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ABSTRACT

Vision-language models (VLMs) have demonstrated impressive reasoning capabil-
ity in visual understanding tasks. One recent highlight of VLMs is their success in
generating human-understandable explanations in video anomaly detection (VAD),
which is an advanced video understanding task requiring delicate judgment on
context-dependent and ambiguous video content. Representative works mainly
formulate this problem as a natural language generation task conditioned on task-
related prompts and visual inputs. However, under this paradigm, the input is
processed segment by segment, and VLMs generate a response for each segment
independently, which inevitably leads to uncertainty in their reasoning with a lim-
ited context. To bridge this fundamental gap, we propose an uncertainty-aware
VLM framework named UNA for VAD to objectively identify the reasoning-level
uncertainty in VLMs and correspondingly mitigate it: Firstly, UNA obtains rel-
evant scenes by temporal and semantic relevance and determines the existence
of uncertainty by the prediction consistency across relevant scenes. After that,
collective intelligence via the cooperation of VLMs is introduced to address the
uncertainty. With UNA, VLMs can achieve remarkable performance and advanced
explainability, surpassing task-specific methods in challenging benchmarks in the
most difficult setting where instruction tuning is not allowed for the first time.1

1 INTRODUCTION

Una models the reasoning-level uncertainty of VLMs when they generate VAD responses

Enhanced Response

Uncertainty 
Mitigation by 

Collective 
Intelligence

Uncertainty 
Identification in 
the Reasoning 

LevelVideo ! VLM

Explanation and Prediction: 
This is a normal event 
because a person working in 
the store is a usual activities. VLMVideo Segment

Current Paradigm: 
VLM regards VAD as a 
direct natural language 
generation task

Figure 1: Existing methods directly model VAD as a nat-
ural language generation task but ignore the uncertainty
in their reasoning. We propose UNA to solve that.

Video anomaly detection (VAD) has re-
ceived significant interest within the AI re-
search community due to its tremendous
benefit in achieving automated decision-
making for safety-critical applications, in-
cluding video surveillance (Ramachandra
et al., 2020), autonomous driving (Yao
et al., 2022), and medical diagnosis (Fer-
nando et al., 2021). An ideal VAD system
is expected to output prediction results that
are (1) accurate — correctly localizing the
occurrence of video anomalies, (2) explainable — generating easily interpretable VAD explanations
for human users, and (3) generalizable — consistently performing VAD as intended in any given
scenario. To achieve these goals, the research community has continued to advance deep neural
network (DNN) architectures for VAD. Particularly, vision-language model (VLM) (Hurst et al.,
2024) is a game-changer in pursuing ideal VAD performance.

Integrating vision transformers (Dosovitskiy et al., 2021) as “eyes” and large language models
(LLMs) as “brains”, VLMs have superior ability to perceive visual inputs, follow textual instructions,
and generate verbalized prediction results. Existing research has explored applying VLMs to VAD
by formulating it as a natural language generation task (shown in Fig. 1), using either prompt
engineering (Ye et al., 2025) to guide reasoning or instruction tuning (Zhang et al., 2024a) to adapt

1The implementation code is available in the supplementary material and will be made publicly available.
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VLMs to specific task prompts. During inference, video segments are extracted from a video and
processed by a single VLM to detect anomalies, and the VLM provides language-based explanations.

Key Observations and Research Question. Despite the advantages of the aforementioned pipeline,
it overestimates the predictive power of VLMs in VAD. Since anomalies are diverse and the context
of a video segment is short, VLMs are not perfectly certain regarding the responses they generate.
Thus, a more realistic viewpoint for designing VLMs for VAD should be adopted: VLMs are not
omniscient, and they are not always certain about their predictions. That is, existing VLM-based
VAD approaches overlook the uncertainty in the reasoning of VLMs during inference. In this paper,
we aim to bridge this non-negligible pitfall by investigating the following important question:

How can we model the uncertainty in the reasoning of VLMs and mitigate it to output reliably
accurate and explainable predictions?

Our Approach. This research question is fundamental to achieving the ideals of VAD. Specifically,
by introducing a novel uncertainty-aware mechanism into VLMs, we can identify scenes where the
model exhibits uncertainty. With a mitigation process in place, VLMs can correct potential errors in
these uncertain segments, preventing their propagation into final decisions. This not only enhances
VAD performance but also enables error correction for initial explanations. As a result, decisions
made by uncertainty-aware VLMs can make VLMs generalizable in different scenarios.

Motivated by this, in this paper we investigate the design of an uncertainty-aware video anomaly
detection framework with VLMs with treatments of uncertainty identification and mitigation, termed
as UNA. Firstly, UNA will determine whether the VLM is uncertain on a given video segment
by its prediction consistency with its relevant segments. Based on the properties of video inputs,
UNA obtains relevant scenes by temporal and semantic relevance. After that, UNA resolves the
uncertainty caused by individual reasoning via collective intelligence with VLMs forming as a team.
By uncertainty identification and mitigation in UNA, the deployed VLMs in VAD can adaptively
re-evaluate its decision on the existence of anomalies in videos when facing uncertainty.

Contributions. In this work, we make the following key contributions:

• To our knowledge, we are the first to champion an uncertainty-aware perspective for utilizing
VLMs for VAD. This new perspective reflects real-world scenarios, where VLMs unavoidably
face reasoning-level uncertainty because the provided limited context makes it difficult for them
to reach fully certain decisions in the presence of ambiguous and diverse video anomalies. This
conceptual shift represents a significant and timely contribution to the field of VAD.

• Under this concept, we design a novel VAD framework named UNA equipped with uncertainty
identification and mitigation as the first attempt. Specifically, UNA includes a new uncertainty
identification principle by the prediction consistency of VLMs among relevant segments, which is
customized for VAD and can be broadly applied in video understanding tasks. Meanwhile, UNA
pioneers the technique of collective intelligence in mitigating reasoning-level uncertainty in VAD.

• UNA can empower VLMs with an advanced reasoning ability that corrects misjudgment caused by
reasoning-level uncertainty. Extensive experimental results demonstrate that the proposed UNA
renders VLMs to improve their VAD ability in challenging VAD benchmarks including UCF-Crime
and XD-Violence with outstanding numerical performance and persuasive explanations.

2 RELATED WORK

Video Anomaly Detection. Detecting video anomalies is inherently challenging due to the ambiguous
and context-dependent nature of what constitutes an anomaly. Previous to VLMs, commonly used are
task-specific DNN structures trained with weakly supervised classification tasks (Sultani et al., 2018;
Wu et al., 2024b) or unsupervised frame reconstruction tasks (Liu et al., 2018; Ye et al., 2019; Lu
et al., 2013). However, they can output numerical results only and largely overlook the explainability
aspect. To address this limitation, the recent line of literature introduces VLMs to generate predictions
and explanations together. Prompt engineering (Zanella et al., 2024; Ye et al., 2025) or instruction
tuning (Zhang et al., 2024a; Lv & Sun, 2024; Yang et al., 2024a; Tang et al., 2024) is adopted to
make VLM responsive to the instruction for VAD. However, VLMs will have uncertain reasoning in
this language generation process for the visual context is limited during the generation process. In
light of this, we build an uncertainty-aware framework named UNA to address this issue.
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Uncertainty-Aware LLMs. Uncertainty-aware mechanisms have been found useful in LLM reason-
ing. The intuition is that by making the chain-of-thought (Wei et al., 2022) in LLMs uncertainty-aware,
LLMs can focus their reasoning on the uncertain part and generate more satisfactory responses. Ex-
isting works have investigated the uncertainty-aware design in token generation tasks like code
generation (Zhu et al., 2025) and reasoning tasks like medical diagnosis (Hu et al., 2024), trou-
bleshooting (Hu et al., 2024), and question answering (Nikitin et al., 2024; Ye et al., 2024). However,
uncertainty in reasoning remains largely underexplored in VAD despite its importance. Our work
bridges that by introducing a novel framework to model uncertainty in the reasoning of VLMs.

Collective Intelligence in LLMs. Collective intelligence refers to the phenomenon where groups of
individuals, whether human or artificial agents, achieve higher problem-solving capacity than any
individual working alone (Malone et al., 2010). This principle has inspired recent developments in
AI including multi-agent collaboration (Zhang et al., 2024b) such as AutoGen (Wu et al., 2024c)
and CAMEL (Li et al., 2023), which has been actively explored as an effective means to enhance
reasoning and decision-making. In this work, we explore building collective intelligence through the
cooperation between VLM agents to tackle uncertain scenarios in VAD.

3 THE UNA FRAMEWORK

We now detail our motivation by discussing how VLM reasons in VAD and later the design of UNA.

3.1 MOTIVATION: EXISTING VLM-BASED INFERENCE IN VAD HAS LIMITATIONS

Input and Output. During inference in VAD, a video V = {Ii}Fi=1 with F frames is given, where
Ii is the i-th frame. Frame-level ground truth Y = [y1, . . . , yF ] is provided: yi = 1 if Ii contains
an anomaly, and yi = 0 otherwise. The employed VLM f (base model) is expected to generate an
anomaly score sequence Ŷ = [ŷ1, · · · , ŷF ] for all frames, where each ŷi ∈ [0, 1](1 ≤ i ≤ F ).

Video Anomaly Scoring by VLMs. However, it is impractical for f to compute the anomaly score
for each frame individually for F is huge. Thus, f follows a coarse-to-fine procedure shown in Fig. 2.
It generates segment-level scores in Stage 1 and refines them in Stage 2. To detail:

Normal Normal Abnormal Abnormal
Time Segment 1 Segment 2 Segment h-1 Segment h

. . .Video

Segment-Level Initial Score [ !"!,⋯, !""] → Frame-Level Anomaly Scores [ %"!,⋯, %"#] 
by Smoothing Techniques

Explanation !!: This 
is a normal event 
because a person 
working in the store is 
a usual activities. (✓)
Initial Score "#!: 0

VLM

Explanation !" : 
This is a normal 
event because a 
person simply enters 
the store. (✓)
Initial Score "#": 0

Explanation !#$!:
This is abnormal. The 
person is shooting in 
the store. It is 
unusual. (✓)
Initial Score "##$!: 1

Explanation !#:
This is normal. The 
person is walking in 
the store. No anomaly 
is shown. (✕)
Initial Score "##: 0

...

VLM VLM VLM

. . .

Figure 2: Existing VLM-based pipelines conduct
anomaly scoring for VAD with a coarse-to-fine pro-
cess. Uncertainty exists due to the limited context.

Stage 1: Initial Anomaly Scoring by Natural
Language Generation. First, a given video V
will be divided into h segments {vj}hj=1. Each
segment {vj} contains κ frames uniformly sam-
pled from a window, e.g., a 10-second glimpse.
VAD is formulated as a natural language gener-
ation process for each segment vj : a textual
VAD-specific instruction θ is input to f and
prompt f to generate an explanation Ej whether
an anomaly exists. If Ej contains analysis that
an anomaly exists in vj , f returns a numerical
output ỹj = 1, and ỹj = 0 otherwise.

Stage 2: Coarse-to-fine Anomaly Scoring by
Smoothing. After getting the coarse-grained bi-
nary scores {ỹ1, · · · , ỹh}, they are further re-
fined by smoothing techniques (e.g., exponential
moving average (Yang et al., 2024a) and Gaussian smoothing (Ye et al., 2019)) to obtain a set of
continuous anomaly scores for all frames as Ŷ = [ŷ1, . . . , ŷF ], which is expected to be closer to Y .

Limitations of Existing VLM-Based Pipelines for VAD. In VAD, VLMs map each video segment
independently to explanations and numerical scores in the language space via a natural language
generation formulation. Consequently, constrained to isolated segments, the lack of broader context
and the limited evidence makes the reasoning inherently contain uncertainty. We term this type of
uncertainty as reasoning-level uncertainty. The uncertain responses will unavoidably harm the
accuracy and explainability of VLMs in VAD: Firstly, the mistakes they cause during the initial
scoring phase can propagate into the fine-grained frame-level scores during the coarse-to-fine scoring,
which eventually degrades the VAD performance. Secondly, the explanation of an uncertain response

3
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can misinterpret the observed scenes and output unsatisfactory explanation for humans. Thus, it is
imperative to study this type of uncertainty for VLMs in VAD by investigating two fundamental
questions: (1) how to identify such uncertainty? and (2) how to mitigate it when it is identified? In
this paper, we answer these questions by proposing an uncertainty-aware framework, UNA. Details
are as follows and the full pseudocodes are in Alg. 1 in Sec. A.1 in Appendix.

3.2 IDENTIFYING REASON-LEVEL UNCERTAINTY VIA RELEVANT SCENES

To identify the uncertainty during reasoning, UNA first includes a test determining whether f is
uncertain in its generated response Ej (codified by ỹj) for each vj . Previous works provide us with
two straightforward solutions to that by relying on either the internal token probabilities (Zhu et al.,
2025; Hu et al., 2024) produced during generation or the self-consistency (Lin et al., 2024) of the
repeatedly generated responses:

(Option 1) Token Probability-Based Uncertainty Test: Given a video segment vj and instruction θ,
the VLM f generates a decision token (‘0’ for normal or ‘1’ for anomaly) during the natural language
generation process. Along with the token, f also produces the associated probabilities p0 and p1
for the two possible outcomes. The uncertainty can be defined by the information entropy (Shannon,
1948) H(vj) = −

(
p0 log p0 + p1 log p1

)
of this binary distribution. Uncertainty exists if the entropy

is larger than a threshold δ, as expressed by the indicator function Utoken(vj) = 1{H(vj) > δ}.

(Option 2) Self-Consistency-Based Uncertainty Test: Given a video segment vj and in-
struction θ, we query the VLM f repeatedly for N trials, obtaining a set of responses
{f (1)(vj), f

(2)(vj), . . . , f
(N)(vj)}. If all responses are identical, the VLM is considered confident

on vj . Otherwise, the disagreement among responses indicates uncertainty. Formally, the uncertainty
can be expressed using an indicator function: Uself(vj) = 1{∃ i, l such that f (i)(vj) ̸= f (l)(vj)},
where Uself(vj) = 0 denotes no uncertainty and Uself(vj) = 1 denotes uncertainty.

Discussion: Limitations of Existing Solutions. Despite their popularity in LLM pipelines, these
options are either ineffective or impractical in modeling the reasoning-level uncertainty of VLM
in VAD. Firstly, Option 1 primarily serves for token generation tasks such as code generation and
question answering. It is inapplicable because such uncertainty applied in VAD only reflects the
uncertainty of claiming the existence of anomalies with the previously generated words in language
decoding. Secondly, for Option 2, repeatedly computing the generated response multiple times is
impractical for video data. Due to the huge amount of video segments, the computation increases
to N times of the original one, which makes the overhead too demanding. We verify this argument
in experiments (see Table 3) and find them inferior in discovering uncertainty. Thus, we propose a
novel measurement tailored for VAD that objectively reflects the reasoning-level uncertainty:

Reasoning-Level Uncertainty Test via Relevant Scenes: Given a target segment vj , we first
retrieve n relevant scenes {r1(vj), r2(vj), . . . , rn(vj)} based on certain relevance measurements.
We have anomaly scores for both the target and its relevant scenes from the VLM. If the predictions
across this set are consistent, the VLM is considered confident in vj; otherwise, disagreement
indicates reasoning-level uncertainty. Formally, the uncertainty is defined as:

Urelevant(vj) = 1{∃ i such that f(vj) ̸= f(ri(vj))}, (1)

where Urelevant(vj) = 0 denotes consistent reasoning across relevant scenes, while Urelevant(vj) = 1
flags reasoning-level uncertainty.

Our Insight. The proposed test for reasoning-level uncertainty will be both effective and practical.
Firstly, by relevant scenes, we mean those containing similar semantic meaning to a given vj . If
two inputs vi and vj encode semantically similar content, their predictions from f should agree.
Otherwise, the reasoning of f is unstable with respect to semantic equivalence, which represents
the existence of reasoning-level uncertainty. This is analogous to human reasoning (Tversky &
Kahneman, 1981): when people give different answers to rephrased but semantically equivalent
questions, it is a sign of weak belief strength from the psychology perspective. Secondly, such
computation does not introduce extra overhead because every segment will be input to f only once.
It can be easily implemented by reusing previously computed results. Thus, utilizing inconsistency
across semantically similar inputs is a good behavioral proxy for reasoning-level uncertainty.
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. . .

Temporal Window '"

. . .

Semantic Relevant Scenes %"

Semantic relevant scenes %" refers 
to scenes containing similar 
semantic meaning. For this video, 
they covers scenarios where other 
people holding guns and shooting

Temporal window '" contains 
temporally neighboring scenes 
that are part of the shooting event 
capture by segment &" 

. . . . . .

Time

A scenes &" 
captures a man 
shooting in a store

. . .. . . . . .

Anomaly

.

Normalcy

Anomaly

Figure 3: UNA uses the prediction consistency among relevant
scenes decided by temporal and semantic information to
decide if reasoning-level uncertainty exists.

Implementation. Under this idea, the
key computation in implementation
would be obtaining semantically sim-
ilar scenes, i.e., evidence scenes that
the reasoning of VLM should agree.
Two properties of video data stand out
when we consider the definition of rel-
evant scenes: (1) Videos are temporal
data where neighboring scenes usually
represent gradual changes in the same
underlying event. The semantic mean-
ing does not change much. (2) Videos
contain huge redundancy with repe-
titions or variations of the same se-
mantic patterns occurring across time.
Based on these properties, as shown
in Fig. 3 with an example video, we
would like to utilize temporal relevance and semantic relevance to obtain relevant scenes. In a
confined setting of the input V , a VLM should reason consistently across these semantically relevant
scenes if its knowledge can be well applied. Thus, we implement the test in Eq. (1) as follows:

Determining Reasoning-Level Uncertainty via Temporal Relevance. Since anomalies do not occur
in a single isolated frame but span a local temporal window, we focus on the temporal window
Wj = [vj−w−1

2
, · · · , vj−1, vj , vj+1, · · · , vj+w−1

2
] which includes w−1 neighboring scenes centered

around vj , where w is the window size (w is set small to ensure the semantic does not change). f is
deemed certain on vj if it outputs the same score for all segments. We denote it by:

U
(tem)
j = 1{∃ i, l ∈ such that ỹi ̸= ỹl}, (2)

where i, l ∈ {j− w−1
2 , · · · , j+ w−1

2 }, and ỹi and ỹj are the initial score given by the VLM. U (tem)
j =

1 indicates the existence of reasoning-level uncertainty in VLM, and U
(tem)
j = 0, otherwise.

Determining Reasoning-Level Uncertainty via Semantic Relevance. Another source of relevant
scenes is the scenes that are semantically similar but occur in different time steps, such as the
shooting performed by different people in Fig. 3. Since the setting in V is confined, if the knowledge
of f can lead to certain predictions, f shall produce consistent predictions when seeing similar scenes.
Based on this intuition, we use a pretrained vision feature extractor g to extract abstract semantic
features for each segment. The semantic similarity of any pair of segments vi and vj is computed by

cosine similarity sim(vi, vj) = cos
(

ei·ej
||ei||·||ej ||

)
, where ei and ej are the corresponding features for

vi and vj extracted by g. Given any vj , we compute its semantic similarity with all other segments
and retrieve the top K most similar scenes, denoted as a set Sj = [v

(1)
j , · · · , v(K)

j ]. Correspondingly,

we have a set of anomaly scores Ỹj from f for Sj , where Ỹj = {ỹ(1)j , · · · , ỹ(K)
j } is a set of K binary

variables. In practice, we set K to be linearly dependent on h, e.g., K = 0.15 · h. Because of such
setting, we use entropy to quantify the reasoning-level uncertainty: firstly, we transform Ỹj as a
normalized probability distribution pj = [p

(0)
j , p

(1)
j ] by

p
(0)
j =

1

K

K∑
k=1

1[ỹ
(k)
j = 0], p

(1)
j =

1

K

K∑
k=1

1[ỹ
(k)
j = 1], (3)

where p
(0)
j denotes the ratio of normal scenes in Sj judged by f and p

(1)
j denotes the ratio of

anomalous scenes. After that, we compute the corresponding information entropy, denoted as

H(pj) = −[p
(0)
j log p

(0)
j + p

(1)
j log p

(1)
j ]. (4)

We set a threshold δ (see details in Sec. A.4.2) to decide whether f is uncertain about vj denoted by

U
(sem)
j = 1{H(pj) > δ}, (5)

where U
(sem)
j = 1 indicates the existence of uncertainty due to a relatively large entropy value.

5
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3.3 UNCERTAINTY MITIGATION BY COLLECTIVE INTELLIGENCE

Uncertain 
Segment !!

New Response "!"

Final 
Prediction

#$!"

Original Response "!

%#$%&&%#$

%#$%&&%#$

%

Figure 4: UNA includes a cooperation-based collec-
tive intelligence to resolve uncertain predictions.

If for any given vj , we have either U (tem)
j = 1 or

U
(sem)
j = 1, UNA will reconsider the decision

made by f . The uncertainty arises because f is
provided with too little evidence, which cannot
self-correct reliably (we verify that by experi-
mental results in Table 4 with self-correction
mechanisms such as self-reflection (Liu et al.,
2024b) and skeleton-of-thoughts (Ning et al.,
2024) as baselines). Thus, UNA expands the evidence space to resolve such uncertainty by a collec-
tive intelligence strategy ensembling different reasoning paths from different perspectives. W.l.o.g.,
we illustrate this process with a team with 2 VLMs shown in Fig. 4. In this team, one agent fteammate

works as the teammate of f to review vj as well and output another language-based explanation
E′

j from its own knowledge. After that, fteammate takes in both opinions, i.e., Ej from f and E′
j

from fteammate along with the visual input vj to make a final judgment on the given scene. The used
prompt template is illustrated in Fig. 5. We denote the new score after mitigation as:

ỹ′j = fteammate(vj , Ej , E
′
j ; ξ), (6)

where ξ denotes the used prompt template in Fig. 5, and ỹ′j is the new prediction after mitigation.

Learner Prompt Template !

Please give your output strictly in the following format:
• New Analysis and Conclusion: [Please provide a new 

analysis with these two opinions and make a 
conclusion.]

• Output: [ONLY the integer class label]
Please ONLY reply according to this format. Don't give 
me any other words.

[Original Explanation !! from "]
[New Opinion !!" from "#$%&&%#$]

[Video Frames]

VLM !

Teammate

Uncertain 
Scene

Uncertain 
Scene

Final 
Prediction

Re-evaluation 
by TeammateYou are the model.

Model Description: You are designed to do binary 
classification. The input is a sequence of video frames for 
identifying whether there is an anomaly in the video. You 
need to output the class label, i.e., an integer in the set {0, 
1}. 0 represents normal video, and 1 represents abnormal 
video. Please follow the instruction below to make a 
conclusion.
Instruction: There are two analyses below, please 
conclude your answer to 'Is there any anomaly in the 
video?' in 'Yes, there is an anomaly' or 'No, there is no 
anomaly' by watching the video carefully and pondering 
whether these two opinions are consistent. 
Opinion 1: 
Opinion 2: 
Input:

Figure 5: The teammate in UNA uses this
prompt template to aggregate two reason-
ing paths to resolve uncertain scenarios.

Discussion. In Eq. (6), each agent follows its own reason-
ing trajectory during generation, so their outputs can be
regarded as complementary perspectives. Intuitively, this
mirrors collective intelligence (Woolley et al., 2010) in hu-
man decision-making: independent individuals may reach
different conclusions on ambiguous evidence, but their
combined judgment often yields a more reliable outcome.
From a Bayesian perspective, when we incorporate mul-
tiple independent evidence sources from different agents,
posterior uncertainty reduces. Please refer to Sec. A.2 in
Appendix for a detailed analysis on that if interested.

In addition to the cooperation-based collective intelligence
proposed in this paper, other candidates include voting-
based and debate-based ones. Compared to that, our mech-
anism is effective and cost-saving. Due to the space limit,
we will provide details of those two variants and the ad-
vantages of ours in Sec. A.3 in Appendix.

VAD by UNA. Based on the updated initial score, we
can obtain a new set of frame-level scores by smoothing
techniques developed by previous literature (discussed in
Sec. 3.1) and explanations for the test video V . Please refer to Alg. 1 in Appendix for the whole
procedure if interested. The new explanation will incorporate an uncertainty-aware viewpoint to
explain the occurrence of an anomaly, which is illustrated with a case study in Fig. 9.

4 EXPERIMENTS AND RESULTS

Given the methodology introduced above, we would like to further present an evaluation of UNA with
a focus on the following questions: (Q1) Does the proposed uncertainty-aware framework enhance
the effectiveness of VLMs for VAD? (Q2) Is the design of uncertainty identification and mitigation in
UNA reasonable? (Q3) How does the proposed design improve the explainability of VLMs for VAD?

4.1 EXPERIMENTAL SETTINGS

Datasets. Following pioneering VLM-based VAD studies (Zanella et al., 2024; Ye et al., 2025),
We evaluate UNA on two large-scale VAD datasets, UCF-Crime (Sultani et al., 2018) and XD-
Violence (Wu et al., 2020), as other VLM-based VAD studies (Zanella et al., 2024; Ye et al., 2025)
do. Details of the datasets are in Sec. A.4.1 in Appendix.
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Table 1: Comparison of VAD
performance on UCF-Crime.

Method AUC (%)
Non-explainable VAD Methods
Chen et al. 86.83
CLAWS 83.03
CLIP-TSA 87.58
DYANNET 84.50
GCL 79.84
GCN 82.12
GODS 70.46
MGFN 86.98
MIST 82.30
MSL 85.62
OVVAD 86.40
RTFM 84.30
S3R 85.99
SSRL 87.43
Sultani et al. 77.92
TPWNG 87.79
Tur el al. 66.85
VadCLIP 88.02
Wu et al. 82.44

Explainable VAD Methods
Holmes-VAD 84.61
LAVAD 80.28
LLAVA-1.5 72.84
VADor 85.90
VERA 86.55
ZS CLIP 53.16
ZS IMAGEBIND-I 53.65
ZS IMAGEBIND-V 55.78
UNA 88.27

Metrics. We mainly adopt the Area Under the Curve (AUC)
frame-level Receiver Operating Characteristic (ROC) curve for VAD
performance evaluation, following representative VLM for VAD
works (Zanella et al., 2024; Zhang et al., 2024a; Ye et al., 2025).

Implementation of UNA. We use open-source VLMs from the In-
ternVL (Chen et al., 2024b) and Qwen-VL (Wang et al., 2024) fam-
ilies to build UNA. We do not conduct any fine-tuning on the used
models and adopt prompts trained from verbalized learning as (Ye
et al., 2025) does. Due to the space limit, please refer to Sec. A.4.2 in
Appendix for the setting of other hyperparameters, including window
size w, the number of similar scenes K, vision feature extractor g,
and the entropy threshold δ.

Baselines. In this paper, we follow the latest literature to classify used
baselines into two categories: non-explainable approaches including
BODS (Wang & Cherian, 2019), Chen et al. (Chen et al., 2024a),
CLAWS (Zaheer et al., 2020), CLIP-TSA (Joo et al., 2023), DYAN-
NET (Thakare et al., 2023b), GCL (Zaheer et al., 2022), GCN (Zhong
et al., 2019), GODS (Wang & Cherian, 2019), Hasan et al. (Hasan
et al., 2016), Lu et al. (Lu et al., 2013), MGFN (Chen et al., 2023),
MIST (Feng et al., 2021), MSL (Li et al., 2022b), OVVAD (Wu
et al., 2024a), RareAnom (Thakare et al., 2023a), RTFM (Tian et al.,
2021), S3R (Wu et al., 2022), SSRL (Li et al., 2022a), Sultani
et al. (Sultani et al., 2018), TPWNG (Yang et al., 2024b), Tur el
al. (Tur et al., 2023), VadCLIP (Wu et al., 2024b), and Wu et al. (Wu
et al., 2020), and explainable ones including Holmes-VAD (Zhang
et al., 2024a), LAVAD (Zanella et al., 2024), LLAVA-1.5 (Liu et al.,
2024a), VADor (Lv & Sun, 2024), VERA (Ye et al., 2025), Zero-Shot
CLIP (Zanella et al., 2024), and Zero-Shot ImageBind (Girdhar et al.,
2023). Non-explainable ones can only output numerical prediction,
while explainable ones can generate predictions and explanations.

Comparison Setting. In this paper, we focus on the most challenging
VAD setting for VLMs, where no instruction tuning datasets are
available for VLMs for fine-tuning. Consequently, all VLM-based
baselines are evaluated without fine-tuning.

4.2 COMPARISON WITH STATE-OF-THE-ART METHODS Table 2: Comparison of VAD
performance on XD-Violence.

Method AUC (%)
Non-Explainable VAD Methods
BODS 57.32
GODS 61.56
Hasan et al. 50.32
Lu et al. 53.56
RareAnom 68.33

Explainable VAD Methods
LAVAD 85.36
LLAVA-1.5 79.62
ZS CLIP 38.21
ZS IMAGEBIND-I 58.81
ZS IMAGEBIND-V 55.06
VERA 88.26
UNA 91.11

We present the results of comparison with state-of-the-art VAD ap-
proaches first to address (Q1). First, on the challenging UCF-Crime
benchmark, with an extra consideration on the uncertain scenarios
in VAD reasoning, UNA achieves the highest AUC among all VAD
methods on UCF-Crime, as Table 1 shows. This is impressive be-
cause: (1) UNA makes frozen VLMs surpass the performance of the
best task-specific non-explainable VAD method for the first time
(88.27% vs 88.02%), which proves the great potential of VLMs
applied in VAD. (2) UNA obtains better performance compared to
other VLM-based methods by having an extra teammate to tackle
the reasoning-level uncertainty in the base VLM model, which is
the main difference between UNA and others. This validates the
necessity of an uncertainty-aware perspective in VLMs for VAD.

This excellent performance is also validated in Table 2 for another
benchmark XD-Violence (note that we report average precision
results for XD-Violence in Sec. A.5.1 in Appendix). To illustrate, UNA further improves the
performance of explainable VAD methods to a 91.11% AUC in XD-Violence, which improves 2.85%
compared to the second best. To conclude, an uncertainty-aware framework will highly enhance the
effectiveness of VLMs for VAD.
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Table 3: Influence of uncertainty identification.

Operation AUC (%)
InternVL2-8B (Base Model f ) 86.33
+ Option 1 (Token Probability) 86.58 (+0.25)
+ Option 2 (Self-Consistency) 87.04 (+0.71)
+ Uncertainty via Temporal Relevance 87.15 (+0.82)
+ Uncertainty via Semantic Relevance 87.31 (+0.98)
+ Uncertainty via Eq. (2) and Eq. (5) 87.57 (+1.24)

Table 4: Influence of uncertainty mitigation.

Operation AUC (%)
InternVL2-8B 86.33
+ Self-Reflection 85.03 (-1.30)
+ Skeleton-of-Thoughts 85.00 (-1.33)
+ Voting 86.89 (+0.56)
+ Debate 87.00 (+0.67)
+ Cooperation by Eq. (6) 87.57 (+1.24)

4.3 ABLATION STUDIES FOR METHODOLOGY DESIGN

We now investigate the reasonableness of the design of UNA to address (Q2) by ablation studies.
W.l.o.g., we conduct experiments on the UCF-Crime dataset, using InternVL2-8B as f in UNA.

Uncertainty Identification Design. We first validate the design of uncertainty identification. As
Table 3 (mitigation is the same for all variants) shows, if we replace the uncertainty test with Option
1, the increase of AUC in UCF-Crime is only 0.25%, which indicates the ineffectiveness of token
probability in determining uncertain scenarios. Option 2 can improve the result, but the extra compute
(N = 3) is costly. Meanwhile, we find that individual use of the proposed temporal and semantic
relevance can improve the AUC more with absolute values of 0.82% and 0.98%, respectively, which is
better than the baselines. When combined, they yield a 1.24% performance improvement, indicating
that they are complementary and mutually beneficial for quantifying the reasoning-level uncertainty.

Uncertainty Mitigation Design. We now verify the proposed design for uncertainty mitigation, as
shown in Table 4. The baselines are self-improving mechanisms, including self-reflection (Liu et al.,
2024b) and skeleton-of-thoughts (Ning et al., 2024), which prompts the base model f to think again
by itself when uncertainty is identified. However, they only make VAD performance worse for only
using one perspective. On the contrary, when we introduce collective intelligence by any mechanism
discussed in Sec. 3.3, the VAD performance will increase. These results validate the necessity of
introducing collective intelligence in resolving reasoning-level uncertainty in an individual VLM.
Furthermore, because of the ensemble of different reasoning paths, the proposed cooperation-based
collective intelligence improves the performance most, which verifies the reasonableness of UNA.

InternVL2-8B InternVL2.5-8B InternVL3-8B Qwen2-VL-7B
Teammate

86.0

86.5

87.0

87.5

AU
C 

(%
)

86.46

87.57

87.11

86.66

w/o Una

Figure 6: Influence of team-
mate architectures in UNA.

Selection of Teammate in Cooperation. After that, we investigate
the influence of the teammate architecture in UNA. As Fig. 6 shows,
first, using f itself as the teammate improves slightly because uncer-
tainty cannot be self-corrected. Meanwhile, having a different VLM
as the teammate yields better improvement. These results indicate
the benefit brought by collective intelligence – a different perspec-
tive helps decrease reasoning-level uncertainty in f . Secondly, the
mitigation ability of the teammate is related to its reasoning ability
in VAD. Qwen2-VL-7B, InternVL-3, and InternVL-2.5 are weak
to strong reasoning models for VAD (shown in Fig. 7), and when we adopt them as fteammate,
the performance improves the most with InternVL-2.5 and the less with Qwen2-VL-7B. Thus, the
stronger reasoning ability of the teammate in VAD, the better it can improve f .

InternVL2-8B InternVL2.5-8B InternVL3-8B Qwen2-VL-7B
80

82

84

86

88

AU
C 

(%
) 86.33

85.22

83.72

82.26

87.57 87.71 88.27
87.09

w/o Una w/ Una

Figure 7: UNA is generalizable across
different base models.

Generalizability across Different Architectures. We
further test the generalizability on the base model f with
different architectures. From Fig. 7, we find that in gen-
eral using a single VLM usually has unsatisfactory perfor-
mance due to its poor reasoning, which is from its limited
knowledge in VAD. However, their limitation can be tack-
led by the employment of UNA. For example, when f is
InternVL3-8B, the collective intelligence in UNA allows it
to resort to other VLM agent to handle uncertainty, making
the AUC improve to 88.27% (the SOTA performance re-
ported in Table 1) from 83.72%. In addition, the proposed
UNA framework is generalizable across different models: when we change the base model from
the InternVL family to Qwen2-VL-7B, UNA improves the AUC to 87.09% from 82.26%. Such an
improvement in AUC is quite impressive (+4.83%), and it is comparable to that of InternVL3-8B.
These results in Fig. 7 prove that an uncertainty-aware mechanism is essential for VLM in VAD.
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Prompt 1 Prompt 2 Prompt 3
82
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87.57

86.45 86.06

w/o Una w/ Una

Figure 8: UNA is generalizable
across different prompts used by
the base model.

Generalizability across Different Prompts. UNA is insen-
sitive to prompt variations. W.l.o.g., we test UNA with two
different prompts obtained from VERA (Ye et al., 2025), us-
ing InternVL2-8B as f . They make f have an 83.29% and
83.49% in AUC, respectively, indicating a gap of 3% with the
best one. After applying UNA on f with these variants, the
performance on UCF-Crime increases to 86.45% and 86.06%,
respectively, which narrows the gap with the best one into 1.5%
in AUC. These results show that UNA can help achieve robust
improvement for an individual VLM with different prompts.

Table 5: UNA can improve by scal-
ing up teammates.

# VLMs 2 3 4
AUC (%) 88.27 88.81 88.72

Discussion: Scaling and Computational Cost. We further
use InternVL3-8B as f and add InternVL2-8B, InternVL3-8B,
and Qwen2-VL-7B gradually to build a team from 2 VLMs to
4 VLMs. We average the re-evaluation score with 3 or more
agents for the final prediction. The results in Table 5 show that
increasing the number of models consistently improves AUC, demonstrating that scaling enhances
performance. While the gains converge as more agents are added, UNA achieves a stably high level
of AUC, confirming that collaborative scaling is effective.

We understand that computational cost may be a concern in specific scenarios. In the default setting
with 2 VLMs, in the worst case, we need twice the computation time given the same resource. In our
hardware environment, the FPS is 2.52 (GFLOPs are 3.2×103) for a single uncertain segment, which
is twice (a half) that of a single agent, with running time reported in Sec A.4.4. A future direction to
improve efficiency is token reduction (Zhang et al.) to send multiple requests in parallel.

4.4 QUALITATIVE RESULTS AND CASE STUDIES

Abnormal Event: The person enters the house for a steal 

Teammate’s Prediction: Abnormal
Teammate’s Explanation: The person in the video is not in 
their typical position or engaging in activities that are not 
consistent with their usual behavior. They are seen walking on 
the sidewalk in a manner that seems unusual.

Final Decision after Re-evaluation: Abnormal
Final Explanation: The person in the video is walking in a 
manner that seems unusual, which is consistent with Opinion 2 
(Teammate’s Opinion). There are no signs of a security breach 
or unauthorized access, but the person's behavior is not typical. 

Base Model’s Uncertain Reasoning: ! is suspicious that “the 
individuals appear to be engaged in suspicious activities near a 
vehicle, possibly attempting to break into a car or a building” 
but finds “there is no unusual activity or interaction between the 
individuals and the car that indicates suspicious behavior”. 
Because of  that, it concludes that it’s normal.

Burglary Event Description: A person parks his car near a building and checks if the building is guarded. After that, he goes 
back to the car and decides to break into the building and steal.  

... ...

Figure 9: UNA utilizes an alternative viewpoint from the teammate to
mitigate the reasoning-level uncertainty.

W.l.o.g., we now answer
(Q3) with a showcase of
how UNA helps improve
the base model in un-
certain cases with an in-
stance shown in Fig. 9 from
a long, difficult burglary
video (Burglary076_x264)
in UCF-Crime with a mix of
normal and abnormal events
(Please refer to Sec. A.5.2
for more details). The video
looks normal at first when a person parks the car on a lawn and waits at the front door of the building,
but he later decides to break into the building to steal. The base model f exhibits uncertainty through-
out the prediction process. Due to the ambiguity, the base model f (InternVL2-8B) wrongly pays
attention to the interaction between the person and the car and thinks it is normal. UNA identifies un-
certainty in this reasoning via Eq. (5). Meanwhile, in UNA the teammate (InternVL2.5-8B) provides
another opinion by focusing on the action of walking into the building of that person. Finally, UNA
corrects the uncertain prediction by the cooperation mechanism in Eq. (6) and outputs an accurate,
affirmative explanation that it is an anomaly for his abnormal walking. This validates that collective
intelligence is necessary in improving the explainability of VLM in VAD.

5 CONCLUDING REMARKS

This paper proposes a new uncertainty-aware perspective for employing VLMs for VAD. Specifically,
we introduce an UNA framework with uncertainty identification and mitigation to reduce the potential
errors caused by reasoning-level uncertainty: (1) UNA identifies reasoning-level uncertainty in VLM
for VAD via inspecting its prediction consistency among relevant scenes from temporal and semantic
information. (2) UNA mitigates the uncertain cases in VAD by relying on collective intelligence
obtained from VLM cooperation. Experimental results validate the necessity of modeling reasoning-
level uncertainty in VAD and the effectiveness of introducing collective intelligence.

9
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A APPENDIX

A.1 PSEUDOCODES OF UNA

Alg. 1 shows the pseudocodes of UNA. Firstly, as previous methods do, UNA generates the segment-
level scores by inputting each segment into the deployed base model f . After that, UNA conducts the
reasoning-level uncertainty tests on each segment vj with the temporal relevance and the semantic
relevance. If an uncertain segment is found, UNA will introduce a teammate to address the uncertainty.
Lastly, the rectified initial scores are put to a smoothing technique to output the desired frame-level
anomaly scores for all frames.

Algorithm 1: Uncertainty-aware VLMs for VAD by UNA

Input: A set of video segments {vj}hj=1, a VLM model f employed in VAD, and the teammate
fteammate.

# Obtaining Segment-Level Initial Scores
for j ≤ h do

Input vj into f to compute an initial anomaly score ỹj
end for
# Uncertainty-Aware VAD
for j ≤ h do

if f is uncertain on vj decided by the reasoning-level uncertainty test by Eq. (2) or Eq. (5) then
Introduce a teammate fteammate to resolve the uncertainty by Eq. (6)

end if
# Obtaining Frame-Level Scores
Apply the smoothing technique by (Ye et al., 2025) to refine the new coarse-grained scores into

the fine-grained scores Ŷ
Return Ŷ

A.2 THEORETICAL ANALYSIS ON THE EFFECTIVENESS OF UNA

Let Y denote the true binary label of a segment and let E1 be the evidence (explanation/perspective)
provided by the base model f . By Bayes’ rule the posterior given E1 is

P (Y | E1) =
P (E1 | Y )P (Y )

P (E1)
. (7)

If we incorporate an additional independent perspective E2 from the teammate fteammate. Since they
generate the evidence (explanation) independently, we can assume conditional independence of the
evidence given Y , the joint posterior is

P (Y | E1, E2) ∝ P (E1 | Y )P (E2 | Y )P (Y ). (8)

Because adding an independent likelihood term concentrates the posterior, the posterior uncertainty
cannot increase. In terms of variance, we have

Var
[
Y | E1, E2

]
≤ Var

[
Y | E1

]
, (9)

with equality iff E2 is conditionally independent of Y given E1 (i.e., E2 carries no additional
information about Y beyond E1). Equivalently, in information-theoretic terms,

H
(
Y | E1, E2

)
≤ H

(
Y | E1

)
, (10)

since conditioning on more informative, independent data reduces the conditional entropy H(·).
Thus, adding an independent teammate reduces posterior uncertainty.

A.3 DISCUSSION ON MITIGATION DESIGN

We illustrate the collective intelligence mechanisms implemented by voting, debate, cooperation in
Fig. 10. The details of voting-based one and debate-based one are as follows:

Variant 1: Voting-Based Collective Intelligence. In this variant, we have two additional VLMs
fvoter2 and fvoter3 applied in the uncertain case. When UNA detects uncertainty in f for a given
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Figure 10: We can implement collective intelligence mechanisms with voting, debate, and cooperation.
The proposed cooperation-based one is more suitable for VLM-based VAD because it allows different
perspectives to be fused and requires less compute.

segment vj , it will feed vj into each VLM and it makes a decision independently on whether vj
contains anomalies. The majority class predicted by them is used as the final prediction for the
uncertain case. The prompt used by each voter is detailed in Sec. A.4.5.

Variant 2: Debate-Based Collective Intelligence. In this variant, one VLM-based agent serves as a
debater fdebate against f ’s opinion when disagreement happens for detected uncertain scenarios, and
another agent serves as a moderator fmoderate to judge which agent is correct. In this variant, when
two opinions are presented to the moderator, the moderator makes the final decision. This is similar
to the method by (Liang et al., 2024). The prompt used by the moderator is detailed in Sec. A.4.5.

Discussion. The proposed cooperation-based one detailed in Sec. 3.3 outperforms these variants
for VLMs in VAD as follows. First, if we apply a voting-based one on VAD, it simply asks agents
to conduct VAD independently and aggregate the results with a majority vote. However, such
collaboration lacks information flow between different types of world knowledge as UNA does.
Thus, the reasoning-level uncertainty cannot be effectively relieved by voting. Second, debate-based
one involves a moderator which requires additional computation. It requires an extra agent to
fuse different responses, which costs additional compute. Compared to that, the cooperation-based
collective intelligence amends reasoning-level uncertainty by utilizing only one teammate to perceive
two views and reduce errors made by the single agent f in uncertain cases. This analysis is verified
by the ablation study results we previously showed in Table 3.

A.4 EXPERIMENT AND IMPLEMENTATION DETAILS

A.4.1 DATASET DETAILS

We conduct experiments on two large-scale VAD datasets: (1) UCF-Crime (Sultani et al., 2018) and
(2) XD-Violence (Wu et al., 2020). The details are as follows:

• UCF-Crime dataset is collected from real-world surveillance videos (128-hour long in total),
covering crime-related anomalies including abuse, arrest, arson, assault, burglary, explosion,
fighting, road accident, robbery, shoplifting, shooting, stealing, and vandalism. The training set
has 1610 videos (810 abnormal ones and 800 normal ones), while the test set has 290 videos (140
abnormal ones and 150 normal ones). The total number of test frames is over 1 million (1,111,808),
and abnormal frames account for 7.92%. The average duration of a test video is 2.13 minutes,
which is relatively long compared to common video datasets and serves as an important benchmark.

• XD-Violence is another representative large-scale (217-hour long in total) VAD dataset with 6
anomaly categories, i.e., abuse, car accident, explosion, fighting, riot, and shooting, which defines
anomalous events as the ones related to violence. This dataset is collected from movies and
YouTube videos. It has 3954 training videos and 800 test videos (500 abnormal ones and 300
normal ones). The total number of test frames is over 2 million (2,335,801), and abnormal frames
account for 23.07%. The average duration of a test video is 1.62 minutes.

A.4.2 HYPERPARAMETER SETTING

During inference, following (Zanella et al., 2024; Ye et al., 2025), the interval between each segment
center d is 16 frames, the number of sampled frames is κ = 8 for each segment, and each segment
focuses on a 10-second glimpse around the center. When obtaining similar scenes with temporal
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dynamics, the window size w = 5. When computing the semantic similarity, we use ImageBind as
the feature extractor g and the number of semantically similar scenes K depends on the total number
of segments h in each test video V . We set K to (0.15 · h). The threshold δ is set according to the
distribution of entropy values across all segments, i.e., [H(p1), · · · , H(ph)], and can be set to the
ς-th percentile of this distribution. In this way, we will consider top ς% video segments in the entropy
list as the segments f is uncertain about. By default, we set δ as the median of the entropy value list.

A.4.3 SENSITIVITY TEST FOR HYPERPARAMETERS

For key hyperparameters including w, K, and δ, w.l.o.g., we conduct sensitivity tests on them on
the UCF-Crime dataset, with InternVL3-8B as f and InternVL2-8B as fteammate. The results are as
follows, with other hyperparameters fixed when alternating one.

Sensitivity Test for w. From Table 6, the performance of UNA is stable with a varying w from 3
to 11. This result shows that the VAD performance is insensitive to w. Thus, we can set w = 5 in
general cases.

Table 6: Influence of the window size w on AUC (%).

w 3 5 7 9 11
AUC 88.37 88.27 88.28 88.24 88.16

Sensitivity Test for K. Table 7 shows that if we do not use semantically similar scenes (i.e., setting
K = 0), the performance will drop to 84.57%, which demonstrates the necessity of introducing
scenes with similar semantic meaning for resolving uncertain scenarios. Meanwhile, when K is
alternated in a reasonable range around 0.05 · h to 0.15 · h, the performance will be stable and kept
high. If we set K to a relatively huge number 0.20 · h, the performance will drop slightly. Thus,
selecting 0.15 · h for K is generally a good choice.

Table 7: Influence of the number of appearance-similar scenes K on AUC (%).

K 0 0.05 ·h 0.10 ·h 0.15 ·h 0.20 ·h
AUC 84.57 88.14 88.30 87.97 86.54

Sensitivity Test for δ. The choice of δ depends on all entropy values obtained from each segment.
We alternate δ as the 10th percentile, the 30th percentile, the 50th percentile (Median), the 70th
percentile, and the 90th percentile of the given entropy values. The results in Table 8 show that when
δ is a relatively small number (less than the median), the performance will have a relatively high
AUC. However, when it becomes relatively large which makes scenes with similar semantics hardly
included, the AUC will drop dramatically to 84.58%. Thus, including semantically similar scenes is
necessary, and setting δ to the median of the entropy list is a generally good practice.

Table 8: Influence of the threshold δ on AUC (%).

δ 10th percentile 30th percentile Median 70th percentile 90th percentile
AUC 87.27 87.89 88.27 85.80 84.58

A.4.4 RUNNING TIME

This paper requires deploying vision-language models for generating responses given certain prompts
(detailed in Sec. A.4.5). Specifically, for a given segment, the proposed framework requests L queries
in total to the multi-agent collaboration system with L agents. In our hardware environment with
NVIDIA A6000 GPUs, a query costs around 4.29 seconds for a model from the InternVL family to
respond. As a result, for a single VLM-based system, in a representative dataset like UCF-Crime
which costs an average of 239 queries per video, the average inference time per video is 1027s.

A.4.5 PROMPTS USED IN INFERENCE

Prompt for Voting-Based Collective Intelligence. In the voting-based collaboration, each agent
performs the same operation for predicting the existence of an anomaly in the same segment. Thus,
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they will use the same prompt template as follows. We follow (Ye et al., 2025) to prompt all voters
for video anomaly detection for this prompt template has been found to be successfully useful for
VLMs in VAD:

You are the model.

** Model Description: **

You are designed to do binary classification. The input is a
sequence of video frames for identifying whether there is an
anomaly in the video; you need to output the class label, i.e.,
an integer in the set 0, 1. 0 represents normal video, and 1
represents abnormal video. Please answer the prompt questions.

** Prompt Questions: **

Answer the following questions based on what you see from the
video frames and provide an explanation in one sentence.

[Guiding Question]

Based on the analysis above, please conclude your answer to ‘Is
there any anomaly in the video?’ in ‘Yes, there is an anomaly’ or
‘No, there is no anomaly’.

** Input: **
[Visual Data]

Please give your output strictly in the following format:
Answers to Prompt Questions:
[Provide your analysis by answering the questions listed in Prompt
Questions.]
Output:
[ONLY the integer class label; make necessary assumptions if
needed]
Please ONLY reply according to this format, don’t give me any
other words.

With this template used in the implementation, the corresponding input video segment will replace
the [Visual Data] block, and the guiding question block [Guiding Questions] will be replaced by the
ones learned from the verbalized learning mechanism in VERA (Ye et al., 2025). For example, the
one learned by the base model f with InternVL2 is “1. Are there any people in the video who are not
in their typical positions or engaging in activities that are not consistent with their usual behavior? 2.
Are there any vehicles in the video that are not in their typical positions or being used in a way that is
not consistent with their usual function? 3. Are there any objects in the video that are not in their
typical positions or being used in a way that is not consistent with their usual function? 4. Is there
any visible damage or unusual movement in the video that indicates an anomaly? 5. Are there any
unusual sounds or noises in the video that suggest an anomaly?”

Prompt for Debate-Based Collective Intelligence. In this mechanism, the base model and the
opponent use the same prompt shown in the voting-based collaboration for making their own
predictions. We need to introduce a new prompt for the moderator, which is as follows:

You are the moderator.

** Moderator Descriptions: **

You are designed to do binary classification on whether an anomaly
exists in the given video input. The input is a sequence of video
frames for identifying whether there is an anomaly in the video.
You need to output the class label, i.e., an integer in the set
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0, 1. 0 represents normal video, and 1 represents abnormal video.
Please follow the instruction below to make a conclusion.

** Instruction: **

There are two debaters involved in debating whether an anomaly
exists. They will present their analyses and discuss their
perspectives. Please evaluate both sides’ analyses and decide
which one is correct. Please conclude your answer to ‘Is there
any anomaly in the video?’ by what you see in the video.

** Debater 1’s Argument: **
[Debater’s Analysis]

** Debater 2’s Argument: **
[Debater’s Analysis]

** Input: **
[Visual Data]

Please give your output strictly in the following format:
New Analysis and Conclusion:
[Please provide a new analysis with these two opinions and make a
conclusion.]
Output:
[ONLY the integer class label]
Please ONLY reply according to this format, don’t give me any
other words.

During the implementation of this mechanism, the argument held by each agent in the debate will be
put into the blocks of [Debater’s Analysis].

A.5 ADDITIONAL RESULTS

A.5.1 COMPARISON TO THE STATE-OF-THE-ART METHODS ON XD-VIOLENCE MEASURED
BY AP

Table 9: Comparison of perfor-
mance on XD-Violence mea-
sured by AP (%). † indicates
VAD methods are trained on
entire training frames.

Method AUC
Non-Explainable VAD Methods
Wu et al.† 78.64
OVVAD 66.53
RTFM† 77.81
MSL† 78.58
MGFN† 80.11
CLIP-TSA† 82.19

Explainable VAD Methods
Holmes-VAD† 84.96
LAVAD 62.01
ZS CLIP 17.83
ZS IMAGEBIND-I 27.25
ZS IMAGEBIND-V 25.36
LLAVA-1.5 50.26
VERA 70.54
UNA 77.13

We further show the comparison results measured by average preci-
sion (AP), i.e., the area under the frame-level precision-recall curve,
on XD-Violence in Table 9. In case we may wonder, the gap on
AP by UNA and other methods like Holmes-VAD and CLIP-TSA
is understandable because they use full training data to train the
model, as pointed out by (Ye et al., 2025; Wu et al., 2024a). In a
fair comparison setting where models are not trained with full data,
from Table 9 we find that UNA has a 6.59% increase on AP com-
pared to VERA, which again demonstrates that UNA can improve
VLM-based methods with an uncertainty-aware mechanism.

A.5.2 CASE STUDY DETAILS

We would like to provide more details on the case study we have
in Sec. 4.4. We showcase another mitigation case with a normal
segment in the video, as Fig. 11 illustrates. In the beginning, the
video looks normal at first when a person parks the car on a lawn
and waits at the front door of the building. Due to the limitation
of the prompt, despite finding no evidence for an anomaly, the
base model f (InternVL2-8B) wrongly concludes that the scene
is abnormal. Such uncertainty is found by UNA, and it introduces
the perspective of a teammate (InternVL2.5-8B) to re-evaluate and
output a final prediction. Since both opinions agree that no unusual
activities occur, the final prediction is rectified as normal.
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Normal Event: : A car is parked near a building

Teammate’s Prediction: Normal
Teammate’s Explanation: : It’s normal because “there are no 
people in the video, and the vehicles and objects are in their 
typical positions and being used in their usual ways.”

Base Model’s Uncertain Reasoning: The base model finds that 
“no unusual activities or unexpected events are occurring in the 
video”. Despite that, in the end, the base model predicts that 
this is an anomalous scene, which counters its reasoning and is 
inconsistent with its prediction around the temporal window. 

Burglary Event Description: A person parks his car near a building and checks if the building is guarded. After that, he goes 
back to the car and decides to break into the building and steal.  

... ...

Final Decision after Re-evaluation: Normal
Final Explanation: Both opinions agree that there are no 
unusual activities or unexpected events occurring in the video. 
The car is parked in a typical location and at a typical time. 
There is no person walking or interacting with the car. The 
environment and surroundings appear normal. There are no 
signs of a security breach or unauthorized access in the video.

Figure 11: Another exemplary vidoe segment demonstrating how UNA utilizes an alternative viewpoint
from the teammate to mitigate the reasoning-level uncertainty.

We also want to show the effectiveness of UNA in obtaining relevant scenes that can help identify
whether the base model is uncertain about its prediction with a certain scene. As shown in Fig. 12,
w.l.o.g., we take the second scene in Fig. 9 as an example for demonstration. As seen from the
left-hand side, the relevant scenes obtained from temporal relevance are closely related to the main
scene, which captures the same event that a person is walking from the car and trying to break into a
building with a slight change of temporal window. As for the right-hand side, it shows the scenes
relevant to the main scene measured by semantic similarity. These scenes do not generally occur
close to the main scene in the time domain and share appearance similarities such as a man showing
up near the door. By closely observing these scenes, we can find that they are closely related to
the main scene, and they will help us judge if the base model is confident because the base model
shall maintain consistent predictions among them as they depict similar activities or events. Thus,
the design in UNA for obtaining relevant scenes by considering temporal dynamics and semantic
similarity will allow us to find useful relevant scenes determining whether the base model has any
uncertainty.

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

Scenes Obtained from Temporal Relevance Scenes Obtained from Semantic Relevance

Scene Description: A person is walking from the car 
and attempting to break into a building

1

2

3

4

1

2

3

4

Figure 12: We take “Burglary076_x264” from UCF-Crime as an example to showcase the relevant
scenes obtained from UNA via temporal and semantic relevance.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

A.6 THE USE OF LARGE LANGUAGE MODELS (LLMS)

Large language models were used solely for minor polishing during manuscript preparation. They
were not used for research ideation, retrieval and discovery, methodology design, experiment imple-
mentation, or result analysis.
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