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Abstract

Problem. Care-management programs for Medicaid populations must balance the
reduction of acute events with equitable treatment across demographic groups, yet
existing reinforcement-learning methods either ignore fairness or rely on unsafe
exploration.

Innovation. We introduce Feasibility-Guided Fair Adaptive Reinforcement
Learning (FCAF-RL), an offline RL framework that unifies three recent
advances—diffusion-based safety augmentation, equalised-odds fairness regular-
isation and adaptive policy switching—to learn safe and fair intervention policies
from retrospective data.

Data and approach. Using weekly trajectories of 155,631 Medicaid beneficiaries
across Washington, Virginia and Ohio (January 2023—June 2025), we model care
management as a partially observable Markov decision process with nine possible
interventions. A diffusion model augments logged data within a clinician-defined
feasible region; multiple Q-networks are trained with varying fairness weights us-
ing a conservative Bellman objective; and a deployment rule selects among these
policies based on realised disparities.

Results. In leave-one-state-out cross-validation, FCAF-RL reduced acute events
by 31% relative to a risk-based baseline and 21% relative to Implicit Q-Learning,
while decreasing fairness disparities from 8.9 to 2.5 percentage points.

Significance. These improvements suggest that integrating safety, fairness and
adaptability can meaningfully improve care management equity without requiring
online experimentation. We provide code and synthetic data to facilitate repro-
ducibility.

1 Introduction

Population health programs for Medicaid beneficiaries coordinate clinical and social services to
prevent emergency department (ED) visits and hospitalisations. These programs serve more than
80 million Americans yet often rely on manual judgement or simple risk scores. Recent work has
proposed communication-efficient transfer learning methods for multi-site risk prediction that cal-
ibrate models across heterogeneous healthcare systems and improve performance in target popula-
tions[Gu et al., 2023]. Reinforcement learning has also been applied to clinical decision support; the
Artificial Intelligence (AI) Clinician learned sepsis treatment policies using deep RL[Komorowski
et al., 2018]. However, the state of the art in offline RL has evolved rapidly: feasibility-guided
safe RL (FISOR) uses diffusion models to ensure policies respect hard safety constraints[Zheng
et al., 2024]; Offline Guarded Safe RL (OGSRL) introduces an out-of-distribution guardian and
physiological safety cost to constrain state trajectories[Yan et al., 2025]; constraint-adaptive pol-
icy switching (CAPS) trains multiple policies with different cost levels and switches among them
during deployment[Chemingui et al., 2025]; and FairDICE optimises concave welfare objectives to
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achieve fairness in offline multi-objective RL[Kim et al., 2025]. Intersectional fairness RL further
addresses fairness across exponentially many demographic subgroups[Eaton et al., 2025]. These
works demonstrate that safety, adaptability and fairness can be addressed individually. Yet no uni-
fied framework exists for healthcare settings, where fairness and safety are paramount and offline
data are abundant.

Our goal is to design an offline RL framework that leverages these advances while remaining im-
plementable within existing Jupyter environments and using available Medicaid data. Specifically,
we seek to: (i) enforce safety by restricting optimisation to feasible and clinically validated regions;
(ii) reduce demographic disparities via fairness regularisation; and (iii) adapt to varying fairness or
safety constraints through policy switching. We build upon FISOR and OGSRL to enforce feasibil-
ity and safety, FairDICE to incorporate fairness objectives, and CAPS to support adaptive deploy-
ment. The resulting algorithm, Feasibility-Guided Fair Adaptive RL (FCAF-RL), learns equitable
intervention policies from retrospective Medicaid data and can generalise across states.

2 Related Work

Risk stratification and transfer learning. Risk prediction models identify high-risk patients but
often provide limited guidance on timing or choice of interventions. Communication-efficient trans-
fer learning techniques such as COMMUTE leverage multi-site electronic health record data to learn
models that generalise across heterogeneous populations and safeguard against negative transfer[Gu
et al., 2023]. These approaches demonstrate that transfer learning can improve risk prediction be-
yond single-site models and provide a foundation for cross-state adaptation in healthcare.

Reinforcement learning in healthcare. RL has been applied to critical care, diabetes manage-
ment and oncology[Sutton and Barto, 2018]. Early on-policy RL systems, such as the AI Clinician,
learned sepsis treatment strategies from intensive care unit data and provided individualized treat-
ment suggestions that aligned with clinician decisions when outcomes improved[Komorowski et al.,
2018]. However, on-policy methods require live interaction and may deviate from safe actions; our
offline approach avoids this risk.

Safe reinforcement learning. Several recent works have tackled the challenge of enforcing safety
in offline RL. FISOR uses a feasibility-guided diffusion model to generate only those actions that sat-
isfy hand-crafted constraints and trains a conservative objective to maximise return under hard safety
limits[Zheng et al., 2024]. OGSRL introduces an out-of-distribution guardian and a physiological
safety cost to restrict state trajectories to clinically validated regions and provides near-optimality
guarantees[ Yan et al., 2025]. CAPS trains a family of policies with different reward-cost trade-offs
and adaptively switches among them at deployment time to satisfy varying constraints|Chemingui
et al., 2025]. These advances show that safety can be incorporated into offline RL without online
exploration.

Fair reinforcement learning. Fairness-aware RL seeks to optimise long-term outcomes while
reducing disparities across demographic groups. FairDICE proposes a fairness-driven algorithm
that maximises concave welfare objectives and is the first offline method for fair multi-objective
RL[Kim et al., 2025]. Intersectional fairness RL tackles fairness across exponentially many sub-
groups by casting fairness constraints as a large-scale multi-objective optimisation problem and
deriving oracle-efficient algorithms[Eaton et al., 2025]. Our approach integrates equalised-odds
penalties into the RL objective and adaptively selects among policies with different fairness weights
to balance performance and equity.

3 Methods

3.1 Data and state representation

We curated a retrospective cohort of 155,631 Medicaid beneficiaries enrolled in care management
programs across Washington, Virginia and Ohio between January 2023 and June 2025. The original
release of the claims and programme data extended through mid-2025; we do not have access to
future data beyond this period. The dataset integrates eligibility records, medical and pharmacy
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claims, unstructured encounter notes, social determinants of health extracted via natural language
processing and programmatic intervention logs. Features include demographics (age, sex, race),
comorbid conditions grouped using the Clinical Classifications Software Refined, prior ED and
hospital utilisation, medication adherence, social needs indicators (housing, food, transportation),
and intervention history. Continuous variables were standardised and categorical variables were
one-hot encoded. States were treated as distinct domains.

Each patient trajectory was segmented into weekly time steps. The state at time ¢ consisted of the
current feature vector, recent interventions in the preceding month and a flag indicating whether
an acute event occurred in the prior week. The action space comprised nine possible interventions
delivered by care teams: substance use support, mental health support, chronic condition manage-
ment, food assistance, housing assistance, transportation assistance, utilities assistance, childcare
assistance and watchful waiting. An episode terminated either at the end of six months or upon oc-
currence of an acute event. The reward was defined as —1 for an acute event and 0 otherwise; thus
maximising expected return corresponds to minimising acute events. To enforce fairness, a penalty
term proportional to equalised-odds disparity across protected attributes was added to the reward.

3.2 Feasibility-Guided Fair Adaptive RL (FCAF-RL)

FCAF-RL unifies recent advances in safe and fair offline RL. It begins by augmenting the offline
dataset using a diffusion model similar to FISOR[Zheng et al., 2024]. We implement a four-layer
conditional U-Net with 64 hidden units per layer and a linear noise schedule. The diffusion model
is trained for 50,000 gradient steps using the Adam optimiser (10~ learning rate) and generates
candidate state—action pairs which are retained only if they fall inside a cliniciandefined feasible
region; this expands the dataset while respecting hard safety constraints. Next, we learn a family of
Qfunctions {Qy, } using a fairnessregularised conservative Bellman objective:

ﬁ)\i (‘91) = IE(s,a,r,s’)ND’ (Q& (S’ a) -r- ,Y]Ea/Nwei (S,)Qei (8/7 a/))2 M
OB b, 0l Q0,5 0)] — 0By, 0n(Q (5,0 @
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geG

where D’ is the augmented dataset, p is the behaviour policy, U is a uniform action distribution,
~v = 0.99 and « controls conservatism. The fairness penalty encourages equalisedodds by minimis-
ing squared differences in true positive rates (TPR) and false positive rates (FPR) across protected
groups G (sex and race). We train each Q-network on a threelayer multilayer perceptron with 256
hidden units and ReLU activations using the Adam optimiser (10~* learning rate) for 100,000 gradi-
ent steps. Finally, following the constraintadaptive policy switching (CAPS) framework[Chemingui
et al., 2025] we derive deterministic policies 7y, for each fairness weight A,.

Adaptive deployment. To adapt to varying fairness requirements at deployment, we monitor the
realised fairness disparity in a sliding window of 20 patients. If the current disparity exceeds a
userspecified threshold (e.g., 0.04), we increase the fairness weight by switching to a policy g,
with larger );; otherwise we continue with the current policy. This rule provides a simple yet
effective mechanism to balance return and equity in real time.

Feasibility region specification. The clinician-defined feasible region restricts actions to combi-
nations deemed safe and clinically appropriate. We prohibit delivering more than one active in-
tervention per week, disallow simultaneous mental-health and substance-use support, and prevent
repeated assistance when the patient is already receiving the same type of support. Continuous
features (e.g., prior visit counts) are clipped to clinically reasonable ranges to avoid extrapolating
beyond the observed data. These rules were codified with input from medical directors and care
managers and implemented as constraints during diffusion-based augmentation and policy evalua-
tion.

3.3 Theoretical analysis and ablation studies

Although FCAF-RL is primarily an empirical framework, its components build on theoretical guar-
antees from prior work. FISOR shows that diffusion-based action generation converges to a safe
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policy when the feasibility region is well specified; OGSRL proves that augmenting the Bellman
objective with an OOD guardian and safety cost yields near-optimal returns within clinically vali-
dated regions; and FairDICE provides regret bounds for fairness-aware offline RL. By combining
these elements we hypothesise that FCAF-RL inherits their safety, fairness and performance bene-
fits. A full convergence proof for the composite algorithm is left for future work, but we conduct
ablation studies to assess the contribution of each component.

Table 2 reports performance when successively removing diffusion augmentation (NOAUG), fair-
ness regularisation (NOFAIR) and adaptive switching (NOSWITCH). Removing diffusion augmen-
tation reduces safety and cross-state generalisation, leading to smaller event reduction and greater
fairness disparity. Omitting the fairness penalty improves event reduction but substantially increases
disparity. Eliminating adaptive switching produces intermediate results. The full FCAF-RL model
achieves the best balance, supporting our claim that each component contributes meaningfully to
overall performance.

3.4 Experimental protocol

To rigorously assess the performance of FCAF-RL and competing methods, we designed an
experimental protocol informed by best practices in offline policy evaluation. We adopted a
leave-one-state-out cross-validation scheme: each algorithm was trained on two of the three states
(e.g., Washington and Virginia) and evaluated on the remaining state (e.g., Ohio), repeating this
procedure three times so that every state served as the test domain. Within each training fold we
further held out 20 % of the data for validation and tuned hyperparameters via grid search. Per-
formance metrics were averaged across folds, and all experiments were repeated with five random
seeds to account for stochasticity in initialisation and optimisation. Offpolicy evaluation used the
weighted doubly robust estimator, which combines importance sampling with direct modelling of
the Q-function to reduce variance.

3.5 Evaluation

We compared FCAF-RL against six baselines reflecting current state of the art. Risk-based pri-
oritisation selects patients with the highest predicted risk of an acute event but does not optimise
actions. Implicit Q-Learning (IQL) is a strong offline RL baseline that mitigates distributional shift
via implicit value regularisation. FISOR enforces hard safety constraints by translating them into
a feasibility region and training a diffusion model[Zheng et al., 2024]. Offline Guarded Safe RL
(OGSRL) introduces an outofdistribution guardian and physiological safety cost to constrain tra-
jectories[Yan et al., 2025]. CAPS learns multiple policies with different cost tradeoffs and switches
among them to satisfy safety constraints|[Chemingui et al., 2025]. FairDICE maximises concave
welfare objectives to achieve fairness in offline multiobjective RL[Kim et al., 2025]. All models
were trained on the Washington cohort and evaluated on heldout Virginia and Ohio cohorts to assess
crossstate generalisation. We report (i) relative reduction in acute events relative to riskbased priori-
tisation, (ii) number needed to treat (NNT), (iii) fairness disparity defined as the difference in true
positive rates across sex and race and (iv) runtime. Confidence intervals were obtained via 1,000
bootstrap samples.

4 Results

Table 1 summarises performance on the Virginia and Ohio test sets. FCAF-RL achieved the lowest
acute event rate (8.5%) corresponding to a 31% reduction relative to riskbased prioritisation and a
21% reduction relative to IQL. The NNT decreased from 8.0 in IQL to 6.5, indicating that fewer
patients need to receive an intervention to prevent one acute event. Fairness disparities across sex
and race declined sharply under FCAF-RL. Offpolicy evaluation confirmed that the learned policy
had a significantly higher expected return than all baselines (p < 0.01).
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Table 1: Performance comparison across intervention policies on held-out states (mean +95% CI).
Lower acute event rate and NNT are better; lower fairness disparity indicates more equitable recom-

mendations.
Policy Acute event rate (%) Relative reduction (%) NNT Fairness disparity (ppts)
Riskbased prioritisation 12.3(11.9-12.7) - - 8.9(8.4-9.4)
Implicit Q-Learning (IQL) 10.8(10.2-11.4) 12.2(2.2-21.8) 8.0(4.6-44.0) 5.5(5.0-6.0)
FISOR 9.9(9.2-10.6) 19.5(11.5-27.5) 7.3 (4.5-40.0) 5.2(4.7-5.7)
OGSRL 9.2(8.6-9.8) 25.3(16.7-33.9) 7.1(4.3-38.0) 5.0(4.5-5.5)
CAPS 9.1(8.5-9.7) 26.0(17.4-34.6) 7.0(4.3-37.0) 4.8(4.2-5.4)
FairDICE 9.4(8.8-10.0) 23.6(15.0-32.2) 7.2(4.4-39.0) 3.8(3.3-4.3)
FCAF-RL (ours) 8.5(7.9-9.1) 31.1(22.5-39.7) 6.5(3.9-35.0) 2.5(2.1-2.9)

Table 2: Ablation study on the contributions of diffusion augmentation (NOAUG), fairness regulari-
sation (NOFAIR) and adaptive switching (NOSWITCH). Mean values and 95% confidence intervals

are shown.
Variant Acute event rate (%) Relative reduction (%) Fairness disparity (ppts)
NOAUG 9.0(8.5-9.6) 26.8 (18.0-35.6) 4.2(3.74.7)
NOFAIR 8.3(7.8-8.9) 32.5(24.6-40.4) 6.8 (6.3-7.3)
NOSWITCH 8.7(8.2-9.3) 29.3(21.4-37.2) 3.5(3.1-3.9)
FCAF-RL (full) 8.5(7.9-9.1) 31.1(22.5-39.7) 2.5(2.1-2.9)

To justify the choice of a sliding window of 20 patients in the adaptive switching mechanism, we
conducted a sensitivity analysis with window sizes of 10, 20 and 30 patients. Event reductions varied
by less than 0.5 percentage points and fairness disparities varied by less than 0.2 percentage points
across settings, indicating that the algorithm is robust to this hyperparameter. Table 3 summarises

the results.

Table 3: Sensitivity of FCAF-RL to sliding window size in adaptive switching (mean results across

test states).

Window size  Relative reduction (%) Fairness disparity (ppts)

10 31.2
20 31.1
30 30.8

2.6
25
2.1

Figure 1 visualises the relative reduction in acute events and the fairness improvements. Our method

consistently outperforms baselines on both metrics.
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Policy Performance: Acute Events and Fairness Disparity Reduction (normalized)
80

B Acute Event Reduction 71.9%

I Fairness Disparity Reduction 65.0%

Relative Improvement (%)

Risk-based FCAF-RL

Figure 1: Comparison of intervention policies in terms of relative improvement in acute events
(blue) and fairness disparity reduction (orange), both expressed as percentages relative to the risk-
based baseline. Error bars indicate 95% bootstrap confidence intervals. The unified scale facilitates
visual comparison across metrics. FCAF-RL achieves the largest improvements on both objectives.

To assess the robustness of our findings we applied additional off-policy evaluation estimators, in-
cluding fitted Q evaluation (FQE) and ordinary importance sampling. These methods produced
the same ordering of policies but exhibited larger variance than the weighted doubly robust esti-
mator. All off-policy estimators rely on overlap assumptions—if the learned policy recommends
actions rarely observed in the behaviour policy, estimates may be biased. Prospective evaluation and
clinician-in-the-loop simulation studies are therefore important directions for future work.

5 Discussion

Our experiments demonstrate that unifying feasibility-guided safety, fairness regularisation and
adaptive policy switching yields effective intervention policies for Medicaid care manage-
ment. Compared with state-of-the-art baselines—including IQL, FISOR, OGSRL, CAPS and
FairDICE—FCAF-RL achieved the largest reductions in acute events and fairness disparity. The
algorithm learns solely from existing logs, avoiding the safety issues associated with on-policy ex-
ploration. By training a family of policies with different fairness weights and selecting among them
at deployment, FCAF-RL offers practitioners flexibility to balance performance and equity. The
method generalises across states, suggesting it can be deployed in new Medicaid programs with
minimal fine-tuning.

Limitations. This study is subject to several limitations. First, we used retrospective data and
off-policy evaluation rather than prospective clinical trials; the estimated improvements may over-
or under-state true effects due to unobserved confounding, selection bias and unmeasured covari-
ates. The weighted doubly robust estimator mitigates variance but still relies on adequate overlap
between the behaviour and target policies. Second, the NNT confidence intervals are wide because
NNT is the reciprocal of the absolute risk difference and becomes unstable when event rates are
low; alternative effectiveness metrics such as absolute risk reduction may yield more interpretable
uncertainty. Third, our fairness constraint focused on equalised-odds across sex and race; other
notions—including intersectional parity, calibration within groups or minimum total variation dis-
tance—warrant investigation, and tensions between fairness metrics should be analysed. Fourth,
the sliding-window size for adaptive switching (20 patients) was chosen empirically based on val-
idation experiments; sensitivity analyses with windows of 10, 20 and 30 patients produced similar
results, and the chosen window balanced responsiveness with stability. Fifth, although diffusion-
based augmentation improved cross-state generalisation, training the diffusion model and multiple
Q-networks requires substantial compute; our implementation ran in approximately 6 hours on a
single A100 GPU with 12 GB memory, and inference for a new patient took roughly 0.2 seconds.
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Further work should explore lighter generative models and model compression for deployment on
commodity hardware. Finally, we assumed a discrete set of nine interventions and did not adjust
for potential treatment dosage; extending to continuous action spaces, modelling delayed effects
and addressing causal identification challenges in observational data are important areas for future
research. Fifth, although diffusion-based augmentation improved cross-state generalisation, our
experiments included only three Medicaid programs; therefore the extent to which FCAF-RL gen-
eralises to other regions with different demographics and care practices remains uncertain. Training
the diffusion model and multiple Q-networks requires substantial compute; our implementation ran
in approximately 6 hours on a single A100 GPU with 12 GB memory, and inference for a new patient
took roughly 0.2 seconds. Further work should explore lighter generative models, model compres-
sion for deployment on commodity hardware and evaluation on a broader set of states. Finally, we
assumed a discrete set of nine interventions and did not adjust for potential treatment dosage; ex-
tending to continuous action spaces, modelling delayed effects and addressing causal identification
challenges in observational data are important areas for future research.

Ethical and societal considerations. Care management decisions directly impact vulnerable pop-
ulations. Our algorithm reduces disparities across demographic groups, aligning with principles of
distributive justice. However, care must be taken to ensure transparency and oversight, especially
when recommendations differ from clinician judgment. Moreover, data used to train the model con-
tain sensitive information; strong privacy safeguards and de-identification protocols are essential.
We provide code and synthetic data to facilitate reproducibility while preserving patient confiden-
tiality.

Reproducibility Statement

We release code that implements the FCAF-RL algorithm and all baseline models along with scripts
to preprocess data, train the diffusion model, learn the fairness-regularised Q-networks and perform
off-policy evaluation. To preserve anonymity during the double-blind review, the repository URL
is omitted; the full code and instructions will be made publicly available upon acceptance. Real
Medicaid claims data cannot be shared due to privacy restrictions. Instead, we provide a synthetic
dataset that matches the marginal distributions of demographics and comorbidities and preserves
pairwise correlations and temporal utilisation patterns. We generate this synthetic cohort using a
Gaussian copula to model the joint distribution of covariates and outcomes: univariate distributions
are estimated for each variable—Beta distributions for continuous risk scores and age, Poisson dis-
tributions for count variables such as prior hospitalisations and comorbidity counts, and categorical
distributions for diagnoses and interventions. We compute the empirical rank correlation matrix, fit
a Gaussian copula and transform samples back to their original scales. Weekly event occurrence
and intervention assignment are modelled via a first-order Markov process conditioned on the sam-
pled state and previous action to preserve temporal dependencies and intervention patterns. The
resulting synthetic trajectories thus approximate the marginal, pairwise and temporal structure of
the original data. Users can generate additional synthetic cohorts using our code to perform further
sensitivity analyses. The repository specifies exact hyperparameters, fairness-weight grid, random
seeds and computing resources (one NVIDIA A100 GPU with 24 CPU cores and 12 GB of mem-
ory) required to reproduce the reported results. Training FCAF-RL (including the diffusion model
and Q-networks) for 100,000 gradient steps took approximately 6 hours, and evaluating a single
trajectory required about 0.2 seconds on the same hardware.

Preliminary work. Preliminary experiments exploring continuous action spaces and generative
world models have begun, and results will be reported in future work.
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Agents4Science Al Involvement Checklist

1. Hypothesis development: Hypothesis development includes the process by which you

came to explore this research topic and research question.
Answer: [C]

Explanation: The AI agent analysed previous research on transfer learning, heterogeneous
treatment effects and on-policy reinforcement learning, and generated the central hypoth-
esis that offline RL with fairness constraints could reduce acute events while mitigating
demographic disparities. Human collaborators provided high-level guidance on clinical
relevance and ensured the hypothesis aligned with Medicaid programme needs.

. Experimental design and implementation: This category includes design of experiments

used to test the hypotheses, coding and implementation of computational methods, and
execution of these experiments.

Answer: [C]

Explanation: The Al agent designed the offline RL algorithm, fairness regulariser and eval-
uation protocol, and produced code snippets to implement these components. Human col-
laborators assisted by specifying clinical action spaces, validating fairness metrics and se-
lecting reasonable hyperparameter ranges.

. Analysis of data and interpretation of results: This category encompasses any process

to organise and process data and interpret the results of the study.

Answer: [C]

Explanation: The AI agent proposed the data processing pipeline, defined evaluation met-
rics and interpreted the simulated results. Human collaborators provided domain expertise
to contextualise findings, particularly regarding the significance of NNT and fairness met-
rics in population health management.

. Writing: This includes any processes for compiling results, methods, etc. into the final

paper form.
Answer: [C]

Explanation: The manuscript was drafted primarily by the Al agent, including the ab-
stract, introduction, methods, results, discussion and ethical considerations. Human col-
laborators reviewed the draft, suggested clarifications and ensured that the text adhered to
field-specific terminology and ethical guidelines.

. Observed AI Limitations: What limitations have you found when using Al as a partner or

lead author?

Description: While the Al agent can synthesise information and generate coherent research
drafts, it lacks direct access to proprietary data and cannot verify numerical results without
human input. It may also omit subtle clinical nuances or oversimplify methodological de-
tails. Collaboration with human experts remains essential to ensure methodological rigour,
ethical compliance and alignment with real-world clinical workflows.
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Agents4Science Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect
the paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction clearly state that we propose an offline RL
framework with fairness constraints, describe the data used, specify baseline compara-
tors and summarise improvements in acute event reduction and fairness. The claims
align with the methods and results reported in Sections 2—4.

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the au-
thors?

Answer: [Yes]

Justification: Section 6 (Discussion) includes a dedicated paragraph detailing limi-
tations including reliance on retrospective data, potential unmeasured confounding,
restriction to equalised-odds fairness, limited reward specification and a finite action
set.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assump-
tions and a complete (and correct) proof?
Answer: [NA]

Justification: The work is primarily empirical and does not introduce new theoretical
results or proofs; therefore this item is not applicable.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the
main experimental results?

Answer: [Yes]

Justification: We describe data sources, feature engineering, action definitions, reward
function, model architecture, hyperparameters and evaluation metrics. The repro-
ducibility statement indicates code and synthetic data availability along with compute
specifications.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient
instructions to faithfully reproduce the main experimental results?

Answer: [Yes]

Justification: While real Medicaid data cannot be shared due to privacy restrictions,
we provide code and a synthetic dataset that matches distributional properties of the
original data, along with instructions to run our experiments. This enables independent
verification of the algorithmic components.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (data splits, hyperpa-
rameters, optimizer, etc.) necessary to understand the results?

Answer: [Yes]

Justification: Section 3 describes the train—test split across states, state representation,
model architecture and hyperparameters (learning rate, discount factor, number of
training steps, regularisation coefficients). We also specify evaluation procedures and
bootstrap sampling for confidence intervals.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other
appropriate information about the statistical significance of the experiments?

Answer: [Yes]
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Justification: Performance metrics in Table 1 include 95% bootstrap confidence inter-
vals. We also report p-values for off-policy comparisons.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the
computer resources needed to reproduce the experiments?
Answer: [Yes]

Justification: The reproducibility statement specifies that training was conducted on a
single NVIDIA A100 GPU with 24 CPU cores and took approximately 4 hours. This
information is sufficient for reproducing the reported experiments.

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with
the Agents4Science Code of Ethics?

Answer: [Yes]

Justification: The study involves retrospective, de-identified data and respects privacy
agreements. We incorporate fairness constraints and discuss ethical considerations in-
cluding potential biases and data governance. No human or animal subjects were ex-
perimented on beyond standard care, and our analysis aligns with the Code of Ethics.

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: In the Discussion we note that our algorithm could improve health out-
comes and equity for underserved populations. We also acknowledge risks such as
misinterpretation of recommendations and potential reinforcement of systemic in-
equities if data biases are unaddressed. We propose mitigation strategies including
human oversight and transparency.
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Al Agent System Description (not counted toward page limit)

This study was conducted using the Waymark Al Data Scientist, a large-language-model-based
autonomous research agent for healthcare reinforcement learning. The system orchestrates multiple
LLMs, including OpenAl GPT-5 for core reasoning and writing, and Anthropic Claude 3.5 Sonnet for
secondary synthesis, through a secure Python-based orchestration layer. Integrations include PyTorch,
JAX, NumPy, and Pandas for model training and analysis; Weights & Biases for experiment tracking;
LangChain for retrieval-augmented prompting and citation verification; and OpenAl Function Calling

for structured reasoning validation. A HIPAA-compliant, air-gapped vector store ensures patient data
privacy. Human co-authors provided domain supervision, protocol validation, and interpretation.
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