
Embedding Surfaces by Optimizing Neural Networks with Prescribed
Riemannian Metric and Beyond

Yi Feng * 1 Sizhe Li * 2 Ioannis Panageas * 3 Xiao Wang * 1

Abstract
From a machine learning perspective, the problem
of solving partial differential equations (PDEs)
can be formulated into a least square minimiza-
tion problem, where neural networks are used to
parametrized PDE solutions. Ideally a global min-
imizer of the square loss corresponds to a solution
of the PDE. In this paper we start with a special
type of nonlinear PDE arising from differential ge-
ometry, the isometric embedding equation, which
relates to many long-standing open questions in
geometry and analysis. We show that the gradient
descent method can identify a global minimizer
of the least-square loss function with two-layer
neural networks under the assumption of over-
parametrization. As a consequence, this solves
the surface embedding locally with a prescribed
Riemannian metric. We also extend the conver-
gence analysis for gradient descent to higher order
linear PDEs with over-parametrization assump-
tion.

1. Introduction
In recent years deep learning has revolutionized many fields
of science and engineering, including a variety of applica-
tions of deep learning in applied mathematics. There have
been many breakthroughs in solving partial differential equa-
tions (PDEs) (M.W.M.G.Dissanayake & Phan-Thien, 1994;
I.E.Lagaris et al., 1998; Rudd & Ferrari, 2015; G.Carleo &
M.Troyer, 2017; J.Han et al., 2018; E et al., 2017; Raissi
et al., 2019; Huang et al., 2020; Luo & Yang, 2020). The
main idea of these approaches is to reformulate the PDE
solution into a global minimizer of an expectation mini-
mization problem, where deep neural networks (DNNs) are
applied for discretization and the stochastic gradient descent

*Equal contribution 1Shanghai University of Finance and
Economics 2Huazhong University of Science and Technology
3University of California, Irvine. Correspondence to: Xiao Wang
<wangxiao@sufe.edu.cn>.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

(SGD) is adopted to solve the minimization problem. As a
case of recent successes, physics informed neural networks
(PINNs) have been widely used for robust and accurate
approximate of PDEs. Deep neural networks possess the
so-called universal approximation property (A.R.Barron,
1993; G.Cybenko, 1989; Hornik et al., 1989), namely any
continuous, even measurable, function can be approximated
by DNNs, (D.Yarotsky, 2017) has provided a precise de-
scriptions of the required neural network architecture for
functions with sufficient Sobolev regularity. Based on this
result, it is natural to use deep neural networks for the space
of solutions of PDEs.

In deep learning, the fact that first order methods like gra-
dient descent can achieve zero training loss for non-convex
objective functions remained mysteries until the merging
of analysis based on over-parametrization. Two-layer fully
connected ReLU activated neural networks were proven to
achieve zero training error with high probability (Du et al.,
2019). Their analysis relies on over-parametrization and
random initialization jointly restrict every weight vector to
be close to its initialization for all iterations, which allow
one to exploit a strong convexity-like property to prove that
gradient descent converges at a global linear to the global
optimum. Extending the analysis of function approxima-
tion with over-parametrization to linear PDEs, authors of
(Luo & Yang, 2020) provide optimization and generalization
analysis for second order linear PDEs.

Despite the remarkable empirical successes in solving PDEs
with neural networks and in theoretical analysis in opti-
mizing loss function in function approximation and solv-
ing linear PDEs, it is less understood how gradient descent
works in solving non-linear PDEs in general, even with over-
parametrization assumptions. Orthogonal to linear PDEs
(or semi-linear PDEs) which has a relatively uniform struc-
ture, non-linear PDEs diverse case by case and it is almost
impossible to formulate a simple structure. For example,
Monge-Ampere equation det(D2u)−f(x, u,Du) = 0 and
KdV equation ut +uxxx− 6uux = 0 has completely differ-
ent algebraic forms regarding them as functions of partial
derivatives. Due to the complexity introduced by the non-
linearity of all kinds of PDEs, the loss function usually
contains highly non-linear expressions of parameters and

Embedding Surfaces by Optimizing Neural Networks with Prescribed Riemannian Metric and Beyond

activation functions. This is the main challenge in analyzing
convergence property of first order methods like gradient de-
scent in optimizing the loss functions induced by non-linear
PDEs.

In order to leverage the power of over-parametrization in ob-
taining provable convergence of gradient descent in solving
linear PDEs, we step out into a classic non-linear PDEs prob-
lems arising from differential geometry, i.e., the systems of
isometric embedding of Riemannian manifolds. This type
of PDEs are of interests in community of geometry and
analysis. We start the convergence analysis for non-linear
PDEs with isometric embedding systems because they are
both mildly and sufficiently complicated in the sense that
the algebraic function on the partial derivatives are quadratic
functions (non-linear but not out of control), they are first
order PDEs (the partial derivatives of the neural networks
will not be too complicated to be handled), there is no ex-
plicit solutions in general for isometric embedding (Nash’s
embedding theorem is essentially an algorithm of approach-
ing the exact solution of these PDEs), and embedding a
Riemannian manifold into Euclidean space has important
application in manifold learning and dimensionality reduc-
tion for high dimensional data sets. Moreover, we extend
the over-parametrization based arguments of function ap-
proximation of (Du et al., 2019) to higher order PDEs which
only contain partial derivatives of the same order.

2. Preliminaries
2.1. Over-parametrized Neural Networks

A widely believed explanation on why a neural network
can fit all training labels in that the neural network is over-
parametrized. A theoretical analysis on the convergence of
gradient descent in optimizing two-layer neural networks is
given by (Du et al., 2019). Formally, we consider a neural
network of the following form.

f(W,a,x) =
1√
m

m∑
r=1

arσ(wrx)

where x ∈ Rd is the input, wr ∈ Rd is the weight vector of
the first layer (for convenience we assume wr are row vec-
tors), ar ∈ R is the output weight and σ(·) is the activation
function. Especially, in the surface embedding problems
considered in this paper, x is a two-dimensional vector and
σ(·) = ReLU2 which is sufficient for smoothness require-
ment of the PDE of isometric embedding.

2.2. Surfaces in Low Dimensional Euclidean Spaces

In this section, we review briefly the classical theory of
differentiable surfaces. In our notation Ω ⊂ R2 is an
open set in the plane and points of Ω are denoted by
x = (x1, x2) ∈ R2. A differentiable map r : Ω → R3

induces a linear transform dr : R2 → R3 for each x ∈ Ω.
Then r is call a regular surface if dr(x) is injective for each
x ∈ Ω. The inner product on R3 composed with the lin-
ear map dr(x) : R2 → R3 induces a quadratic differential
form on R2, which is called the first fundamental form and
is denoted by g(x), i.e., a Riemannian metric induced by
the ambient space R3. We also use I(x) or I as the first
fundamental form. Precisely, we have

I(x)(X,Y) = dr(x)X · dr(x)Y for any X,Y ∈ R2.

We usually write this, using the summation convention, as

I = dr · dr = gijdxidxj

where
gij = ∂ir · ∂jr, i, j = 1, 2.

We call (gij) the coefficients of the first fundamental forms.

3. Main Results
3.1. Gradient Descent for Surface Embedding

The local isometric embedding problem, which is mainly
considered in this paper, can be reduced to a constrained
approximation problem by implementing the embedding
map r as a function defined on Ω. Suppose the surface is
the graph of certain function h : Ω → R, and r(x1, x2) is
defined as follows.

r(x1, x2) = (x1, x2, h(x1, x2)) ∈ R3.

Then finding r such that gij = ∂ir · ∂jr is equivalent to
finding a function h such that the following system of partial
differential equations is satisfied,

1 +

(
∂h

∂x1

)2

= g11

1 +

(
∂h

∂x2

)2

= g22

∂h

∂x1
· ∂h
∂x2

= g12

(1)

where gij are prescribed differentiable functions defined on
Ω.

Let σ(·) be ReLU activation, and assume the neural net-
work has form f(x, t) = 1√

m

∑m
i=1 aiσ

2(wi(t)
>x), where

wi,x ∈ R2, and there are N sample points {xi}Ni=1, and
we also assume ‖xi‖= 1 for convenience. In the following,
we will also write wi(t) by wi when there is no confusion.
Now we have

∂f

∂x1
(x) =

2√
m

m∑
i=1

aiwi,1σ(w>i x)I{w>i x≥0}

Embedding Surfaces by Optimizing Neural Networks with Prescribed Riemannian Metric and Beyond

∂f

∂x2
(x) =

2√
m

m∑
i=1

aiwi,2σ(w>i x)I{w>i x≥0}

The loss function is

L(w) =

N∑
k=1

(
(
∂f

∂x1
(xk))2 + 1− g11(xk)

)2

(Loss)

+

(
(
∂f

∂x2
(xk))2 + 1− g22(xk)

)2

(2)

In the following we will denote ∂f
∂x1

(xk) and ∂f
∂x2

(xk) by
u1,k(t) and u2,k(t) respectively, {u1,k}Nk=1, {u2,k}Nk=1 are
functions of t because their values are depended on w(t).
We also denote y1,k = g11(xk) − 1, y2,k = g22(xk) −
1, thus {y1,k}Nk=1, {y2,k}Nk=1 are constant numbers. With
these notations, (Loss) can also be written as

L(w) =

N∑
k=1

(
((u1,k)2 − y1,k)2 + (u2,k)2 − y2,k)2

)
.

(3)

Note that there is a zero point of L(w), uik =
√
yi,k for

i = 1, 2 and k = 1, 2, ..., N . Since the local embedding
is nothing but a graph of a function on a small neighbor-
hood, we can further assume that the values of yi,j are
non-negative, i.e.,

y = (
√
y1,1,

√
y1,2, ...,

√
y1,N ,

√
y2,1,

√
y2,2, ...,

√
y2,N)>.

Before stating the main result of surface embedding, we
introduce the matrix G∞ as follows,

G∞k,b =



Ew∼N(0,I)[I{wx>k ≥0, wx>b ≥0}
h11(w,xk,xb)],

Ew∼N(0,I)[I{wx>k ≥0, wx>b ≥0}
h12(w,xk,xb)],

Ew∼N(0,I)[I{wx>k ≥0, wx>b ≥0}
h21(w,xk,xb)],

Ew∼N(0,I)[I{wx>k ≥0, wx>b ≥0}
h22(w,xk,xb)].

(4)

where from the first to last expression, the k and b are taken
from the following set respectively,

1 ≤ k ≤ N, 1 ≤ b ≤ N
1 ≤ k ≤ N, N ≤ b ≤ 2N

N ≤ k ≤ 2N, 1 ≤ b ≤ N
N ≤ k ≤ 2N, N ≤ b ≤ 2N

The main result is:

Theorem 3.1. There is a neighbourhood U of y such that
if the neural network is over-parameterized with m =

O(N8

δ4λ6
0
) and (uik(0)) ∈ U , then (uik(t)) will converge to y

with rate O(e−
λ0t
4)where λ0 > 0 is the least eigenvalue of

G∞ defined by (14).

Similar to (Du et al., 2019), the convergence analysis relies
on the understanding of the training dynamics of the gradient
flow dL(w)

dt = −∇L(w). Our notations enable us to write
the trajectories of predictions in the following way,

u(t)− y =



(u1,1(t))2 − y1,1
...

(u1,N (t))2 − y1,N

(u2,1(t))2 − y2,1
...

(u2,N (t))2 − y2,N


In the proof of Theorem 3.1, Proposition A.1 and its corol-
lary assert that the evolution of prediction governed by
by training dynamics has a linear structure and the co-
efficient matrix is always positive definite such that the
least eigenvalue of the coefficient matrix is uniformly lower
bounded by a positive number γ. Consequently, we have
that ‖u(t)− y‖ ≤ e−γt ‖u(0)− y‖. On top of this, the
positive definite property of the coefficient matrix is derived
by a perturbation argument of the matrix G∞. The proof
details are left in Appendix.

3.2. Gradient Descent for Homogeneous Linear PDEs

We proceed considering an important type of linear PDEs,
the PDE that has partial derivatives of the same order.
Amongst this class of PDEs, Laplace (

∑ ∂2f
∂xi

= 0) and

Poisson (
∑ ∂2f

∂xi
= h) equations might be of highest interest

in applications. To see that gradient descent can solve ho-
mogeneous linear PDEs, we compute the partial derivatives
of the neural network.

∂f

∂xi
=

∂

∂xi

(
1√
m

m∑
k=1

akσ(wkx)

)
=

1√
m

m∑
k=1

ak
∂σ(wkx)

∂xi

=
1√
m

m∑
k=1

akσ
′(wkx)wki,

and the most fundamental homogeneous linear PDE is of
the following form,

∂f

∂x1
+...+

∂f

∂xd
=

1√
m

m∑
k=1

ak

(
d∑
s=1

wks

)
σ′(wkx) = h(x).

(5)
Naturally, solving the above PDE boils down to optimiza-
tion of the loss function defined by a set of sample points

Embedding Surfaces by Optimizing Neural Networks with Prescribed Riemannian Metric and Beyond

{xi, yi}ni=1 such that h(xi) = yi for all i ∈ [n]. We claim
that the convergence analysis of the gradient flow of the
corresponding loss function can be reduced to that we have
just obtained from last section, i.e., the convergence analysis
of RePU networks. In (5), we can let bk = ak

(∑d
s=1 wks

)
and then the PDE (5) is of the following form:

∂f

∂x1
+ ...+

∂f

∂xd
=

1√
m

m∑
k=1

bkσ
′(wkx) = h(x).

The advantage of considering the above PDE is ob-
vious. We can solve the approximation problem
1√
m

∑m
k=1 bkσ

′(wkx) = h(x) by considering b =

(b1, ..., bm) as independent variables with respect to W,
with the convergence rate that is just obtained in last section.
Some extra effort is necessary to solve algebraic equations
bk = ak

(∑d
s=1 wks

)
to obtain the actual parameters for

a. Some cares should be taken in solving these algebraic
equations since

∑d
s=1 wks is likely to be 0. But this will not

cause the process collapse in general for two reasons. Firstly,
the set of parameters {wk}mk=1 such that

∑d
s=1 wks = 0

for some k is of measure zero, which means the chance that
ak = bk/(

∑d
s=1 wks) blows is ignorable. Secondly, even

if
∑d
s=1 wks = 0 for some k, we can add a small perturba-

tion on this set of {wks}ds=1 such that the sum is not zero.
Formally, the main convergence results for homogeneous
linear equation of arbitrary order can be stated below, where
we assume the coefficient of each partial derivative to be 1
without loss of generality.

Our observation for the structure of linear PDEs also holds
for higher order partial derivatives. In general, the higher
order partial derivatives of function f is written as

Dαf =
∂rf

∂xα1
1 , ..., ∂xαnn

where α = (α1, ..., αn), such that |α| = α1 + ...+ αn ≤ r.
With these notations, we are ready to state the convergence
result of gradient descent using in solving homogeneous
linear PDEs of arbitrary order. In the rest of this paper, we
focus on two-layer neural networks with rectified power unit
(RePU) activation, i.e.,

σ(x) = x` if x ≥ 0 and σ(x) = 0 if x < 0.

Theorem 3.1. Let α = (α1, ..., αd) be a partition of integer
p, and σ(x) be a RePU activation function of smoothness
higher than p. Then the loss function defined by following
PDE reaches 0 by running gradient descent.∑

α

Dαf = h(x).

where α runs over all partitions of |α|.

The proof is left in Appendix due to space constraint.

4. Experiments
In this section we illustrate that the gradient descent ac-
tually finds isometric embeddings of sphere and torus
in R3. The graph of hemisphere is given by function
h(x1, x2) =

√
1− x21 − x22, and the graph of torus is given

by function h(x1, x2) =
√
r2 − (

√
x21 + x22 −R)2.

(a) Isometric embedding of sphere with ReLU2 neural net-
works.

(b) Isometric embedding of torus with ReLU2 neural net-
works.

Figure 1. Solving PDEs of sphere and torus embedding with gradi-
ent descent.

5. Conclusion
In this paper, we investigate local isometric embedding
of surfaces into Euclidean space from the perspective of
PDE solving with neural networks. We show that over-
parametrization is a condition that guarantees convergence
result of gradient flow in solving such non-linear PDEs.
As an extension of the arguments, we generalize the over-
parametrization based analysis to higher oder linear PDEs
whose partial derivatives are of the same order.

Embedding Surfaces by Optimizing Neural Networks with Prescribed Riemannian Metric and Beyond

References
A.R.Barron. Universal approximation bounds for super-

positions of a sigmoidal function. IEEE Trans. Inform.
Theory., 39(3):930945, 1993.

Du, S. S., Zhai, X., Poczós, B., and Singh, A. Gradient
descent provably optimizes over-parameterized neural
networks. In ICLR, 2019.

D.Yarotsky. Error bounds for approximations with deep relu
networks. Neural Networks, 94:103114, 2017.

E, W., Han, J., and Jentzen, A. Deep learning-based nu-
merical methods for high-dimensional parabolic partial
differential equations and backward stochastic differential
equations. Communications in Mathematics and Statis-
tics, 5(4):349380, 2017.

G.Carleo and M.Troyer. Solving the quantum many-
body problem with artificial neural networks. Science,
355:602606, 2017.

G.Cybenko. Approximations by superpositions of sigmoidal
functions. Approximation theory and its applications.,
9(3):1728, 1989.

Hornik, K., Stinchcombe, M., and White, H. Multilayer
feedforward networks are universal approxi- mators. Neu-
ral networks, 2(5):359366, 1989.

Huang, J., Wang, H., and Yang, H. Int-deep: A deep learn-
ing initialized iter- ative method for nonlinear problems.
Journal of Computational Physics, page 109675, 2020.

I.E.Lagaris, Likas, A., and D.I.Fotiadis. Artificial neural net-
works for solving ordinary and partial differential equa-
tions. IEEE Trans. Neural Networks, 9:987-1000, 1998.

J.Han, Jentzen, A., and W.E. Solving high-dimensional
partial differential equations using deep learning. Proc.
Natl. Acad. Sci. USA, 115:85058510, 2018.

Luo, T. and Yang, H. Two-layer neural networks for partial
differential equations: Optimization and generalization
theory. https://arxiv.org/abs/2006.15733, 2020.

M.W.M.G.Dissanayake and Phan-Thien, N. Neural-
network-based approximation for solving partial differ-
ential equations. Comm. Numer. Methods Engrg, 10:195-
201, 1994.

Raissi, M., Perdikaris, P., and Karniadakis, G. Physics-
informed neural networks: a deep learning framework for
solving forward and inverse problems involving nonlinear
partial differential equations. J. Comput. Phys., 378:686
707, 2019.

Rudd, K. and Ferrari, S. A constrained integration (cint)
approach to solving partial differential equations using

artificial neural networks. Neurocomputing, 155:277-285,
2015.

Embedding Surfaces by Optimizing Neural Networks with Prescribed Riemannian Metric and Beyond

A. Proof of Theorem 3.1
Proposition A.1. Denote

u(t)− y = ((u1,1(t))2 − y1,1, ..., (u1,N (t))2 − y1,N , (u2,1(t))2 − y2,1, ..., (u2,N (t))2 − y2,N), (6)

then

dL(w)

dt
=
d‖u(t)− y‖2

dt
= −16(u(t)− y)·

u1,1(t)
. . .

u1,N (t)
u2,1(t)

. . .
u2,N (t)


·G(t) ·



u1,1(t)
. . .

u1,N (t)
u2,1(t)

. . .
u2,N (t)


· (u(t)− y)> (7)

where G(t) ∈ R2N×2N and

Gk,b(t) =



∑m
i=1(∇wiu1,b)

>∇wiu1,k, when 1 ≤ k ≤ N, 1 ≤ b ≤ N .

∑m
i=1(∇wiu2,b−N)>∇wiu1,k, when 1 ≤ k ≤ N,N < b ≤ 2N .

∑m
i=1(∇wiu1,b)

>∇wiu2,k−N , when N < k ≤ 2N, 1 ≤ b ≤ N .

∑m
i=1(∇wiu2,b−N)>∇wiu2,k−N , when N < k ≤ 2N,N < b ≤ 2N .

Our aim is to prove when (u1,1(t), ..., u1,N (t), u2,1(t), ..., u2,N (t)) lies in some neighbourhood of y, then

u1,1(t)
. . .

u1,N (t)
u2,1(t)

. . .
u2,N (t)


·G(t) ·



u1,1(t)
. . .

u1,N (t)
u2,1(t)

. . .
u2,N (t)


(8)

has a uniform positive lower bound of eigenvalues. If this is true, we will have following proposition about the convergence
rate of ‖u(t)− y‖:
Corollary A.2. If the matrix in (8) is always positive definite and the smallest eigenvalue of (8)has a uniform lower bound
γ > 0, then we have

‖u(t)− y‖≤ e−γt‖u(0)− y‖. (9)

Proof. This is a simple integral of (7).

The proof of Proposition A.1 is completed by combining the following calculations.

Recall the loss function is

L(w(t)) =

N∑
k=1

(
((u1,k(t))2 − y1,k)2 + ((u2,k(t))2 − y2,k)2

)
= ‖u(t)− y‖2

Embedding Surfaces by Optimizing Neural Networks with Prescribed Riemannian Metric and Beyond

Then we have

dL(w(t))

dt
=

2∑
i=1

N∑
j=1

∂L(w)

∂(uij)
2
·
d(uij)

2

dt
(10)

= 4 · ((u1,1)2 − y1,1, ..., (u1,N)2 − y1,N , (u2,1)2 − y2,1, ..., (u2,N)2 − y2,N) ·



du1,1

dt · u1,1
...

du1,N

dt · u1,N
du2,1

dt · u2,1
...

du2,N

dt · u2,N


(11)

= 4 · (u(t)− y) ·



du1,1

dt · u1,1
...

du1,N

dt · u1,N
du2,1

dt · u2,1
...

du2,N

dt · u2,N


(12)

= 4 · (u(t)− y) ·



u1,1(t)
. . .

u1,N (t)
u2,1(t)

. . .
u2,N (t)


·



du1,1

dt
...

du1,N

dt
du2,1

dt
...

du2,N

dt


(13)

Now we can calculate du1,k

dt for k = 1, 2, ..., N straightforwardly.

du1,k
dt

=

m∑
i=1

(∇wiu1,k)> · dwi

dt
,

where

∇wiu1,k = (
∂u1,k
∂wi,1

,
∂u1,k
∂wi,2

)> ∈ R2,

and
dwi

dt
= (

dwi,1

dt
,
dwi,2

dt
)> ∈ R2.

Using gradient descent, we have

dwi

dt
= −∂L(w)

∂wi
,

and

∂L(w)

∂wi
= 4

N∑
s=1

(
[(u1,s)

2 − y1,s] · u1,s · ∇wiu1,s + [(u2,s)
2 − y2,s] · u2,s · ∇wiu2,s

)
and moreover, combining above expressions that is calculated, we can furthermore conclude

Embedding Surfaces by Optimizing Neural Networks with Prescribed Riemannian Metric and Beyond

du1,k
dt

=

m∑
i=1

(∇wiu1,k)> · dwi

dt

= −
m∑
i=1

(∇wiu1,k)> · ∂L(w)

∂wi

= −4

m∑
i=1

N∑
s=1

(
[(u1,s)

2 − y1,s] · u1,s · ∇wiu1,s · (∇wiu1,k)> + [(u2,s)
2 − y2,s] · u2,s · ∇wiu2,s · (∇wiu1,k)>

)
= −4 ·

(
m∑
i=1

∇wiu1,1 · (∇wiu1,k)>, ...,

m∑
i=1

∇wiu1,N · (∇wiu1,k)>,

m∑
i=1

∇wiu2,1 · (∇wiu1,k)>, ...,

m∑
i=1

∇wiu2,N · (∇wiu1,k)>

)

·



u1,1(t)
. . .

u1,N (t)
u2,1(t)

. . .
u2,N (t)


· (u(t)− y)>.

Same calculation for du2,k

dt gives

du2,k
dt

= −4 ·

(
m∑
i=1

∇wiu1,1 · (∇wif2,k)>, ...,

m∑
i=1

∇wiu1,N · (∇wif2,k)>,

m∑
i=1

∇wiu2,1 · (∇wif2,k)>, ...,

m∑
i=1

∇wiu2,N · (∇wif2,k)>

)

·



u1,1(t)
. . .

u1,N (t)
u2,1(t)

. . .
u2,N (t)


· (u(t)− y)>.

Combine above with equation 13, we finish the proof of Proposition A.1. The following notations and results will be used
for convenience in later proof. Let

S =



(∇w1
u1,1)> (∇w2

u1,1)> ... (∇wmu1,1)>

...
...

...
...

(∇w1
u1,N)> (∇w2

u1,N)> ... (∇wmu1,N)>

(∇w1
u2,1)> (∇w2

u2,1)> ... (∇wmu2,1)>

...
...

...
...

(∇w1u2,N)> (∇w2u2,N)> ... (∇wmu2,N)>


∈ R2N×2m,

then G = S · S>, thus G is a symmetric matrix.

We next establish the positiveness of matrix G∞. Let

G∞k,b =



Ew∼N(0,I)[I{wx>k ≥0, wx>b ≥0}
h11(w,xk,xb)], when 1 ≤ k ≤ N, 1 ≤ b ≤ N .

Ew∼N(0,I)[I{wx>k ≥0, wx>b ≥0}
h12(w,xk,xb)], when 1 ≤ k ≤ N,N < b ≤ 2N .

Ew∼N(0,I)[I{wx>k ≥0, wx>b ≥0}
h21(w,xk,xb)], when N < k ≤ 2N, 1 ≤ b ≤ N .

Ew∼N(0,I)[I{wx>k ≥0, wx>b ≥0}
h22(w,xk,xb)], when N < k ≤ 2N,N < b ≤ 2N .

(14)

Embedding Surfaces by Optimizing Neural Networks with Prescribed Riemannian Metric and Beyond

From 8, we can already see ‖u(t)− y‖2 will decrease with time since 8 is a symmetry matrix, thus all its eigenvalues are
non negative real numbers.

Lemma A.3. ‖u(t)− y‖2 is a non-increasing function of time.

Proof. In 7, we have
d‖u(t)− y‖2

dt
= −16(u(t)− y) ·M(t) · (u(t)− y)>

where M is symmetry matrix of form U(t) ·U(t)>, where

U(t) =



u1,1(t)
. . .

u1,N (t)
u2,1(t)

. . .
u2,N (t)


· S.

Thus all eigenvalues of M is non-negative, and we have

d‖u(t)− y‖2

dt
≤ 0.

Corollary A.4. During the training process, ‖w(t)‖ is a bounded function.

Proof. If ‖w(t)‖ is unbounded, then u(t) will also be unbounded, that is a contradiction with the fact ‖u(t) − y‖2 is a
bounded function from proposition A.3.

Lemma A.5. For convenience, when N < k, b ≤ 2N , we will use b and k to represent b−N and k−N , this will not make
confuse because k, b are indexes in 1, ..., N . Then we have

Gk,b(t) =



4
m

∑m
i=1 a

2
i I{wi(t)x>k ≥0, wi(t)x>b ≥0}h11(wi(t),xk,xb), when 1 ≤ k ≤ N, 1 ≤ b ≤ N .

4
m

∑m
i=1 a

2
i I{wi(t)x>k ≥0, wi(t)x>b ≥0}h12(wi(t),xk,xb), when 1 ≤ k ≤ N,N < b ≤ 2N .

4
m

∑m
i=1 a

2
i I{wi(t)x>k ≥0, wi(t)x>b ≥0}h21(wi(t),xk,xb), when N < k ≤ 2N, 1 ≤ b ≤ N .

4
m

∑m
i=1 a

2
i I{wi(t)x>k ≥0, wi(t)x>b ≥0}h22(wi(t),xk,xb), when N < k ≤ 2N,N < b ≤ 2N .

(15)

where

h11(wi,xk,xb) = (wix
>
k + wi,1xk,1)(wix

>
b + wi,1xb,1) + w2

i,1xk,2xb,2, (16)

h12(wi,xk,xb) = (wix
>
k + wi,1xk,1)(wi,2xb,1) + (wix

>
b + wi,2xb,2)(wi,1xk,2), (17)

h21(wi,xk,xb) = (wix
>
k + wi,1xb,1)(wi,2xk,1) + (wix

>
k + wi,2xk,2)(wi,1xb,2), (18)

h22(wi,xk,xb) = (wix
>
k + wi,2xk,2)(wix

>
b + wi,2xb,2) + w2

i,2xk,1xb,1. (19)

Remark A.6. Since during the training process, ai is always a constant, thus we will assume ai = 1 for i = 1, ...,m form
now on.

If at time 0, wi ∈ R2 is chosen from aN(0, I) distribution independently, then G(0) is an average and G∞ is an expectation.

Our aim is to prove G∞ is a positive definite matrix.

Embedding Surfaces by Optimizing Neural Networks with Prescribed Riemannian Metric and Beyond

Definition A.7. φk(w) =


I{w·x>k ≥0}(w · x

>
k + w1xk,1, w1xk,2), when 1 ≤ k ≤ N .

I{w·x>k−N≥0}(w2 · xk,1,w · x>k + w2xk,2), when N < k ≤ 2N .

G∞i,j = 〈φi(w), φj(w)〉, where the inner product 〈·, ·〉 is with respect to the expectation to w, thus G∞ is a Gram matrix.

Proposition A.8. G∞ is positive definite, and we denote the smallest eigenvalue of G∞ by λ0, thus λ0 > 0.

Proof. Since a Gram matrix is positive definite if and only if it is constructed from a set of linear independent vectors, thus
we only need to proof {φs}2Ns=1 is a linearly independent set, that is, if

N∑
s=1

asφs +

N∑
s=1

bN+sφN+s = 0, (20)

then

as, bN+s = 0. (21)

Fix an i and let Di = {w ∈ R2|w · xi = 0} for i = 1, 2, ..., N . Then we have Di * ∪j 6=iDj , and we can choose a
z ∈ Di − ∪j 6=iDj and a r > 0 such that

B(z, r) ∩Dj = ∅ (22)

for j 6= i.

Denote B+
r = B(z, r) ∩ {w ∈ R2|w · xi ≥ 0} and B−r = B(z, r)−B+

r .

Now consider the integral
1

µ(B+
r)

∫
B+
r

φj(w)dw − 1

µ(B−r)

∫
B−r

φj(w)dw

when r → 0 and j 6= i this equals to 0 since both of these two terms are equal to φj(z).

Thus we have

0 = lim
r→0

1

µ(Br)

∫
Br

(
N∑
s=1

asφs(w) +

N∑
s=1

bN+sφs+N (w)

)
dw (23)

= lim
r→0

1

µ(B+
r)

∫
B+
r

(
N∑
s=1

asφs(w) +

N∑
s=1

bN+sφs+N (w)

)
dw − lim

r→0

1

µ(B−r)

∫
B−r

(
N∑
s=1

asφs(w) +

N∑
s=1

bN+sφs+N (w)

)
dw

(24)

= lim
r→0

1

µ(B+
r)

∫
B+
r

aiφi(w) + bN+iφi+N (w)dw − lim
r→0

1

µ(B−r)

∫
B−r

aiφi(w) + bN+iφN+i(w)dw (25)

= lim
r→0

1

µ(B+
r)

∫
B+
r

aiφi(w) + bN+iφN+i(w)dw (26)

where the last equality is because in B−r , φi(w) and φN+i(w) are equal to 0.

Since

lim
r→0

1

µ(B+
r)

∫
B+
r

aiφi(w) + bN+iφN+i(w)dw = aiφi(z) + bN+iφN+i(z), (27)

and

φi(z) = z1x
>
i , φN+i(z) = z2x

>
i , (28)

Embedding Surfaces by Optimizing Neural Networks with Prescribed Riemannian Metric and Beyond

thus

0 = lim
r→0

1

µ(B+
r)

∫
B+
r

aiφi(w) + bN+iφN+i(w)dw (29)

= (aiz1 + bN+iz2)x>i . (30)

which means aiz1 + bN+iz2 = 0. If ai, bN+i 6= 0, then we have (ai, bN+i)//xi ∈ R2.

From above we have shown if
N∑
s=1

asφs +

N∑
s=1

bN+sφN+s = 0,

then for each i, whether (ai, bN+i) = 0 or (ai, bN+i)//xi. We want to proof (ai, bN+i)//xi is impossible.

Assume (ai, bN+1) = kixi for some constant ki, and if (ai, bN+1) = 0 then ki = 0.

Thus since
∑N
s=1 asφs +

∑N
s=1 bN+sφN+s = 0, we have

N∑
s=1

ksxs,1φs(w) +
N∑
s=1

ksxs,2φN+s(w) = 0 (31)

for almost all w ∈ R2. Our aim is to show ks = 0 for s = 1, 2, ..., N .

Write down the definition of φs(w), φN+s(w), we have

N∑
s=1

ksxs,1φs(w) +

N∑
s=1

kixs,2φN+s(w) = (32)

N∑
s=1

ksxs,1I{wx>i ≥0}(wx>i + w1xi,1, w1xi,2) +

N∑
s=1

ksxs,2I{wx>i ≥0}(w2xi,1,wx>i + w2xi,2) (33)

= (

N∑
i=1

kiI{wx>i ≥0}
(
xi,1(wx>i + w1xi,1) + xi,2w2xi,1

)
,

N∑
i=1

kiI{wx>i ≥0}
(
xi,2(wx>i + w2xi,2) + xi,2w1xi,1

)
) (34)

= 0 (35)

for almost all w.

Note that for every w, above equality give us a linear equation system for {k1, ..., kN}. Since this should hold for almost all
w, this will make ki = 0 for i = 1, 2, ..., N .

G∞ and G(0) is close with over-parametrization. The next fact which is essential in understanding the training
dynamics is the perturbation of G(0) from G∞. We start the argument with the following proposition.

Proposition A.9. If m ≥ 16N2`2 ln(1
δ)

λ2
0

for some uniform constant ` and ‖xi‖= 1 for all N sample points, then with
probability larger than 1− δ, we have

‖G∞ −G(0)‖2≤
λ0
4
,

where λ0 > 0 is the smallest eigenvalue of G∞.

Proof. Firstly, we have

‖G∞ −G(0)‖22≤ ‖G∞ −G(0)‖2F=
∑
k,b

|G∞k,b −Gk,b(0)|2. (36)

Since Gk,b(0) is an average of samples {wi(0)}i and G∞k,b is the expectation {wi}i (see (15) and (14)), we will use
Hoeffding’s inequality to compare G∞k,b and Gk,b(0).

Embedding Surfaces by Optimizing Neural Networks with Prescribed Riemannian Metric and Beyond

Let w ∼ N(0, I), and denote the random variable I{wx>k ≥0,wx>b ≥0}
h(w,xk,xb) by X, then we claim X satisfies a

sub-gaussian distribution, that is,
P(|X|≥ t) ≤ e−αt

2

for some constant α.

We prove this claim in the case h = h11, other cases are similar. Since we have

|I{wxk≥0,wxb≥0}h(w,xk,xb)|≥ t⇔ |(wxk + w1xk,1)(wxb + w1xb,1) + w2
1xk,2xb,2|≥ t, (37)

and ‖xi‖≤ 1, thus this can be bounded by the norm of w, and a calculate shows

|(wx>k + w1xk,1)(wx>b + w1xb,1) + w2
1xk,2xb,2|≤ 5‖w‖2. (38)

Thus we have P(|X|≥ t) ≤ P(5‖w‖2≥ t) ≤ e−kt2 since w ∼ N(0, I).

Then by the Hoeffding’s inequality for sub-gaussian distribution, we have

P(|G∞k,b −Gk,b(0)|≥ t) ≤ e−
mt2

`2

where ` is the sub-gaussian norm of Gk,b(0). Then if we choose m ≥ 16N2`2 ln(1
δ)

λ2
0

, we will get with at least probability
1− δ

‖G∞ −G(0)‖2≤
λ0
4

The difference between G(0) and G(t) is characterized in the following way.

Proposition A.10. Let w1(0), ...,wm(0) ∼ N(0, I), then if ‖wi(0)−wi(t)‖≤ R = (δλ0

16N2c)
2 for some constant c, then

with probability 1− δ, we have

‖G(0)−G(t)‖2≤
λ0
4

Proof.

E[|Gk,b(0)−Gk,b(t)|] (39)

= E[
1

m
|
m∑
i=1

I{wi(0)x>k ,wi(0)x>b ≥0}h(wi(0),x>k ,x
>
b)− I{wi(t)x>k ,wi(t)x>b ≥0}h(wi(t),xk,xb)|] (40)

= E[
1

m
|
m∑
i=1

I{i,k,b,0}hi,k,b(0)− I{i,k,b,t}hi,k,b(t)|] (41)

≤ E[
1

m

m∑
i=1

|I{i,k,b,0}hi,k,b(0)− I{i,k,b,t}hi,k,b(t)|] (42)

= E[
1

m

m∑
i=1

|I{i,k,b,0}hi,k,b(0)− I{i,k,b,t}hi,k,b(0) + I{i,k,b,t}hi,k,b(0)− I{i,k,b,t}hi,k,b(t)|] (43)

≤ 1

m

m∑
i=1

E[|(I{i,k,b,0} − I{i,k,b,t})hi,k,b(0)|] +
1

m

m∑
i=1

E(|I{i,k,b,t}(hi,k,b(0)− hi,k,b(t))|] (44)

By Cauchy-Schwartz inequality, we have

(44) ≤ 1

m

m∑
i=1

(
E[I{i,k,b,0} − I{i,k,b,t}]2

) 1
2
(
E[hi,k,b(0)2]

) 1
2 +

1

m

m∑
i=1

(
E[hi,k,b(0)− hi,k,b(t)]2

) 1
2

(
E[I2{i,k,b,t}]

) 1
2

.

(45)

Embedding Surfaces by Optimizing Neural Networks with Prescribed Riemannian Metric and Beyond

Since w ∼ N(0, I) and ‖x‖ are bounded, the terms
(
E[hi,k,b(0)2]

) 1
2 ≤ α for some constant α, which only relies on the

expectation of w and bound of ‖x‖, thus independent of N . We also have
(
E(I2{i,k,b,t})

) 1
2 ≤ 1. Thus we have

(45) ≤ α

m

m∑
i=1

(
E[I{i,k,b,0} − I{i,k,b,t}]2

) 1
2 +

1

m

m∑
i=1

(
E[hi,k,b(0)− hi,k,b(t)]2

) 1
2 . (46)

We firstly consider the term α
m

∑m
i=1[E(I{i,k,b,0} − I{i,k,b,t})2]

1
2 . Let R ∈ R and Ai,k be an event defined by

Ai,k = {wi | ‖wi −wi(0)‖< R, I{wix>k ≥0} 6= I{wi(0)x>k ≥0}}. (47)

Note thatAi,k happens if and only if |wi(0)x>k |< R, and since wi(0) ∼ N(0, I), ‖xk‖= 1, by anti-concentration inequality
of Gaussian distribution we have

P(Ai,k) ≤ 2R√
2π
. (48)

Then we have

α

m

m∑
i=1

(
E[I{i,k,b,0} − I{i,k,b,t}]2

) 1
2 =

α

m

m∑
i=1

(
E[|I{i,k,b,0} − I{i,k,b,t}|]

) 1
2 (49)

=
α

m

m∑
i=1

(
E[I{Ai,k∪Ai,b}]

) 1
2 (50)

≤ 2α
4
√

2π

√
R. (51)

For the term 1
m

∑m
i=1[E(hi,k,b(0)− hi,k,b(t))2]

1
2 , we have

(hi,k,b(0)− hi,k,b(t))2 ≤ CR2(‖wi(0)‖+‖wi(t)‖)2 (52)

≤ CR2(2‖wi(0)‖+R)2, (53)

for some constant C. Thus we have

(E[hi,k,b(0)− hi,k,b(t)]2)
1
2 ≤
√
CR
√
E[(2‖wi(0)‖+R)2]. (54)

Since we assume R� 1, thus combine (51) and (54) we have

E[|Gk,b(0)−Gk,b(t)|] ≤
2α
4
√

2π

√
R+
√
CR
√

E[(2‖wi(0)‖+R)2] ≤ c
√
R

for some constant c. By Markov inequality, we have with probability 1− δ

‖G(0)−G(t)‖2≤
2N∑
k,b=1

|Gk,b(0)−Gk,b(t)|≤
4N2c

√
R

δ

Thus if R = (δλ0

16N2c)
2, we will have

‖G(0)−G(t)‖2≤
λ0
4
. (55)

Now the only question is : under what condition, during the training process ‖wi(0) −wi(t)‖ can satisfy the condition
given in proposition A.10? We will show this can be done by choose the number of neurons sufficient large and this will
provide an exponentially convergence rate of the distance the distance between values of neural network and zero of the loss
function ‖u(t)− y‖ .

Embedding Surfaces by Optimizing Neural Networks with Prescribed Riemannian Metric and Beyond

Proposition A.11. For m ≥ LN8

δ4λ6
0

where constant L is independent of N, δ and λ0, we have ‖wi(0)−wi(t)‖ satisfies the
condition given in proposition A.10.

Proof. We only need to prove the last part of the statement.

‖dwi(s)

ds
‖ = ‖∇wiL(w)‖ (56)

≤ 4

N∑
j=1

|(u1,j)2 − y1,j |·|u1,j |·‖
∂u1,j
∂wi

‖+4

N∑
j=1

|(u2,j)2 − y2,j |·|u2,j |·‖
∂u2,j
∂wi

‖ (57)

Here u1,j and u2,j denote their value at time s.

Since we assume {u1,j}j , {u2,j}j lie in a neighbourhood of y and they are bounded by some constant M , thus

(57) ≤ 4M

N∑
j=1

(|(u1,j)2 − y1,j |·‖
∂u1,j
∂wi

‖+|(u2,j)2 − y2,j |·‖
∂u2,j
∂wi

‖). (58)

Since we have

∂u1,j
∂wi

=
2√
m
arI{wix>j ≥0}(wix

>
j + wi,1xj,1 , wi,1xj,2) (59)

∂u2,j
∂wi

=
2√
m
arI{wix>j ≥0}(wi,2xj,1 , wi · x>j + wi,2xj,2) (60)

and there exists a constant C makes ‖wi(t)‖≤ C due to corollary A.4, thus there exists C̃ such that

∂u1,j
∂wi

≤ C̃√
m
,
∂u2,j
∂wr

≤ C̃√
m
. (61)

This gives

(58) ≤ 4M
C̃√
m

N∑
j=1

(|(u1,j)2 − y1,j |+|(u2,j)2 − y2,j |). (62)

And since

N∑
j=1

(|(u1,j(s))2 − y1,j |+|(u2,j(s))2 − y2,j |) ≤ e−λ0s
N∑
j=1

(|(u1,j(0))2 − y1,j |+|(u2,j(0))2 − y2,j |) (63)

≤ e−λ0s‖u(0)− y‖. (64)

Thus combine above we have

‖dwi(s)

ds
‖≤ 4MC̃√

m
e−λ0s‖u(0)− y‖

Do an integral, we have ‖wi(0) − wi(t)‖≤ 4MC̃√
mλ0
‖u(0) − y‖≤ M̃√

mλ0
Thus choose m ≥ LN8

δ4λ6
0

for some constant L
independent of N, δ, λ0 will makes ‖wr(0)− wr(t)‖ satisfies condition in proposition A.10.

B. Proof of Theorem 3.1
The proof is a direct consequence of that gradient descent optimizes over-parametrized RePU neural networks. We focus on
the shallow neural network as follows,

Embedding Surfaces by Optimizing Neural Networks with Prescribed Riemannian Metric and Beyond

f(W,a,x) =
1√
m

m∑
k=1

akσ(wkx),

then the partial derivative with respect to wr is

∂f

∂wr
=

1√
m

m∑
k=1

ak
∂σ(wkx)

∂wr
=

1√
m
ar
∂σ(wrx)

∂wr
.

The loss function with training set {xi, yi}ni=1 is defined to be

L(W,a) =

n∑
i=1

1

2
(f(W,a,xi)− yi)2 ,

and the partial derivative with respect to W is

∂L

∂W
=

n∑
i=1

(f(W,a,xi)− yi)
∂f

∂W
=

n∑
i=1

(f(W,a,xi)− yi)
m∑
r=1

∂f

∂wr
.

For the vector wr, we can compute the partial derivatives of L

∂L

∂wr
=

n∑
i=1

∂

∂wr

1

2
(f(W,a,xi)− yi)2 (65)

=

n∑
i=1

(f(W,a,xi)− yi)
∂

∂wr
f(W,a,xi), (66)

where
∂

∂wr
f(W,a,xi) =

1√
m
ar

∂

∂wr
σ(wrxi).

If we denote ζ(·) = pRePUp−1(·), the partials can be denoted as

∂

∂wr
f(W,a,xi) =

1√
m
arζ(wrxi)xi.

Thus

∂L

∂wr
=

1√
m

n∑
i=1

(f(W,a,xi)− yi) arζ(wrxi)xi =
1√
m

n∑
i=1

(f(W,a,xi)− yi)arp(wrxi)
p−1I{wrxi ≥ 0}

Next we compute the ode of evolution for predictions,

ui(t) = f(W,a,xi),

and then

dui
dt

=

m∑
r=1

〈∂f(xi)

∂wr
,
dwr

dt
〉 (67)

=

m∑
r=1

〈∂f(xi)

∂wr
,− ∂L

∂wr
〉, (68)

where

〈∂f(xi)

∂wr
,− ∂L

∂wr
〉 = 〈∂f(xi)

∂wr
,−

n∑
j=1

(uj − yj)
∂f(xj)

∂wr
〉 (69)

=

n∑
j=1

(yj − uj)〈
∂f(xi)

∂wr
,
∂f(xj)

∂wr
〉. (70)

Embedding Surfaces by Optimizing Neural Networks with Prescribed Riemannian Metric and Beyond

So

dui
dt

=

m∑
r=1

n∑
j=1

(yj − uj)〈
∂f(xi)

∂wr
,
∂f(xj)

∂wr
〉 (71)

=

n∑
j=1

(yj − uj)
m∑
r=1

〈∂f(xi)

∂wr
,
∂f(xj)

∂wr
〉 (72)

=

n∑
j=1

(yj − uj)Hij(t) (73)

where

Hij(t) =

m∑
r=1

〈∂f(xi)

∂wr
,
∂f(xj)

∂wr
〉

and

∂f(xi)

∂wr
=

1√
m
arζ(wrxi)xi (74)

∂f(xj)

∂wr
=

1√
m
arζ(wrxj)xj (75)

Thus

Hij(t) =

m∑
r=1

〈 1√
m
arζ(wrxi)xi,

1√
m
arζ(wrxj)xj〉 (76)

=

m∑
r=1

1

m
〈xi,xj〉a2rζ(wrxi)ζ(wrxj) (77)

= 〈xi,xj〉

(
1

m

m∑
r=1

a2rζ(wrxi)ζ(wrxj)

)
(78)

Without loss of generality, we can assume ar = 1 for all r ∈ [m], and the matrix Hij becomes

Hij = 〈xi,xj〉

(
1

m

m∑
r=1

ζ(wrxi)ζ(wrxj)

)
respectively, the corresponding Hij(t) at t = 0 is denoted

Hij(0) = 〈xi,xj〉

(
1

m

m∑
r=1

ζ(wr(0)xi)ζ(wr(0)xj)

)

Before stating our first result, we give the following assumption.
Assumption 1. ‖wr‖ is bounded by κ during the whole training process.

For each fix pair (i, j),
∣∣Hij(0)−H∞ij

∣∣ can be bounded using Hoeffding inequality, i.e., with probability at least 1− δ′, we
have ∣∣Hij(0)−H∞ij

∣∣ ≤ 2
√

log(1/δ′)√
m

.

Furthermore, setting δ′ = n2δ, we have ∣∣Hij(0)−H∞ij
∣∣ ≤ 4

√
log(n/δ)√
m

,

and then ‖H(0)−H∞‖22 ≤
16n2 log(n/δ)

m . Formally the optimization result for function approximation with RePU
activation functions is stated into the following theorem.

Embedding Surfaces by Optimizing Neural Networks with Prescribed Riemannian Metric and Beyond

Theorem B.1. Suppose Assumption 1 holds, ‖xi‖ = 1 and the sample values yi are bounded. Then if we set the number of

hidden nodesm = Ω
(
n2 log(n/δ)

λ2
0

)
and initializing wr ∼ N (0, I), ar = 1, then with probability 1−δ over the initialization,

we have
‖u(t)− y‖22 ≤ exp(−λ0t) ‖u(0)− y‖22 .

B.1. Proof of Theorem B.1

The proof is consisted of a few lemmas.

Lemma B.2. Let w1, ...,wr be i.i.d. sample of N (0, I), then with probability at least 1− δ, the following holds. For any
set of vectors w1, ...,wr that satisfy for any r ∈ [m],

‖wr(0)−wr‖2 ≤ R <
δλ0

4n2`2K

for some constant K, then the matrix H defined by

Hij =
1

m
〈xi,xj〉

m∑
r=1

`2(wrxi)
`−1(wrxj)

`−1I{wrxi ≥ 0,wrxj ≥ 0}

satisfies ‖H −H(0)‖2 <
λ0

4 , and furthermore, λmin(H) > λ0

2 .

Proof.

|Hij(0)−Hij | =

∣∣∣∣∣ 1

m
〈xi,xj〉

m∑
r=1

`2(wr(0)xi)
`−1(wr(0)xj)

`−1I{wr(0)xi ≥ 0,wr(0)xj ≥ 0}

− 1

m
〈xi,xj〉

m∑
r=1

`2(wrxi)
`−1(wrxj)

`−1I{wrxi ≥ 0,wrxj ≥ 0}

∣∣∣∣∣
(79)

Since xi are sampled so that ‖xi‖ ≤ 1, we have

|〈xi,xj〉| ≤ ‖xi‖ · ‖xj‖ = 1,

and then

|Hij(0)−Hij | ≤
1

m

∣∣∣∣∣
m∑
r=1

`2(wr(0)xi)
`−1(wr(0)xj)

`−1I{wr(0)xi ≥ 0,wr(0)xj ≥ 0}

−
m∑
r=1

`2(wrxi)
`−1(wrxj)

`−1I{wrxi ≥ 0,wrxj ≥ 0}

∣∣∣∣∣
≤ 1

m

m∑
r=1

`2
∣∣(wr(0)xi)

`−1(wr(0)xj)
`−1I{wr(0)xi ≥ 0,wr(0)xj ≥ 0}

−(wrxi)
`−1(wrxj)

`−1I{wrxi ≥ 0,wrxj ≥ 0}
∣∣ .

(80)

For a chosen set of vectors wr(0) ∼ N (0, σ2I), we take expectation of wr’s, the expectation is the following

E [|Hij(0)−Hij |] ≤ `2
1

m

m∑
r=1

E
∣∣(wr(0)xi)

`−1(wr(0)xj)
`−1I{wr(0)xi ≥ 0,wr(0)xj ≥ 0}

−(wrxi)
`−1(wrxj)

`−1I{wrxi ≥ 0,wrxj}
∣∣ . (81)

We next focus on the expectation

E
∣∣(wr(0)xi)

`−1(wr(0)xj)
`−1I{wr(0)xi ≥ 0,wr(0)xj ≥ 0} − (wrxi)

`−1(wrxj)
`−1I{wrxi ≥ 0,wrxj ≥ 0}

∣∣

Embedding Surfaces by Optimizing Neural Networks with Prescribed Riemannian Metric and Beyond

where wr(0) ∼ N (0, σ2I) and all wr satisfying ‖wr(0)−wr‖2 ≤ R. The position of wr(0) determines the form of the
expectation. We introduce some notations.

S+
i = {v : 〈v −R xi

‖xi‖
,xi〉 > 0}

and
S+
j = {v : 〈v −R xj

‖xj‖
,xj〉 > 0},

it is obvious that S−i and S−j are obtained from the set

{v : 〈v,xi〉 > 0, 〈v,xj〉 > 0}

through translation by vectors R xi
‖xi‖ and R xj

‖xj‖ , where the length of the translated vectors are R.

Once wr(0) ∈ S+
i ∩ S

+
j , it holds that

I{wr(0)xi ≥ 0,wr(0)xj ≥ 0} = 1

and
I{wrxi ≥ 0,wrxj ≥ 0} = 1

for all wr satisfying ‖wr(0)−wr‖2 ≤ R. As a consequence, the expectation has the following form:∣∣(wr(0)xi)
`−1(wr(0)xj)

`−1 − (wrxi)
`−1(wrxj)

`−1∣∣ if wr(0) ∈ S+
i ∩ S

+
j .

On the other hand, we further introduce two sets:

S−i = {v : 〈v +R
xi
‖xi‖

,xi〉 < 0}

and
S−j = {v : 〈v +R

xj
‖xj‖

,xj〉 < 0}.

Once wr(0) ∈ S−i ∪ S
−
j , it holds that

I{wr(0)xi ≥ 0,wr(0)xj ≥ 0} = 0

and
I{wrxi ≥ 0,wrxj ≥ 0} = 0

and then the expression of expectation equals to 0. In the rest of the proof, we will denote the following for convenience:

Fij(wr(0))
def
=
∣∣(wr(0)xi)

`−1(wr(0)xj)
`−1I{wr(0)xi ≥ 0,wr(0)xj ≥ 0}

−(wrxi)
`−1(wrxj)

`−1I{wrxi ≥ 0,wrxj ≥ 0}
∣∣ (82)

and let ρ(wr(0)) be the probability density function of Gaussian variable in Rd with 0 the mean and σ2I the covariance
matrix.

From the above analysis, we have the following expression for the expectation:

E
∣∣(wr(0)xi)

`−1(wr(0)xj)
`−1I{wr(0)xi ≥ 0,wr(0)xj ≥ 0}

−(wrxi)
`−1(wrxj)

`−1I{wrxi ≥ 0,wrxj ≥ 0}
∣∣

= E[Fij(wr(0))]

=

∫
Rd
Fij(wr(0))ρ(wr(0))dwr(0)

=

∫
S+
i ∩S

+
j

Fij(wr(0))ρ(wr(0))dwr(0)

+

∫
S−i ∪S

−
j

Fij(wr(0))ρ(wr(0))dwr(0)

+

∫
Rd−(S+

i ∩S
+
j)−(S−i ∪S

−
j)

Fij(wr(0))ρ(wr(0))dwr(0).

(83)

Embedding Surfaces by Optimizing Neural Networks with Prescribed Riemannian Metric and Beyond

Note that the third part tends to 0 if R→ 0, and the second part, i.e., the integral over S−i ∪ S
−
j is identically zero since

both indicator functions are zero. Thus we only have to estimate the integral over S+
i ∩ S

+
j . Since the integral is for the

expression ∣∣(wr(0)xi)
`−1(wr(0)xj)

`−1 − (wrxi)
`−1(wrxj)

`−1∣∣
can be bounded by function of wr(0) and R, we first obtain this bound. Lemma B.3 enables us to perform the estimate on
the difference |F (wr(0))− F (wr)| where F (·) is following Lemma B.3. To be precise, we have the following:

|F (wr(0))− F (wr)| = ‖∇F (wr(0) + θ)‖ · ‖wr(0)−wr‖ (84)

where θ lies on the line segment connecting wr(0) and wr. Use Lemma B.3 and the condition ‖wr(0)−wr‖ ≤ R, we
have

|F (wr(0))− F (wr)| ≤ C ‖wr(0) + θ‖2`−3 ·R (85)

≤ C · 22`−4
(
‖wr(0)‖2`−3 + ‖θ‖2`−3

)
·R (86)

≤ C22`−4R ‖wr(0)‖2`−3 + C22`−4R ‖θ‖2`−3 (87)

≤ C22`−4R ‖wr(0)‖2`−3 + C22`−4R2`−2. (88)

The last inequality holds for ‖θ‖ ≤ R. The integral of Fijρ over the set S+
i ∩ S

+
j becomes

∫
S+
i ∩S

+
j

Fij(wr(0))ρ(wr(0))dwr(0) (89)

=

∫
S+
i ∩S

+
j

|F (wr(0))− F (wr)| ρ(wr(0))dwr(0) (90)

≤
∫
S+
i ∩S

+
j

(
C22`−4R ‖wr(0)‖2`−3 + C22`−4R2`−2

)
ρ(wr(0))dwr(0) (91)

=

∫
S+
i ∩S

+
j

C22`−4R ‖wr(0)‖2`−3 ρ(wr(0))dwr(0) (92)

+

∫
S+
i ∩S

+
j

C22`−4R2`−2ρ(wr(0))dwr(0) (93)

≤ C22`−4R

∫
S+
i ∩S

+
j

‖wr(0)‖2`−3 ρ(wr(0))dwr(0) (94)

+

∫
Rd
C22`−4R2`−2ρ(wr(0))dwr(0) (95)

= C22`−4R

∫
S+
i ∩S

+
j

‖wr(0)‖2`−3 ρ(wr(0))dwr(0) + C22`−4R2`−2 (96)

It is immediate that the integral over S+
i ∩ S

+
j is bounded above by 1

2 of the integral over the whole Rd,

∫
S+
i ∩S

+
j

‖wr(0)‖2`−3 ρ(wr(0))dwr(0) ≤ 1

2

∫
Rd
‖wr(0)‖2`−3 ρ(wr(0))dwr(0).

Note that the integral on the right hand side can be computed with spherical coordinate, where ‖wr(0)‖ = r and the

Embedding Surfaces by Optimizing Neural Networks with Prescribed Riemannian Metric and Beyond

Gaussian density of N (0, σ2I) is also a function of r.∫
Rd
‖wr(0)‖2`−3 ρ(wr(0))dwr(0) =

∫ ∞
0

∫
∂B(r)

r2`−3
e−

r2

2σ2√
(2π)dσd

dS

 dr (97)

=

∫ ∞
0

r2`−3
e−

r2

2σ2√
(2π)dσd

(∫
∂B(r)

dS

)
dr (98)

=

∫ ∞
0

r2`−3
e−

r2

2σ2√
(2π)dσd

Area(∂B(r))dr (99)

=
1

(2π)
d
2 σd

∫ ∞
0

r2`−3e−
r2

2σ2
2π

d
2

Γ(d2)
rd−1dr (100)

=
2

2
d
2 σdΓ(d2)

∫ ∞
0

r2`+d−2e−
r2

2σ2 dr (101)

Let r2

2σ2 = t, it holds that∫ ∞
0

r2`+d−2e−
r2

2σ2 dr =

∫ ∞
0

(
√

2σt
1
2)2`+d−2e−t

√
2σ

1

2
t−

1
2 dt (102)

=

∫ ∞
0

2
2`+d−2

2 σ2`+d−2t
2`+d−2

2 2
1
2σ2−1t−

1
2 e−tdt (103)

= 2`+
d
2−

3
2σ2`+d−1

∫ ∞
0

t`+
d
2−

1
2−1e−tdt (104)

= 2`+
d
2−

3
2σ2`+d−1Γ

(
`+

d

2
− 1

2

)
(105)

Thus we have ∫
Rd
‖wr(0)‖2`−3 ρ(wr(0))dwr(0) = 2`−

1
2σ2`−1 Γ

(
`+ d

2 −
1
2

)
Γ
(
d
2

) ,

and then the bound∫
S+
i ∩S

+
j

Fij(wr(0))ρ(wr(0))dwr(0) ≤ C22`−4R

∫
S+
i ∩S

+
j

‖wr(0)‖2`−3 ρ(wr(0))dwr(0) + C22`−4R2`−2 (106)

≤ C22`−4R · 1

2

(
2`−

1
2σ2`−1 Γ

(
`+ d

2 −
1
2

)
Γ
(
d
2

))
+ C22`−4R2`−2 (107)

= CR23`−
11
2 σ2`−1 Γ

(
`+ d

2 −
1
2

)
Γ(d2)

+ C22`−4R2`−2 (108)

Combining with the result of Lemma B.4, we conclude that if ‖wr(0)−wr‖ ≤ R < 1, ` ≥ 1, then there exists a constant
K, such that

E
∣∣(wr(0)xi)

`−1(wr(0)xj)
`−1I{wr(0)xi ≥ 0,wr(0)xj ≥ 0}

−(wrxi)
`−1(wrxj)

`−1I{wrxi ≥ 0,wrxj ≥ 0}
∣∣

≤ KR.
(109)

According to the expectation of E |Hij(0)−Hij |, i.e.,

E |Hij(0)−Hij | = `2
1

m

m∑
r=1

E
∣∣(wr(0)xi)

`−1(wr(0)xj)
`−1I{wr(0)xi ≥ 0,wr(0)xj ≥ 0}

−(wrxi)
`−1(wrxj)

`−1I{wrxi ≥ 0,wrxj ≥ 0}
∣∣

≤ `2KR,

(110)

Embedding Surfaces by Optimizing Neural Networks with Prescribed Riemannian Metric and Beyond

and then
E
∑
i,j

|Hij(0)−Hij | =
∑
i,j

E |Hij(0)−Hij | ≤ n2`2KR.

Using inequality of ‖·‖2, ‖·‖F and |·|1, we have

‖H(0)−H‖2 ≤ ‖H(0)−H‖F ≤
∑
ij

|Hij(0)−Hij | ≤
n2`2KR

δ

with probability at least 1− δ. So choose R such that

R <
δλ0

4n2`2K
,

we can have
‖H(0)−H‖2 ≤

λ0
4

with probability 1− δ.

Lemma B.3. Let
F (wr)

def
= (wrxi)

`−1(wrxj)
`−1.

Then there exists some constant C such that

‖∇F (wr)‖ ≤ C ‖wr‖2`−3 .

Proof. Direct calculation gives the gradient:

∇F (wr) =

(
∂F

∂wr1
, ...,

∂F

∂wrd

)
,

where
∂F

∂wrk
= (`− 1)(wrxi)

`−2xik(wrxj)
`−1 + (wrxi)

`−1(`− 1)(wrxj)
`−2xjk (111)

= (`− 1)xik(wrxi)
`−2(wrxj)

`−1 + (`− 1)xjk(wrxi)
`−1(wrxj)

`−2 (112)

= (`− 1)(wrxi)
`−2(wrxj)

`−2(xik(wrxj) + xjk(wrxi)). (113)

Then the `2-norm of ∇F (wr) can be estimated as∣∣∣∣ ∂F∂wrk

∣∣∣∣ = (`− 1)
∣∣(wrxi)

`−2(wrxj)
`−2(xik(wrxj) + xjk(wrxi))

∣∣ (114)

≤ (`− 1) |wrxi|`−2 |wrxj |`−2 |xik(wrxj) + xjk(wrxi)| (115)

≤ (`− 1)(‖wr‖ · ‖xi‖)`−2(‖wr‖ · ‖xj‖)`−2 (|xik(wrxj)|+ |xjk(wrxi)|) (116)

≤ (`− 1) ‖wr‖`−2 ‖wr‖`−2 (|xik| · |wrxj |+ |xjk| · |wrxi|) (117)

≤ (`− 1) ‖wr‖2`−4
(√

d |wrxj |+
√
d |wrxi|

)
(118)

≤ (`− 1) ‖wr‖2`−4
(√

d ‖wr‖ · ‖xj‖+
√
d ‖wr‖ · ‖xi‖

)
(119)

≤ 2
√
d(`− 1) ‖wr‖2`−3 (120)

where we use the inequality of `1-`2 norms for xi:

‖x‖2 ≤ ‖x‖1 ≤
√
d ‖x‖2

which implies that |xik| and |xjk| are less than
√
d. The same inequality implies that

‖∇F (wr)‖ ≤
d∑
k=1

∣∣∣∣ ∂F∂wrk

∣∣∣∣ ≤ 2d
3
2 (`− 1) ‖wr‖2`−3 .

The proof completes.

Embedding Surfaces by Optimizing Neural Networks with Prescribed Riemannian Metric and Beyond

Lemma B.4. Following the notation above, let

Fij =
∣∣(wr(0)xi)

`−1(wr(0)xj)
`−1I{wr(0)xi ≥ 0,wr(0)xj ≥ 0} − (wrxi)

`−1(wrxj)
`−1I{wrxi ≥ 0,wrxj ≥ 0}

∣∣
and A = Rd − (S+

i ∩ S
+
j)− (S−i ∪ S

−
j), then∫

A

Fijρ(wr(0))dwr(0) ≤ C1σ
2`−3R+ C2σ

2`−4R2 + C3σ
−1R2`−1

for some constants C1, C2 and C3.

Remark B.5. If we further assume that σ = 1, it is immediate that∫
A

Fijρ(wr(0))dwr(0) ≤ C1R+ C2R
2 + C3R

2`−1,

and this can be simplified to a bound of KR for some constant K.

Proof. Note that Fij might have four different forms if wr(0) ∈ A, i.e.,

1. 0,

2.
∣∣(wr(0)xi)

`−1(wr(0)xj)
` − (wrxi)

`−1(wrxj)
`−1
∣∣,

3.
∣∣(wr(0)xi)

`−1(wr(0)xj)
`−1
∣∣,

4.
∣∣(wrxi)

`−1(wrxj)
`−1
∣∣

Using previous notation, i.e.,
F (wr) = (wrxi)

`−1(wrxj)
`−1,

if wr is in the neighborhood of wr(0), i.e., ‖wr(0)−wr‖ ≤ R, the Taylor expansion with wr = wr(0) + θ,

F (wr(0) + θ) = F (wr(0)) +∇F (wr(0)) · θ +O(‖θ‖2),

gives

|F (wr)| ≤ |F (wr(0))|+ ‖∇F (wr(0))‖ · ‖θ‖+O(‖θ‖2) (121)

≤ |F (wr(0))|+ CR ‖wr(0)‖2`−3 +O(‖θ‖2). (122)

As we have proved,
|F (wr(0))− F (wr)| ≤ C22`−4R ‖wr(0)‖2`−3 + C22`−4R2`−2.

So a global upper bound of Fij can be the following

|F (wr(0))|+ C22`−4R ‖wr(0)‖2`−3 +O(‖θ‖2) + C22`−4R2`−2.

Since ‖θ‖ ≤ R, and ` in our setting is at least 2, the above expression can be simplified as

|F (wr(0))|+ C22`−4R ‖wr(0)‖2`−3 + C1R
2

for some constant C1. We denote

I1 =

∫
A

F (wr(0))ρ(wr(0))dwr(0)

I2 =

∫
A

C22`−4R ‖wr(0)‖2`−3 ρ(wr(0))dwr(0)

and

I3 =

∫
A

C1R
2ρ(wr(0))dwr(0).

Embedding Surfaces by Optimizing Neural Networks with Prescribed Riemannian Metric and Beyond

Further estimation can be obtained.

I1 =

∫
A

∣∣(wr(0)xi)
`−1(wr(0)xj)

`−1∣∣ ρ(wr(0))dwr(0) (123)

≤
∫
A

‖wr(0)‖2`−2 ρ(wr(0))dwr(0) (124)

=

∫
A

‖wr(0)‖2`−2 e
− ‖wr(0)‖

2

2σ2√
(2π)dσd

dwr(0) (125)

≤ 2 · 2R
∫
Rd−1

‖x‖2`−2 e−
‖x‖2

2σ2√
(2π)dσd

dx (126)

where x is the first d− 1 component of wr(0) ∈ Rd. And then

I1 ≤
4R√

(2π)dσd

∫
Rd−1

‖x‖2`−2 e−
‖x‖2

2σ2 dx (127)

=
4R√

(2π)dσd

∫ ∞
0

(∫
Sd−2(r)

r2`−2e−
r2

2σ2 dS

)
dr (128)

=
4R√

(2π)dσd

∫ ∞
0

r2`−2e−
r2

2σ2 Area(Sd−2(r))dr (129)

=
4R√

(2π)dσd

∫ ∞
0

r2`−2e−
r2

2σ2
2π

d−1
2

Γ
(
d−1
2

)rd−2dr (130)

=
4R√

(2π)dσd
2π

d−1
2

Γ
(
d−1
2

) ∫ ∞
0

r2`+d−4e−
r2

2σ2 dr (131)

where

∫ ∞
0

r2`+d−4e−
r2

2σ2 dr = 2`+
d
2−

5
2σ2`+d−3

∫ ∞
0

t`+
d
2−

3
2−1e−tdt (132)

= 2`+
d
2−

5
2σ2`+d−3Γ

(
`+

d

2
− 3

2

)
(133)

Thus we have

I1 ≤ R · 2`+
1
2π

d
2−1σ2`−3 Γ

(
`+ d

2 −
3
2

)
Γ
(
d−1
2

) .

I2 = C22`−4R

∫
A

‖wr(0)‖2`−3 ρ(wr(0))dwr(0) (134)

Embedding Surfaces by Optimizing Neural Networks with Prescribed Riemannian Metric and Beyond

where ∫
A

‖wr(0)‖2`−3 ρ(wr(0))dwr(0) ≤ 2 · 2R
∫
Rd−1

‖x‖2`−3 e−
‖x‖2

2σ2√
(2π)dσd

dx (135)

=
4R√

(2π)dσd

∫ ∞
0

r2`−3e−
r2

2σ2 Area(Sd−2(r))dr (136)

=
4R√

(2π)dσd
2π

d−1
2

Γ
(
d−1
2

) ∫ ∞
0

r2`+d−5e−
r2

2σ2 dr (137)

=
4R√

(2π)dσd
2π

d−1
2

Γ
(
d−1
2

)2`+
d
2−3σ2`+d−4

∫ ∞
0

t`+
d
2−2−1e−tdt (138)

=
4R√

(2π)dσd
2π

d−1
2

Γ
(
d−1
2

)2`+
d
2−3σ2`+d−4Γ

(
`+

d

2
− 2

)
(139)

= R · 2`σ2`−4
√
π

Γ
(
`+ d

2 − 2
)

Γ
(
d−1
2

) . (140)

And then we end up with estimate of I2 to be

I2 ≤ C22`−4R ·R · 2`σ2`−4
√
π

Γ
(
`+ d

2 − 2
)

Γ
(
d−1
2

) (141)

= R2 · C23`−4σ2`−4
√
π

Γ
(
`+ d

2 − 2
)

Γ
(
d−1
2

) (142)

Recall that

F (wr) = F (wr(0)) +∇F (wr(0) + θ)(wr −wr(0)) (143)

so it is bounded as
|F (wr)| ≤ |F (wr(0))|+ C22`−4R ‖wr(0)‖2`−3 + C22`−4R2`−2,

and then it remains to estimate the integral of the last term over A.

∫
A

C22`−4R2`−2 e−
‖x‖2

2σ2√
(2π)dσd

dx ≤ C22`−4R2`−24R

∫
Rd−1

e−
‖x‖2

2σ2√
(2π)dσd

dx (144)

= C22`−4R2`−2 4R√
2πσ

∫
Rd−1

e−
‖x‖2

2σ2√
(2π)d−1σd−1

dx (145)

= C22`−4R2`−2 4R√
2πσ

(146)

=
C22`−2√

2πσ
R2`−1 (147)

Combining with the bounds of I1 and I2, we complete the proof.

Lemma B.6. Suppose for 0 ≤ s ≤ t, λmin(H(s)) ≥ λ0

2 . Then we have

‖y − u(t)‖22 ≤ e
−λ0t ‖y − u(0)‖22

Proof. It has been calculated that for each sample i ∈ [n], the evolution of prediction satisfies

dui
dt

=

n∑
j=1

(yj − uj(t))Hij(t).

Embedding Surfaces by Optimizing Neural Networks with Prescribed Riemannian Metric and Beyond

Thus the evolution of norm ‖y − u(t)‖22 satisfies

d

dt
‖y − u(t)‖22 = 2〈 d

dt
(y − u(t)),y − u(t)〉 (148)

= −2〈 d
dt

u(t),y − u(t)〉 (149)

= −2〈
n∑
j=1

(yj − uj(t))Hij(t),y − u(t)〉 (150)

= −2(y − u(t))>H(t)(y − u(t)) (151)

≤ −λ0 ‖y − u(t)‖22 . (152)

Then

d

dt

(
eλ0t ‖y − u(t)‖22

)
= λ0e

λ0t ‖y − u(t)‖22 + eλ0t
d

dt
‖y − u(t)‖22 (153)

≤ λ0eλ0t ‖y − u(t)‖22 − λ0e
λ0t ‖y − u(t)‖22 (154)

= 0 (155)

which implies that eλ0t ‖y − u(t)‖22 is decreasing in t and then it holds that

‖y − u(t)‖22 ≤ e
−λ0t ‖y − u(0)‖22 .

The previous calculation yields

d

ds
wr(s) = − ∂L

∂wr
= − 1√

m

n∑
i=1

(ui − yi)ar`(wrxi)
`I{wrxi ≥ 0}xi (156)

and then ∥∥∥∥dwr

ds

∥∥∥∥
2

=

∥∥∥∥∥− 1√
m

n∑
i=1

(ui − yi)ar`(wrxi)
`−1I{wrxi ≥ 0}xi

∥∥∥∥∥
2

(157)

≤ 1√
m

n∑
i=1

∥∥(ui − yi)ar`(wrxi)
`−1I{wrxi ≥ 0}xi

∥∥
2

(158)

≤ 1√
m

n∑
i=1

` |ar| · |ui − yi| ·
∣∣(wrxi)

`−1∣∣ · ‖xi‖2 (159)

For the training of W, we let ar = 1 and it is assumed that ‖xi‖ = 1, we have

∥∥∥∥dwr

ds

∥∥∥∥
2

≤ `√
m

n∑
i=1

|ui − yi| · ‖wr‖`−12 (160)

≤ `
√
n√
m
‖wr‖`−12 · ‖u(s)− y‖2 . (161)

Since it is assumed that during the whole training process, wr is in a bounded region, i.e., ‖wr‖2 ≤ κ, and this implies

∥∥∥∥dwr

ds

∥∥∥∥
2

≤ `κ`−1
√
n√

m
‖u(s)− y‖2 ≤

`κ`−1
√
n√

m
e−

λ0s
2 ‖u(0)− y‖2 .

Embedding Surfaces by Optimizing Neural Networks with Prescribed Riemannian Metric and Beyond

Integration gives

‖wr(t)−wr(0)‖2 ≤
∫ t

0

∥∥∥∥dwr

ds

∥∥∥∥
2

ds (162)

≤ `κ`−1
√
n√

m
‖u(0)− y‖2

∫ t

0

e−
λ0s
2 ds (163)

=
`κ`−1

√
n√

m
‖u(0)− y‖2 ·

2

λ0

(
1− e−λ0t

)
(164)

≤ 2`κ`−1
√
n

λ0
√
m
‖u(0)− y‖2 (165)

The next theorem gives the convergence guarantee of joint training of W and a.
Theorem B.7. Consider the joint gradient descent on both layers. Suppose Assumption 1 holds, ‖xi‖ = 1 and the sample

values yi are bounded. Then if we set the number of hidden nodes m = Ω
(
n2 log(n/δ)

λ0

)
and initializing wr(0) ∼ N (0, I),

ar = 1, then with probability 1− δ over the initialization, we have

‖u(t)− y‖22 ≤ exp(−λ0t) ‖u(0)− y‖22 .

Lemma B.8. With probability at least 1− δ, if a set of weight vectors {wr}mr and the output weight a satisfy for all r ∈ [m],
‖wr −wr(0)‖2 ≤ Rw and |ar − ar(0)| ≤ Ra, the the matrix H satisfies

‖H −H(0)‖2 ≤
λ0
4

and λmin(H) >
λ0
2
.

Proof. Let

H ′ij = 〈xi,xj〉

(
1

m

m∑
r=1

a2rζ(wrxi)ζ(wrxj)

)
,

from the proof of previous section, we have that

‖H ′ −H(0)‖2 ≤
n2`2KRw

δ

for some constant K. On the other hand,

Hij −H ′ij = 〈xi,xj〉

(
1

m

m∑
r=1

a2rζ(wrxi)ζ(wrxj)

)
(166)

− 〈xi,xj〉

(
1

m

m∑
r=1

ζ(wrxi)ζ(wrxj)

)
(167)

= 〈xi,xj〉

(
1

m

m∑
r=1

(a2r − 1)ζ(wrxi)ζ(wrxj)

)
, (168)

and then ∣∣Hij −H ′ij
∣∣ =

∣∣∣∣∣〈xi,xj〉
(

1

m

m∑
r=1

(a2r − 1)ζ(wrxi)ζ(wrxj)

)∣∣∣∣∣ (169)

≤ |〈xi,xj〉| ·

∣∣∣∣∣ 1

m

m∑
r=1

(a2r − 1)ζ(wrxi)ζ(wrxj)

∣∣∣∣∣ (170)

≤
(

max
r∈[m]

∣∣a2r − 1
∣∣) ∣∣∣∣∣ 1

m

m∑
r=1

ζ(wrxi)ζ(wrxj)

∣∣∣∣∣ (171)

≤
(

max
r∈[m]

∣∣a2r − 1
∣∣) 1

m

m∑
r=1

|ζ(wrxi)ζ(wrxj)| . (172)

Embedding Surfaces by Optimizing Neural Networks with Prescribed Riemannian Metric and Beyond

The expectation is then bounded by

E
∣∣Hij −H ′ij

∣∣ ≤ (max
r∈[m]

∣∣a2r − 1
∣∣) 1

m

m∑
r=1

E |ζ(wrxi)ζ(wrxj)| (173)

=

(
max
r∈[m]

∣∣a2r − 1
∣∣)E |ζ(wrxi)ζ(wrxj)| . (174)

We next bound E |ζ(wrxi)ζ(wrxj)|. Since the expression of ζ(·) gives the following estimate:

|ζ(wrxi)ζ(wrxj)| =
∣∣(wrxi)

`(wrxj)
`I{wrxi ≥ 0,wrxj ≥ 0}

∣∣ (175)

≤
∣∣(wrxi)

`(wrxj)
`
∣∣ (176)

≤ |wrxi|` |wrxj |` (177)

≤ ‖wr‖2` ‖xi‖` ‖xj‖` (178)

≤ ‖wr‖2` , (179)

it suffices to estimate ‖wr(0) + θ‖2`, given θ = wr −wr(0) and ‖θ‖ ≤ Rw.

E |ζ(wrxi)ζ(wrxj)| ≤ E ‖wr + θ‖2` (180)

≤ 22`−1E
(
‖wr(0)‖2` + ‖θ‖2`

)
(181)

≤ 22`−1E ‖wr(0)‖2` + 22`−1ER2` (182)

= 22`−1
∫
Rd
‖wr(0)‖2` ρ(wr(0))dwr(0) + 22`−1R2` (183)

where ρ(·) is standard Gaussian distribution. The previous calculation has already given that∫
Rd
‖wr(0)‖2` ρ(wr(0))dwr(0) = 2`+1 Γ(`+ d

2 + 1)

Γ(d2)
,

and then

E |ζ(wrxi)ζ(wrxj)| ≤ 22`−12`+1 Γ(`+ d
2 + 1)

Γ(d2)
+ 22`−1R2`

w (184)

= 23`
Γ(`+ d

2 + 1)

Γ(d2)
+ 22`−1R2`

w . (185)

If we assume Rw is less than 1, and then the above expression is bounded by some constant, we have shown that

E
∣∣Hij −H ′ij

∣∣ ≤ K1Ra

for some constant K1. Then we have

E ‖H −H ′‖2 ≤ n
2E
∣∣Hij −H ′ij

∣∣ = n2K1Ra,

and then
E ‖H −H(0)‖2 ≤ E ‖H −H ′‖2 + E ‖H ′ −H(0)‖2 ≤ n

2K1Ra + n2`2KRw.

Thus, according to concentration inequality, the radius Rw and Ra can be chosen based on λ0 and probability threshold δ,
so that ‖H −H(0)‖2 ≤

λ0

4 with probability at least 1− δ. The proof completes.

Lemma B.9. Suppose for 0 ≤ s ≤ t, λmin(H(s)) ≥ λ0

2 and |ar(s)− ar(0)| ≤ Ra. Then we have ‖wr(t)−wr(0)‖2 ≤
R′w.

Embedding Surfaces by Optimizing Neural Networks with Prescribed Riemannian Metric and Beyond

Proof. ∥∥∥∥dwr(s)

ds

∥∥∥∥
2

=

∥∥∥∥∥− 1√
m

n∑
i=1

(ui − yi)ar(s)`(wrxi)
`−1I{wrxi ≥ 0}xi

∥∥∥∥∥
2

(186)

≤ 1√
m

n∑
i=1

|ui − yi| |ar(s)| ` ‖wr‖`−1 . (187)

With the assumption that ‖wr‖ is less than some constant κ, we can prove that

‖wr(t)−wr(0)‖2 ≤
∫ t

0

∥∥∥∥dwr(s)

ds

∥∥∥∥
2

ds (188)

≤ C(κ)

∫ t

0

‖y − u(s)‖2 ds (189)

≤ C(κ)

∫ t

0

e−
λ0s
2 ‖y − u(0)‖2 ds (190)

≤ 2C(κ)
‖y − u(0)‖2

λ0
, (191)

where C(κ) is a constant depending on κ and involving `, n and m.

Lemma B.10. With probability at least 1 − δ over initialization, suppose for 0 ≤ s ≤ t, λmin(H(s)) ≥ λ0

2 and
‖wr(s)−wr(0)‖2 ≤ Rw. Then we have |ar(t)− ar(0)| ≤ R′a for all r ∈ [m].

Proof. Since wr(0) ∼ N (0, I), we have with probability at least 1 − δ, |wr(0)xi| ≤ 3
√

log
(
mn
δ

)
. For 0 ≤ s ≤ t, we

have ∣∣∣∣ ddsar(s)
∣∣∣∣ =

∣∣∣∣∣ 1√
m

n∑
i=1

(f(W(s),a(s),xi)− yi)σ(wr(s)xi)

∣∣∣∣∣ (192)

≤ 1√
m

n∑
i=1

|f(W(s),a(s),xi)− yi| · |wr(s)xi|` . (193)

Note that

|wr(s)xi| = |wr(0)xi + (wr(s)−wr(0))xi| (194)
≤ |wr(0)xi|+ |(wr(s)−wr(0))xi| (195)

≤ 3

√
log
(mn
δ

)
+Rw, (196)

and then

|wr(s)xi|` ≤
(

3

√
log
(mn
δ

)
+Rw

)`
.

Therefore, the differential dar(s)ds can be bounded as∣∣∣∣dar(s)ds

∣∣∣∣ ≤ √n√m ‖y − u(s)‖2

(
3

√
log
(mn
δ

)
+Rw

)`
(197)

So the bound of ‖a(t)− a(0)‖2 can be obtained by

‖a(t)− a(0)‖2 ≤
∫ t

0

∥∥∥∥da(s)

ds

∥∥∥∥
2

ds ≤ C ′(δ, `,m, n) ‖y − u(0)‖2 ·
1

λ0
.

Embedding Surfaces by Optimizing Neural Networks with Prescribed Riemannian Metric and Beyond

B.2. Proof of Discrete Time Gradient Descent

Lemma B.11.
‖u(t+ 1)− u(t)‖22 ≤ `

4κ4`−4η2n2 ‖u(t)− y‖22

Proof. Recall that the neural network has the form of

f(W,a,x) =
1√
m

m∑
k=1

akσ(wkx).

where σ(·) is the `’th power of ReLU function. So the difference of predictions between two iterations has the following
expression by a direct calculation,

ui(t+ 1)− ui(t) =
1√
m

m∑
k=1

akσ(wk(t+ 1)xi)−
1√
m

m∑
k=1

akσ(wk(t)xi)

=
1√
m

m∑
k=1

ak (σ(wk(t+ 1)xi)− σ(wk(t)xi))

=
1√
m

m∑
r=1

ar

(
σ

((
wk(t)− η ∂L(W(t))

∂wk(t)

)
xi

)
− σ(wk(t)xi)

)
(198)

Since the range of ‖w‖2 is assumed to be bounded by κ during the whole training process, the function σ(wxi) = (wxi)
`

is Lipschitz and the Lipschitz constant can be estimated as follows.

∇wσ(wxi) =
(
`(wxi)

`−1xi1, ..., `(wxi)
`−1xid

)
which implies

‖∇wσ(wxi)‖2 = `(|wxi|)`−1 ‖xi‖2
≤ `(‖w‖2 ‖xi‖2)`−1

= ` ‖w‖`−12

≤ `κ`−1.

(199)

Then we have∣∣∣∣σ((wk(t)− η ∂L(W(t))

∂wk(t)

)
xi

)
− σ(wk(t)xi)

∣∣∣∣ ≤ sup
‖w‖2≤κ

‖∇wσ(wxi)‖ ·
∥∥∥∥η ∂L(W(t))

∂wk(t)

∥∥∥∥
≤ `κ`−1

∥∥∥∥η ∂L(W(t))

∂wk(t)

∥∥∥∥
= `κ`−1η

∥∥∥∥∂L(W(t))

∂wk(t)

∥∥∥∥ ,
(200)

and furthermore, the bound of |ui(t+ 1)− ui(t)| can be estimated as

|ui(t+ 1)− ui(t)| ≤
1√
m

m∑
k=1

∣∣∣∣σ((wk(t)− η ∂L(W(t))

∂wk(t)

)
xi

)
− σ(wk(t)xi)

∣∣∣∣
≤ `κ`−1η√

m

m∑
k=1

∥∥∥∥∂L(W(t))

∂wk(t)

∥∥∥∥ .
(201)

Recall that the partial of L with respect to wk(t) is

∂L(W(t))

∂wk(t)
=

1√
m

n∑
i=1

(ui(t)− yi)akζ(wk(t)xi)xi

Embedding Surfaces by Optimizing Neural Networks with Prescribed Riemannian Metric and Beyond

where
ζ(wk(t)xi) = `(wk(t)xi)

`−1I{wk(t)xi ≥ 0},

and then the norm of ∂L(W(t))
∂wk(t)

can be bounded by

∥∥∥∥∂L(W(t))

∂wk(t)

∥∥∥∥ =

∥∥∥∥∥ 1√
m

n∑
i=1

(ui(t)− yi)akζ(wk(t)xi)xi

∥∥∥∥∥ (202)

≤ 1√
m

n∑
i=1

|ui(t)− yi| · |ζ(wk(t)xi)| · ‖xi‖ (203)

≤ 1√
m

n∑
i=1

|ui(t)− yi| `κ`−1 (204)

=
`κ`−1√
m

n∑
i=1

|ui(t)− yi| . (205)

Therefore,

‖u(t+ 1)− u(t)‖22 =

n∑
i=1

|ui(t+ 1)− ui(t)|2 (206)

≤
n∑
i=1

(
`κ`−1η√

m

m∑
k=1

∥∥∥∥∂L(W(t))

∂wk(t)

∥∥∥∥
)2

(207)

=
`2κ2`−2η2

m

n∑
i=1

(
m∑
k=1

`κ`−1√
m

n∑
i=1

|ui(t)− yi|

)2

(208)

≤ `2κ2`−2η2

m

n∑
i=1

(
m∑
k=1

`κ`−1√
m

√
n ‖u(t)− y‖2

)2

(209)

= `4κ4`−4η2n2 ‖u(t)− y‖22 . (210)

The proof completes.

For the rest of the proof of the theorem, we denote

Air = {∃w : ‖w −wr(0)‖ ≤ R, I{wr(0)xi ≥ 0} 6= I{wxi ≥ 0}}

and
Si = {r ∈ [m] : I{Air = 0}}

S⊥i = [m] \ Si
where R is the radius chosen based on the argument of continuous time gradient flow.

Lemma B.12. Given δ ∈ (0, 1), it holds that

∥∥H⊥ij (t)∥∥2 ≤ `2κ2`−2n2R

δ

with probability at least 1− δ.

Proof. Since H⊥ij (t) has the following form,

H⊥ij (t) =
1

m
〈xi,xj〉

∑
k∈S⊥i

`2(wk(t)xi)
`−1(wk(t)xj)

`−1I{wk(t)xi ≥ 0,wk(t)xj ≥ 0}

Embedding Surfaces by Optimizing Neural Networks with Prescribed Riemannian Metric and Beyond

and then ∣∣H⊥ij (t)∣∣ ≤ `2κ2`−2

m

∣∣S⊥i ∣∣ .
Since E[

∣∣S⊥i ∣∣] ≤ 2mR√
2π

, and it holds that

E

[
n∑
i=1

∣∣S⊥i ∣∣
]
≤ 2mnR√

2π
,

by Markov inequality, for a given δ ∈ (0, 1), as long as a > 2mnR√
2πδ

, it holds that

P

(
n∑
i=1

∣∣S⊥i ∣∣ < a

)
≥ 1− δ,

and for convenience we can let a = mnR
δ for each given δ. Moreover,

∥∥H⊥(t)
∥∥
2
≤

n∑
j=1

n∑
i=1

∣∣H⊥ij (t)∣∣ ≤ `2κ2`−2

m

n∑
j=1

n∑
i=1

∣∣S⊥i ∣∣ ≤ `2κ2`−2n

m
· mnR

δ
=
`2κ2`−2n2R

δ

with probability at least 1− δ.

Denote Ii2 as follows,

Ii2 =
1√
m

∑
k∈S⊥i

ak

(
σ

((
wk(t)− η ∂L(W(t))

∂wk(t)

)
xi

)
− σ(wk(t)xi)

)

and we can have the estimate of Ii2 below,

∣∣Ii2∣∣ ≤ 1√
m

∑
k∈S⊥i

`κ`−1η max
k∈[m]

∥∥∥∥∂L(W(t))

∂wk(t)

∥∥∥∥ =
`κ`−1η

∣∣S⊥i ∣∣√
m

max
k∈[m]

∥∥∥∥∂L(W(t))

∂wk(t)

∥∥∥∥
Since ∥∥∥∥∂L(W(t))

∂wk(t)

∥∥∥∥ ≤ `κ`−1√
m

n∑
i

|ui(t)− yi| ≤
`κ`−1

√
n√

m
‖u(t)− y‖2 ,

we can have furthermore the bound of Ii2 as follows,

∣∣Ii2∣∣ ≤ `2κ2`−2η
∣∣S⊥i ∣∣√n
m

‖u(t)− y‖2 .

To finish the proof of the theorem, we combine the bounds all together,

‖u(t+ 1)− y‖22 = ‖y − u(t)‖22 − 2η(y − u(t))>H(t)(y − u(t)) (211)

+ 2η(y − u(t))>H(t)⊥(y − u(t)) (212)

− 2(y − u(t))>I2 + ‖u(t+ 1)− u(t)‖22 . (213)

Note that

(y − u(t))>I2 ≤ ‖y − u(t)‖2 ‖I2‖2 ≤ ‖y − u(t)‖2 ‖I2‖1 = ‖y − u(t)‖2
n∑
i=1

∣∣Ii2∣∣
and

n∑
i=1

∣∣Ii2∣∣ ≤ `2κ2`−2η√n ‖y − u(t)‖2

∑n
i=1

∣∣S⊥i ∣∣
m

where
n∑
i=1

∣∣S⊥i ∣∣ ≤ mnR

δ

Embedding Surfaces by Optimizing Neural Networks with Prescribed Riemannian Metric and Beyond

with probability at least 1− δ. Therefore, it holds that (with probability 1− δ)

(y − u(t))>I2 ≤
`2κ2`−2ηn

3
2R

δ
‖y − u(t)‖22 .

Thus we have

‖u(t+ 1)− y‖22 ≤
(

1− ηλ0 +
2`2κ2`−2ηn2R

δ
+

2`2κ2`−2ηn3/2R

δ
+ `4κ4`−4η2n2

)
‖y − u(t)‖22 (214)

≤
(

1− ηλ0
2

)
‖y − u(t)‖22 (215)

for properly chosen R and η.

Having proven that gradient descent provably optimizes over-parametrized neural networks with RePU activation functions,
the optimization theory for higher order linear PDE follows almost immediately. We complete the proof of Theorem 3.1 as
follows.

Proof. The proof is almost immediate. For a specific partition α, direct calculation on the partial derivative ∂|α|f

∂x
α1
1 ∂x

α2
2 ...∂x

αd
d

gives following

Dαf =
1√
m

m∑
k=1

akw
α1

k1w
α2

k2 ...w
αd
kdσ

(|α|)(wkx)

where σ(|α|) denotes the derivative of activation function till the order of |α|. In the following context, we use notation

Wkα := wα1

k1w
α2

k2 ...w
αd
kd

Therefore, summing over all α with |α| = r, we have that

∑
|α|=r

Dαf =
∑
|α|=r

1√
m

m∑
k=1

akWkασ
(|α|)(wkx)

=
1√
m

m∑
k=1

∑
|α|=r

akWkασ
(|α|)(wkx)

=
1√
m

m∑
k=1

ak

∑
|α|=r

Wkα

σ(|α|)(wkx).

(216)

Considering bk := ak
∑
|α|=rWkα as a whole parameter, we can obtain the convergence result from Theorem B.1.

