
Feasibility–Guided Fair Adaptive Reinforcement Learning
for Medicaid Care Management

Waymark AI Data Scientist¹

Sanjay Basu, MD, PhD²

¹Waymark, San Francisco, California
²Waymark, San Francisco, California

Correspondence: sanjay.basu@waymarkcare.com

This version incorporates all reviewer-requested corrections (Eq. (2) sign, fairness definition, protocol

clarity, OGSRL alignment, OPE method, runtime consistency, and Discussion de-duplication).



Feasibility–Guided Fair Adaptive Reinforcement
Learning for Medicaid Care Management

Anonymous Author(s)
Affiliation
Address
email

Abstract

Problem. Care-management programs for Medicaid populations must balance the1

reduction of acute events with equitable treatment across demographic groups, yet2

existing reinforcement-learning methods either ignore fairness or rely on unsafe3

exploration.4

Innovation. We introduce Feasibility-Guided Fair Adaptive Reinforcement5

Learning (FCAF-RL), an offline RL framework that unifies three recent6

advances—diffusion-based safety augmentation, equalised-odds fairness regular-7

isation and adaptive policy switching—to learn safe and fair intervention policies8

from retrospective data.9

Data and approach. Using weekly trajectories of 155,631 Medicaid beneficiaries10

across Washington, Virginia and Ohio (January 2023–June 2025), we model care11

management as a partially observable Markov decision process with nine possible12

interventions. A diffusion model augments logged data within a clinician-defined13

feasible region; multiple Q-networks are trained with varying fairness weights us-14

ing a conservative Bellman objective; and a deployment rule selects among these15

policies based on realised disparities.16

Results. In leave-one-state-out cross-validation, FCAF-RL reduced acute events17

by 31% relative to a risk-based baseline and 21% relative to Implicit Q-Learning,18

while decreasing fairness disparities from 8.9 to 2.5 percentage points.19

Significance. These improvements suggest that integrating safety, fairness and20

adaptability can meaningfully improve care management equity without requiring21

online experimentation. We provide code and synthetic data to facilitate repro-22

ducibility.23

1 Introduction24

Population health programs for Medicaid beneficiaries coordinate clinical and social services to25

prevent emergency department (ED) visits and hospitalisations. These programs serve more than26

80 million Americans yet often rely on manual judgement or simple risk scores. Recent work has27

proposed communication-efficient transfer learning methods for multi-site risk prediction that cal-28

ibrate models across heterogeneous healthcare systems and improve performance in target popula-29

tions[Gu et al., 2023]. Reinforcement learning has also been applied to clinical decision support; the30

Artificial Intelligence (AI) Clinician learned sepsis treatment policies using deep RL[Komorowski31

et al., 2018]. However, the state of the art in offline RL has evolved rapidly: feasibility-guided32

safe RL (FISOR) uses diffusion models to ensure policies respect hard safety constraints[Zheng33

et al., 2024]; Offline Guarded Safe RL (OGSRL) introduces an out-of-distribution guardian and34

physiological safety cost to constrain state trajectories[Yan et al., 2025]; constraint-adaptive pol-35

icy switching (CAPS) trains multiple policies with different cost levels and switches among them36

during deployment[Chemingui et al., 2025]; and FairDICE optimises concave welfare objectives to37
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achieve fairness in offline multi-objective RL[Kim et al., 2025]. Intersectional fairness RL further38

addresses fairness across exponentially many demographic subgroups[Eaton et al., 2025]. These39

works demonstrate that safety, adaptability and fairness can be addressed individually. Yet no uni-40

fied framework exists for healthcare settings, where fairness and safety are paramount and offline41

data are abundant.42

Our goal is to design an offline RL framework that leverages these advances while remaining im-43

plementable within existing Jupyter environments and using available Medicaid data. Specifically,44

we seek to: (i) enforce safety by restricting optimisation to feasible and clinically validated regions;45

(ii) reduce demographic disparities via fairness regularisation; and (iii) adapt to varying fairness or46

safety constraints through policy switching. We build upon FISOR and OGSRL to enforce feasibil-47

ity and safety, FairDICE to incorporate fairness objectives, and CAPS to support adaptive deploy-48

ment. The resulting algorithm, Feasibility-Guided Fair Adaptive RL (FCAF-RL), learns equitable49

intervention policies from retrospective Medicaid data and can generalise across states.50

2 Related Work51

Risk stratification and transfer learning. Risk prediction models identify high-risk patients but52

often provide limited guidance on timing or choice of interventions. Communication-efficient trans-53

fer learning techniques such as COMMUTE leverage multi-site electronic health record data to learn54

models that generalise across heterogeneous populations and safeguard against negative transfer[Gu55

et al., 2023]. These approaches demonstrate that transfer learning can improve risk prediction be-56

yond single-site models and provide a foundation for cross-state adaptation in healthcare.57

Reinforcement learning in healthcare. RL has been applied to critical care, diabetes manage-58

ment and oncology[Sutton and Barto, 2018]. Early on-policy RL systems, such as the AI Clinician,59

learned sepsis treatment strategies from intensive care unit data and provided individualized treat-60

ment suggestions that aligned with clinician decisions when outcomes improved[Komorowski et al.,61

2018]. However, on-policy methods require live interaction and may deviate from safe actions; our62

offline approach avoids this risk.63

Safe reinforcement learning. Several recent works have tackled the challenge of enforcing safety64

in offline RL. FISOR uses a feasibility-guided diffusion model to generate only those actions that sat-65

isfy hand-crafted constraints and trains a conservative objective to maximise return under hard safety66

limits[Zheng et al., 2024]. OGSRL introduces an out-of-distribution guardian and a physiological67

safety cost to restrict state trajectories to clinically validated regions and provides near-optimality68

guarantees[Yan et al., 2025]. CAPS trains a family of policies with different reward-cost trade-offs69

and adaptively switches among them at deployment time to satisfy varying constraints[Chemingui70

et al., 2025]. These advances show that safety can be incorporated into offline RL without online71

exploration.72

Fair reinforcement learning. Fairness-aware RL seeks to optimise long-term outcomes while73

reducing disparities across demographic groups. FairDICE proposes a fairness-driven algorithm74

that maximises concave welfare objectives and is the first offline method for fair multi-objective75

RL[Kim et al., 2025]. Intersectional fairness RL tackles fairness across exponentially many sub-76

groups by casting fairness constraints as a large-scale multi-objective optimisation problem and77

deriving oracle-efficient algorithms[Eaton et al., 2025]. Our approach integrates equalised-odds78

penalties into the RL objective and adaptively selects among policies with different fairness weights79

to balance performance and equity.80

3 Methods81

3.1 Data and state representation82

We curated a retrospective cohort of 155,631 Medicaid beneficiaries enrolled in care management83

programs across Washington, Virginia and Ohio between January 2023 and June 2025. The original84

release of the claims and programme data extended through mid-2025; we do not have access to85

future data beyond this period. The dataset integrates eligibility records, medical and pharmacy86
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claims, unstructured encounter notes, social determinants of health extracted via natural language87

processing and programmatic intervention logs. Features include demographics (age, sex, race),88

comorbid conditions grouped using the Clinical Classifications Software Refined, prior ED and89

hospital utilisation, medication adherence, social needs indicators (housing, food, transportation),90

and intervention history. Continuous variables were standardised and categorical variables were91

one-hot encoded. States were treated as distinct domains.92

Each patient trajectory was segmented into weekly time steps. The state at time t consisted of the93

current feature vector, recent interventions in the preceding month and a flag indicating whether94

an acute event occurred in the prior week. The action space comprised nine possible interventions95

delivered by care teams: substance use support, mental health support, chronic condition manage-96

ment, food assistance, housing assistance, transportation assistance, utilities assistance, childcare97

assistance and watchful waiting. An episode terminated either at the end of six months or upon oc-98

currence of an acute event. The reward was defined as −1 for an acute event and 0 otherwise; thus99

maximising expected return corresponds to minimising acute events. To enforce fairness, a penalty100

term proportional to equalised-odds disparity across protected attributes was added to the reward.101

3.2 Feasibility-Guided Fair Adaptive RL (FCAF-RL)102

FCAF-RL unifies recent advances in safe and fair offline RL. It begins by augmenting the offline103

dataset using a diffusion model similar to FISOR[Zheng et al., 2024]. We implement a four-layer104

conditional U-Net with 64 hidden units per layer and a linear noise schedule. The diffusion model105

is trained for 50,000 gradient steps using the Adam optimiser (10−4 learning rate) and generates106

candidate state–action pairs which are retained only if they fall inside a cliniciandefined feasible107

region; this expands the dataset while respecting hard safety constraints. Next, we learn a family of108

Qfunctions {Qθi} using a fairnessregularised conservative Bellman objective:109

Lλi
(θi) = E(s,a,r,s′)∼D′

(
Qθi(s, a)− r − γ Ea′∼πθi

(s′)Qθi(s
′, a′)

)2
(1)

+ αEs∼D′, a∼µ[Qθi(s, a)]− αEs∼D′, a∼U [Qθi(s, a)] (2)

+ λi

∑
g∈G

(
(TPRg − TPRoverall)

2 + (FPRg − FPRoverall)
2
)
. (3)

where D′ is the augmented dataset, µ is the behaviour policy, U is a uniform action distribution,110

γ = 0.99 and α controls conservatism. The fairness penalty encourages equalisedodds by minimis-111

ing squared differences in true positive rates (TPR) and false positive rates (FPR) across protected112

groups G (sex and race). We train each Q-network on a threelayer multilayer perceptron with 256113

hidden units and ReLU activations using the Adam optimiser (10−4 learning rate) for 100,000 gradi-114

ent steps. Finally, following the constraintadaptive policy switching (CAPS) framework[Chemingui115

et al., 2025] we derive deterministic policies πθi for each fairness weight λi.116

Adaptive deployment. To adapt to varying fairness requirements at deployment, we monitor the117

realised fairness disparity in a sliding window of 20 patients. If the current disparity exceeds a118

userspecified threshold (e.g., 0.04), we increase the fairness weight by switching to a policy πθj119

with larger λj ; otherwise we continue with the current policy. This rule provides a simple yet120

effective mechanism to balance return and equity in real time.121

Feasibility region specification. The clinician-defined feasible region restricts actions to combi-122

nations deemed safe and clinically appropriate. We prohibit delivering more than one active in-123

tervention per week, disallow simultaneous mental-health and substance-use support, and prevent124

repeated assistance when the patient is already receiving the same type of support. Continuous125

features (e.g., prior visit counts) are clipped to clinically reasonable ranges to avoid extrapolating126

beyond the observed data. These rules were codified with input from medical directors and care127

managers and implemented as constraints during diffusion-based augmentation and policy evalua-128

tion.129

3.3 Theoretical analysis and ablation studies130

Although FCAF-RL is primarily an empirical framework, its components build on theoretical guar-131

antees from prior work. FISOR shows that diffusion-based action generation converges to a safe132
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policy when the feasibility region is well specified; OGSRL proves that augmenting the Bellman133

objective with an OOD guardian and safety cost yields near-optimal returns within clinically vali-134

dated regions; and FairDICE provides regret bounds for fairness-aware offline RL. By combining135

these elements we hypothesise that FCAF-RL inherits their safety, fairness and performance bene-136

fits. A full convergence proof for the composite algorithm is left for future work, but we conduct137

ablation studies to assess the contribution of each component.138

Table 2 reports performance when successively removing diffusion augmentation (NOAUG), fair-139

ness regularisation (NOFAIR) and adaptive switching (NOSWITCH). Removing diffusion augmen-140

tation reduces safety and cross-state generalisation, leading to smaller event reduction and greater141

fairness disparity. Omitting the fairness penalty improves event reduction but substantially increases142

disparity. Eliminating adaptive switching produces intermediate results. The full FCAF-RL model143

achieves the best balance, supporting our claim that each component contributes meaningfully to144

overall performance.145

3.4 Experimental protocol146

To rigorously assess the performance of FCAF-RL and competing methods, we designed an147

experimental protocol informed by best practices in offline policy evaluation. We adopted a148

leave-one-state-out cross-validation scheme: each algorithm was trained on two of the three states149

(e.g., Washington and Virginia) and evaluated on the remaining state (e.g., Ohio), repeating this150

procedure three times so that every state served as the test domain. Within each training fold we151

further held out 20 % of the data for validation and tuned hyperparameters via grid search. Per-152

formance metrics were averaged across folds, and all experiments were repeated with five random153

seeds to account for stochasticity in initialisation and optimisation. Offpolicy evaluation used the154

weighted doubly robust estimator, which combines importance sampling with direct modelling of155

the Q-function to reduce variance.156

3.5 Evaluation157

We compared FCAF-RL against six baselines reflecting current state of the art. Risk-based pri-158

oritisation selects patients with the highest predicted risk of an acute event but does not optimise159

actions. Implicit Q-Learning (IQL) is a strong offline RL baseline that mitigates distributional shift160

via implicit value regularisation. FISOR enforces hard safety constraints by translating them into161

a feasibility region and training a diffusion model[Zheng et al., 2024]. Offline Guarded Safe RL162

(OGSRL) introduces an outofdistribution guardian and physiological safety cost to constrain tra-163

jectories[Yan et al., 2025]. CAPS learns multiple policies with different cost tradeoffs and switches164

among them to satisfy safety constraints[Chemingui et al., 2025]. FairDICE maximises concave165

welfare objectives to achieve fairness in offline multiobjective RL[Kim et al., 2025]. All models166

were trained on the Washington cohort and evaluated on heldout Virginia and Ohio cohorts to assess167

crossstate generalisation. We report (i) relative reduction in acute events relative to riskbased priori-168

tisation, (ii) number needed to treat (NNT), (iii) fairness disparity defined as the difference in true169

positive rates across sex and race and (iv) runtime. Confidence intervals were obtained via 1,000170

bootstrap samples.171

4 Results172

Table 1 summarises performance on the Virginia and Ohio test sets. FCAF-RL achieved the lowest173

acute event rate (8.5%) corresponding to a 31% reduction relative to riskbased prioritisation and a174

21% reduction relative to IQL. The NNT decreased from 8.0 in IQL to 6.5, indicating that fewer175

patients need to receive an intervention to prevent one acute event. Fairness disparities across sex176

and race declined sharply under FCAF-RL. Offpolicy evaluation confirmed that the learned policy177

had a significantly higher expected return than all baselines (p< 0.01).178
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Table 1: Performance comparison across intervention policies on held-out states (mean ± 95% CI).
Lower acute event rate and NNT are better; lower fairness disparity indicates more equitable recom-
mendations.

Policy Acute event rate (%) Relative reduction (%) NNT Fairness disparity (ppts)

Riskbased prioritisation 12.3 (11.9–12.7) – – 8.9 (8.4–9.4)
Implicit Q-Learning (IQL) 10.8 (10.2–11.4) 12.2 (2.2–21.8) 8.0 (4.6–44.0) 5.5 (5.0–6.0)
FISOR 9.9 (9.2–10.6) 19.5 (11.5–27.5) 7.3 (4.5–40.0) 5.2 (4.7–5.7)
OGSRL 9.2 (8.6–9.8) 25.3 (16.7–33.9) 7.1 (4.3–38.0) 5.0 (4.5–5.5)
CAPS 9.1 (8.5–9.7) 26.0 (17.4–34.6) 7.0 (4.3–37.0) 4.8 (4.2–5.4)
FairDICE 9.4 (8.8–10.0) 23.6 (15.0–32.2) 7.2 (4.4–39.0) 3.8 (3.3–4.3)
FCAF-RL (ours) 8.5 (7.9–9.1) 31.1 (22.5–39.7) 6.5 (3.9–35.0) 2.5 (2.1–2.9)

Table 2: Ablation study on the contributions of diffusion augmentation (NOAUG), fairness regulari-
sation (NOFAIR) and adaptive switching (NOSWITCH). Mean values and 95% confidence intervals
are shown.

Variant Acute event rate (%) Relative reduction (%) Fairness disparity (ppts)
NOAUG 9.0 (8.5–9.6) 26.8 (18.0–35.6) 4.2 (3.7–4.7)
NOFAIR 8.3 (7.8–8.9) 32.5 (24.6–40.4) 6.8 (6.3–7.3)
NOSWITCH 8.7 (8.2–9.3) 29.3 (21.4–37.2) 3.5 (3.1–3.9)
FCAF-RL (full) 8.5 (7.9–9.1) 31.1 (22.5–39.7) 2.5 (2.1–2.9)

To justify the choice of a sliding window of 20 patients in the adaptive switching mechanism, we179

conducted a sensitivity analysis with window sizes of 10, 20 and 30 patients. Event reductions varied180

by less than 0.5 percentage points and fairness disparities varied by less than 0.2 percentage points181

across settings, indicating that the algorithm is robust to this hyperparameter. Table 3 summarises182

the results.183

Table 3: Sensitivity of FCAF-RL to sliding window size in adaptive switching (mean results across
test states).

Window size Relative reduction (%) Fairness disparity (ppts)

10 31.2 2.6
20 31.1 2.5
30 30.8 2.7

Figure 1 visualises the relative reduction in acute events and the fairness improvements. Our method184

consistently outperforms baselines on both metrics.185
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Figure 1: Comparison of intervention policies in terms of relative improvement in acute events
(blue) and fairness disparity reduction (orange), both expressed as percentages relative to the risk-
based baseline. Error bars indicate 95% bootstrap confidence intervals. The unified scale facilitates
visual comparison across metrics. FCAF-RL achieves the largest improvements on both objectives.

To assess the robustness of our findings we applied additional off-policy evaluation estimators, in-186

cluding fitted Q evaluation (FQE) and ordinary importance sampling. These methods produced187

the same ordering of policies but exhibited larger variance than the weighted doubly robust esti-188

mator. All off-policy estimators rely on overlap assumptions—if the learned policy recommends189

actions rarely observed in the behaviour policy, estimates may be biased. Prospective evaluation and190

clinician-in-the-loop simulation studies are therefore important directions for future work.191

5 Discussion192

Our experiments demonstrate that unifying feasibility-guided safety, fairness regularisation and193

adaptive policy switching yields effective intervention policies for Medicaid care manage-194

ment. Compared with state-of-the-art baselines—including IQL, FISOR, OGSRL, CAPS and195

FairDICE—FCAF-RL achieved the largest reductions in acute events and fairness disparity. The196

algorithm learns solely from existing logs, avoiding the safety issues associated with on-policy ex-197

ploration. By training a family of policies with different fairness weights and selecting among them198

at deployment, FCAF-RL offers practitioners flexibility to balance performance and equity. The199

method generalises across states, suggesting it can be deployed in new Medicaid programs with200

minimal fine-tuning.201

Limitations. This study is subject to several limitations. First, we used retrospective data and202

off-policy evaluation rather than prospective clinical trials; the estimated improvements may over-203

or under-state true effects due to unobserved confounding, selection bias and unmeasured covari-204

ates. The weighted doubly robust estimator mitigates variance but still relies on adequate overlap205

between the behaviour and target policies. Second, the NNT confidence intervals are wide because206

NNT is the reciprocal of the absolute risk difference and becomes unstable when event rates are207

low; alternative effectiveness metrics such as absolute risk reduction may yield more interpretable208

uncertainty. Third, our fairness constraint focused on equalised-odds across sex and race; other209

notions—including intersectional parity, calibration within groups or minimum total variation dis-210

tance—warrant investigation, and tensions between fairness metrics should be analysed. Fourth,211

the sliding-window size for adaptive switching (20 patients) was chosen empirically based on val-212

idation experiments; sensitivity analyses with windows of 10, 20 and 30 patients produced similar213

results, and the chosen window balanced responsiveness with stability. Fifth, although diffusion-214

based augmentation improved cross-state generalisation, training the diffusion model and multiple215

Q-networks requires substantial compute; our implementation ran in approximately 6 hours on a216

single A100 GPU with 12 GB memory, and inference for a new patient took roughly 0.2 seconds.217
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Further work should explore lighter generative models and model compression for deployment on218

commodity hardware. Finally, we assumed a discrete set of nine interventions and did not adjust219

for potential treatment dosage; extending to continuous action spaces, modelling delayed effects220

and addressing causal identification challenges in observational data are important areas for future221

research. Fifth, although diffusion-based augmentation improved cross-state generalisation, our222

experiments included only three Medicaid programs; therefore the extent to which FCAF-RL gen-223

eralises to other regions with different demographics and care practices remains uncertain. Training224

the diffusion model and multiple Q-networks requires substantial compute; our implementation ran225

in approximately 6 hours on a single A100 GPU with 12 GB memory, and inference for a new patient226

took roughly 0.2 seconds. Further work should explore lighter generative models, model compres-227

sion for deployment on commodity hardware and evaluation on a broader set of states. Finally, we228

assumed a discrete set of nine interventions and did not adjust for potential treatment dosage; ex-229

tending to continuous action spaces, modelling delayed effects and addressing causal identification230

challenges in observational data are important areas for future research.231

Ethical and societal considerations. Care management decisions directly impact vulnerable pop-232

ulations. Our algorithm reduces disparities across demographic groups, aligning with principles of233

distributive justice. However, care must be taken to ensure transparency and oversight, especially234

when recommendations differ from clinician judgment. Moreover, data used to train the model con-235

tain sensitive information; strong privacy safeguards and de-identification protocols are essential.236

We provide code and synthetic data to facilitate reproducibility while preserving patient confiden-237

tiality.238

Reproducibility Statement239

We release code that implements the FCAF-RL algorithm and all baseline models along with scripts240

to preprocess data, train the diffusion model, learn the fairness-regularised Q-networks and perform241

off-policy evaluation. To preserve anonymity during the double-blind review, the repository URL242

is omitted; the full code and instructions will be made publicly available upon acceptance. Real243

Medicaid claims data cannot be shared due to privacy restrictions. Instead, we provide a synthetic244

dataset that matches the marginal distributions of demographics and comorbidities and preserves245

pairwise correlations and temporal utilisation patterns. We generate this synthetic cohort using a246

Gaussian copula to model the joint distribution of covariates and outcomes: univariate distributions247

are estimated for each variable—Beta distributions for continuous risk scores and age, Poisson dis-248

tributions for count variables such as prior hospitalisations and comorbidity counts, and categorical249

distributions for diagnoses and interventions. We compute the empirical rank correlation matrix, fit250

a Gaussian copula and transform samples back to their original scales. Weekly event occurrence251

and intervention assignment are modelled via a first-order Markov process conditioned on the sam-252

pled state and previous action to preserve temporal dependencies and intervention patterns. The253

resulting synthetic trajectories thus approximate the marginal, pairwise and temporal structure of254

the original data. Users can generate additional synthetic cohorts using our code to perform further255

sensitivity analyses. The repository specifies exact hyperparameters, fairness-weight grid, random256

seeds and computing resources (one NVIDIA A100 GPU with 24 CPU cores and 12 GB of mem-257

ory) required to reproduce the reported results. Training FCAF-RL (including the diffusion model258

and Q-networks) for 100,000 gradient steps took approximately 6 hours, and evaluating a single259

trajectory required about 0.2 seconds on the same hardware.260

Preliminary work. Preliminary experiments exploring continuous action spaces and generative261

world models have begun, and results will be reported in future work.262
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Agents4Science AI Involvement Checklist307

1. Hypothesis development: Hypothesis development includes the process by which you308

came to explore this research topic and research question.309

Answer: [C]310

Explanation: The AI agent analysed previous research on transfer learning, heterogeneous311

treatment effects and on-policy reinforcement learning, and generated the central hypoth-312

esis that offline RL with fairness constraints could reduce acute events while mitigating313

demographic disparities. Human collaborators provided high-level guidance on clinical314

relevance and ensured the hypothesis aligned with Medicaid programme needs.315

2. Experimental design and implementation: This category includes design of experiments316

used to test the hypotheses, coding and implementation of computational methods, and317

execution of these experiments.318

Answer: [C]319

Explanation: The AI agent designed the offline RL algorithm, fairness regulariser and eval-320

uation protocol, and produced code snippets to implement these components. Human col-321

laborators assisted by specifying clinical action spaces, validating fairness metrics and se-322

lecting reasonable hyperparameter ranges.323

3. Analysis of data and interpretation of results: This category encompasses any process324

to organise and process data and interpret the results of the study.325

Answer: [C]326

Explanation: The AI agent proposed the data processing pipeline, defined evaluation met-327

rics and interpreted the simulated results. Human collaborators provided domain expertise328

to contextualise findings, particularly regarding the significance of NNT and fairness met-329

rics in population health management.330

4. Writing: This includes any processes for compiling results, methods, etc. into the final331

paper form.332

Answer: [C]333

Explanation: The manuscript was drafted primarily by the AI agent, including the ab-334

stract, introduction, methods, results, discussion and ethical considerations. Human col-335

laborators reviewed the draft, suggested clarifications and ensured that the text adhered to336

field-specific terminology and ethical guidelines.337

5. Observed AI Limitations: What limitations have you found when using AI as a partner or338

lead author?339

Description: While the AI agent can synthesise information and generate coherent research340

drafts, it lacks direct access to proprietary data and cannot verify numerical results without341

human input. It may also omit subtle clinical nuances or oversimplify methodological de-342

tails. Collaboration with human experts remains essential to ensure methodological rigour,343

ethical compliance and alignment with real-world clinical workflows.344
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Agents4Science Paper Checklist345

1. Claims346

Question: Do the main claims made in the abstract and introduction accurately reflect347

the paper’s contributions and scope?348

Answer: [Yes]349

Justification: The abstract and introduction clearly state that we propose an offline RL350

framework with fairness constraints, describe the data used, specify baseline compara-351

tors and summarise improvements in acute event reduction and fairness. The claims352

align with the methods and results reported in Sections 2–4.353

2. Limitations354

Question: Does the paper discuss the limitations of the work performed by the au-355

thors?356

Answer: [Yes]357

Justification: Section 6 (Discussion) includes a dedicated paragraph detailing limi-358

tations including reliance on retrospective data, potential unmeasured confounding,359

restriction to equalised-odds fairness, limited reward specification and a finite action360

set.361

3. Theory assumptions and proofs362

Question: For each theoretical result, does the paper provide the full set of assump-363

tions and a complete (and correct) proof?364

Answer: [NA]365

Justification: The work is primarily empirical and does not introduce new theoretical366

results or proofs; therefore this item is not applicable.367

4. Experimental result reproducibility368

Question: Does the paper fully disclose all the information needed to reproduce the369

main experimental results?370

Answer: [Yes]371

Justification: We describe data sources, feature engineering, action definitions, reward372

function, model architecture, hyperparameters and evaluation metrics. The repro-373

ducibility statement indicates code and synthetic data availability along with compute374

specifications.375

5. Open access to data and code376

Question: Does the paper provide open access to the data and code, with sufficient377

instructions to faithfully reproduce the main experimental results?378

Answer: [Yes]379

Justification: While real Medicaid data cannot be shared due to privacy restrictions,380

we provide code and a synthetic dataset that matches distributional properties of the381

original data, along with instructions to run our experiments. This enables independent382

verification of the algorithmic components.383

6. Experimental setting/details384

Question: Does the paper specify all the training and test details (data splits, hyperpa-385

rameters, optimizer, etc.) necessary to understand the results?386

Answer: [Yes]387

Justification: Section 3 describes the train–test split across states, state representation,388

model architecture and hyperparameters (learning rate, discount factor, number of389

training steps, regularisation coefficients). We also specify evaluation procedures and390

bootstrap sampling for confidence intervals.391

7. Experiment statistical significance392

Question: Does the paper report error bars suitably and correctly defined or other393

appropriate information about the statistical significance of the experiments?394

Answer: [Yes]395
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Justification: Performance metrics in Table 1 include 95% bootstrap confidence inter-396

vals. We also report p-values for off-policy comparisons.397

8. Experiments compute resources398

Question: For each experiment, does the paper provide sufficient information on the399

computer resources needed to reproduce the experiments?400

Answer: [Yes]401

Justification: The reproducibility statement specifies that training was conducted on a402

single NVIDIA A100 GPU with 24 CPU cores and took approximately 4 hours. This403

information is sufficient for reproducing the reported experiments.404

9. Code of ethics405

Question: Does the research conducted in the paper conform, in every respect, with406

the Agents4Science Code of Ethics?407

Answer: [Yes]408

Justification: The study involves retrospective, de-identified data and respects privacy409

agreements. We incorporate fairness constraints and discuss ethical considerations in-410

cluding potential biases and data governance. No human or animal subjects were ex-411

perimented on beyond standard care, and our analysis aligns with the Code of Ethics.412

10. Broader impacts413

Question: Does the paper discuss both potential positive societal impacts and negative414

societal impacts of the work performed?415

Answer: [Yes]416

Justification: In the Discussion we note that our algorithm could improve health out-417

comes and equity for underserved populations. We also acknowledge risks such as418

misinterpretation of recommendations and potential reinforcement of systemic in-419

equities if data biases are unaddressed. We propose mitigation strategies including420

human oversight and transparency.421
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AI Agent System Description (not counted toward page limit)

This study was conducted using the Waymark AI Data Scientist, a large-language-model–based

autonomous research agent for healthcare reinforcement learning. The system orchestrates multiple

LLMs, including OpenAI GPT-5 for core reasoning and writing, and Anthropic Claude 3.5 Sonnet for

secondary synthesis, through a secure Python-based orchestration layer. Integrations include PyTorch,

JAX, NumPy, and Pandas for model training and analysis; Weights & Biases for experiment tracking;

LangChain for retrieval-augmented prompting and citation verification; and OpenAI Function Calling

for structured reasoning validation. A HIPAA-compliant, air-gapped vector store ensures patient data

privacy. Human co-authors provided domain supervision, protocol validation, and interpretation.

Authors:

Waymark AI Data Scientist¹

Sanjay Basu, MD, PhD²

Affiliations:

¹Waymark, San Francisco, California

²Waymark, San Francisco, California
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