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Abstract001

Large language models (LLMs) have achieved002
remarkable multi-step reasoning capabilities003
across various domains. However, LLMs still004
face distinct challenges in complex logical rea-005
soning, as (1) proof-finding requires systematic006
exploration and the maintenance of logical co-007
herence and (2) searching the right combina-008
tion of premises at each reasoning step is inher-009
ently challenging in tasks with large premise010
space. To address this, we propose LogicTree,011
an inference-time modular framework employ-012
ing algorithm-guided search to automate struc-013
tured proof exploration and ensure logical co-014
herence. Advancing beyond tree-of-thought015
(ToT), we incorporate caching mechanism into016
LogicTree to enable effective utilization of his-017
torical knowledge, preventing reasoning stag-018
nation and minimizing redundancy. Further-019
more, we address the combinatorial complexity020
of premise search by decomposing it into a021
linear process. The refined premise selection022
restricts subsequent inference to at most one023
derivation per step, enhancing reasoning granu-024
larity and enforcing strict step-by-step reason-025
ing. Additionally, we introduce two LLM-free026
heuristics for premise prioritization, enabling027
strategic proof search. Experimental results028
on five datasets demonstrate that LogicTree029
optimally scales inference-time computation030
to achieve higher proof accuracy, surpassing031
chain-of-thought (CoT) and ToT with average032
gains of 23.6% and 12.5%, respectively, on033
GPT-4o. Moreover, within LogicTree, GPT-4o034
outperforms o3-mini by 7.6% on average.035

1 Introduction036

Recent advances in large language models (LLMs),037

such as OpenAI’s o1/o3 series (OpenAI, 2024a,038

2025), DeepSeek-R1 (Guo et al., 2025) and Grok-039

3 (xAI, 2025), have demonstrated remarkable rea-040

soning capabilities in domains like code genera-041

tion and complex mathematical problem-solving.042

However, logical reasoning (Dowden, 2020; Clark043

et al., 2020) presents unique challenges that differ- 044

entiate it from other reasoning domains (Liu et al., 045

2025; Xu et al., 2025). It demands rigorous verifi- 046

cation of a hypothesis through deliberate reasoning 047

over a set of premises consisting of facts and rules, 048

where two difficulties may arise. First, in complex 049

problems, the precise proof path is not immedi- 050

ately apparent. Proof discovery requires systematic 051

and extensive exploration (Saparov and He, 2023). 052

Second, each reasoning step involves selecting rel- 053

evant premises and inferring based on them. In a 054

large premise space, difficulty in identifying the 055

right fact-rule combination directly affects infer- 056

ence accuracy (Kazemi et al., 2023). 057

To tackle these challenges, some studies use an it- 058

erative framework to build longer reasoning chains 059

for solving complex problems (Creswell et al., 060

2023). Within the framework, they adopt a mod- 061

ular approach to decompose individual reasoning 062

steps (Khot et al., 2023), separating premise se- 063

lection from inference and assigning each to spe- 064

cialized LLM modules for improved accuracy (Xu 065

et al., 2024b; Zhang et al., 2024; Sun et al., 2024). 066

Further research integrates LLM modules into tree 067

structures, enabling systematic proof exploration 068

(Kazemi et al., 2023; Yao et al., 2023; Wang et al., 069

2025). Although these methods have achieved no- 070

table advancements, there are still limitations: 071

(1) Difficulties in maintaining logical coherence 072

and in effectively utilizing derived knowledge ob- 073

struct progressive proof construction. In some it- 074

erative approaches (Creswell et al., 2023; Zhang 075

et al., 2024), reasoning steps are not required to 076

build directly on prior derivations, which may dis- 077

rupt logical coherence, hinder deep reasoning and 078

cause redundancy (Wang et al., 2025). While tree- 079

based method (Yao et al., 2023) mitigates this 080

issue, it lacks mechanisms to share derived knowl- 081

edge across branches, potentially leading to reason- 082

ing stagnation (Sun et al., 2024). 083

(2) Combinatorial complexity hinders precise 084
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Figure 1: The overview of LogicTree: (a) Fact (root) ranking; (b) Tree-by-tree search for proof exploration: (b-1)
Proof exploration from the top-ranked fact (Fact3) which has the highest cumulative connectivity with rules, (b-2)
Continued proof exploration from the next ranked fact (Fact1); (c) Construction of proof chain. The framework
consists of (i) two caches: Fact Repository (Fact Repo) and Derivation HashMap; (ii) four LLM-based modules:
Forward Selection, Backward Selection, Derivation, Verification. Additionally, we leverage spaCy for fact and
rule ranking. Within a tree: a blue oval represents a given fact; a green rectangle represents a rule; a purple oval
represents a derived fact. LogicTree on an example from ProofWriter (Tafjord et al., 2020) is shown in Figure 5.

premise selection which is essential for accurate085

stepwise reasoning. At each step, the model must086

identify the right combination of facts and rules087

from premise space for subsequent inference. The088

combinatorial search increases the risk of impre-089

cise selection, which results in failed or inaccurate090

inference (Kazemi et al., 2023; Liu et al., 2024).091

(3) Employing LLMs for proof planning (Wang092

et al., 2023a) may be ineffective for complex logi-093

cal reasoning, as such tasks require extensive and094

adaptive exploration. This often renders LLMs’095

planning unreliable and uninterpretable (Saparov096

and He, 2023; Kambhampati et al., 2024). Mean-097

while, low-computation LLM-free heuristics may098

be sufficiently effective for strategic proof search,099

yet they remain largely overlooked.100

To address these limitations, we propose Logic-101

Tree, a novel inference-time modular framework102

for structured proof exploration. The overview of103

our framework is shown in Figure 1. LogicTree104

includes four LLM-based modules: Forward Se-105

lection, Backward Selection, Derivation and Ver-106

ification, which are embedded in tree structure.107

Additionally, we incorporate Fact Repository and108

Derivation HashMap into LogicTree as cache com-109

ponents. Fact Repository is initialized with given110

facts and dynamically stores derived facts. It en-111

ables branches to access the given facts and the 112

derivations from earlier branches, facilitating cross- 113

branch information flow and effective utilization of 114

historical knowledge throughout proof exploration. 115

Derivation HashMap records derived facts along 116

with their derivation paths for a traceable reasoning 117

process. We employ depth-first search (DFS) to 118

orchestrate LLM modules and cache components, 119

automating systematic proof search while ensuring 120

logical coherence. 121

Furthermore, at each reasoning step, our frame- 122

work decomposes the search for fact-rule combi- 123

nations into Forward (rule) Selection followed by 124

Backward (fact) Selection, reducing the complexity 125

from combinatorial to linear. With this optimiza- 126

tion, each selected rule-fact combination includes 127

exactly one rule and its relevant fact(s), restrict- 128

ing inference to at most one derivation per step. 129

This key improvement enhances reasoning gran- 130

ularity and enforces strict step-by-step reasoning, 131

contributing to strengthened reasoning rigor. 132

Additionally, we introduce two heuristics lever- 133

aging spaCy1 for premise prioritization: (1) Fact 134

(root) ranking for global ordering of tree search; 135

(2) Rule ranking at local level for early stopping 136

in DFS. These LLM-free heuristics provide com- 137

1An open source NLP library (https://spacy.io/).
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putationally efficient and interpretable strategies138

to accelerate proof-finding, avoiding blind and ex-139

haustive search.140

Our framework enables extensive exploration141

and fine reasoning granularity, optimally scaling142

reasoning length and inference-time computation143

(Snell et al., 2024) to enhance logical reasoning ca-144

pability. Our evaluation on five challenging logical145

reasoning benchmarks demonstrates that LogicTree146

significantly outperforms chain-of-thought (CoT)147

(Wei et al., 2022) and other modular methods in148

proof accuracy. Furthermore, within LogicTree149

framework, both Llama-3.3 70B (Dubey et al.,150

2024) and GPT-4o (Achiam et al., 2023) surpass151

OpenAI’s o1-mini and o3-mini models. In-depth152

analysis reveals that our approach facilitates pre-153

cise premise selection and accurate inference at154

each reasoning step while minimizing redundancy.155

The main contributions of our work are:156

• We propose LogicTree, a novel inference-time157

framework that enables structured proof ex-158

ploration while ensuring logical coherence.159

Additionally, we integrate cache components160

to effectively utilize historical knowledge and161

facilitate traceable reasoning process.162

• We address combinatorial complexity in163

premise search and enhance reasoning granu-164

larity, improving stepwise reasoning accuracy165

and strengthening overall reasoning rigor.166

• We introduce two LLM-free heuristics167

for premise prioritization, providing low-168

computation and interpretable strategies to im-169

prove proof-finding efficiency.170

2 Related Work171

2.1 Reasoning through Strategic Prompting172

Pre-trained language models (Brown et al., 2020;173

Chowdhery et al., 2023; Touvron et al., 2023) ex-174

hibit emergent reasoning abilities with increasing175

model scale. Strategic prompt engineering tech-176

niques, such as CoT (Wei et al., 2022; Kojima177

et al., 2022), Auto-CoT (Zhang et al., 2023), self-178

consistency (Wang et al., 2023b), least-to-most179

(Zhou et al., 2023), help guide LLMs through in-180

termediate reasoning steps, significantly improving181

LLM reasoning performance. However, the inher-182

ent simplicity of CoT and its variants, which is183

typically characterized by a left-to-right reasoning184

process with limited reasoning length, restricts their185

effectiveness in logical reasoning tasks that require186

exploration (Yao et al., 2023; Xie et al., 2023).187

2.2 Inference-time Scaling for Reasoning 188

Just as human may take more time to carefully 189

analyze a complex question, enabling LLMs to 190

refine their response with deliberate reasoning and 191

increased inference-time computation is crucial for 192

developing intelligent reasoning systems (Snell 193

et al., 2024; OpenAI, 2024a; Chen et al., 2025). 194

Reasoning models trained via reinforcement 195

learning (RL). Applying large-scale RL in LLM 196

post-training phase has proven highly effective in 197

enhancing reasoning abilities. It enables LLMs to 198

develop reflection, self-correction, and long-chain 199

reasoning skills for problem-solving (OpenAI, 200

2024a; Kumar et al., 2024; Shao et al., 2024; Yeo 201

et al., 2025). Recently, DeepSeek-R1 (Guo et al., 202

2025) made significant breakthrough by achieving 203

strong reasoning performance purely through RL, 204

without the need for supervised fine-tuning (SFT). 205

Modular inference without LLM parameter up- 206

dates. Modular approach decomposes complex 207

reasoning tasks into simpler sub-tasks, each as- 208

signed to specialized LLM modules implemented 209

through few-shot prompting (Khot et al., 2023). 210

In logical reasoning, it involves two key modules 211

that operate iteratively: premise selection and in- 212

ference (Creswell et al., 2023). Extending from 213

this foundation, Cumulative Reasoning (Zhang 214

et al., 2024) integrates LLM verifier to validate 215

reasoning steps. DetermLR (Sun et al., 2024) em- 216

ploys LLM scorer to prioritize relevant premises. 217

SymbCoT (Xu et al., 2024b) and Aristotle (Xu 218

et al., 2024a) introduce LLM translator to convert 219

natural language input into symbolic representa- 220

tions. Further research embeds LLM modules into 221

topological structures, enabling deliberate problem 222

solving (Yao et al., 2023; Besta et al., 2024). 223

Current LLM-based methods for logical reason- 224

ing still struggle to perform structured exploration 225

while ensuring logical coherence and rigor in com- 226

plex, multi-step reasoning tasks. To address these 227

challenges, we propose a novel inference-time mod- 228

ular approach that enables systematic and extensive 229

proof exploration and enhances reasoning rigor. 230

3 LogicTree for Logical Reasoning 231

3.1 Task Definition 232

Logical reasoning aims to determine the truth value 233

(true, false, or unknown) of a hypothesisH based 234

on a set of premises consisting of facts F and rules 235

R (Dowden, 2020). An example is shown in Fig- 236

ure 5. Formally, F = {fi | i = 1, 2, . . . , NF}, 237
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where each fi represents a definitive statement238

within the reasoning system. R = {ri | i =239

1, 2, . . . , NR}, where each ri represents a condi-240

tional statement that defines a logical relationship241

between facts and inferred conclusions. The rea-242

soning process applies standard logical operators,243

including: Negation (¬), Conjunction (∧), Dis-244

junction (∨), Implication (⇒), Equivalence (⇔).245

We define the set of intermediate derived facts as246

D = {di | i = 1, 2, . . . , ND}.247

3.2 Components of LogicTree Framework248

As shown in Figure 1, the LogicTree framework249

includes (1) two caches: Fact Repository and250

Derivation HashMap; (2) four LLM-based mod-251

ules: Forward Selection, Derivation, Backward252

Selection, and Verification, each implemented by253

few-shot prompting. The specific prompts for each254

module, along with example inputs and outputs,255

are provided in Appendix I.256

Fact Repository and Derivation HashMap.257

Fact Repository is initialized with given facts F258

and continuously stores derived facts D. It en-259

ables tree branches to access the given facts and260

earlier derivations. This facilitates cross-branch261

information flow and effective utilization of histor-262

ical knowledge throughout proof exploration. Ad-263

ditionally, it checks whether a newly derived fact264

from a tree branch is unique among those already265

stored. If not, the branch is marked as a dead end to266

avoid redundancy and circular reasoning. Deriva-267

tion HashMap stores derived facts as keys and their268

derivation paths as values, enabling a traceable rea-269

soning process. Upon proof completion, the proof270

chain is reconstructed bottom-up, starting from the271

final path that verifies the hypothesis. If a fact in272

the path is found in the HashMap (i.e., it is derived273

rather than given), its associated derivation path is274

retrieved. This process occurs iteratively, construct-275

ing a streamlined proof as shown in Figure 1c.276

Forward Selection Module. Based on a fact (ei-277

ther fi or di), this module selects all the relevant278

rules from the given rule set R. A rule is consid-279

ered relevant if its condition(s) are fully or partially280

satisfied by the fact. Each selected rule is added as281

a child node of the fact, forming parallel branches282

in the tree structure.283

Derivation Module. Along each branch, this284

module performs a strict one-step derivation us-285

ing the current leaf rule and its parent fact. A286

successful derivation occurs if the fact fully sat-287

isfies the rule’s condition. If the derivation fails,288

it results from one of the two reasons: (1) the fact 289

does not satisfy the rule’s condition at all, i.e., the 290

rule was incorrectly selected by Forward Selection 291

Module; (2) the fact partially satisfies the rule’s 292

conditions, with some required fact(s) still missing. 293

In the first case, the branch is marked as a dead end. 294

In the second case, where conjunctive reasoning 295

(e.g., f1 ∧ f2 ∧ r1 ⇒ d1) is required, the branch is 296

marked as a pseudo dead-end, where the missing 297

fact(s) may still be retrievable. 298

Backward Selection Module. If a branch is 299

marked as a pseudo dead-end, this module is 300

queried to attempt rule completion and resolve the 301

stagnation. This module uses the current fact-rule 302

pair as a pivot to identify the missing fact(s) re- 303

quired for derivation. It then searches Fact Repos- 304

itory to determine their availability. The missing 305

fact(s) may be a given fact fi (Figure 1b-1) or a 306

derived fact di from an earlier branch (Figure 1b-2). 307

If the missing fact(s) are available, the rule together 308

with its supplemented relevant facts are then sent 309

to Derivation Module to re-attempt derivation. If 310

not, the branch is marked as dead end. 311

Verification Module. After each successful 312

derivation, this module evaluates the derived fact di 313

against the hypothesisH to determine if the proof 314

is complete. If the derived fact is equivalent to 315

or directly contradicts the hypothesis, the proof is 316

concluded; otherwise, proof exploration continues. 317

3.3 LLM-free Premise Prioritization 318

We introduce two heuristics leveraging spaCy for 319

premise (fact and rule) prioritization, which pro- 320

vide low-computation and interpretable strategies 321

to improve proof-finding efficiency. 322

Fact (root) ranking for global ordering of tree 323

search. In LogicTree framework, each given fact 324

fi serves as the root of a tree, and trees are explored 325

sequentially until the proof is found. As shown in 326

Figure 1a, we first apply a semantic alignment step 327

to prioritize facts that have the same subject with 328

the hypothesisH as tree roots. To further rank facts, 329

we define cumulative connectivity between a fact 330

fi and the rule setR, which is the sum of semantic 331

overlap between fi and each rule ri ∈ R. It ap- 332

proximates how many reasoning branches the root 333

fact can initiate through its relevant rules. Facts 334

with zero connectivity are discarded, as they cannot 335

contribute to any derivation. Facts with higher con- 336

nectivity are prioritized for opening more reasoning 337

paths and higher likelihood of proof discovery in 338

earlier-explored trees. We conduct subject align- 339
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ment and compute semantic overlap using spaCy’s340

efficient dependency parsing.341

Rule ranking at local level for early stopping.342

After each Forward Selection, the selected rules are343

ranked based on each rule’s semantic overlap with344

hypothesisH. This prioritization directs Derivation345

Module to first apply the rule ri whose derivation346

is most likely to verify hypothesis H, facilitating347

early stopping. For example, to verify H: "Kevin348

is uncomfortable.", a rule ri such as: "If ..., the349

person is uncomfortable." would be prioritized.350

The computations for semantic overlap and cu-351

mulative connectivity are provided in Appendix A.352

3.4 LogicTree Algorithm353

We employ iterative depth-first search (DFS) al-354

gorithm within LogicTree framework to automate355

systematic exploration as provided in Algorithm 1.356

Initially, the algorithm uses Verification to check357

if hypothesisH can be directly verified from given358

facts F . IfH is explicitly confirmed or refuted, the359

algorithm terminates and returns True or False, re-360

spectively. Otherwise, it proceeds with tree search.361

As a preliminary, Fact Repository and Deriva-362

tion HashMap are initialized, and the given facts363

are ranked using Fact Ranking heuristic. The algo-364

rithm starts with the top-ranked fact, which serves365

as the root of the first tree. Then, Forward Selec-366

tion is called to select relevant rules, which are367

subsequently ranked using Rule Ranking heuristic.368

Along each fact-rule branch, one-step inference is369

conducted. As shown in Algorithm 2, the inference370

process encapsulates calls to Derivation and, if nec-371

essary, Backward Selection. Backward Selection372

is triggered when the output of Derivation indi-373

cates a pseudo dead-end. If Backward Selection374

successfully retrieves the missing fact(s) from Fact375

Repository, then a secondary query to Derivation376

is performed. Together, this modular process (i)377

decomposes the search for fact-rule combination,378

reducing complexity from combinatorial to linear379

(more analysis in Appendix B and Table 3); (ii) en-380

sures each reasoning step involves exactly one rule381

and its relevant fact(s), producing at most one de-382

rived fact per step; (iii) avoids reasoning stagnation383

by attempting to resolve pseudo dead-ends.384

After each inference, Verification evaluates the385

result to determine whether it concludes the proof,386

enabling early stopping (Algorithm 3). If the result387

indicates an underivable or redundant (i.e., already388

in Fact Repository) outcome, DFS backtracks to389

explore the next branch. Otherwise, the derived fact390

di is appended to the tree for further expansion. 391

The next iteration begins from derived fact di, 392

with LLM modules reset before the next call. By 393

building each step upon prior derivations, our 394

framework maintains logical coherence. Once a 395

tree is fully explored, the algorithm proceeds to the 396

next tree, using the next ranked fact as the root. To 397

avoid excessively long reasoning, we set an LLM 398

query limit on the reasoning process. If all trees are 399

explored or the query limit is reached (whichever 400

occurs first) without verifying the hypothesis H, 401

the algorithm terminates and returns Unknown. 402

4 Experiments 403

4.1 Experimental Setup 404

Datasets. We evaluate our framework on five 405

multi-step logical reasoning datasets: RobustLR 406

(Sanyal et al., 2022), PrOntoQA-OOD (Saparov 407

et al., 2023), ProofWriter (Tafjord et al., 2020), 408

ParaRules (Clark et al., 2020), LogicNLI (Tian 409

et al., 2021). For all examples in our experi- 410

ments, hypothesis concludes as True, False, or Un- 411

known. More details on datasets are provided in 412

Appendix C.1. (Appendix H shows the extension of 413

our framework to mathematical reasoning dataset.) 414

Baselines. To compare our framework with ex- 415

isting LLM-based reasoning methods, we select 416

baselines from three categories: 417

• Strategic LLM prompting: CoT (Wei et al., 2022) 418

prompts the model to generate intermediate rea- 419

soning steps before providing final answers. 420

• Modular approaches: SI (Selection-Inference) 421

(Creswell et al., 2023) adpots selection and infer- 422

ence modules for iterative reasoning. CR (Cumu- 423

lative Reasoning) (Zhang et al., 2024) introduces 424

a cumulative process of generating new proposi- 425

tions to reach the answer. ToT (Tree-of-Thought) 426

(Yao et al., 2023) leverages tree-search algorithm 427

for deliberate reasoning. LAMBADA (Kazemi 428

et al., 2023) develops a backward chaining ap- 429

proach for automated reasoning. 430

• RL-trained reasoning models: o1-mini (OpenAI, 431

2024a) and o3-mini (OpenAI, 2025) model. 432

Models. Our framework places no restrictions on 433

the choice of LLMs. Here, we separately employ 434

GPT-4o-mini, GPT-4o, (Achiam et al., 2023) and 435

Llama-3.3 70B (Dubey et al., 2024) within our 436

framework. We reproduce CoT and other modular 437

approaches using the same models for comparison. 438

Further details on models are in Appendix C.2. 439
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Model Method
Dataset

Avg.†
LogicNLI ParaRules PrOntoQA-OOD ProofWriter RobustLR

GPT-4o-mini

CoT 38.0 48.3 55.0 51.8 62.1 51.2
SI 46.0 51.3 72.5 55.3 60.4 55.8
CR 42.7 54.0 75.0 49.7 70.0 56.1

LAMBADA 54.7 62.0 75.5 68.0 66.3 65.5
ToT 51.3 64.3 65.5 70.3 72.9 66.5

LogicTree 58.0 68.7 87.5 78.8 87.1 75.7

GPT-4o

CoT 51.3 69.0 83.0 73.5 79.6 72.0
SI 48.0 71.0 91.5 68.0 71.3 70.4
CR 54.0 75.3 91.5 75.3 76.7 75.5

LAMBADA 68.0 73.3 93.5 86.7 88.3 81.6
ToT 69.3 75.0 86.5 91.0 89.2 83.1

LogicTree 78.7 96.3 99.0 97.0 97.9 95.6

Llama-3.3 70B

CoT 46.7 70.8 88.5 75.5 80.0 73.6
SI 52.0 74.7 92.5 61.7 76.3 70.6
CR 53.3 76.7 93.0 73.3 70.8 74.6

LAMBADA 66.7 78.3 91.0 81.7 87.1 81.1
ToT 69.0 79.7 90.5 87.7 85.4 83.4

LogicTree 74.7 92.3 97.0 95.8 97.5 93.2

Table 1: Proof accuracy of different methods across five logical reasoning datasets on GPT-4o-mini, GPT-4o, and
Llama-3.3 70B. The highest accuracy in each case is in bold; the second-highest is underlined. Avg.† is calculated
as the number of correctly proved examples divided by the total number of examples across all five datasets.
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Figure 2: Performance comparison between general LLMs (GPT-4o-mini, GPT-4o, Llama-3.3 70B) applied within
LogicTree and RL-trained reasoning models (o1-mini, o3-mini).

Evaluate reasoning accuracy. In logical reason-440

ing, correct label prediction (True, False, or Un-441

known) does not necessarily indicate correct rea-442

soning, as models may arrive at the correct con-443

clusion through hallucinated premises or spurious444

correlations (Kazemi et al., 2023; Liu et al., 2023).445

Similar to Saparov and He (2023), we use proof446

accuracy for rigorous evaluation. We manually447

verify each example by focusing on the reasoning448

chain that verifies the hypothesis within the entire449

reasoning trace. A proof is considered correct if450

every step in this chain is valid, while the validity451

of other reasoning paths is disregarded.452

4.2 Main Results453

As shown in Table 1, our proposed LogicTree con-454

sistently outperforms CoT and other modular ap-455

proaches across all five datasets. Specifically, our 456

method surpasses CoT significantly, with average 457

performance gains of 24.5%, 23.6%, and 19.6% 458

on GPT-4o-mini, GPT-4o, and Llama-3.3 70B, re- 459

spectively. Compared to ToT, the strongest among 460

other modular methods, our framework achieves av- 461

erage improvements of 9.2%, 12.5%, and 9.8% on 462

the same models. On ParaRules, PrOntoQA-OOD, 463

ProofWriter, and RobustLR datasets, our frame- 464

work achieves near-perfect proof accuracy with 465

GPT-4o, highlighting its strength in logical reason- 466

ing. This strength generalizes across different lev- 467

els of task difficulty, as shown in Figure 7. Further- 468

more, when applied within LogicTree, Llama-3.3 469

70B and GPT-4o outperform RL-trained reasoning 470

models, o1-mini and o3-mini, as shown in Figure 2. 471
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Figure 3: Step-level metrics (§ 5.1) across different methods. (a) Non-null inference rate (the outer bars) and
non-null & unique inference rate (the inner bars). (b) Selection accuracy and inference accuracy, evaluated only on
tree-based methods. All metrics are manually evaluated on GPT-4o’s outputs for 100 examples from ProofWriter.

With Llama-3.3 70B, our method yields 8.7% and472

5.2% higher accuracy on average; with GPT-4o, the473

average gains are 11.1% and 7.6%, respectively.474

5 Further Analysis475

Figure 6 schematically illustrates how baseline ap-476

proaches perform logical reasoning with LLMs,477

which facilitates in-depth performance analysis.478

5.1 Factors Impacting Proof Accuracy479

To explain the effectiveness of our framework, we480

define the following step-level metrics:481

1. Non-null Inference Rate: The percentage of482

inference steps that result in derived facts.483

2. Non-null & Unique Inference Rate: The percent-484

age of inference steps that generate new facts (i.e.,485

not previously derived).486

3. Selection Accuracy: The percentage of selec-487

tion steps where the selected premises are logically488

relevant to the parent node during tree expansion.489

4. Inference Accuracy: The percentage of inference490

steps that are logically correct given the selected491

premises.492

Logical coherence. Tree-based frameworks493

(ToT, LAMBADA, LogicTree) exhibit significantly494

higher performance than SI and CR due to better495

maintenance of logical coherence. As shown in496

Figure 6, SI and CR begin each iteration from the497

updated premise set rather than building directly498

on prior derivations, disrupting logical coherence.499

This disruption breaks the continuity of reasoning,500

resulting in the loss of the logical "pivot" (i.e.,501

prior derivation) needed to guide premise selection.502

For SI, without this anchor, identifying logically503

relevant fact-rule combinations becomes difficult,504

resulting in frequent failed (null) inferences.505

Additionally, the lack of coherence limits aware-506

ness of previous derivations, leading to repeated507

re-derivation and redundancy. These issues are508

reflected by SI’s low non-null & unique inference 509

rate in Figure 3a. CR adopts random combination 510

for premise selection, resulting in an even lower 511

non-null inference rate (Figure 3a) due to irrelevant 512

selected premises. Under a fixed iteration budget, 513

failed and redundant steps stall logical progression 514

and ultimately render the proof incomplete. 515

Premise selection accuracy in tree search. Al- 516

though ToT builds each reasoning step on prior 517

derivations, it still faces combinatorial search com- 518

plexity. In conjunctive reasoning scenario (e.g., 519

f1 ∧ f2 ∧ r1 ⇒ d1), it requires searching for rele- 520

vant fact-rule combination (f2∧r1) for a parent fact 521

node (f1), making precise selection challenging. 522

Also, to accommodate such search process, ToT 523

does not constrain the number of selected premises 524

per branch (Figure 6d), increasing the risk of select- 525

ing irrelevant premises (i.e., distractions). Together, 526

these factors reduce selection accuracy and subse- 527

quently lead to failed or inaccurate inferences. 528

Forward vs. Backward tree search strategies. 529

LAMBADA (backward reasoning) starts from the 530

hypothesis and checks each rule to determine its ap- 531

plicability. This method inherently avoids combina- 532

torial search (Table 3), leading to higher selection 533

accuracy. However, despite the challenge of com- 534

binatorial search, forward reasoning (ToT) achieves 535

higher inference accuracy than backward reasoning 536

(Figure 3b). This may be attributed to the preva- 537

lence of forward logical flow in pre-training corpus 538

and the autoregressive nature of LLMs, which fa- 539

vors reasoning from premises to conclusions. 540

Our framework adopts forward reasoning to 541

leverage its aforementioned advantage, while de- 542

composing premise selection to address its search 543

complexity (Table 3), effectively improving both se- 544

lection accuracy and inference accuracy, as shown 545

in Figure 3b. Another key reason our framework 546

outperforms ToT is that ToT lacks a mechanism to 547

7



leverage derived facts from earlier branches, which548

may lead to reasoning stagnation (the scenario in549

Figure 1b-2). Our framework addresses this issue550

through incorporating Fact Repository (§ 3.2). The551

impact of this component is evaluated in Table 5.552

We further conduct error analysis on CoT, o1-553

mini, o3-mini, and our framework in Appendix D.554
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Figure 4: Proof accuracy vs. reasoning steps, averaged
across five datasets for GPT-4o. The shaded area illus-
trates that our framework optimally scales inference-
time computation to achieve higher proof accuracy.

5.2 Scaling of Reasoning Length555

Proof accuracy vs. reasoning steps. To assess556

the impact of long reasoning on solving complex557

logical tasks and compare its effectiveness across558

different approaches, we measure the average num-559

ber of reasoning steps for each approach across five560

datasets (details in Appendix E Table 6). The cor-561

responding proof accuracy and average reasoning562

steps for each approach are presented in Figure 4.563

Insufficient reasoning of CoT in complex tasks lim-564

its its performance. SI and CR, as analyzed in § 5.1,565

suffer from high proportion of redundant and failed566

inferences, which undermine the effectiveness of567

long reasoning. LAMBADA (backward reasoning)568

demonstrates more reasoning steps and lower proof569

accuracy compared to forward reasoning (ToT and570

LogicTree). Additional analysis comparing for-571

ward and backward reasoning is provided in Ap-572

pendix F Table 4. Compared to ToT, our framework573

requires more reasoning steps for two main reasons:574

(1) Our framework decomposes the combinatorial575

premise search, leading to more steps; (2) In ToT,576

multiple derivations can occur within a single step577

(Figure 6d), whereas our framework restricts each578

step to at most one derivation. The enhanced rea-579

soning granularity ensures strict step-by-step rea-580

soning, optimally increasing reasoning length and581

ParaRules ProofWriter RobustLR

w/o prioritize 17.8 47.0 19.7
(93.0) (91.7) (94.6)

LLM-based prioritize 11.6 30.6 17.5
(95.5) (94.8) (96.7)

Proposed prioritize 9.5 23.5 13.8
(96.3) (97.0) (97.9)

Table 2: Ablation results on GPT-4o: average reasoning
steps and proof accuracy (gray, in parentheses).

leveraging additional inference-time computation 582

to achieve higher proof accuracy, as shown in the 583

shaded areas of Figure 4 and Figure 8. 584

Premise-prioritization heuristics for efficient 585

scaling. We introduce two premise-prioritization 586

heuristics for strategic proof exploration (§ 3.3). To 587

evaluate their impact on proof search efficiency, we 588

conduct an ablation study across three scenarios: 589

(1) without premise prioritization, where both facts 590

and selected rules are sampled in a random order 591

for exploration; (2) using LLM-based premise pri- 592

oritization, where two LLM modules are applied: 593

one for fact ranking and one for rule ranking, with 594

details provided in Appendix G; and (3) using our 595

proposed LLM-free heuristics. As shown in Ta- 596

ble 2, our proposed heuristics facilitate fewer rea- 597

soning steps in proof-finding while attaining higher 598

proof accuracy by avoiding the increased error risk 599

associated with longer reasoning paths. 600

6 Conclusion 601

In this work, we propose LogicTree, a novel 602

inference-time modular framework for logical rea- 603

soning. Our framework employs algorithm-guided 604

search (DFS) to automate structured exploration 605

while ensuring logical coherence. It incorporates 606

caching mechanism to effectively utilize historical 607

knowledge, preventing reasoning stagnation and 608

minimizing redundancy. Furthermore, we address 609

the combinatorial complexity of premise search 610

and enhance reasoning granularity by restricting 611

inference to at most one derivation per step. This 612

improves stepwise reasoning accuracy and strength- 613

ens reasoning rigor. Additionally, we introduce 614

LLM-free heuristics that provide low-computation, 615

explainable strategies to improve proof search ef- 616

ficiency. Experimental results show that Logic- 617

Tree optimally leverages inference-time scaling to 618

achieve higher proof accuracy, surpassing other 619

modular frameworks and reasoning models, high- 620

lighting its strength in logical reasoning. 621
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Limitations622

While our framework demonstrates strong perfor-623

mance in logical reasoning tasks, it has some limi-624

tations that could open avenues for future work.625

First, we evaluate our framework in the domain626

of logical reasoning, as it represents a distinct type627

of challenge in reasoning tasks that requires struc-628

tured and extensive exploration. Our goal is to629

address this type of reasoning challenge, which of-630

ten demands more deliberate reasoning. In future631

work, we plan to extend the framework to more632

complex domains such as theorem proving.633

Second, our framework assumes that all634

premises (i.e., facts and rules) are explicitly pro-635

vided. Future work could incorporate premise636

augmentation with plausible knowledge retrieved637

from LLM, rather than relying solely on the given638

premises. Additionally, when facts and rules are639

not clearly separated, an extra pre-processing step640

with assistance from LLM may be required (Sun641

et al., 2024). Also, our premise prioritization strate-642

gies rely on simple heuristics. Developing more ad-643

vanced approaches for proof planning and premise644

prioritization remains an important direction for645

future research.646

Ethics Statement and Broader Impact647

Our work adheres to the Code of Ethics. All uti-648

lized methods, models, and datasets are properly649

cited. The datasets used in our experiments are pub-650

licly available, and our research does not involve651

any private or sensitive information. We confirm652

that our use of datasets and LLMs aligns with their653

intended purposes and usage guidelines. A poten-654

tial risk of our framework lies in the misuse of its655

outputs in high-stakes domains without sufficient656

validation or expert review, as LLMs cannot al-657

ways guarantee fully correct outputs. Nevertheless,658

when properly applied, our framework contributes659

to the development of interpretable and automated660

reasoning systems. Our work has the potential to661

extend to real-world applications that require rigor-662

ous, multi-step decision-making.663
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A Computation for Semantic Overlap895

and Cumulative Connectivity896

For each fact f , rule r, as well as the hypothesisH,897

we extract a structured triple:898

(SfSubj,S
f
Pred,S

f
SP) from a fact,

(SrSubj,SrPred,SrSP) from a rule,

(SHSubj,SHPred,SHSP) from the hypothesis.

899

In each triple:900

• SSubj denotes the Set of Subjects,901

• SPred denotes the Set of Predicates,902

• SSP denotes the Set of Subject-Predicate pairs903

identified via parent-child relations in spaCy.904

These sets are extracted using spaCy’s dependency905

parser. We represent them as sets to account for906

the possibility of multiple subjects and predicates907

within a single fact, rule, or hypothesis.908

The semantic overlap Sem(f, r) between a fact909

f and a rule r is defined as:910

Sem(f, r) = 0.25 · I(SfSubj ∩ S
r
Subj ̸= ∅)911

+ 0.25 · I(SfPred ∩ S
r
Pred ̸= ∅)912

+ 0.5 · I(SfSP ∩ S
r
SP) ̸= ∅), (1)913

and similarly, the semantic overlap Sem(r,H)914

between a rule r and hypothesisH is defined as:915

Sem(r,H) = 0.25 · I(SrSubj ∩ SHSubj ̸= ∅)916

+ 0.25 · I(SrPred ∩ SHPred ̸= ∅)917

+ 0.5 · I(SrSP ∩ SHSP ̸= ∅), (2)918

where I(·) is an indicator function:919

I(condition) =

{
1, if condition is true
0, otherwise

920

We set the coefficients as 0.25, 0.25, and 0.5 re-921

spectively, such that the semantic overlap is upper-922

bounded by 1, achieved when all three conditions923

are satisfied. Partial (i.e, subject or predicate) over-924

laps are assigned with non-zero coefficient (0.25)925

because they may still indicate logical relevance.926

For example, in the case where the fact is “Dave is927

hungry.” and the rule is “If someone is hungry, they928

are uncomfortable.”, only the predicate overlaps,929

but the fact is logically connected to the rule.930

The cumulative connectivity C(f,R) between931

a fact f and the entire rule setR is defined as the932

sum of its semantic overlap with each rule in R,933

i.e.,934

C(f,R) =
∑
r∈R

Sem(f, r). (3) 935

A higher cumulative connectivity value indicates 936

that the fact f is likely to initiate more reasoning 937

branches through its relevant rules. 938

B Linear Premise Search in LogicTree 939

In our framework, premise search is simplified by 940

decomposing it into forward (rule) selection and 941

backward (fact) selection (§ 3.2), resulting in a 942

linear rather than combinatorial search process. 943

During forward selection, the framework takes 944

a fact as an anchor and identifies all relevant rules. 945

Although multiple rules may be retrieved in a single 946

LLM query, LLM can perform a process analogous 947

to a linear iteration over the rule set, evaluating 948

each rule independently for relevance without re- 949

quiring joint combinations. 950

Similarly, in backward selection, we consider 951

a general conjunctive reasoning case (e.g., f1 ∧ 952

f2 ∧ ... ∧ fn ∧ r1 ⇒ d1), where an anchor fact 953

f1 partially satisfies a rule r1. Once this rule r1 is 954

identified, the remaining required facts (f2 through 955

fn) are identified from the rule’s conditions and 956

subsequently checked for existence in Fact Repos- 957

itory by Backward Selection Module. LLM can 958

implement this step in a way that resembles a lin- 959

ear scan by verifying the existence of each required 960

fact individually. 961

In contrast, CoT and ToT require combinatorial 962

search for fact–rule combinations, where the facts 963

and rules must be jointly selected and logically 964

relevant to each other as shown in Table 3, thereby 965

increasing the complexity of LLM’s search process. 966

C Experimental Details 967

C.1 Dataset 968

We evaluate on five English-language logical rea- 969

soning datasets, as detailed below: 970

RobustLR (Sanyal et al., 2022) includes Logical 971

Contrast and Logical Equivalence sets for testing 972

the logical robustness on conjunctive, disjunctive, 973

and contrapositive reasoning. We randomly sample 974

240 examples from the test set. 975

PrOntoQA-OOD (Saparov et al., 2023) is a syn- 976

thetic question-answering dataset using fictional 977

names. For evaluation, we use the most challenging 978

4-hop subset. We randomly sample 200 examples 979

from the test set. 980
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ProofWriter (Tafjord et al., 2020) is a commonly981

used benchmark for deductive logical reasoning.982

We evaluate the open-world assumption (OWA)983

subset, focusing on the hardest depth-5 subset. We984

randomly sample 600 examples from the test set.985

ParaRules (Clark et al., 2020) paraphrases data986

from ProofWriter into more natural language using987

crowdsourcing, enhancing text diversity and natu-988

ralness. We randomly sample 600 examples from989

the test set.990

LogicNLI (Tian et al., 2021) is the most challeng-991

ing dataset, featuring a large premise space and992

numerous reasoning paths, only one of which leads993

to the proof. We randomly sample 150 examples994

from the test set.995

Few-shot demonstrations for each LLM module996

are sampled from the training set of each dataset.997

An example of each dataset is shown in Appendix I.998

C.2 Models999

Here are the versions of OpenAI’s models:1000

GPT-4o-mini: gpt-4o-mini-2024-07-181001

GPT-4o: gpt-4o-2024-08-061002

o1-mini: o1-mini-2024-09-121003

o3-mini (medium): o3-mini-2025-01-311004

All OpenAI models are accessed through Ope-1005

nAI API2. Llama-3.3 70B is accessed through To-1006

gether AI API3. We set the temperature to 0.1 for1007

all experiments to encourage more deterministic1008

generation. All results are obtained from a single1009

run. We utilize the Microsoft Guidance library in1010

our implementation4.1011

The version of spaCy model used in our frame-1012

work is en_core_web_lg-3.8.0 (382 MB).1013

D Error Analysis on CoT, o1-mini,1014

o3-mini, LogicTree1015

We manually conduct error analysis on CoT,1016

o1-mini, o3-mini, and our framework using1017

ProofWriter dataset. For CoT, we randomly sample1018

100 failed proofs, while for o1-mini, o3-mini, and1019

our framework, we analyze all failed cases. We1020

categorize the errors into three types: (1) insuf-1021

ficient exploration, (2) wrong derivation, and (3)1022

hallucinated premise. The proportion of these er-1023

ror types for each method, along with illustrative1024

examples, is shown in Figure 9. Our framework1025

exhibits significantly fewer errors caused by insuffi-1026

cient exploration. In addition, our framework does1027

2https://platform.openai.com/docs/overview
3https://www.together.ai/models/llama-3-3-70b
4https://github.com/guidance-ai/guidance

not suffer from hallucinated premises, as access to 1028

the hypothesis is restricted to Verification Module 1029

only. This prevents the generation of unsupported 1030

premises that favor verifying the hypothesis during 1031

premise selection and inference. 1032

Our findings on why CoT struggles with com- 1033

plex logical reasoning align with prior research: 1034

(1) it faces difficulty when premises are unordered 1035

and contain distractions (Chen et al., 2024), and 1036

(2) it lacks systematic exploration when reasoning 1037

requires navigating extensive branching (Saparov 1038

and He, 2023). The high branching factor that 1039

complicates exploration, along with sensitivity to 1040

distractions, also limits the performance of o1-mini 1041

and o3-mini in complex logical reasoning com- 1042

pared to their effectiveness in coding and math. 1043

To address this, a modular method for precise 1044

premise selection which strengthens robustness to 1045

distractions, combined with an algorithm-guided 1046

approach for systematic proof searching, provides a 1047

promising foundation. Our framework builds upon 1048

and extends these components, addressing their 1049

limitations to develop a logically complete algo- 1050

rithm that enables rigorous and coherent reasoning, 1051

ultimately achieving superior proof accuracy. 1052

E Number of Reasoning Steps, Generated 1053

Tokens, and Inference Time 1054

The following elaborates on how we measure the 1055

number of reasoning steps for each approach. 1056

(1) For CoT, we define one reasoning step as a 1057

combination of premise selection and an inference 1058

based on the selected premises. To make step count- 1059

ing explicit in LLM’s output, we number each rea- 1060

soning step in few-shot demonstrations (Figure 17). 1061

(2) For SI, we set the maximum number of itera- 1062

tions to 10, as we find the framework typically fails 1063

to generate new derivations beyond this point. Each 1064

iteration consists of one query to LLM selection 1065

module and one query to LLM inference module. 1066

The process terminates early if the hypothesis is 1067

successfully verified. We define the total number 1068

of reasoning steps in SI as the total number of LLM 1069

module queries made across the iterations. 1070

(3) For CR, we use the framework’s default hyper- 1071

parameters for reasoning. The total number of 1072

reasoning steps in CR is calculated as the total 1073

number of LLM module queries made during the 1074

iterations, plus the number of steps in the final CoT 1075

reasoning process. 1076

(4) For ToT, LAMBADA, and LogicTree, each 1077
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query to an LLM module is counted as one reason-1078

ing step. We set the step limit L (in Algorithm 1)1079

to 80 for all methods. Tree search terminates early1080

if the hypothesis is successfully verified.1081

(5) Since reasoning with o1-mini and o3-mini in-1082

cludes unobservable intermediate steps, we exclude1083

them from the analysis of reasoning steps.1084

Table 6 shows the average number of reason-1085

ing steps across five logical reasoning datasets for1086

different methods. Table 7 presents the average1087

number of generated tokens and inference time1088

for those different methods. The number of gener-1089

ated tokens is obtained using completion_tokens1090

from the completion response.1091

F Performance Analysis: Forward vs.1092

Backward Reasoning1093

In Table 4, we present in-depth analysis to explain1094

why backward reasoning requires more reasoning1095

steps than forward reasoning in iterative tree search,1096

based on three key factors: (1) utilization of histor-1097

ical knowledge; (2) evaluation of hypothesis and1098

its negation; and (3) branching complexity in rea-1099

soning paths.1100

The lower proof accuracy of LAMBADA (back-1101

ward reasoning) compared to forward reasoning1102

methods (ToT and LogicTree) can be explained by1103

two main reasons: (1) LLMs demonstrate higher1104

stepwise inference accuracy in forward reasoning1105

as shown in Figure 3b (§ 5.1); (2) the larger number1106

of reasoning steps in backward reasoning increases1107

the likelihood of making errors.1108

G Using LLM Modules for Premise1109

Prioritization1110

The prompts used for the LLM modules in fact1111

and rule ranking are provided in Appendix I. We1112

do not apply predefined criteria in these prompts,1113

allowing us to assess LLM’s inherent ability on1114

premise prioritization. For the average reasoning1115

steps (LLM-based prioritize) reported in Table 2,1116

we do not include LLM queries related to fact and1117

rule ranking. Even without this overhead, LLM-1118

based premise prioritization results in more rea-1119

soning steps than our LLM-free heuristics. This1120

reflects the limitation in LLM-based proof plan-1121

ning. Successfully guiding the reasoning process1122

requires the model to already have an accurate un-1123

derstanding of how to reach the proof in advance,1124

yet this ability is not evidenced by the limited per-1125

formance of CoT (Table 1). Based on the results1126

in Table 2, our simple LLM-free heuristics prove 1127

effective for strategic proof exploration. 1128

H Extension to Mathematical Reasoning 1129

LogicTree is primarily designed to strengthen the 1130

logical reasoning capabilities of LLMs. Beyond its 1131

original focus, it can be readily adapted to other 1132

types of reasoning tasks that start from a given 1133

set of information. Our framework systematically 1134

combines relevant information for derivation, lever- 1135

ages derived information, and facilitates structured 1136

problem solving. In Figure 10, we illustrate how 1137

LogicTree performs mathematical reasoning on an 1138

example from GSM8K (Cobbe et al., 2021). We 1139

further compare the accuracy of CoT, ToT, and 1140

LogicTree on a subset of 300 randomly selected 1141

examples from GSM8K test set. All methods are 1142

evaluated on Qwen2.5-7B (Yang et al., 2024), with 1143

LogicTree demonstrating superior performance. 1144

I Dataset Example and Prompt for LLM 1145

Modules 1146

Figure 11, Figure 12, Figure 13, Figure 14, Fig- 1147

ure 15 show an example of LogicNLI, PrOntoQA- 1148

OOD, ProofWriter, RobustLR, ParaRules, respec- 1149

tively. 1150

Figure 16 shows the prompts for reasoning with 1151

OpenAI’s o1-mini and o3-mini model. We use the 1152

same prompts for all the five datasets. 1153

Figure 17 shows the prompts for chain-of- 1154

thought. The instructions in the prompt are iden- 1155

tical across all five datasets, while the demon- 1156

strations are sampled from the training set of 1157

each respective dataset. We use examples from 1158

ProofWriter as illustrations. 1159

Figure 18, Figure 19, Figure 20, Figure 21 sep- 1160

arately show the prompts for Forward Selection 1161

Module, Backward Selection Module, Derivation 1162

Module, Verification Module in our framework. 1163

The instructions in the prompt are consistent across 1164

all five datasets, while the demonstrations are sam- 1165

pled from the training set of each respective dataset. 1166

We use examples from ProofWriter as illustrations. 1167

Figure 22 and Figure 23 respectively show the 1168

prompts for Fact Ranking Module and Rule Rank- 1169

ing Module, which are used in the ablation studies 1170

with results presented in Table 2. 1171
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Facts:
1. The bear chases the lion.
2. The bear is red.
3. The bear is round.
4. The lion needs the bear.
5. The mouse is round.

Rules:
1. If something visits the bear and it eats the mouse, 
then the bear chases the mouse.
2. If something is red, then it needs the mouse.
3. If something is kind and it eats the lion, 
then it chases the mouse.
4. If the bear is red, then the lion eats the squirrel.
5. If something is round, then it is kind.
6. If something needs the mouse and it chases the lion, 
then it eats the lion.
7. If something is red, then it sees the bear.
8. If something is round, then it visits the squirrel.
9. If something is kind, then it needs the squirrel.

Hypothesis:
The bear chases the mouse.
(True/False/Unknown)

2. The bear is red. #𝟏	
3. The bear is round. #𝟐
1.The bear chases the lion. #𝟑
5. The mouse is round. #𝟒
4. The lion needs the bear.

Root (given fact):
2. The bear is red.
Relevant rules:                               Forward Selection
2. If something is red, then it needs the mouse.
4. If the bear is red, then the lion eats the squirrel.
7. If something is red, then it sees the bear.

4 7

2

2 8

3

5

1

6

4

8

5

5

(no connectivity)

Derive facts and verify hypothesis:                                                   
fact 2 ∧ rule 2 ⇒ derive 1:                            Derivation
The bear needs the mouse.                    Verification
fact 2 ∧ rule 4 ⇒ derive 2:                            Derivation
The lion eats the squirrel.                         Verification
fact 2 ∧ rule 7 ⇒ derive 3:                            Derivation
The bear sees the bear.                             Verification

𝐹𝑎𝑐𝑡	𝑅𝑒𝑝𝑜:
fact 1, fact 2, fact 3, fact 4, fact 5, 
derive 1, derive 2, derive 3

Leaf (derived fact):
1. The bear needs the mouse.
Relevant rules:                               Forward Selection
6. If something needs the mouse
and it chases the lion, then it eats the lion.

Find missing facts:                   Backward Selection
Need: The bear chases the lion.
From Fact Repo: 1. The bear chases the lion.

Derive facts and verify hypothesis:                                                  
derive 1 ∧ rule 6 ⇒ Pseudo dead-end   Derivation

Derive facts and verify hypothesis:                                                  
derive 1 ∧ fact 1 ∧ rule 6 ⇒ derive 4:      Derivation
The bear eats the lion.                               Verification

𝐹𝑎𝑐𝑡	𝑅𝑒𝑝𝑜:
fact 1, fact 2, fact 3, fact 4, fact 5, 
derive 1, derive 2, derive 3, derive 4

Root (given fact):
3. The bear is round.
Relevant rules:                               Forward Selection
5. If something is round, then it is kind.
8. If something is round, then it visits the squirrel.

Derive facts and verify hypothesis:                                                   
fact 3 ∧ rule 5 ⇒ derive 5:                            Derivation
The bear is kind.             Verification
fact 3 ∧ rule 8 ⇒ derive 6:                            Derivation
The bear visits the squirrel.           Verification

𝐹𝑎𝑐𝑡	𝑅𝑒𝑝𝑜:
fact 1, fact 2, fact 3, fact 4, fact 5, derive 1, 
derive 2, derive 3, derive 4, derive 5, derive 6

Leaf (derived fact):
5. The bear is kind.
Relevant rules:               Forward Selection
3. If something is kind and it eats the lion, 
then it chases the mouse.
9. If something is kind, 
then it needs the squirrel.

Find missing facts:                   Backward Selection
Need: The bear eats the lion.
From Fact Repo: 4. The bear eats the lion.

Derive facts and verify hypothesis:                                           
derive 5 ∧ rule 3 ⇒ Pseudo dead-end   Derivation

Derive facts and verify hypothesis:
derive 5 ∧ derive 4 ∧ rule 3 ⇒ derive 7: Derivation
The bear chases the mouses.                Verification
--- Finished (True)

-------------------- Depth 1 (Tree 1) -------------------

--------------------- Tree 1, Depth 0 -------------------

Fact (Root) Ranking

--------------------- Tree 2, Depth 0 -------------------

-------------------- Depth 1 (Tree 2) -------------------

2. The bear is red.
2. If something is red, then it needs the mouse.
1. The bear needs the mouse. 
1. The bear chases the lion.
6. If something needs the mouse and it chases the lion, 
then it eats the lion.
4. The bear eats the lion.

3. The bear is round.
5. If something is round, then it is kind.
5. The bear is kind.
3. If something is kind and it eats the lion, 
then it chases the mouse.
7. The bear chases the mouse.
⇔ Hypothesis

Constructed Proof Chain for Hypothesis Verification

1. The bear chases the lion.
2. The bear is red.
3. The bear is round.
4. The lion needs the bear.
5. The mouse is round.

Ø Step 1: Semantic (subject) alignment

Ø Step 2: Cumulative connectivity

Ø Ranking

Figure 5: The proof exploration trace of LogicTree on an example from ProofWriter (Tafjord et al., 2020). Rule
Ranking, Derivation HashMap and some leaves (derive2, derive3, derive6) are omitted for brevity.

….

LLM Premise Selection
+ Inference

⇒+

….

⇒+

LLM Premise Selection

LLM Inference

𝑓𝑜𝑟	𝑖	𝑖𝑛	𝑛𝑢𝑚_𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛:

….

….

….

⇒+

Random Selection

LLM Inference

𝑓𝑜𝑟	𝑖	𝑖𝑛	𝑛𝑢𝑚_𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛:

LLM Verifier
Valid, Non-redundant

….

LLM CoT

LLM 
Premise Selection

LLM Inference

LLM Verification

….

LLM 
Rule Selection

LLM 
Goal Decomposition

LLM 
Fact Check

(𝑖𝑓	𝑔𝑜𝑎𝑙𝑠	 ∈ 𝑓𝑎𝑐𝑡𝑠)

Note: backward chaining doesn’t derive facts.

…
.

(a) Chain-of-Thought (b) Selection-Inference (c) Cumulative Reasoning (d) Tree-of-Thought (e) LAMBADA (backward chaining)

given	fact 
e.g., The bear is round.
rule 
e.g., If something is round, it is kind.
derived	fact 
e.g., The bear is kind.
hypothesis 
e.g., The bear is red.

LLM 
Premise Selection

LLM Inference

LLM Verification

Figure 6: Schematic illustrations of baseline approaches for logical reasoning with LLMs: (a) Chain-of-Thought;
(b) Selection-Inference; (c) Cumulative Reasoning; (d) Tree-of-Thought; (e) LAMBADA.
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Algorithm 1 LogicTree DFS Algorithm

Require:
Premises F ∪R, HypothesisH
Large language model LLM , NLP library spaCy

1: s← 0 ▷ Number of reasoning steps

2: step_limit← L
3: for each fi ∈ F do
4: result← Early_Stop(LLM, fi,H, s)
5: if result ̸= Unknown then
6: return result ▷ Verified

7: end if
8: end for
9: Fact_Repo← F

10: Derivation_HashMap← {}
11: Frank ← Fact_Ranking(spaCy,F ,R)
12: for each fi ∈ Frank do
13: if s > step_limit then
14: break
15: end if
16: Tree← [fi] ▷ Initiate the root of a tree

17: while Tree ̸= ∅ do
18: fl ← Tree.pop() ▷ LIFO, get the leaf fact

19: Rrelv ← Forward_Selection(
LLM, fl,R, s+ 1)

20: Rrelv
rank ← Rule_Ranking(spaCy,Rrelv,H)

21: for each ri ∈ Rrelv
rank do

22: di ← Inference(LLM, fl, ri, Fact_Repo, s)
23: result← Early_Stop(LLM, di,H, s)
24: if result ̸= Unknown then
25: return result ▷ Verified

26: end if
27: if (di ̸= null) ∧ (di /∈ Fact_Repo) then
28: Tree.append(di) ▷ Extend branches

29: Fact_Repo← Fact_Repo ∪ {di}
30: Derivation_HashMap[di]← pathdi
31: end if
32: end for
33: end while
34: end for
35: return Unknown

Algorithm 2 Inference Function
Require:
fl, ri, Fact_Repo, s
Large language model LLM

1: di ← Derivation(
LLM, fl, ri, s+1)

2: if di ̸= null then
3: return di
4: end if
5: ▷ Use textual pattern matching

6: if PseudoDeadEnd(di) then
7: ▷ Search missing fact

8: fs ← Backward_Selection(
LLM, fl, ri, Fact_Repo, s+ 1)

9: if fs ̸= null then
10: d′i ← Derivation(

LLM, fl∧fs, ri, s+1)
11: return d′i
12: end if
13: end if
14: return null

Algorithm 3 Early_Stop Function

Require:
fi or di,H, s
Large language model LLM

1: result← Verification(
LLM, fi or di,H, s+ 1)

2: if result ̸= Unknown then
3: ▷H is verified

4: ▷ result is either True or False

5: return result
6: end if
7: ▷ H is not verified

8: return Unknown
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Facts F + Rules R:
[...] The bald eagle likes the dog. The bald eagle needs the tiger. The bald eagle sees the tiger. The bald eagle needs the dog.
The dog is blue. The dog sees the tiger. The rabbit is green. The tiger needs the bald eagle. [...]
[...]
If someone needs the bald eagle and the bald eagle sees the tiger then they are rough.
If someone needs the dog and they like the dog then they like the tiger.
If someone likes the bald eagle then the bald eagle needs the dog.
If someone is rough and they like the dog then the dog needs the tiger.
[...]

Hypothesis:
The bald eagle likes the tiger.

▶ CoT
# Premise Search
The bald eagle likes the dog.
The bald eagle needs the dog.
If someone needs the dog and they like the dog then they
like the tiger.

One-step search
Combinatorial complexity

▶ ToT
# Parent node (anchor)
 The bald eagle likes the dog.
# Premise Search
The bald eagle needs the dog.
If someone needs the dog and they like the dog then they
like the tiger.

One-step search
Combinatorial complexity

▶ LAMBADA
# Parent node (anchor)
 The bald eagle likes the tiger.
# Premise (rule) Search
If someone needs the dog and they like the dog then they
like the tiger.
# Fact Check (if f ∈ F )
The bald eagle needs the dog.
The bald eagle likes the dog.

One-step search + one-step check
Linear complexity

▶ LogicTree
# Parent node (anchor)
 The bald eagle likes the dog.
# Forward (rule) Selection
If someone needs the dog and they like the dog then they
like the tiger.
# fact-rule pair (anchor)
 The bald eagle likes the dog. + If someone needs the
dog and they like the dog then they like the tiger.
# Backward (fact) Selection
The bald eagle needs the dog.

Two-step search
Linear complexity

Table 3: Complexity of premise search in CoT, ToT, LAMBADA, and our framework. An example involving
conjunctive reasoning from ProofWriter is used for analysis. Note that although ToT’s complexity becomes linear
in non-conjunctive cases, the reasoning type is not known beforehand. Therefore, ToT must retain its higher search
complexity in the general case to accommodate complex scenarios.
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Factor Forward Reasoning Backward Reasoning

Utilization of historical knowl-
edge (intermediate derivations)

(i) Immediate utilization: Derived facts
are immediately valid and can be utilized
across reasoning chains through caching,
enabling efficient information sharing and
minimizing redundant computation.

(ii) Dead ends still contribute: Even if a
reasoning chain fails to reach the final hy-
pothesis, its intermediate derived facts are
valid and can be utilized to support other
inference paths.

(i) Delayed utilization: Intermediate facts
are only validated upon completing a
successful reasoning chain and cannot
be utilized across other chains while the
current chain is still in progress.

(ii) Dead ends yield nothing: If a reasoning
chain fails, none of its intermediate facts
are proven valid and therefore cannot be
utilized in other inference paths.

Evaluation of hypothesis and its
negation

Forward reasoning starts from the given
premises and derives logically valid conclu-
sions, using those results to determine the
truth value of the hypothesis. The deriva-
tion process does not explicitly attempt to
prove or disprove the hypothesis.

Backward reasoning must start from and
evaluate both the hypothesis and its nega-
tion to determine the truth value, as failure
to prove one does not imply the truth of the
other—due to the possibility of an unknown
outcome. This requirement increases the
overall reasoning steps.
E.g., to evaluate the hypothesis Dave is blue,
backward reasoning explores both the sup-
porting path starting with
If ..., then Dave is blue,
and the opposing path starting with
If ..., then Dave is not blue.

Branching complexity in reason-
ing paths

Forward reasoning applies rules to known
facts independently.

Path count grows additively.
E.g., given the facts:
Dave is blue and Dave is cold,
suppose there are:
m rules of the form: If Dave is blue, then ...
n rules of the form: If Dave is cold, then ...
The total number of paths to be explored is
m+ n.

Backward reasoning explores all combina-
tions of rules whose conclusions match in-
termediate goals.
Path count grows multiplicatively.
E.g., to satisfy the conjunction of goals:
Dave is blue and Dave is cold,
suppose there are:
m rules of the form: If ..., then Dave is blue.
n rules of the form: If ..., then Dave is cold.
The total number of paths to be explored is
m ∗ n.

Table 4: Analysis of three key factors that lead to more reasoning steps in backward reasoning compared to forward
reasoning in iterative tree search for logical reasoning tasks: (1) Utilization of historical knowledge, (2) Evaluation
of hypothesis and its negation, and (3) Branching complexity in reasoning paths. Together, these factors result in a
higher average number of reasoning steps in backward reasoning, as illustrated in Figure 4 and Figure 8.
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Figure 7: Proof accuracy of different methods across different levels of task difficulty (measured by depth) in
ProofWriter on GPT-4o. LogicTree consistently outperforms other methods at all depths, demonstrating superior
robustness to problem difficulty.

LogicNLI ParaRules PrOntoQA-OOD ProofWriter RobustLR

• Llama-3.3 70B
LogicTree w/o fact repo 68.7 81.7 90.0 88.7 92.1
LogicTree 74.7 92.3 97.0 95.8 97.5

• GPT-4o
LogicTree w/o fact repo 72.0 87.5 88.0 90.0 93.8
LogicTree 78.7 96.3 99.0 97.0 97.9

Table 5: Impact of the fact repository (fact repo) on proof accuracy across five datasets within our framework.
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Figure 8: Proof accuracy vs. reasoning steps, averaged across five datasets for (a) GPT-4o-mini and (b) Llama-3.3
70B. The shaded area illustrates that our framework optimally scales inference-time computation to achieve higher
proof accuracy.
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Model Method
Dataset

Avg.†
LogicNLI ParaRules PrOntoQA-OOD ProofWriter RobustLR

GPT-4o-mini

CoT 3.4 3.0 3.7 3.5 4.8 3.5

SI 16.6 18.9 8.6 18.5 11.7 16.4

CR 25.7 23.1 22.1 23.3 26.7 23.8

LAMBADA 14.0 23.7 22.6 18.0 24.0 20.9

ToT 36.2 5.1 21.7 17.0 8.5 14.0

LogicTree 43.2 6.8 28.2 21.2 11.1 17.6

GPT-4o

CoT 5.2 3.5 3.8 4.3 6.6 4.4

SI 19.6 17.0 10.7 19.4 14.6 17.0

CR 24.1 25.1 21.8 25.7 23.4 24.6

LAMBADA 22.9 21.2 22.5 19.6 25.6 21.5

ToT 32.9 6.4 23.1 20.2 10.3 15.7

LogicTree 45.6 9.5 32.2 23.5 13.8 20.3

Llama-3.3 70B

CoT 6.3 3.5 4.0 5.6 6.8 4.9

SI 11.7 21.5 3.8 21.6 6.2 16.7

CR 27.1 24.6 22.2 27.3 24.2 25.4

LAMBADA 19.6 25.2 17.9 14.0 26.4 20.3

ToT 31.3 7.4 23.1 21.2 12.3 16.4

LogicTree 39.1 7.3 30.6 25.6 14.4 19.7

Table 6: Average number of reasoning steps for different methods across five logical reasoning datasets on GPT-4o-
mini, GPT-4o, and Llama-3.3 70B. Avg.† is calculated as the total number of reasoning steps divided by the total
number of examples across all five datasets.

Method

Dataset

LogicNLI ParaRules PrOntoQA-OOD ProofWriter RobustLR

Token # Time (min) Token # Time (min) Token # Time (min) Token # Time (min) Token # Time (min)

CoT 145.4 0.11 105.5 0.08 125.9 0.09 103.2 0.08 171.9 0.12

SI 681.7 0.80 688.3 0.79 233.2 0.28 490.5 0.68 502.1 0.60

CR 1231.6 1.43 871.6 1.04 490.4 0.62 816.7 0.94 800.7 0.97

LAMBADA 1181.0 1.36 758.6 0.97 566.3 0.67 550.5 0.74 921.4 1.07

ToT 1896.7 2.13 258.4 0.30 568.2 0.70 709.3 0.86 355.6 0.42

o1-mini 3253.3 1.11 464.5 0.19 943.0 0.39 953.1 0.42 534.8 0.24

o3-mini 2412.3 1.02 589.2 0.27 683.0 0.34 849.1 0.36 481.9 0.21

LogicTree 3627.0 4.07 440.6 0.54 1082.0 1.47 738.4 0.89 493.9 0.61

Table 7: Average number of generated tokens and inference time (in minutes) for different methods across five
logical reasoning datasets. CoT, SI, CR, LAMBADA, ToT, and LogicTree results are based on GPT-4o.
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An example of Hallucinated Premise
Facts: The bald eagle sees the cat. The cat is round. The cat needs the rabbit. The cat sees the lion. The cat visits the lion. The lion is big. The lion is cold. The lion 
is nice. The lion visits the rabbit. The rabbit is nice. The rabbit is round. The rabbit sees the cat.
Rules: If something is nice then it is big. If something is kind and it sees the rabbit then it needs the lion. If something needs the rabbit then it is nice. All cold, big 
things are kind. If something sees the bald eagle and the bald eagle is nice then it needs the rabbit. If something sees the lion then it visits the rabbit. If the bald 
eagle sees the cat then the bald eagle visits the rabbit. If something visits the rabbit then it needs the rabbit. If something is big then it is cold.
Hypothesis: The lion needs the lion. (Unknown)
Inference: 1. The lion is big and cold. According to the rule "All cold, big things are kind," the lion is kind.
2. The lion sees the rabbit. According to the rule "If something is kind and it sees the rabbit then it needs the lion," the lion needs the lion.
Therefore, the statement "The lion needs the lion" is true.

An example of Wrong Derivation
Facts: Anne is blue. Erin is quiet. Fiona is big. Fiona is furry. Fiona is nice. Harry is furry. Harry is not rough.
Rules: Round people are blue. If something is round and not big then it is not nice. Quiet things are nice. All blue, round people are nice. Nice, rough things are 
round. If something is furry then it is round. Furry, blue things are quiet. Nice things are furry. If something is round and blue then it is not rough.
Hypothesis: Anne is quiet. (Unknown)
Inference: 1. Anne is blue.  2. Round people are blue, so Anne is round. 3. All blue, round people are nice, so Anne is nice.
4. Nice things are furry, so Anne is furry. 5. Furry, blue things are quiet, so Anne is quiet.
Based on the given information, we can deduce that Anne is quiet.
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(a) CoT

An example of Insufficient Exploration
Facts: The bald eagle chases the cat. The bald eagle is kind. The bald eagle sees the dog. The cat is rough. The dog is blue. The dog is red. The dog is rough. The 
dog sees the cat. The dog does not see the lion. The lion sees the bald eagle.
Rules: If something chases the cat then the cat chases the dog. If something chases the dog then it eats the bald eagle. If something is kind and it sees the lion then it 
is not red. If something chases the dog then the dog chases the bald eagle. If the dog eats the bald eagle then the dog sees the bald eagle. If something is cold then it 
sees the lion. If something sees the cat and it is blue then the cat is kind. If something is blue and it chases the bald eagle then the bald eagle is cold.
Hypothesis: The cat eats the bald eagle. (True)
Inference: 1. The bald eagle chases the cat. According to the rule, if something chases the cat, then the cat chases the dog. So, the cat chases the dog.
2. There is no rule that directly or indirectly states that if the cat chases the dog, then the cat eats the bald eagle.
3. None of the given rules or statements indicate that the cat eats the bald eagle.
4. Therefore, based on the provided information, it is unknown whether the cat eats the bald eagle.

(b) o1-mini (c) o3-mini (d) LogicTree

(e) Examples of wrong proof corresponding to the three error types. The erroneous step is highlighted in red.

Insufficient Exploration Wrong Derivation Hallucinated Premise

Figure 9: Error analysis. (a–d) show the proportions of three error types for CoT (on GPT-4o), o1-mini, o3-mini,
and LogicTree (on GPT-4o), respectively. (e) Examples of wrong proof corresponding to the three error types.

45 hours worked

40 hours regular time

Extra hours:
45 – 40 = 5 h

Overtime pay 1.2×

$10/hour regular rate

Overtime pay:
5 × (1.2 × 10) = $60

$10/hour regular rate

Regular pay:
40 × 10 = $400

Forward Selection

Total earnings: 
$400 + $60 = $460

Overtime pay: $60

Eliza's rate per hour for the first 40 hours she works each week is $10. 
She also receives an overtime pay of 1.2 times her regular hourly rate. 
If Eliza worked for 45 hours this week, how much are her earnings for this week?
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Figure 10: LogicTree on GSM8K. Left: Case study illustrating how LogicTree solves a math problem. Right:
Accuracy comparison among CoT, ToT and LogicTree.
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LogicNLI

Premises (Facts + Rules):
Carrick is filthy. Carrick is not financial. Galvin is grieving. Blake is filthy. Oscar is not relieved. Perry is not filthy.
Blake is financial. Perry is relieved. Toby is financial. Perry is filthy. Oscar is not filthy. Toby is not filthy.
Someone who is filthy is always unlikely. It can be concluded that Carrick is not unlikely and Galvin is not filthy once
knowing that Carrick is relieved and Perry is filthy. If there is at least one people who is both not relieved and filthy,
then Blake is grieving. Someone being both filthy and not unlikely is equivalent to being relieved. If Blake is unlikely
and Galvin is relieved, then Oscar is filthy. If Perry is relieved, then Carrick is not filthy, and vice versa. Carrick being
not grieving or Toby being not filthy implies that Carrick is filthy. If Perry is not filthy or Carrick is not grieving, then
Conway is not filthy. If there is at least one people who is not filthy, then Oscar is financial. Someone who is filthy is
always both not filthy and not financial. If there is someone who is either not filthy or grieving, then Toby is not filthy.
If there is someone who is both not grieving and filthy, then Blake is filthy.

Hypothesis:
Carrick is relieved.

Figure 11: An example of LogicNLI (Tian et al., 2021).

PrOntoQA-OOD

Premises (Facts + Rules):
Rex is a tumpus. Rex is a vumpus. Rex is a lempus. Rex is a lempus. Rex is a wumpus. Rex is a jompus.
Zumpuses are grimpuses. Each dumpus is a gorpus. Everything that is a lempus, a wumpus, and a brimpus is a grimpus,
a dumpus, and a zumpus. Each grimpus is an impus. Zumpuses are shumpuses. Grimpuses are gorpuses. Everything
that is a lempus and a wumpus and a brimpus is a rompus. Everything that is a tumpus and a lempus and a vumpus is a
gorpus. Grimpuses are yumpuses.

Hypothesis:
Rex is an impus.

Figure 12: An example of PrOntoQA-OOD (Saparov et al., 2023).

ProofWriter

Premises (Facts + Rules):
The bald eagle chases the cow. The bald eagle is kind. The bald eagle is rough. The bald eagle needs the rabbit. The
cow chases the rabbit. The cow is cold. The cow is green. The cow is red. The rabbit does not chase the bald eagle. The
rabbit chases the cow. The rabbit does not eat the bald eagle. The rabbit eats the cow. The rabbit is cold. The rabbit is
green. The squirrel eats the cow. The squirrel does not eat the rabbit.
If something needs the bald eagle then the bald eagle chases the rabbit. If the squirrel is rough and the squirrel is not
kind then the squirrel is green. If something chases the bald eagle then it needs the squirrel. If something needs the
rabbit then it chases the bald eagle. If something chases the cow then the cow eats the bald eagle. If something chases
the bald eagle and it does not need the bald eagle then it is red. If something needs the squirrel then the squirrel needs
the rabbit.

Hypothesis:
The squirrel needs the rabbit.

Figure 13: An example of ProofWriter (Tafjord et al., 2020).

22



RobustLR

Premises (Facts + Rules):
Fiona is not Bob’s mother. Harry is Charlie’s son.
The father of Dave is Bob if Gary is not green. If Fiona is not Bob’s mother then Charlie is not Dave’s aunt. If Fiona is
not Bob’s son then Charlie is the aunt of Dave. If Bob is rough then Bob is Dave’s daughter. Fiona is not the son of Bob
if Bob is rough. Dave is not kind if Fiona is not the son of Bob. If The son of Bob is not Fiona then Harry is not white.
If Fiona is Harry’s grandfather then Harry is white. If Bob is rough then The grandfather of Harry is not Fiona. Anne is
not furry if The aunt of Dave is not Charlie. Bob is not Dave’s father if Bob is rough. Gary is green if Bob is rough. The
husband of Dave is not Anne if The son of Bob is not Fiona. If Bob is not the daughter of Dave then Gary is not green.
Fiona is the grandfather of Harry if The mother of Bob is not Fiona. If Anne is not the husband of Dave then Anne is
furry. If Harry is white and The son of Charlie is Harry then The daughter of Dave is Bob.

Hypothesis:
The daughter of Dave is not Bob.

Figure 14: An example of RobustLR (Sanyal et al., 2022).

ParaRules

Premises (Facts + Rules):
Bob is a cold and round man who has red and green skin. Charlie is a kind person and he is also often cold. That guy
Eric sure is nice. Harry is a really nice guy with a big round body, usually wearing red.
People who are round and red tend to be rough. If a person acts cold yet nice and green, they will be kind. If you meet
someone with rough skin who is cold from being outside, you’ll notice they are nice. Every time you meet someone
kind and nice, they’ll be green, too. Big people with red hair are cold because they cannot find coats that fit. It’s a
certainty that any green, big and kind individual is going to be nice. A big round young person is often blue.

Hypothesis:
Bob is nice.

Figure 15: An example of ParaRules (Clark et al., 2020).

Prompts for o1-mini & o3-mini

Instructions:
You will do logic reasoning tasks. You will be given a set of premises and a hypothesis. You need to answer if the
hypothesis is *True* or *False* or *Unknown* based on the premises.
(The last sentence in the response should be in the format of "Therefore, the hypothesis is True / False / Unknown.")

Query:
Premise:
query_premise

Hypothesis:
query_hypothesis

Reasoning:
LLM_output

Figure 16: The prompts for reasoning with OpenAI’s o1-mini and o3-mini model. Following OpenAI’s guid-
ance (OpenAI, 2024b), we adopt zero-shot prompting and keep the prompts simple and direct.
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Prompts for Chain-of-Thought

Instructions:
Suppose you are one of the greatest AI scientists, logicians. Given some context as premise, the task is to answer if a
logical reasoning question (hypothesis) is *True* or *False* or *Unknown*.
Definitions:
- True: The hypothesis can be logically derived from the premises.
- False: Only the negation of the hypothesis can be logically derived from the premises.
- Unknown: Neither the hypothesis nor its negation can be logically derived from the premises.
Let us think step by step.

Demonstrations:
##### Example_1
# Example’s hypothesis is *True*
......
##### Example_2
# Example’s hypothesis is *False*
Premise:
The lion is cold.
The lion is nice.
The lion likes the squirrel.
The squirrel is round.
The squirrel sees the lion.
The squirrel visits the cow.
The tiger likes the cow.
The tiger likes the squirrel.
If something is cold then it visits the tiger.
If something visits the tiger then it is nice.
If something sees the tiger and it is young then it is blue.
If something is nice then it sees the tiger.
If something likes the squirrel and it likes the cow, then it visits the tiger.
If something is nice and it sees the tiger then it is young.
If the cow is cold and the cow visits the lion then the lion sees the squirrel.
Question:
Based on the above information, is the following statement true, false, or unknown? The tiger is not young.
Reasoning: # Expected results
1. The tiger likes the cow. The tiger likes the squirrel. If something likes the squirrel and it likes the cow, then it visits
the tiger. So the tiger visits the tiger.
2. If something visits the tiger then it is nice. So the tiger is nice.
3. If something is nice then it sees the tiger. So the tiger sees the tiger.
4. If something is nice and it sees the tiger then it is young. So the tiger is young.
5. It contradicts "The tiger is not young." in the given question. So the answer is False.
##### Example_3
# Example’s hypothesis is *Unknown*
......

Query:
Premise:
query_premise

Question:
query_hypothesis

Reasoning:
LLM_output

Figure 17: The prompts for chain-of-thought reasoning. We number the reasoning steps in demonstrations to make
the step counting explicit in LLM’s output. Demonstrations with hypotheses labeled as True and Unknown are
omitted for brevity.
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Prompts for Forward Selection Module

Instructions:
Imagine you are one of the greatest AI scientists. You are given **a fact** and **a list of rules** (each rule being a
premise with condition(s)). Your task is to evaluate each rule in the list and select those that meet *any* of the following
requirements:
- Full Condition Match: The fact fully and directly satisfies all condition(s) of the rule, allowing a valid derivation to
obtain a new proposition.
- Partial Condition Match: The fact directly satisfies some, but not all, conditions of the rule. This means that additional
fact(s) would be required to make a full derivation and obtain a new proposition.
If no rule is selected, return **None**.

Demonstrations:
##### Example_1
The given fact:
Bob is red.
The given list of rules:
All red, round people are quiet.
Red people are young.
If someone is round and smart then they are not red.
All white people are red.
Quiet people are green.
If someone is red and not white then they are not green.
If someone likes the dog and they are red then they are blue.
Let’s go through each rule from the given list of rules and think step by step.
The selected rules (partial or full condition directly matched) are: # Expected results
All red, round people are quiet.
Red people are young.
If someone is red and not white then they are not green.
If someone likes the dog and they are red then they are blue.
##### Example_2
The given fact:
Anne is quiet.
The given list of rules:
If something is furry and not blue then it is nice.
If Anne is furry then Anne is nice.
Smart, furry things are round.
Let’s go through each rule from the given list of rules and think step by step.
The selected rules (partial or full condition directly matched) are: # Expected results
None

Query:
The given fact:
query_given_fact

The given list of rules:
query_given_list_of_rules

Let’s go through each rule from the given list of rules and think step by step.
The selected rules (partial or full condition directly matched) are:
LLM_output

Figure 18: The prompts for Forward Selection Module for rule selection in LogicTree.
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Prompts for Backward Selection Module

Instructions:
Suppose you are one of the greatest AI scientists, logicians. Given a specific fact, a rule, and a repository of facts, your
task is to identify the missing fact(s) required to fully satisfy the rule’s conditions and check if the missing fact(s) exist
in the fact repository.
- The given one specific fact already satisfies one of the rule’s conditions. Identify the missing fact(s) needed to fully
satisfy the rule.
- Automatically adapt pronouns (e.g., ’they’, ’something’, ’someone’) to the correct subject based on the context of the
given rule and the given fact.
- Check if the missing fact(s) are present in the fact repository.

- If the missing fact(s) are present in the fact repository, return **True** along with the identified missing fact(s).
- Otherwise, return **False**.

Demonstrations:
##### Example_1
The given one specific fact:
The cat likes the rabbit.
The given rule:
If someone is cold and they like the rabbit then the rabbit likes the cat.
The given fact repository:
The cat eats the bear.
The cat is cold.
The cat is kind.
The cat likes the rabbit.
The rabbit likes the tiger.
The tiger likes the bear.
The tiger visits the cat.
Let’s go through each condition of the given rule. First identify the missing fact(s) needed to fully satisfy the rule.
Then check if the missing fact(s) are present in the fact repository: # Expected results
The cat is cold.
True. The identified missing fact(s) in the fact repository: The cat is cold.
##### Example_2
The given one specific fact:
The rabbit likes the squirrel.
The given rule:
If someone likes the squirrel and the squirrel sees the cow then they are red.
The given fact repository:
The cow likes the rabbit.
The cow needs the mouse.
The mouse likes the squirrel.
The rabbit needs the cow.
The rabbit sees the cow.
The squirrel is nice.
The squirrel needs the cow.
The rabbit likes the squirrel.
Let’s go through each condition of the given rule. First identify the missing fact(s) needed to fully satisfy the rule.
Then check if the missing fact(s) are present in the fact repository: # Expected results
The squirrel sees the cow.
False

Query:
The given one specific fact:
query_given_fact

The given rule:
query_given_rule

The given fact repository:
query_given_fact_repo

Let’s go through each condition of the given rule. First identify the missing fact(s) needed to fully satisfy the rule.
Then check if the missing fact(s) are present in the fact repository:
LLM_output

Figure 19: The prompts for Backward Selection Module for fact selection in LogicTree.
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Prompts for Derivation Module

Instructions:
Suppose you are one of the greatest AI scientists, logicians. Your task is to derive a new **Proposition** based on a
given **rule** and some **fact(s)**.
Follow these instructions carefully:
1. Ensure that the **Proposition**:

- Must be a valid logical derivation from the provided **rule** and **fact(s)**.
- Must not duplicate any of the provided **fact(s)**.
- Must not include any information not directly derived from the provided information.
- Automatically adapt pronouns (e.g., ’they’, ’something’, ’someone’) to the correct subject based on the context.

2. Do not apply the rule unless all conditions of the rule are met.
3. If no new **Proposition** can be derived, return **None**, and classify the reason into one of the following
categories:

- A. **Partial Information Met**: The given fact(s) meet some but not all conditions of the given rule.
- B. **No Information Met**: The given fact(s) do not meet any conditions of the given rule.

Demonstrations:
##### Example_1
The given fact(s):
Erin is tall. Erin is cold.
The given rule:
Cold, tall people are not furry.
The derived proposition is: # Expected results
Erin is not furry.
##### Example_2
The given fact(s):
Bob is round.
The given rule:
If someone is round and smart then they are not red.
The derived proposition is: # Expected results (pseudo dead-end)
None
Reason: A. **Partial Information Met**: The given fact(s) meet some but not all conditions of the given rule.
##### Example_3
The given fact(s):
Alice is happy.
The given rule:
If Alice is sad and red, she is quiet.
The derived proposition is: # Expected results (dead end)
None
Reason: B. **No Information Met**: The given fact(s) do not meet any conditions of the given rule.

Query:
The given fact(s):
query_given_facts

The given rule:
query_given_rule

The derived proposition is:
LLM_output

Figure 20: The prompts for Derivation Module in LogicTree.
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Prompts for Verification Module

Instructions:
Suppose you are one of the greatest AI scientists, logicians. Your task is to verify the relationship between a given
**Proposition** and a **Conclusion**. There are three possibilities:
1. **Same:** The **Proposition** is directly equivalent to the **Conclusion**, meaning both the subject and the
predicate (attributes) are the same.
2. **Opposite:** The **Proposition** directly contradicts the **Conclusion**. The subjects are the same, but the
predicates (attributes) are in direct opposition, such as ’predicate’ versus ’not predicate’.
3. **Indeterminate:** Neither **Same** nor **Opposite**. The **Proposition** and the **Conclusion** either have
different predicates (attributes) or there is no clear relationship between them.

Demonstrations:
##### Example_1
Proposition:
Erin is not round.
Conclusion:
Erin is not green.
Verify the relationship between the given Proposition and the Conclusion: # Expected results
Indeterminate
##### Example_2
Proposition:
The rabbit is cold.
Conclusion:
The rabbit is cold.
Verify the relationship between the given Proposition and the Conclusion: # Expected results
Same
##### Example_3
Proposition:
The tiger is not young.
Conclusion:
The tiger is young.
Verify the relationship between the given Proposition and the Conclusion: # Expected results
Opposite

Query:
Proposition:
query_proposition

Conclusion:
query_conclusion

Verify the relationship between the given Proposition and the Conclusion:
LLM_output

Figure 21: The prompts for Verification Module in LogicTree.
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Prompts for Fact Ranking Module (ablation study)

Instructions:
Imagine you are one of the greatest AI scientists, logicians. You are given a logic reasoning question that involves: a list
of facts, a list of rules, a hypothesis to be verified.
Your task is to plan and prioritize the reasoning path:
- Sort the given **facts** based on their likelihood of being the starting point in the correct reasoning path to verify the
hypothesis.
- The first fact in the sorted list should have the highest probability of being the right starting point, and the last fact
should have the lowest probability.

Demonstrations:
##### Example_1
The given list of facts:
Bob is young.
Dave is blue.
Erin is blue.
Fiona is blue.
Fiona is kind.
Fiona is quiet.
Fiona is white.
The given list of rules:
If someone is kind then they are white.
Young people are quiet.
If someone is kind and white then they are blue.
All quiet, kind people are white.
If someone is quiet then they are kind.
If someone is white then they are young.
All blue, kind people are green.
The hypothesis to be verified:
Fiona is not green.
Let’s sort the given **facts** based on their likelihood of being the starting point in the correct reasoning path.
The sorted facts are (each fact in a new line): # Expected results
Fiona is blue.
Fiona is kind.
Fiona is quiet.
Fiona is white.
Bob is young.
Dave is blue.
Erin is blue.
##### Example_2
......

Query:
The given list of facts:
query_fact_list

The given list of rules:
query_rule_list

The hypothesis to be verified:
query_hypothesis

Let’s sort the given **facts** based on their likelihood of being the starting point in the correct reasoning path.
The sorted facts are (each fact in a new line):
LLM_output

Figure 22: Prompts for Fact Ranking Module, used in the ablation study reported in Table 2.

29



Prompts for Rule Ranking Module (ablation study)

Instructions:
Imagine you are one of the greatest AI scientists, logicians. You are given a logic reasoning question that involves: a list
of facts, a list of rules, a hypothesis to be verified.
Additionally, you are provided with a set of **selected rules**, which serve as potential intermediate steps in the
reasoning process.
Your task is to plan and prioritize the reasoning path:
- Sort the **selected rules** based on their likelihood of being part of the correct reasoning path.
- The first rule in the sorted list should have the highest probability of being in the correct reasoning path, and the last
rule should have the lowest probability.

Demonstrations:
##### Example_1
The given list of facts:
Bob is young.
Dave is blue.
Erin is blue.
Fiona is blue.
Fiona is kind.
Fiona is quiet.
Fiona is white.
The given list of rules:
If someone is kind then they are white.
Young people are quiet.
If someone is kind and white then they are blue.
All quiet, kind people are white.
If someone is quiet then they are kind.
If someone is white then they are young.
All blue, kind people are green.
The hypothesis to be verified:
Fiona is not green.
The given set of **selected rules**:
If someone is kind then they are white.
If someone is kind and white then they are blue.
All quiet, kind people are white.
All blue, kind people are green.
Let’s sort the given **selected rules** based on their likelihood of being part of the correct reasoning path.
The sorted rules are (each rule in a new line): # Expected results
All blue, kind people are green.
If someone is kind then they are white.
If someone is kind and white then they are blue.
All quiet, kind people are white.
##### Example_2
......

Query:
The given list of facts:
query_fact_list

The given list of rules:
query_rule_list

The hypothesis to be verified:
query_hypothesis

The given set of **selected rules**:
query_selected_rules

Let’s sort the given **selected rules** based on their likelihood of being part of the correct reasoning path.
The sorted rules are (each rule in a new line):
LLM_output

Figure 23: Prompts for Rule Ranking Module, used in the ablation study reported in Table 2.
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