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ABSTRACT

In this paper, we tackle the challenging underconstrained problem of reconstruct-
ing dynamic objects from monocular videos using a new method, which we term
ShapeGaussian. This approach incorporates shape priors in an implicit way to en-
hance reconstruction accuracy and chance of success with few multi-view clues.
Our methodology employs a two-phase process. In the first stage, we establish a
temporally consistent deformation model across frames based on depth maps and
keypoint estimations derived from a pre-trained model. The second stage obtains
high-quality photorealistic reconstruction by optimizing 3D Gaussian jointly with
non-parametric shape models. Through rendering this combined model into ra-
diance fields, we achieve high-quality, photo-realistic reconstructions of dynam-
ically deforming objects that maintain 3D consistency across novel views. Our
results demonstrate a significant improvement over previous methods on human
dynamics, particularly in scenarios with scarce multi-view cues, highlighting the
persistent challenges and varied approaches in recent research aimed at this inher-
ently complex task.

1 INTRODUCTION

Reconstruction of photo-realistic 3D scenes remains a fundamental challenge in computer vision,
with a wide array of applications from video games to robotics. Significant advancements have been
achieved in the reconstruction of static scenes in recent years. However, in real-world scenarios,
the focus often shifts to capturing dynamic scenes, typically through monocular video recordings
done in a casual manner. Consequently, addressing the dynamics of the scene and the limitations of
monocular input during the reconstruction process is crucial.

A significant limitation of existing Gaussian-based reconstruction methods is their poor performance
on monocular video captures featuring rapid human motion, particularly in novel view synthesis.
This deficiency primarily stems from the inaccurately reconstructed geometry of the Gaussians,
compounded by the unconstrained nature of the optimization problem due to the limited information
available from monocular captures. Although recent efforts have attempted to address this issue
by incorporating explicit mesh-based priors into monocular video-based Gaussian avatars, these
methods still struggle with reconstructing loose clothing and hair, as well as the variable and smooth
appearance of the human subject over time.

Most state-of-the-art Gaussian-based methods for human-centric dynamic scene reconstruction from
monocular videos focus primarily on either avatar reconstruction with a strong template prior or
general-purpose scene reconstruction using a deformation neural model. However, avatar-fitting
techniques are limited by the expressiveness of the underlying template and do not capture time-
dependent environmental changes. Consequently, the same pose vector invariably produces the
same novel view rendering, regardless of changes in hair, clothing, and lighting. Another prevalent
approach involves using a neural deformation model to calculate the offset from a canonical scene
representation, but this often requires multi-view input data, which is impractical in most applica-
tions and leads to suboptimal results due to the absence of semantic priors.

In this paper, we address the challenge of dynamic human-centric novel-view synthesis using real-
istic monocular captures. We introduce a two-step method that initially learns a coarse, deformable
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geometry using pretrained models that estimate geometry and pose information, and then utilizes
this geometry as a basis for reconstruction. The first step involves creating a coarse model for each
frame. In the second step, we utilize a neural deformation model to capture the dynamic deformation
details, building upon the dynamic coarse point template.

In short, our contributions are:

• We propose a unified Gaussian splatting framework ShapeGaussian, leveraging implicit
shape priors and neural deformation network for modeling the shape deformation, to sup-
port general-purpose reconstruction of dynamic environments and object reconstruction
with enhanced accuracy and details. For this goal we implement an adaptive density con-
trol mechanism designed for dynamic base model.

• Instead of utilizing explicit human templates like SMPL, our method is more flexible to
represent interactions between environment and human.

• Our approach integrates pose-independent details into our model, diverging from traditional
template-based human reconstruction techniques.

2 RELATED WORK

Given our primary objective of synthesizing novel views for dynamic 3D scenes involving signifi-
cant human motion, there are two main areas of related work: general-purpose dynamic scene re-
construction and the incorporation of explicit mesh constraints for avatar reconstruction in canonical
poses.

In this section, we provide a concise review of Gaussian-based dynamic 3D scene reconstruction in
Section 2.2. We then examine Gaussian-based avatar methods in Section 2.3.

2.1 IMPLICIT NEURAL RENDERING OF DYNAMIC SCENES

NeRF Mildenhall et al. (2020) has been adapted to dynamically model scenes, utilizing either a
global MLP framework or a hybrid setup where neural features are linked to the nodes of a discrete
data structure. This adaptation captures scene dynamics in two primary ways.

The first strategy, known as Space-Time Neural Fields, introduces an additional time dimension to
the scene structure, enabling the reconstruction of dynamic scenes from either multi-view Attal et al.
(2023); Li et al. (2022a;b); Lin et al. (2023a); Park et al. (2023); Song et al. (2023b); Wang et al.
(2023b; 2022a; 2023c; 2022b) or monocular video sources Cao & Johnson (2023); Du et al. (2021);
Fridovich-Keil et al. (2023); Gao et al. (2021); Li et al. (2021; 2023b); Shao et al. (2023); Song
et al. (2023a); Xian et al. (2021). Hybrid techniques enhance this process by parameterizing the 4D
scene representation through voxel grid Li et al. (2022a); Park et al. (2023); Song et al. (2023a);
Wang et al. (2023b; 2022a; 2023c; 2022b) or planar factorizatin Attal et al. (2023); Cao & Johnson
(2023); Fridovich-Keil et al. (2023); Lin et al. (2023a); Shao et al. (2023). While effective for
forward-facing videos, these methods depend heavily on pre-calculated depth maps and optical flow
for local motion tracking but are less capable of global information transfer necessary for rendering
new viewpoints.

Similar to our approach, HexplaneCao & Johnson (2023) uses a low-rank temporal framework for
managing spatially separated volumes, concurrently optimizing this basis with the detailed geometry
and appearance. Conversely, our method first establishes a rough template and then refines the
details in a subsequent phase, providing stronger regularization.

The second approach, Deformable NeRFs, employs a 4D deformation field that maps each
timestep’s observations back to a standard configuration, ensuring temporal alignment. This tech-
nique maintains consistency but restricts large variations and topological shifts from the standard
model Choe et al. (2023); Park et al. (2021a;b); Pumarola et al. (2020); Tretschk et al. (2021); Wang
et al. (2023a). Several models use a voxel-based hybrid system for quick multi-view reconstruc-
tion Liu et al. (2022); Tretschk et al. (2023). TiNeuVox Fang et al. (2022) enhances monocular
reconstruction by utilizing a minimal MLP for the deformation field and compensating with im-
proved temporal scene representations. However, backward warping can be problematic in sparse
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capture settings due to its lack of smoothness, requiring strong regularization for effective new view
synthesis.

2.2 DYNAMIC RECONSTRUCTION WITH 3D GAUSSIANS

Several recent work have explored modeling dynamic secenes using 3D Gaussians. Dy-
namic3DGS Luiten et al. (2023) utilizes dense multi-view inputs to maintain the tracking of 3D
Gaussians’ positions and rotations from their initial pacement in the first frame throughout various
timesteps. Similarly, Deformable3DGS Yang et al. (2023), GaussianFlow Lin et al. (2023b) and
4DGS Wu et al. (2023) implement a canonical space for initilizing 3D Gaussians, employing a neu-
ral deformation field to track changes in positions, rotations and scales over time. Notably, 4DGS
also describes the deformation field with a Hexplane representation mixing temporal and spacial
dimensions.

2.3 HUMAN-CENTRIC DYNAMIC RECONSTRUCTION FROM MONOCULAR VIDEOS

Due to high costs of scanning and the labor-intensive nature, it is practically infeasible for early
technologies that utilized RGB-D sensors to capture subject’s shape and then manually attaching
the captured surface to preset skeleton to generate the avatar Dou et al. (2016; 2017); Izadi et al.
(2011); Newcombe et al. (2015); Yu et al. (2017; 2018), with the advent of parametric models
like SMPL Loper et al. (2015) and SMPL-X Pavlakos et al. (2019), creating avatars economically
became feasible. These models enable avatar creation using just RGB images, bypassing the need
for expensive scanning equipment.

Recently, innovative approaches in avatar reconstruction have developed, leveraging a parameter-
ized human body as a foundation while incorporating advanced rendering techniques such as vertex
offsets Ma et al. (2020); Xiang et al. (2020), signed distance fields He et al. (2020); Saito et al.
(2019; 2020); Varol et al. (2018); Xiu et al. (2022; 2023), neural radiance fields (NeRF) Jiang et al.
(2022b;a); Kwon et al. (2021); Peng et al. (2021b;a); Weng et al. (2022), and the most recent 3D
Gaussians Hu et al. (2023); Jung et al. (2023); Li et al. (2023a); Qian et al. (2023b;a); Saito et al.
(2023); Yuan et al. (2024); Zielonka et al. (2023); Kocabas et al. (2023). These methods enhance the
realism of avatars by capturing detailed individual shape features. Such improvements significantly
boost the expressiveness of avatars, yet the reconstruction’s fidelity largely hinges on precise pose
estimation. Despite these advancements, the focus remains predominantly on the human form itself,
often overlooking the dynamics of the background. While methods like HUGS Kocabas et al. (2023)
can generate novel views of a scene, they tend to produce unnatural human movements and are lim-
ited to static backgrounds, highlighting a gap in current modeling capabilities that could benefit from
further innovation.

3 PRELIMINARIES

In this sections, we simply review the representation of 3D-GS Kerbl et al. (2023) in Sec. 3.1 and
the formulation of priors used by our method in Sec. 3.2.

3.1 3D GAUSSIAN SPLATTING

3D Gaussians Kerbl et al. (2023) serve as an explicit 3D scene representation through point clouds.
Each Gaussian is defined by a 5-tuple (µ,Σ, s, o, c), where µ ∈ R3,Sigma ∈ SO(3) are the 3D
mean and orientation and s ∈ R3 the scale, o ∈ R the opacity, and c ∈ R3 the color. The rendering
process would first project 3D Gaussians onto the 2D image plane. More specifically, given the
world-to-camera extrinsics E and intrinsics K, the projection of the 3D Gaussians can be obtained
by formula

µ′(K,E) := Π(KEµ) ∈ R2, Σ′(K,E) := JKEΣ0J
T
KE ∈ R2×2, (1)

where Π is the perspective projection operator, and JKE is the Jacobian matrix from the affine
approximation of the projective transformation determined by E and K at location µ. The projected
2D Gaussians can then be efficiently rasterized into RGB image along with the depth map via volume
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rendering as
Î(p) :=

∑
i∈H(p)

Tiαici, D̂(p) :=
∑

i∈H(p)

Tiαidi, (2)

where H(p) denotes the index set of Gaussians that intersect the ray shoot from pixel p, and the
equivalent opacity and transmittance is calculated by

αi := oi · exp
(
− 1

2 (p− µ′)TΣ′(p− µ′)
)
, Ti :=

∏
j<i

(1− αj). (3)

3.2 DATA-DRIVEN PRIORS

We consider three types of data-driven priors produced by off-the-shelf pretrained models, which
assist our model in inferring accurate geometry from videos that lack sufficient multi-view cues. For
each training image I, we have the following:

Semantic Mask. Represented by a map MI, where MI(p) = 1 if and only if the pixel p is within
the human silhouette.

Depth Map. Represented by a map DI, where DI(p) indicates the distance of the point on the
front-most surface from the viewpoint. In our method, only the human region is considered for the
depth map.

Human Keypoints. Denoted by zI ∈ R2×m, which corresponds to the m 2D keypoints estimated
for image I, where m is a constant in our model. It is important to note that, in general, the k-th
keypoint may not be available for every training image I. If a keypoint in zI is unavailable, we set
its value to null. These keypoints, zI, naturally provide alignment across frames. We will explain
this in more detail in Sec. 4.1.

4 METHOD

In this section, we outline a 3-stage approach. Initially, we derive a coarse dynamic Gaussian model
against semantic priors derived from the input monocular video. Subsequently, we fit a Gaussian
deformation network that fits the coarse model established in the first stage. Finally we optimize
the deformation model against the input video. This stage incorporates adaptive density control to
ensure high-quality 4D reconstruction as well.

The input data required by our method includes the input views {It}, SfM points qi, and prior in-
formation {(MI,DI, zI)}I associated to I as introduced in Sec.3.2. For real videos we estimate
the camera poses and SfM points via COLMAP Schönberger & Frahm (2016); Schönberger et al.
(2016), and the semantic depth maps and human keypoints are estimated by Sapiens model Khirod-
kar et al. (2024).

4.1 STAGE I: DYNAMIC COARSE MODEL

A coarse model will be established in stage I to depict the dynamic geometry shape by utilizing the
semantic priors. Simply speaking, the depth maps for human could help us determine a collection
of 3D points associated to human bodies, while 2D keypoints priors enable picking important points
and aligning them up.

Initialization. We define two distinct point sets: the static background points, denoted as Pb, and the
dynamic human points at each timestamp t, denoted as P(t)

h . For the static background, the setup is
relatively straightforward, as we directly use the locations of the input structure-from-motion (SfM)
points. On the other hand, the dynamic human points P(t)

h are modeled by treating all available
keypoints as Gaussian distributions, which we refer to as key Gaussians.

Starting from the first frame, we augment these key Gaussians by randomly sampling points uni-
formly within the human mask. In subsequent frames, we iteratively refine this sampling process to
account for changes in the human motion and deformation.

It’s important to note that we do not impose a strict constraint that the background must remain static
throughout the process. The background is only fixed in the initial stage to provide a reference, but
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Figure 1: Overview of our method. Overview of the proposed method consisting of two parts. In
part I, we learn a dynamic coarse 3D Gaussian model consisting of static background points and
dynamic human points. In part II, we fit a deformable neural network that calculates the offsets of
Gaussian location δµ, rotation δr and scales δs from the dynamic coarse model established in part
I.

the deformation network is flexible enough to accommodate dynamic background elements. The
separation between background and human Gaussians is designed to capture the highly deformable
nature of human motion while maintaining a stable foundation for less dynamic scene components.

Let Ĩt represent the rendered image, which is rasterized from the Gaussians Pb ∪ P(t)
h . To refine

these Gaussians, we adjust their properties frame-by-frame based on color loss. Specifically, we
optimize the loss L(t) = |It − Ĩt|1 by tuning Gaussian parameters such as intensity and variance,
while keeping the spatial locations of the points fixed during this step.

Alignment. At this stage, the Gaussians across different frames are not yet fully aligned, as their
locations have been frozen during the initial optimization. To address this, we perform a joint
optimization of the Gaussians across all frames using the following objective:

L =

N∑
t=1

(
L(t)

color + λ1L(t)
rigid

)
, (4)

where two types of losses are involved. The color loss is simply defined by L(t)
color = ∥It− Ĩt∥1. The

another loss, rigitidy loss, is introduced to ensure the human shape is consistent across frames.

L(t)
rigid :=

∑
µ1∈P(t)

h ,µ2∈N (µ)

∣∣∣∥µ(t)
1 − µ2

(t)∥22 − ∥µ(t+1)
1 − µ

(t+1)
2 ∥22

∣∣∣ (5)

for t ∈ {1, . . . , N − 1}, where N (µ) collects nneigh nearest neighborhood points of point µ.

This strategy ensures a Gaussian initialization with high-fidelity geometric, setting a solid foundation
before progressing to the learning phase of the neural deformation network.
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4.2 STAGE II: DEFORMATION NETWORK INITIALIZATION

Denote by gi = (µi, ri, si). Utilizing the deformation modeling as outlined in Yang et al. (2023),
our method processes the time t and the center location µi of 3D Gaussians to generate offsets
through the deformation MLP FΘ:

δgi = (δµi, δri, δsi) = FΘ(γ(x), γ(t)), (6)

where γ(x) := (sin(2kπx), cos(2kπx))L−1
k=0 provides the positional encoding. To be concise we

directly write FΘ(x, t)

We fit FΘ in terms of L :=
∑

t L(t) where

L(t) :=
∑

µi∈P(t)
h ∩P(t)

h

∥∥∥g(0)
i + FΘ(µ

(0)
i , t)− gt

i

∥∥∥. (7)

In Eq. 7, we fit the deformation network by considering all available Gaussians at timestamp t. It
is worth noting that not all Gaussians at timestamp t would appear at the initial frame. For those
Gaussians g(0)

i is just referring to the base properties, instead of an explicit Gaussian.

4.3 STAGE III: DEFORMATION NETWORK OPTIMIZATION

In Stage III, the primary objective is to optimize the deformation network by minimizing the dis-
crepancy between the rendered images and the ground-truth images from the training dataset. This
involves refining the alignment between the predicted scene geometry and the actual observations,
ensuring more accurate and visually consistent reconstructions.

Specifically, we adjust the 3D Gaussians of the base model at each timestep by applying offsets
predicted by the deformation network. These offsets capture the dynamic changes in the scene, par-
ticularly for non-rigid objects such as humans. Both the deformation network and the 3D Gaussians
are optimized simultaneously to reduce error, leveraging a combination of L1 loss and D-SSIM loss
together with the depth prior regularization:

L = Lcolor + λ2LD-SSIM + λ3Ldepth, (8)

with λ2 = 0.2 consistently applied in all experiments.

5 EXPERIMENTS

Seattle Citron Parking
PSNR ↑ SSIM ↑ LPIPS* ↓ PSNR ↑ SSIM ↑ LPIPS* ↓ PSNR ↑ SSIM ↑ LPIPS* ↓

4DGS 24.03 0.89 161.1 22.84 0.88 143.2 23.14 0.84 156.4
Deformable-GS 24.39 0.88 169.4 23.99 0.87 148.2 24.53 0.87 163.9

HUGS 25.94 0.85 130 25.54 0.86 150 26.86 0.85 220
GART + Background 29.14 0.95 27.3 28.72 0.94 32.5 28.14 0.93 29.4

Ours 30.21 0.96 23.3 29.95 0.96 23.1 30.79 0.95 29.7

Bike Jogging Lab
4DGS 24.55 0.88 182.3 24.24 0.87 153.2 25.13 0.90 134.5

Deformable-GS 24.97 0.88 172.9 23.97 0.86 191.2 25.52 0.91 129.9
HUGS 25.46 0.84 130 23.75 0.78 220 26.00 0.92 90

GART + Background 28.75 0.94 19.5 28.49 0.92 22.1 29.01 0.95 20.8

Ours 30.47 0.97 18.4 30.03 0.94 21.3 30.82 0.97 0.12

Table 1: Comparison of ours method with previous work on test images of the NeuMan dataset Jiang
et al. (2022a) using PSNR, SSIM and 1000x LPIPS metrics.

In this section, we assess our approach using real monocular datasets and conduct ablation studies to
showcase its capability in reconstructing photo-realistic dynamic scenes featuring dramatic character
action.

Datasets. First, we assess our method on the widely utilized ZJU dataset Peng et al. (2021b) under
monocular setting and demonstrate that it achieves state-of-the-art performance on objects suited
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377 386 387
PSNR ↑ SSIM ↑ LPIPS* ↓ PSNR ↑ SSIM ↑ LPIPS* ↓ PSNR ↑ SSIM ↑ LPIPS* ↓

4DGS 27.18 0.84 97.2 26.85 0.55 152.1 28.18 0.84 86.4
Deformable-GS 28.49 0.86 97.7 27.84 0.61 131.3 27.81 0.65 105.1

HUGS* 30.80 0.98 20 34.11 0.98 20 29.97 0.97 30
GART 31.90 0.97 18.8 33.50 0.97 29.9 27.74 0.95 40.3

Ours 32.18 0.97 18.9 33.51 0.97 29.8 28.04 0.95 39.8

392 393 394
4DGS 28.14 0.86 131.4 27.18 0.87 121.5 26.23 0.84 98.1

Deformable-GS 27.28 0.85 91.9 27.91 0.84 131.7 27.59 0.89 105.8
HUGS* 31.36 0.97 30 29.80 0.97 30 30.54 0.97 30
GART 31.92 0.96 32.6 29.34 0.95 37.9 31.08 0.96 31.5

Ours 32.04 0.97 29.7 29.97 0.96 35.8 31.31 0.96 31.0

Table 2: Comparison of ours method with previous work on test images of the ZJU Mocap
dataset Peng et al. (2021b) using PSNR, SSIM and 1000x LPIPS metrics. The evaluation results
of HUGS are quoted directly from Kocabas et al. (2023), and suffer from low precision for LPIPS.

Seattle Citron Parking
PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

w/o Stage I 16.43 0.43 0.40 16.81 0.41 0.56 16.04 0.38 0.62
w/o Lrigid 30.05 0.96 0.15 29.84 0.95 0.15 30.41 0.95 0.16
w/o DBM 24.91 0.82 0.19 24.31 0.88 0.21 24.58 0.84 0.16

Complete 30.21 0.96 0.14 29.95 0.96 0.14 30.79 0.95 0.15

Bike Jogging Lab
w/o Stage I 17.41 0.56 0.60 14.32 0.62 0.65 21.56 0.69 0.50
w/o Lrigid 23.99 0.78 0.26 24.63 0.81 0.26 25.43 0.80 0.31
w/o DBM 24.19 0.86 0.19 23.95 0.87 0.18 25.18 0.21 0.17

Complete 30.47 0.97 0.14 30.03 0.94 0.14 30.82 0.97 0.12

Table 3: Ablation study. The performance is evaluated over full images using PSNR, SSIM and
LPIPS metrics.

to our model. Subsequently, we conduct quantitative, qualitative, and ablation studies on the more
realistically captured Neuman dataset Jiang et al. (2022a) to show that our method effectively pro-
vides adequate regularization for this underconstrained scenario, characterized by a camera moving
around a human in motion.

Comparison Methods. We evaluate our methods against two classes of approaches: neural defor-
mation methods and avatar fitting methods. The former category includes 4D Gaussian Wu et al.
(2023) and Deformable Gaussian Yang et al. (2023). The latter category comprises GART Lei et al.
(2023) and HUGS Kocabas et al. (2023).

Implementation Details. For the optimization in stage I, we set λ1 = 0.9. In stage II, we set the
depth of the deformation network nd = 8 and the dimension of the hidden layer nh = 256. The
dimension L of positional encoding are set to 10 for both location x and time t.

5.1 RESULTS

Comparison on NeuMan dataset. Jiang et al. (2022a) Table 1 provides a comparative analysis
of our method against existing methods on the NeuMan dataset. Notably, GART is not capable of
modeling the environment other than the human. Hence we synthesize the complete novel view by
combining the human rendering generated by GART and the background scene rendering provided
by 4DGS in light of the human segmentation.

Our method consistently shows superior performance across all metrics and scenarios, highlighting
its effectiveness in generating high-quality reconstructions from monocular recordings. In addition,
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the significant performance advantage of GART over 4DGS and Deformable-GS clearly indicates
the critical importance of the SMPL prior.

Figure 2: Qualitative comparison on Seattle and Citron in NeuMan dataset.
Left column: ground truth. Middle column: our method. Right column:4DGS Wu et al. (2023).

Figure 2 offers a qualitative comparison between our method and 4DGS, which lacks a human
shape prior, on the Neuman dataset. Typically, 4DGS produces lower-quality renderings from novel
viewpoints, and in some cases, it even fails to capture the human figure in the scene due to missing
geometric information.

Comparison on ZJU Mocap dataset. Peng et al. (2021b) Table 2 compares the performance of
our method with other state-of-the-art techniques, namely 4DGS, Deformable-GS, HUGS*, and
GART, on test images from the ZJU Mocap dataset. The evaluation focuses on various scenarios
identified by their dataset numbers: 377, 386, 387, 392, 393, and 394. We adopt the same camera
view settings as Peng et al. (2021a) for training and testing. Our method consistently demonstrates
superior performance in terms of PSNR and SSIM across all scenarios. In the context of the LPIPS
metric, our method generally achieves competitive results, occasionally outperforming others.

5.2 ABLATION STUDY

As outlined in Table 3, our ablation studies evaluated the impact of removing several key compo-
nents on the reconstruction performance, using the real-world NeuMan dataset for assessment. The
first component examined is the necessity of learning the coarse model. We experimented with
initializing Stage II using only the mesh vertices derived from SMPL pose estimation. The sec-
ond component analyzed is the importance of the rigidity loss. The third component involves the
dynamic base model(DBM), where we explored initializing with a static point cloud directly from
COLMAP in stage I. Table 3 demonstrates that each of these three components positively contributes
to the model’s performance.

5.3 LIMITATIONS

While our method can produce high-quality dynamic reconstructions from monocular videos featur-
ing fast human motion, it faces several challenges and limitations. Firstly, our approach relies on the
semantic priors provided by an external model. Moreover a set of accurate camera parameters have
to be given and our reconstruction is highly sensitive to the errors of camera poses. Secondly, unlike
most human reconstruction work employing an explicit human template, our method cannot accom-
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modate renderings with novel human poses. Lastly, designing a more complex model is necessary
to effectively handle scenarios involving multiple people, particularly in cases with occlusions.

6 CONCLUSION

We introduce ShapeGaussian, a high-quality view synthesis approach for human with motion cap-
tured using a monocular camera. Our method utilizes a two-stage optimization process that first
establishes a dynamic coarse 3D Gaussian model from estimated pose parameters. This provides
robust shape regularization, enabling consistent synthesis of new views from sparse observations.
We have demonstrated that, unlike previous efforts in monocular reconstruction, our approach can
produce consistent reconstruction even in demanding scenarios.
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