re-
sults demonstrate that our model achieved bet-
ter accuracy, highlighting the importance and
research value of mining adjacent edge features
in graphs.

1 Introduction

A series of deep learning models represented by
fully connected neural networks, convolutional neu-
ral networks (Lecun et al., 1998) and generative
additive networks (Goodfellow et al., 2014) help
us explore the information hidden behind the data,
so to better understand the world. However, most
of the popular deep learning models are strictly
defined on structure data, which is difficult to be di-
rectly extended to non-structure data such as graph
data. Therefore, graph convolution neural network
(GCN) (Kipf and Welling, 2017), graph attention
network (GAT) (Velickovi¢ et al., 2018), Graph-
Sage (Hamilton et al., 2017) and other methods

have been proposed, effectively expanding the ap-
plication of deep learning in graph data.

Graph data typically consists of nodes and edges,
where nodes represent real-world entities and ad-
jacent edges represent their interactions or rela-
tionships. For instance, social networks can be
modeled as graphs, with users represented as nodes
and their relationships as edges. Each node is typi-
cally associated with a multi-dimensional feature
vector, such as user data, to capture its characteris-
tics. Adjacent edges in a graph can be represented
by eigenvectors to capture communication, interac-
tion, and other behaviors among (n) users. Graph
data is irregular in structure, making traditional ma-
chine learning methods unsuitable. However, with
advances in deep learning and computing power,
graph neural networks (GNNs) have become a pop-
ular and efficient method for processing graph data.

GNNs extend the methods of local receptive
fields, weight sharing, and spatial downsampling
from Euclidean structure data, such as images,
to non-Euclidean structured data, such as graphs.
The self-attention mechanism used in the trans-
former model in natural language processing has
been adapted for information aggregation between
nodes, leading to the development of the graph at-
tention network (GAT). GAT is based on the idea
of a convolutional neural network and uses the
Laplace matrix to complete the definition of spec-
tral domain transformation on a graph. In contrast
to the graph convolutional neural network (GCN),
which convolutes using the Laplacian matrix, GAT
aggregates node information using the attention
mechanism. This allows GAT to fuse information
from both node features and graph topology, mak-
ing it more effective in information aggregation.
Moreover, GAT’s adaptability enables it to effec-
tively capture correlations between node content
and information aggregation.

To solve above problems, we propose an im-
proved model called GAT-Edge, which builds upon

the graph attention network by optimizing the at-
tention mechanism to incorporate edge feature in-
formation. Our contributions can be summarized
as follows:

* The paper improves the original attention
mechanism of GAT by incorporating edge fea-
ture information to address the lack of struc-
tural information processing.

* To introduce edge features, the paper splices
them into two node features and increases the
dimension of the mapping matrix to calculate
a new attention coefficient.

* Using the improved attention mechanism,
each neural network hidden layer calculates
multi-head attention, summarizes the informa-
tion according to the structure of GAT, and
finally classifies nodes.

* The paper manually constructs a three-
dimensional feature vector from directed
edges, experimental results demonstrate that
the GAT-Edge model significantly improves
the accuracy index of node classification and
highlights the importance of exploring edge
features in graph data.

2 Rwlated Work

2.1 Graph Neural Network

GNN(Scarselli et al., 2009), initially proposed by
Scarselli et al. (2009) , connects node features
through a latent function (Thang et al., 2022). Wu
(Wu et al., 2021) categorize GNN models into
four groups: cyclic GNNs, Graph Convolutional
Neural Networks, graph Autoencoders, and Spatio-
Temporal Graph Convolutional Networks. GCN
has spectral and spatial modes. Spectral CNN has
limitations like eigenvalue sensitivity and topology
specificity (Denton et al., 2014). Subsequent mod-
els, e.g., Chebnetp (Hammond et al., 2011) and
AGCN (Li et al., 2018), simplify computations and
enhance relationships between nodes.

2.2 Attention Mechanism

The self-attention mechanism(Bahdanau et al.,
2016), pioneered by Bahdanau et al. (2016) for
Seq2Seq models in machine translation, addresses
limitations in processing long sequences. The
mechanism computes attention to each hidden
layer, mitigating gradient vanishing. The trans-
former model (Vaswani et al., 2017) popularized

Symbol Description

N(v) Neighbor set of node v

n The total number of nodes in the graph data

m The total number of adjacent edges in the graph data
A Adjacency matrix of graph data

d The dimension of node feature vectors on a graph

c Dimension of adjacent edge feature vectors on a graph
X € R The characteristic matrix of nodes on a graph

x, € R4 The feature vectors of node v on the graph

X€¢ e R™*¢ The characteristic matrix of adjacent edges on a graph

x5, € R° The feature vectors of adjacent edges between node v and node v on the graph

H e R Node feature matrix of hidden layers

h, € R’ The feature vectors of node v in the hidden layer

K Number of hidden layers

W, We Trainable parameters and parameter matrices in graph neural networks
Table 1: Basic statistical information of the three
datasets

self-attention in NLP and extended it to computer
vision, aiding image understanding and text-image
interactions (Xu et al., 2015). In graph data, GAT
introduced self-attention to enhance node commu-
nication (Wei et al., 2022). An efficient method
for spectral-based information filtering was pro-
posed (Vaswani et al., 2017). Multi-head attention
improves attention stability and learning (Vaswani
etal., 2017). This mechanism helps the model filter
graph noise and improve signal-to-noise ratio (Lee
et al., 2018).

2.3 Edge Features in GNN

Several methods aim to incorporate edge features
in graph data. Message Passing Neural Network
(MPNN) (Gilmer et al., 2017) involves two stages,
but it doesn’t recognize node-edge correlations.
Edge-Enhanced Graph Neural Network (EGNN)
introduces edge weights into self-attention, but it
only uses the original edge features in the first layer,
causing information decay with layers (Gong and
Cheng, 2019). In summary, they have limitations
in recognizing node-edge correlations, introducing
edge weights at multiple layers, and handling large
directed graphs.

3 GAT-Edge

3.1 GAT

Given a graph G = {V,E}, where v; € Vis a
node, © = 1,...,n. e;; € E represents the edge
between v; and v;. For a directed graph ¢;; = 1
means there is an edge from v; to v;, otherwise
ej; = 0. Table 1 gives the notations used in this
article.

GAT introduced the attention mechanism from
NLP into GNN, proposing the graph attention net-
work. It uses self-attention to impose varying
weights on each first-order neighbor node and em-
ploys a mask attention mechanism to focus on

the first-order neighbor nodes while constructing a
mask matrix to filter out greater-than-second-order
interference. Weight allocation is recalculated us-
ing the softmax function.

a;j = softmax;(bij) = exp(bi;))

N ZkeNi exp(bi)

Among them, b;; represents attention coefficient
between node v; and node v; , IV; represents the set
of all first-order neighbor nodes of v; . When calcu-
lating the attention coefficient in GAT, the feature
vector z; of node v; and the feature vector x; of
node v; using trainable parameter matrices W for
mapping, respectively. Due to the fact that the at-
tention between two nodes is actually asymmetric,
i.e. e;; # ej;, therefore, concatenate the mapping
results of two vectors. Afterwards, a single-layer
feedforward neural network a” is used to map the
concatenated vectors onto real numbers. Finally,
using LeakyReLU for activation, the attention co-
efficient was obtained:

bij = LeakyReLU (a’ [Wa;||Wz;]) (2)

Then, the weighted sum of neighbor information
is performed on the nodes. The specific details of
weighting are as follows:

h; = U(Z OéijWhZ‘j) (3)
JEN;

Among them, h; represents the input vector of
node v; in this layer, while h; represents the output
vector of node v; in this layer. o is the softmax
function. However, a single attention mechanism is
often not stable, so GAT introduces a multi-head at-
tention mechanism to stabilize the weights between
nodes, thereby improving the model’s representa-
tion ability. For the output vector of the middle
hidden layer, GAT uses K independently trained
W* to calculate attention and weight separately.
Then concatenate the results calculated by each in-
dependent attention head to obtain the final output
vector of this layer. Namely:

hy(K) = [0 ol Wh) (4)
JEN;

3.2 GAT-Edge

GAT excels in various graph deep learning tasks
but, like traditional GCN, focuses on node charac-
teristics for convolution, neglecting the importance

of adjacent edges. In social networks, capturing
interaction information from edges is crucial. By
assessing edge information to update node infor-
mation weights, hidden node representations can
be trained more effectively for better downstream
task performance. Directed graphs offer more real-
world fidelity than undirected ones, but traditional
graph convolution networks struggle with directed
graphs due to Laplacian matrix symmetry. While
GAT works with directed graphs, it aggregates in-
formation vertex by vertex without clear edge direc-
tion in input features. To address these limitations
and incorporate edge features while distinguishing
edge directions in directed graphs, this paper pro-
poses an attention mechanism building upon the
graph attention network.

3.2.1 Construction of edge features

Edge features are represented by constructing edge
feature vectors. This paper suggests dividing the
edge feature vector into two parts: one for edge
direction and the other for edge information.

The part storing the direction information can
be represented by a two-dimensional vector: the
direction vector from node ¢ to the adjacent edge
of node j is marked as [1, 0] on the adjacent edge
of node 7, and [0, 1] on the adjacent edge of node j.
We can get edge feature information by calculating
the similarity coefficient of between two nodes,
the in-degree, out-degree, the degree distribution
of two nodes, or the Mahalanobis distance of two
nodes in vector space.

3.2.2 Improvement of attention mechanism

The attention mechanism allows the central node
to selectively aggregate information from neigh-
bor nodes, enhancing local graph convolution ef-
ficiency. However, current graph attention mecha-
nisms neglects edge features. Incorporating edge
features into the attention mechanism enhances
information transmission efficiency, improves net-
work node learning, and strengthens structural in-
formation learning.

The attention mechanism of introducing edge
features proposed in this paper is as follows:

bi; = LeakyReLU (aT [Wh; ||Wh;||[Wx{]) (5)

The proposed enhancement involves treating the
adjacent edge feature vector between two nodes as
equally important as the node feature vector in the

attention calculation. This ensures that the atten-
tion coefficient incorporates both node-node associ-
ations and adjacent edge features. This strengthens
the selection of valuable neighbor information by
the attention mechanism without polluting node
information and impacting downstream tasks. Un-
der this new mechanism, the weight calculation for
information aggregation is defined as follows:

i = softmaz; (bij) =
exp (LeakyReLU (a” [Wh;||Wh;||[W*x{;]))

S eap(LeakyReLU (aT [Wh;[[Why[[Wexg,))
keN;
(6)

3.2.3

To apply GAT-Edge model for node classification,
the process is as follows:

Feature processing and construction: Align the
graph data’s adjacency matrix with the node vector
matrix and normalize it. Construct the edge eigen-
vector matrix, determine edge direction based on
the adjacency matrix, and fill in direction vectors.
Create a mask matrix to limit weighted aggregation
to first-order neighbors.

Calculate multi-head attention: Using the pro-
cessed node feature matrix, adjacency matrix, adja-
cent edge feature matrix, and mask matrix as inputs
to the convolution layer, compute multi-head atten-
tion for each adjacent edge. Calculate final weights
using multi-head attention.

Update central node feature vector: Weight and
aggregate first-order neighbors based on calculated
weights and the mask matrix. The central node’s
feature vector is updated, serving as the output for
this hidden layer and input for the next one.

Output node prediction: Apply a fully connected
neural network to the last hidden layer’s output
vector and use softmax to make the final node pre-
diction.

Model architecture

3.2.4 The computational complexity of the
model

In the process of node mapping, the main function
of Why; is to map the vector of dimension d to
the space of dimension d, so the computational
complexity is O(d x d'). Because each node needs
to be mapped with features, the actual computa-
tional complexity caused by the mapping process
of nodes is O(n x d x d).

In the mapping process of edge features, the

main function of Wexfj is to map a dimensional

vector ¢ to a dimensional vector space ¢, so its
computational complexity is O(c X cl). Similarly,
each adjacent edge needs to be mapped, so the
actual computational complexity is O(m x ¢ X ¢).

In the calculation of the attention mechanism,
the main function of a’'(e) is to map the vector of
a dimension 2 x d’ to a real number. Unlike GAT,
because it needs to map edge eigenvectors to real
numbers, its actual computational complexity is

0] (d/ + ¢'). In the actual calculation process, the

attention coefficient needs to be calculated for each
adjacent edge, so the computational complexity of
this process is O(m x (d/ + cl>).

Subsequent calculations are mainly weighted
summation operations, so the computational com-
plexity of the model will not be affected in
essence. To sum up, the computational complex-

ity of the GAT-Edge model is O (n x d x d) +
O (m X ¢ X c/> + O(m x (d/ +cl>).
Compared with the GCN with O (n?), GAT-
Edge significantly reduces the computational com-
plexity, thus supporting large-scale computing.
However, compared with the GAT model, the GAT-
Edge model has increased the computational com-

plexity a little bit due to the introduction of edge
features in attention calculation.

4 Experiments

4.1 Data Sets

The experiments were conducted on three real-
world academic paper citation networks: Cora,
Citeseer, and PubMed. The Cora dataset com-
prises 2708 nodes and 5429 adjacent edges, with
each node corresponding to a machine learning aca-
demic paper. These papers are divided into seven
categories. Each paper is represented by a 1433-
dimensional word vector, with O and 1 values indi-
cating word presence or absence, after stemming,
stop-word removal, and filtering low-frequency
words.

The Citeseer and PubMed datasets underwent a
similar preprocessing process. Citeseer has 3327
academic paper nodes, 4732 adjacent edges, and
3703-dimensional feature word vectors. PubMed
consists of 19717 academic paper nodes, 44338
adjacent edges, and 500-dimensional feature word
vectors. Papers in Citeseer are divided into six
categories, while PubMed has three categories.

Due to limited computing resources, a random

Cora Citeseer Sub PubMed
Number of nodes 2708 3327 4000
Number of edges 5429 4932 12415
Number of features on each node 1433 3703 500
Average degree of nodes 2.00 1.48 3.10
Network density 0.0014 0.0008 0.0016
Number of features on each edge 3 3 3
Categories of nodes 7 6 3
Number of nodes in training set 1625 1996 2400
Number of nodes in validation set 542 666 800
Number of nodes in test set 541 665 800

Table 2: Basic statistical information of the three
datasets.

Three Datasets Node Degree

cora - |—P«mm ¢ " L]

citeseer 4

pubmed - Pm * ¢

0 50 100 150 200 250 300 350
degree

dataset

Figure 1: Box plots of node degree

walk sampling method was used to create a sub-
graph of PubMed data with 4000 nodes as a sub-
stitute for the full PubMed dataset during model
training. The summary statistics of these three
graph data are shown in Table 2.

The three citation network datasets are relatively
sparse, with the largest Sub PubMed dataset having
an average node degree of only 3.1, meaning each
node has an average of three first-order neighbors.
The smallest Citeseer dataset has an average node
degree of less than 1.5, indicating that its topologi-
cal structure relies less on graph information and
more on node eigenvectors. In terms of network
density, all three datasets are relatively low, which
is very common in real graph data.

Figure 1 shows the node degrees which ranges
from O to 10, decreasing rapidly with higher de-
grees. Sub-PubMed has a relatively flatter distri-
bution with more high-degree nodes compared to
Cora and Citeseer. There are many outliers, with
the largest node having a degree of about 200, even
336 in Cora.

The edge features for these three academic paper
citation networks are constructed as follows. For
position vectors, it fills with either [0,1] or [1,0]
based on the direction of the original adjacent edge.
Edge feature vectors are obtained by calculating the

same or not
N same
. diff

cora citeseer
datasets

sub pubmed

Figure 2: The correlation coefficient of the node features

correlation coefficient of feature vectors between
two nodes, creating a three-dimensional vectors to
represent edge information.

Since it is necessary to use the correlation co-
efficient of feature vectors between nodes to con-
struct edge features, it’s intuitive to expect that
if node features effectively represent node cate-
gories, the correlation coefficient of feature vectors
for nodes with the same category label should be
higher, while nodes with different category labels
should have a lower correlation coefficient. We cal-
culate the correlation coefficients between nodes
with the same label and those with different labels
in the three datasets. The results are as expected as
shown in Figure 2.

4.2 Hyperparameter Setting and Running
Environment

The neural network, while powerful, requires man-
ually setting hyperparameters, making it a cumber-
some process, especially for large-scale datasets.
Key hyperparameters for the GAT-Edge model in-
clude batch size, hidden layer size, number of at-
tention heads, learning rate, L2 regularization coef-
ficient.

The learning rate is a crucial parameter, balanc-
ing convergence speed and overfitting. The right
learning rate improves model performance. Neu-
ral network size depends on hidden layer neuron
count and depth. Wider networks, meaning more
neurons in the hidden layer and fewer layers, are
often better at capturing information, while depth
incurs more computational cost.

Neural networks, due to their strong learning
capacity, are susceptible to overfitting. To combat

Model parameter Value Method Cora Citeseer Sub PubMed
Batch Size 1 GCN 82.38%(2.5%) 74.89%(1.3%) 86.11%(0.8%)
Hidden layers 2 GAT 86%(0.6%) 74.73%(1.1%) 85.62%(1.1%)
Number of neurons in hidden layer 8 MPNN 85.9%(1.4%) 73.46%(1.1%) 84.69%(0.4%)
Number of heads of multiple attention mechanisms 8 AGNN 85.60%(0.9%) 73.88%(1.1%) 86.56%(0.4%)
Activate function LeakyReLU SPLINE 86.76%(1.2%) 74.62%(1.7%) 86.68%(0.8%)
Optimizer Adam GAT-Edge 87.31%(0.8%) 76.50%(1%) 87.05%(1.5%)
Drop out 0.6

Learning rate 0.01 Table 4: Summary of experimental results.
Coefficient of L2 loss 0.0001

Table 3: Specific super parameter settings.

this, regularization terms like L1 and L2 regular-
ization are added to the loss function, ensuring the
network doesn’t learn noisy data.

1 . . A

L1: J(w,b):EZLG/\(z);y(l))+%”UJH1
i=1

(7)

LS 7 (50,00 4 2l

L2: J(w,b):EZL@ Y)‘i‘%Hw‘b
i=1

(&)

L1 regularization pushes weights towards O,
whereas L2 regularization shrinks weights close to
0. L2 is preferred in neural networks as it encour-
ages neurons to capture more features. It punishes
high neuron weights, preventing overfitting. Given
the edge feature addition, the original GAT’s L2
weight of 0.0005 is reduced to 0.0001 for better
accuracy.

Table 3 outlines the experiment’s specific param-
eter settings:

The running environment of the experiment is
Ubuntu 16.04 LTS, CUDA 11.2, a TITAN V 12GB
GPU, Python 3.6.5, and TensorFlow-gpu version
1.14.0.

4.3 Comparison Results

This paper compares the GAT-Edge model’s per-
formance with GCN, GAT, MPNN, AGNN and
SPLINE. GCN, GAT and MPNN have been in-
troduced in Section 2. AGNN (Attention-based
Graph Neural Network, (Thekumparampil et al.,
2018)) introduces an attention mechanism in the
propagation layer to differentiate the attention of
neighboring nodes during the aggregation process
of central node features. SPLINE(Fey et al., 2017)
utilizes Continuous B-Spline kernels to make the
computation time independent from the kernel size
due to the local support property of the B-spline
basis functions.

Cora Citeseer Sub PubMed
GAT-Edge Vs GAT 3.88% 3.48% 2.33%
GAT-Edge Vs GCN 5.68% 2.96%* 1.67
GAT-Edge Vs SPLINE 1.17 2.95% 0.68
GAT-Edge Vs MPNN 2.75*% 6.42* 4.78%
GAT-Edge Vs Agnn 4.61*% 5.44%* 1.01

*significant at 5% level

Table 5: Independent sample t-test of experimental re-
sults.

Each dataset is randomly divided into training,
validation, and test sets in a 3:1:1 ratio with 10
random seeds. The datasets are split 10 times, and
each model, including the comparisons, is run 10
times. Because our datasets do not have imbalance
problem, multi-class classification accuracy is used
as the evaluation metric. It is summarized in Table
4.

The average performance of the GAT-Edge
model on the three datasets surpasses the compari-
son models based on the results of ten experiments.
This indicates the effectiveness of mining opposing
information in node classification using GAT-Edge.

To mitigate potential experiment bias, this paper
considers conducting an independent sample t-test
to assess whether the GAT-Edge’s performance is
significantly better than the other models. The null
hypothese for the hypothesis test is as follows:

Hy: The accuracy of GAT-Edge model on the
data set is not higher than that of the other model;

The results of the hypothesis test are shown in
Table 5:

It can be seen from Table 5 that in most cases
(11 out of 15), the null hypotheses are rejected at
5% significance level, so we believe that GAT-Edge
significantly improved the prediction accuracy on
the three data sets.

5 Conclusion

This paper introduces the GAT-Edge model, which
addresses a significant gap in graph neural net-
works (GNN) research by incorporating edge fea-
tures and direction to enhance graph data repre-
sentation. While traditional GNNs focus on ag-

gregating node information for downstream tasks,
GAT-Edge goes beyond by considering edge at-
tributes.

GAT-Edge leverages an attention mechanism to
guide information aggregation, leading to superior
performance in node classification experiments on
Cora, Citeseer, and Sub PubMed datasets when
compared to existing GNN methods.

6 Limitations

The GAT-Edge has some limitations: it may re-
quire substantial memory space and computa-
tional resources when handling a large number
of high-dimensional edge features. Additionally,
the model’s reliance on correlation coefficients for
edge feature construction can lead to instability
with limited data.

Moreover, the model doesn’t account for essen-
tial topological graph characteristics like ternary
closure and shortest path, which could enhance its
capacity to process graph data.

Finally, the paper could explore more efficient
and interpretable methods for introducing edge fea-
tures, offering promising avenues for further re-
search.

Acknowledgement

This work is supported by National Natural Sci-
ence Foundation of China (No. 72171229), and the
MOE Project of Key Research Institute of Humani-
ties and Social Sciences (No. 22JJD110001).

References

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua
Bengio. 2016. Neural machine translation by
jointly learning to align and translate. Preprint,
arXiv:1409.0473.

Emily L Denton, Wojciech Zaremba, Joan Bruna, Yann
LeCun, and Rob Fergus. 2014. Exploiting linear
structure within convolutional networks for efficient
evaluation. In Advances in Neural Information Pro-
cessing Systems, volume 27. Curran Associates, Inc.

Matthias Fey, Jan Eric Lenssen, Frank Weichert, and
Heinrich Miiller. 2017. Splinecnn: Fast geomet-
ric deep learning with continuous b-spline kernels.
CoRR, abs/1711.08920.

Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley,
Oriol Vinyals, and George E. Dahl. 2017. Neural
message passing for quantum chemistry. In Pro-
ceedings of the 34th International Conference on
Machine Learning, volume 70 of Proceedings of Ma-
chine Learning Research, pages 1263—1272. PMLR.

Liyu Gong and Qiang Cheng. 2019. Exploiting edge fea-
tures for graph neural networks. In 2019 IEEE/CVF
Conference on Computer Vision and Pattern Recog-
nition (CVPR), pages 9203-9211.

Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza,
Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron
Courville, and Yoshua Bengio. 2014. Generative
adversarial networks. Preprint, arXiv:1406.2661.

Will Hamilton, Zhitao Ying, and Jure Leskovec. 2017.
Inductive representation learning on large graphs. In
Advances in Neural Information Processing Systems,
volume 30. Curran Associates, Inc.

David K. Hammond, Pierre Vandergheynst, and Rémi
Gribonval. 2011. Wavelets on graphs via spectral
graph theory. Applied and Computational Harmonic
Analysis, 30(2):129-150.

Thomas N. Kipf and Max Welling. 2017. Semi-
supervised classification with graph convolutional
networks. Preprint, arXiv:1609.02907.

Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. 1998.
Gradient-based learning applied to document recog-
nition. Proceedings of the IEEE, 86(11):2278-2324.

John Boaz Lee, Ryan Rossi, and Xiangnan Kong. 2018.
Graph classification using structural attention. In
Proceedings of the 24th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining,
KDD ’18, page 1666—1674, New York, NY, USA.
Association for Computing Machinery.

Ruoyu Li, Sheng Wang, Feiyun Zhu, and Junzhou
Huang. 2018. Adaptive graph convolutional neu-
ral networks. Proceedings of the AAAI Conference
on Artificial Intelligence, 32(1).

Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus
Hagenbuchner, and Gabriele Monfardini. 2009. The
graph neural network model. IEEE Transactions on
Neural Networks, 20(1):61-80.

Duong Chi Thang, Hoang Thanh Dat, Nguyen Thanh
Tam, Jun Jo, Nguyen Quoc Viet Hung, and Karl
Aberer. 2022. Nature vs. nurture: Feature vs. struc-
ture for graph neural networks. Pattern Recognition
Letters, 159:46-53.

Kiran K. Thekumparampil, Chong Wang, Sewoong Oh,
and Li-Jia Li. 2018. Attention-based graph neu-
ral network for semi-supervised learning. Preprint,
arXiv:1803.03735.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, L. ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, volume 30. Curran Associates, Inc.

Petar Velickovi¢, Guillem Cucurull, Arantxa Casanova,
Adriana Romero, Pietro Lido, and Yoshua Ben-
gio. 2018. Graph attention networks. Preprint,
arXiv:1710.10903.

https://arxiv.org/abs/1409.0473
https://arxiv.org/abs/1409.0473
https://arxiv.org/abs/1409.0473
https://arxiv.org/abs/1711.08920
https://arxiv.org/abs/1711.08920
https://arxiv.org/abs/1711.08920
https://arxiv.org/abs/1406.2661
https://arxiv.org/abs/1406.2661
https://arxiv.org/abs/1406.2661
https://doi.org/10.1016/j.acha.2010.04.005
https://doi.org/10.1016/j.acha.2010.04.005
https://doi.org/10.1016/j.acha.2010.04.005
https://arxiv.org/abs/1609.02907
https://arxiv.org/abs/1609.02907
https://arxiv.org/abs/1609.02907
https://arxiv.org/abs/1609.02907
https://arxiv.org/abs/1609.02907
https://www.sciencedirect.com/science/article/pii/S0167865522001489
https://www.sciencedirect.com/science/article/pii/S0167865522001489
https://www.sciencedirect.com/science/article/pii/S0167865522001489
https://arxiv.org/abs/1803.03735
https://arxiv.org/abs/1803.03735
https://arxiv.org/abs/1803.03735
https://arxiv.org/abs/1710.10903

FeiFei Wei, Mingzhu Ping, and KuiZhi Mei. 2022.
Structure-based graph convolutional networks with

frequency filter. Pattern Recognition Letters,
164:161-165.

Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong
Long, Chengqi Zhang, and Philip S. Yu. 2021. A
comprehensive survey on graph neural networks.
IEEE Transactions on Neural Networks and Learning
Systems, 32(1):4-24.

Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho,
Aaron Courville, Ruslan Salakhudinov, Rich Zemel,
and Yoshua Bengio. 2015. Show, attend and tell:
Neural image caption generation with visual attention.
In Proceedings of the 32nd International Conference
on Machine Learning, volume 37 of Proceedings of
Machine Learning Research, pages 2048-2057, Lille,
France. PMLR.

https://www.sciencedirect.com/science/article/pii/S0167865522003348
https://www.sciencedirect.com/science/article/pii/S0167865522003348
https://www.sciencedirect.com/science/article/pii/S0167865522003348

	Introduction
	Rwlated Work
	Graph Neural Network
	Attention Mechanism
	Edge Features in GNN

	GAT-Edge
	GAT
	GAT-Edge
	Construction of edge features
	Improvement of attention mechanism
	Model architecture
	The computational complexity of the model

	Experiments
	Data Sets
	Hyperparameter Setting and Running Environment
	Comparison Results

	Conclusion
	Limitations

