LogicTree: Structured Proof Exploration for Coherent and Rigorous
Logical Reasoning with Large Language Models

Anonymous ACL submission

Abstract

Large language models (LLMs) have achieved
remarkable multi-step reasoning capabilities
across various domains. However, LLMs still
face distinct challenges in complex logical rea-
soning, as (1) proof-finding requires systematic
exploration and the maintenance of logical co-
herence and (2) searching the right combina-
tion of premises at each reasoning step is inher-
ently challenging in tasks with large premise
space. To address this, we propose LogicTree,
an inference-time modular framework employ-
ing algorithm-guided search to automate struc-
tured proof exploration and ensure logical co-
herence. Advancing beyond tree-of-thought
(ToT), we incorporate caching mechanism into
LogicTree to enable effective utilization of his-
torical knowledge, preventing reasoning stag-
nation and minimizing redundancy. Further-
more, we address the combinatorial complexity
of premise search by decomposing it into a
linear process. The refined premise selection
restricts subsequent inference to at most one
derivation per step, enhancing reasoning granu-
larity and enforcing strict step-by-step reason-
ing. Additionally, we introduce two LLM-free
heuristics for premise prioritization, enabling
strategic proof search. Experimental results
on five datasets demonstrate that LogicTree
optimally scales inference-time computation
to achieve higher proof accuracy, surpassing
chain-of-thought (CoT) and ToT with average
gains of 23.6% and 12.5%, respectively, on
GPT-40. Moreover, within LogicTree, GPT-40
outperforms o3-mini by 7.6% on average.

1 Introduction

Recent advances in large language models (LLMs),
such as OpenAI’s 01/03 series (OpenAl, 2024a,
2025), DeepSeek-R1 (Guo et al., 2025) and Grok-
3 (xAl, 2025), have demonstrated remarkable rea-
soning capabilities in domains like code genera-
tion and complex mathematical problem-solving.
However, logical reasoning (Dowden, 2020; Clark

et al., 2020) presents unique challenges that differ-
entiate it from other reasoning domains (Liu et al.,
2025; Xu et al., 2025). It demands rigorous verifi-
cation of a hypothesis through deliberate reasoning
over a set of premises consisting of facts and rules,
where two difficulties may arise. First, in complex
problems, the precise proof path is not immedi-
ately apparent. Proof discovery requires systematic
and extensive exploration (Saparov and He, 2023).
Second, each reasoning step involves selecting rel-
evant premises and inferring based on them. In a
large premise space, difficulty in identifying the
right fact-rule combination directly affects infer-
ence accuracy (Kazemi et al., 2023).

To tackle these challenges, some studies use an it-
erative framework to build longer reasoning chains
for solving complex problems (Creswell et al.,
2023). Within the framework, they adopt a mod-
ular approach to decompose individual reasoning
steps (Khot et al., 2023), separating premise se-
lection from inference and assigning each to spe-
cialized LLM modules for improved accuracy (Xu
et al., 2024b; Zhang et al., 2024; Sun et al., 2024).
Further research integrates LLM modules into tree
structures, enabling systematic proof exploration
(Kazemi et al., 2023; Yao et al., 2023; Wang et al.,
2025). Although these methods have achieved no-
table advancements, there are still limitations:

(1) Difficulties in maintaining logical coherence
and in effectively utilizing derived knowledge ob-
struct progressive proof construction. In some it-
erative approaches (Creswell et al., 2023; Zhang
et al., 2024), reasoning steps are not required to
build directly on prior derivations, which may dis-
rupt logical coherence, hinder deep reasoning and
cause redundancy (Wang et al., 2025). While tree-
based method (Yao et al., 2023) mitigates this
issue, it lacks mechanisms to share derived knowl-
edge across branches, potentially leading to reason-
ing stagnation (Sun et al., 2024).

(2) Combinatorial complexity hinders precise

Hypothesis H spaCy spaCy (b-2) Continued Proof Exploration from Factl
{ Semantic Alignment Sort(Facts,) Fact N Rule;) -
Fmm————— 000 i - Forward Selection
1 1 [. Backward Selection)
' [Same Subject with 3¢ |:> U’ Cumulative Connectivity oy & EAED
'-):> ul ®Fact3 @Fact1 @Fact2 # Rules (Need:Derive7A Rule Ranking
- -
4 Other Subjects @ ® ﬂ Deriving... D @@ - spaCy
(a) Fact (Root) Ranking X
X “ ? = @ Derived @
(b-1) Proof Exploration from Fact3 Mmioceee®e® i ¥ | o
Forward Selection) 9 ®]
A Fact3 -\ Backward Selection Fact Repo Verification
‘4 Rule1 Rule2 Rule3 l l ’/”f @ — =W @
Rule Ranking g -‘:"\. o (Need: AFact2) I[Derivation HashMap]I Proof found
spaCy 1 H Deriving ... 1 —[Derive7] 1 Finished
{Rule1, Rule2, Rule3}n H g E)I% € I_EEEV_E7_]_____—_'/|
ul ®Rule2 @ ® i : ? g
i S Fact2? _}:_> _?_ - (c¢) Construction of Proof Chain for Verifying Hypothesis
- 1 1 1 . . .
Derivation &) .) @,. i with Derivation HashMap
ey e o T (Derive7 A) A Rule8 = Derive9 & H
- - 570 [Derivation HashMap Derive7 < Fact1 A Rule?
i 6 | N [Facts - i < A Fact2) ARule4
T @ s ! = |
1%/ vs. 5 CFeez] Do) LRz 1> [Derves) & Fact3 A Rule3 J

Figure 1: The overview of LogicTree: (a) Fact (root) ranking; (b) Tree-by-tree search for proof exploration: (b-1)
Proof exploration from the top-ranked fact (Fact3) which has the highest cumulative connectivity with rules, (b-2)
Continued proof exploration from the next ranked fact (Factl); (c) Construction of proof chain. The framework
consists of (i) two caches: Fact Repository (Fact Repo) and Derivation HashMap; (ii) four LLM-based modules:
Forward Selection, Backward Selection, Derivation, Verification. Additionally, we leverage spaCy for fact and
rule ranking. Within a tree: a blue oval represents a given fact; a green rectangle represents a rule; a purple oval
represents a derived fact. LogicTree on an example from ProofWriter (Tafjord et al., 2020) is shown in Figure 5.

premise selection which is essential for accurate
stepwise reasoning. At each step, the model must
identify the right combination of facts and rules
from premise space for subsequent inference. The
combinatorial search increases the risk of impre-
cise selection, which results in failed or inaccurate
inference (Kazemi et al., 2023; Liu et al., 2024).

(3) Employing LLMs for proof planning (Wang
et al., 2023a) may be ineffective for complex logi-
cal reasoning, as such tasks require extensive and
adaptive exploration. This often renders LLMs’
planning unreliable and uninterpretable (Saparov
and He, 2023; Kambhampati et al., 2024). Mean-
while, low-computation LLM-free heuristics may
be sufficiently effective for strategic proof search,
yet they remain largely overlooked.

To address these limitations, we propose Logic-
Tree, a novel inference-time modular framework
for structured proof exploration. The overview of
our framework is shown in Figure 1. LogicTree
includes four LLM-based modules: Forward Se-
lection, Backward Selection, Derivation and Ver-
ification, which are embedded in tree structure.
Additionally, we incorporate Fact Repository and
Derivation HashMap into LogicTree as cache com-
ponents. Fact Repository is initialized with given
facts and dynamically stores derived facts. It en-

ables branches to access the given facts and the
derivations from earlier branches, facilitating cross-
branch information flow and effective utilization of
historical knowledge throughout proof exploration.
Derivation HashMap records derived facts along
with their derivation paths for a traceable reasoning
process. We employ depth-first search (DFS) to
orchestrate LLM modules and cache components,
automating systematic proof search while ensuring
logical coherence.

Furthermore, at each reasoning step, our frame-
work decomposes the search for fact-rule combi-
nations into Forward (rule) Selection followed by
Backward (fact) Selection, reducing the complexity
from combinatorial to linear. With this optimiza-
tion, each selected rule-fact combination includes
exactly one rule and its relevant fact(s), restrict-
ing inference to at most one derivation per step.
This key improvement enhances reasoning gran-
ularity and enforces strict step-by-step reasoning,
contributing to strengthened reasoning rigor.

Additionally, we introduce two heuristics lever-
aging spaCy' for premise prioritization: (1) Fact
(root) ranking for global ordering of tree search;
(2) Rule ranking at local level for early stopping
in DFS. These LLM-free heuristics provide com-

'An open source NLP library (https://spacy.io/).

https://spacy.io/

putationally efficient and interpretable strategies
to accelerate proof-finding, avoiding blind and ex-
haustive search.

Our framework enables extensive exploration
and fine reasoning granularity, optimally scaling
reasoning length and inference-time computation
(Snell et al., 2024) to enhance logical reasoning ca-
pability. Our evaluation on five challenging logical
reasoning benchmarks demonstrates that LogicTree
significantly outperforms chain-of-thought (CoT)
(Wei et al., 2022) and other modular methods in
proof accuracy. Furthermore, within LogicTree
framework, both Llama-3.3 70B (Dubey et al.,
2024) and GPT-40 (Achiam et al., 2023) surpass
OpenAl’s ol-mini and 03-mini models. In-depth
analysis reveals that our approach facilitates pre-
cise premise selection and accurate inference at
each reasoning step while minimizing redundancy.

The main contributions of our work are:

* We propose LogicTree, a novel inference-time
framework that enables structured proof ex-
ploration while ensuring logical coherence.
Additionally, we integrate cache components
to effectively utilize historical knowledge and
facilitate traceable reasoning process.

* We address combinatorial complexity in
premise search and enhance reasoning granu-
larity, improving stepwise reasoning accuracy
and strengthening overall reasoning rigor.

* We introduce two LLM-free heuristics
for premise prioritization, providing low-
computation and interpretable strategies to im-
prove proof-finding efficiency.

2 Related Work
2.1 Reasoning through Strategic Prompting

Pre-trained language models (Brown et al., 2020;
Chowdhery et al., 2023; Touvron et al., 2023) ex-
hibit emergent reasoning abilities with increasing
model scale. Strategic prompt engineering tech-
niques, such as CoT (Wei et al., 2022; Kojima
et al., 2022), Auto-CoT (Zhang et al., 2023), self-
consistency (Wang et al., 2023b), least-to-most
(Zhou et al., 2023), help guide LLMs through in-
termediate reasoning steps, significantly improving
LLM reasoning performance. However, the inher-
ent simplicity of CoT and its variants, which is
typically characterized by a left-to-right reasoning
process with limited reasoning length, restricts their
effectiveness in logical reasoning tasks that require
exploration (Yao et al., 2023; Xie et al., 2023).

2.2 Inference-time Scaling for Reasoning

Just as human may take more time to carefully
analyze a complex question, enabling LLMs to
refine their response with deliberate reasoning and
increased inference-time computation is crucial for
developing intelligent reasoning systems (Snell
et al., 2024; OpenAl, 2024a; Chen et al., 2025).
Reasoning models trained via reinforcement
learning (RL). Applying large-scale RL in LLM
post-training phase has proven highly effective in
enhancing reasoning abilities. It enables LLMs to
develop reflection, self-correction, and long-chain
reasoning skills for problem-solving (OpenAl,
2024a; Kumar et al., 2024; Shao et al., 2024; Yeo
et al., 2025). Recently, DeepSeek-R1 (Guo et al.,
2025) made significant breakthrough by achieving
strong reasoning performance purely through RL,
without the need for supervised fine-tuning (SFT).
Modular inference without LLM parameter up-
dates. Modular approach decomposes complex
reasoning tasks into simpler sub-tasks, each as-
signed to specialized LLM modules implemented
through few-shot prompting (Khot et al., 2023).
In logical reasoning, it involves two key modules
that operate iteratively: premise selection and in-
ference (Creswell et al., 2023). Extending from
this foundation, Cumulative Reasoning (Zhang
et al., 2024) integrates LLM verifier to validate
reasoning steps. DetermLLR (Sun et al., 2024) em-
ploys LLM scorer to prioritize relevant premises.
SymbCoT (Xu et al., 2024b) and Aristotle (Xu
et al., 2024a) introduce LLM translator to convert
natural language input into symbolic representa-
tions. Further research embeds LLM modules into
topological structures, enabling deliberate problem
solving (Yao et al., 2023; Besta et al., 2024).
Current LLM-based methods for logical reason-
ing still struggle to perform structured exploration
while ensuring logical coherence and rigor in com-
plex, multi-step reasoning tasks. To address these
challenges, we propose a novel inference-time mod-
ular approach that enables systematic and extensive
proof exploration and enhances reasoning rigor.

3 LogicTree for Logical Reasoning

3.1 Task Definition

Logical reasoning aims to determine the truth value
(true, false, or unknown) of a hypothesis ‘H based
on a set of premises consisting of facts F and rules
R (Dowden, 2020). An example is shown in Fig-
ure 5. Formally, ¥ = {f; | i = 1,2,...,Nr},

where each f; represents a definitive statement
within the reasoning system. R = {r; | i =
1,2,..., Nr}, where each r; represents a condi-
tional statement that defines a logical relationship
between facts and inferred conclusions. The rea-
soning process applies standard logical operators,
including: Negation (—), Conjunction (A), Dis-
junction (V), Implication (=), Equivalence (&).
We define the set of intermediate derived facts as
D={d;|i=1,2,...,Np}.

3.2 Components of LogicTree Framework

As shown in Figure 1, the LogicTree framework
includes (1) two caches: Fact Repository and
Derivation HashMap; (2) four LLM-based mod-
ules: Forward Selection, Derivation, Backward
Selection, and Verification, each implemented by
few-shot prompting. The specific prompts for each
module, along with example inputs and outputs,
are provided in Appendix I.

Fact Repository and Derivation HashMap.
Fact Repository is initialized with given facts F
and continuously stores derived facts D. It en-
ables tree branches to access the given facts and
earlier derivations. This facilitates cross-branch
information flow and effective utilization of histor-
ical knowledge throughout proof exploration. Ad-
ditionally, it checks whether a newly derived fact
from a tree branch is unique among those already
stored. If not, the branch is marked as a dead end to
avoid redundancy and circular reasoning. Deriva-
tion HashMap stores derived facts as keys and their
derivation paths as values, enabling a traceable rea-
soning process. Upon proof completion, the proof
chain is reconstructed bottom-up, starting from the
final path that verifies the hypothesis. If a fact in
the path is found in the HashMap (i.e., it is derived
rather than given), its associated derivation path is
retrieved. This process occurs iteratively, construct-
ing a streamlined proof as shown in Figure 1c.
Forward Selection Module. Based on a fact (ei-
ther f; or d;), this module selects all the relevant
rules from the given rule set R. A rule is consid-
ered relevant if its condition(s) are fully or partially
satisfied by the fact. Each selected rule is added as
a child node of the fact, forming parallel branches
in the tree structure.

Derivation Module. Along each branch, this
module performs a strict one-step derivation us-
ing the current leaf rule and its parent fact. A
successful derivation occurs if the fact fully sat-
isfies the rule’s condition. If the derivation fails,

it results from one of the two reasons: (1) the fact
does not satisfy the rule’s condition at all, i.e., the
rule was incorrectly selected by Forward Selection
Module; (2) the fact partially satisfies the rule’s
conditions, with some required fact(s) still missing.
In the first case, the branch is marked as a dead end.
In the second case, where conjunctive reasoning
(e.g., fi N\ fa Ary = dy) is required, the branch is
marked as a pseudo dead-end, where the missing
fact(s) may still be retrievable.

Backward Selection Module. If a branch is
marked as a pseudo dead-end, this module is
queried to attempt rule completion and resolve the
stagnation. This module uses the current fact-rule
pair as a pivot to identify the missing fact(s) re-
quired for derivation. It then searches Fact Repos-
itory to determine their availability. The missing
fact(s) may be a given fact f; (Figure 1b-1) or a
derived fact d; from an earlier branch (Figure 1b-2).
If the missing fact(s) are available, the rule together
with its supplemented relevant facts are then sent
to Derivation Module to re-attempt derivation. If
not, the branch is marked as dead end.
Verification Module. After each successful
derivation, this module evaluates the derived fact d;
against the hypothesis H to determine if the proof
is complete. If the derived fact is equivalent to
or directly contradicts the hypothesis, the proof is
concluded; otherwise, proof exploration continues.

3.3 LLM-free Premise Prioritization

We introduce two heuristics leveraging spaCy for
premise (fact and rule) prioritization, which pro-
vide low-computation and interpretable strategies
to improve proof-finding efficiency.

Fact (root) ranking for global ordering of tree
search. In LogicTree framework, each given fact
fi serves as the root of a tree, and trees are explored
sequentially until the proof is found. As shown in
Figure 1a, we first apply a semantic alignment step
to prioritize facts that have the same subject with
the hypothesis H as tree roots. To further rank facts,
we define cumulative connectivity between a fact
fi and the rule set R, which is the sum of semantic
overlap between f; and each rule r; € R. It ap-
proximates how many reasoning branches the root
fact can initiate through its relevant rules. Facts
with zero connectivity are discarded, as they cannot
contribute to any derivation. Facts with higher con-
nectivity are prioritized for opening more reasoning
paths and higher likelihood of proof discovery in
earlier-explored trees. We conduct subject align-

ment and compute semantic overlap using spaCy’s
efficient dependency parsing.
Rule ranking at local level for early stopping.
After each Forward Selection, the selected rules are
ranked based on each rule’s semantic overlap with
hypothesis . This prioritization directs Derivation
Module to first apply the rule r; whose derivation
is most likely to verify hypothesis #, facilitating
early stopping. For example, to verify H: "Kevin
is uncomfortable.", a rule r; such as: "If ..., the
person is uncomfortable." would be prioritized.
The computations for semantic overlap and cu-
mulative connectivity are provided in Appendix A.

3.4 LogicTree Algorithm

We employ iterative depth-first search (DFS) al-
gorithm within LogicTree framework to automate
systematic exploration as provided in Algorithm 1.

Initially, the algorithm uses Verification to check
if hypothesis H can be directly verified from given
facts F. If H is explicitly confirmed or refuted, the
algorithm terminates and returns True or False, re-
spectively. Otherwise, it proceeds with tree search.

As a preliminary, Fact Repository and Deriva-
tion HashMap are initialized, and the given facts
are ranked using Fact Ranking heuristic. The algo-
rithm starts with the top-ranked fact, which serves
as the root of the first tree. Then, Forward Selec-
tion is called to select relevant rules, which are
subsequently ranked using Rule Ranking heuristic.
Along each fact-rule branch, one-step inference is
conducted. As shown in Algorithm 2, the inference
process encapsulates calls to Derivation and, if nec-
essary, Backward Selection. Backward Selection
is triggered when the output of Derivation indi-
cates a pseudo dead-end. If Backward Selection
successfully retrieves the missing fact(s) from Fact
Repository, then a secondary query to Derivation
is performed. Together, this modular process (i)
decomposes the search for fact-rule combination,
reducing complexity from combinatorial to linear
(more analysis in Appendix B and Table 3); (ii) en-
sures each reasoning step involves exactly one rule
and its relevant fact(s), producing at most one de-
rived fact per step; (iii) avoids reasoning stagnation
by attempting to resolve pseudo dead-ends.

After each inference, Verification evaluates the
result to determine whether it concludes the proof,
enabling early stopping (Algorithm 3). If the result
indicates an underivable or redundant (i.e., already
in Fact Repository) outcome, DFS backtracks to
explore the next branch. Otherwise, the derived fact

d; is appended to the tree for further expansion.
The next iteration begins from derived fact d;,
with LLM modules reset before the next call. By
building each step upon prior derivations, our
framework maintains logical coherence. Once a
tree is fully explored, the algorithm proceeds to the
next tree, using the next ranked fact as the root. To
avoid excessively long reasoning, we set an LLM
query limit on the reasoning process. If all trees are
explored or the query limit is reached (whichever
occurs first) without verifying the hypothesis H,
the algorithm terminates and returns Unknown.

4 Experiments

4.1 Experimental Setup

Datasets. We evaluate our framework on five
multi-step logical reasoning datasets: RobustLR
(Sanyal et al., 2022), PrOntoQA-OOD (Saparov
et al., 2023), ProofWriter (Tafjord et al., 2020),
ParaRules (Clark et al., 2020), LogicNLI (Tian
et al., 2021). For all examples in our experi-
ments, hypothesis concludes as True, False, or Un-
known. More details on datasets are provided in
Appendix C.1. (Appendix H shows the extension of
our framework to mathematical reasoning dataset.)
Baselines. To compare our framework with ex-
isting LLM-based reasoning methods, we select
baselines from three categories:

o Strategic LLM prompting: CoT (Wei et al., 2022)
prompts the model to generate intermediate rea-
soning steps before providing final answers.

* Modular approaches: SI (Selection-Inference)
(Creswell et al., 2023) adpots selection and infer-
ence modules for iterative reasoning. CR (Cumu-
lative Reasoning) (Zhang et al., 2024) introduces
a cumulative process of generating new proposi-
tions to reach the answer. ToT (Tree-of-Thought)
(Yao et al., 2023) leverages tree-search algorithm
for deliberate reasoning. LAMBADA (Kazemi
et al., 2023) develops a backward chaining ap-
proach for automated reasoning.

* RL-trained reasoning models: o1-mini (OpenAl,
2024a) and 03-mini (OpenAl, 2025) model.

Models. Our framework places no restrictions on
the choice of LLMs. Here, we separately employ
GPT-40-mini, GPT-40, (Achiam et al., 2023) and
Llama-3.3 70B (Dubey et al., 2024) within our
framework. We reproduce CoT and other modular
approaches using the same models for comparison.
Further details on models are in Appendix C.2.

Dataset

Model Method vg.
LogicNLI ParaRules PrOntoQA-OOD ProofWriter RobustLR

CoT 38.0 48.3 55.0 51.8 62.1 51.2

SI 46.0 51.3 72.5 55.3 60.4 55.8

GPT-40-mini CR 42.7 54.0 75.0 49.7 70.0 56.1

LAMBADA 54.7 62.0 75.5 68.0 66.3 65.5

ToT 51.3 64.3 65.5 70.3 72.9 66.5

LogicTree 58.0 68.7 87.5 78.8 87.1 75.7

CoT 51.3 69.0 83.0 73.5 79.6 72.0

SI 48.0 71.0 91.5 68.0 71.3 70.4

GPT-40 CR 54.0 75.3 91.5 75.3 76.7 75.5

LAMBADA 68.0 73.3 93.5 86.7 88.3 81.6

ToT 69.3 75.0 86.5 91.0 89.2 83.1

LogicTree 78.7 96.3 99.0 97.0 97.9 95.6

CoT 46.7 70.8 88.5 75.5 80.0 73.6

SI 52.0 74.7 92.5 61.7 76.3 70.6

Llama-3.3 70B CR 53.3 76.7 93.0 73.3 70.8 74.6

LAMBADA 66.7 78.3 91.0 81.7 87.1 81.1

ToT 69.0 79.7 90.5 87.7 85.4 83.4

LogicTree 74.7 92.3 97.0 95.8 97.5 93.2

Table 1: Proof accuracy of different methods across five logical reasoning datasets on GPT-40-mini, GPT-40, and
Llama-3.3 70B. The highest accuracy in each case is in bold; the second-highest is underlined. Avg. is calculated
as the number of correctly proved examples divided by the total number of examples across all five datasets.

Proof Accuracy (%)

90
80
70
60
60.7 . 58.0
50

LogicTree LogicTree LogicTree LogicTree LogicTree
LoycNLI ParaRules ProOntoQA -O0D ProofWriter RobustLR
ol-mini B 03-mini GPT-40-mini Llama-3.3 70B mm GPT-40

Figure 2: Performance comparison between general LLMs (GPT-40-mini, GPT-40, Llama-3.3 70B) applied within
LogicTree and RL-trained reasoning models (01-mini, 03-mini).

Evaluate reasoning accuracy. In logical reason-
ing, correct label prediction (True, False, or Un-
known) does not necessarily indicate correct rea-
soning, as models may arrive at the correct con-
clusion through hallucinated premises or spurious
correlations (Kazemi et al., 2023; Liu et al., 2023).
Similar to Saparov and He (2023), we use proof
accuracy for rigorous evaluation. We manually
verify each example by focusing on the reasoning
chain that verifies the hypothesis within the entire
reasoning trace. A proof is considered correct if
every step in this chain is valid, while the validity
of other reasoning paths is disregarded.

4.2 Main Results

As shown in Table 1, our proposed LogicTree con-
sistently outperforms CoT and other modular ap-

proaches across all five datasets. Specifically, our
method surpasses CoT significantly, with average
performance gains of 24.5%, 23.6%, and 19.6%
on GPT-40-mini, GPT-40, and Llama-3.3 70B, re-
spectively. Compared to ToT, the strongest among
other modular methods, our framework achieves av-
erage improvements of 9.2%, 12.5%, and 9.8% on
the same models. On ParaRules, PrOntoQA-OOD,
ProofWriter, and RobustLR datasets, our frame-
work achieves near-perfect proof accuracy with
GPT-40, highlighting its strength in logical reason-
ing. This strength generalizes across different lev-
els of task difficulty, as shown in Figure 7. Further-
more, when applied within LogicTree, Llama-3.3
70B and GPT-40 outperform RL-trained reasoning
models, o1-mini and 03-mini, as shown in Figure 2.

=)
S
©
N
=N

85 91.5
70 79.6

55

359
40 28.8

25
24.6 275
o 273

SI CR

Percentage of
Inference Steps (%)

LAMBADA ToT

Non-null Inference Rate mNon-null & Unique Inference Rate

(a)

LogicTree

96.6 100
96.1 95 99.2

90 914 909 924
85

80 84.1

75
70

Accuracy (%)

LAMBADA ToT LogicTree

Selection Accuracy

(b)

Inference Accuracy

Figure 3: Step-level metrics (§ 5.1) across different methods. (a) Non-null inference rate (the outer bars) and
non-null & unique inference rate (the inner bars). (b) Selection accuracy and inference accuracy, evaluated only on
tree-based methods. All metrics are manually evaluated on GPT-40’s outputs for 100 examples from ProofWriter.

With Llama-3.3 70B, our method yields 8.7% and
5.2% higher accuracy on average; with GPT-4o, the
average gains are 11.1% and 7.6%, respectively.

5 Further Analysis

Figure 6 schematically illustrates how baseline ap-
proaches perform logical reasoning with LLMs,
which facilitates in-depth performance analysis.

5.1 Factors Impacting Proof Accuracy

To explain the effectiveness of our framework, we
define the following step-level metrics:

1. Non-null Inference Rate: The percentage of
inference steps that result in derived facts.

2. Non-null & Unique Inference Rate: The percent-
age of inference steps that generate new facts (i.e.,
not previously derived).

3. Selection Accuracy: The percentage of selec-
tion steps where the selected premises are logically
relevant to the parent node during tree expansion.
4. Inference Accuracy: The percentage of inference
steps that are logically correct given the selected
premises.

Logical coherence. Tree-based frameworks
(ToT, LAMBADA, LogicTree) exhibit significantly
higher performance than SI and CR due to better
maintenance of logical coherence. As shown in
Figure 6, SI and CR begin each iteration from the
updated premise set rather than building directly
on prior derivations, disrupting logical coherence.
This disruption breaks the continuity of reasoning,
resulting in the loss of the logical "pivot" (i.e.,
prior derivation) needed to guide premise selection.
For SI, without this anchor, identifying logically
relevant fact-rule combinations becomes difficult,
resulting in frequent failed (null) inferences.
Additionally, the lack of coherence limits aware-
ness of previous derivations, leading to repeated
re-derivation and redundancy. These issues are

reflected by SI's low non-null & unique inference
rate in Figure 3a. CR adopts random combination
for premise selection, resulting in an even lower
non-null inference rate (Figure 3a) due to irrelevant
selected premises. Under a fixed iteration budget,
failed and redundant steps stall logical progression
and ultimately render the proof incomplete.

Premise selection accuracy in tree search. Al-
though ToT builds each reasoning step on prior
derivations, it still faces combinatorial search com-
plexity. In conjunctive reasoning scenario (e.g.,
fi N fa Ary = dy), it requires searching for rele-
vant fact-rule combination (fo Ar1) for a parent fact
node (f1), making precise selection challenging.
Also, to accommodate such search process, ToT
does not constrain the number of selected premises
per branch (Figure 6d), increasing the risk of select-
ing irrelevant premises (i.e., distractions). Together,
these factors reduce selection accuracy and subse-
quently lead to failed or inaccurate inferences.

Forward vs. Backward tree search strategies.
LAMBADA (backward reasoning) starts from the
hypothesis and checks each rule to determine its ap-
plicability. This method inherently avoids combina-
torial search (Table 3), leading to higher selection
accuracy. However, despite the challenge of com-
binatorial search, forward reasoning (ToT) achieves
higher inference accuracy than backward reasoning
(Figure 3b). This may be attributed to the preva-
lence of forward logical flow in pre-training corpus
and the autoregressive nature of LLMs, which fa-
vors reasoning from premises to conclusions.

Our framework adopts forward reasoning to
leverage its aforementioned advantage, while de-
composing premise selection to address its search
complexity (Table 3), effectively improving both se-
lection accuracy and inference accuracy, as shown
in Figure 3b. Another key reason our framework
outperforms ToT is that ToT lacks a mechanism to

leverage derived facts from earlier branches, which
may lead to reasoning stagnation (the scenario in
Figure 1b-2). Our framework addresses this issue
through incorporating Fact Repository (§ 3.2). The
impact of this component is evaluated in Table 5.
We further conduct error analysis on CoT, ol-
mini, 03-mini, and our framework in Appendix D.

100
— ® LogicTree
S 90
g
— n
§ 30 ToT wLAMBADA
< *CR
E 0 e SI
5?_ 7 CoT

60
0 5 10 15 20 25 30

Number of Reasoning Steps

Figure 4: Proof accuracy vs. reasoning steps, averaged
across five datasets for GPT-40. The shaded area illus-
trates that our framework optimally scales inference-
time computation to achieve higher proof accuracy.

5.2 Scaling of Reasoning Length

Proof accuracy vs. reasoning steps. To assess
the impact of long reasoning on solving complex
logical tasks and compare its effectiveness across
different approaches, we measure the average num-
ber of reasoning steps for each approach across five
datasets (details in Appendix E Table 6). The cor-
responding proof accuracy and average reasoning
steps for each approach are presented in Figure 4.
Insufficient reasoning of CoT in complex tasks lim-
its its performance. SI and CR, as analyzed in § 5.1,
suffer from high proportion of redundant and failed
inferences, which undermine the effectiveness of
long reasoning. LAMBADA (backward reasoning)
demonstrates more reasoning steps and lower proof
accuracy compared to forward reasoning (ToT and
LogicTree). Additional analysis comparing for-
ward and backward reasoning is provided in Ap-
pendix F Table 4. Compared to ToT, our framework
requires more reasoning steps for two main reasons:
(1) Our framework decomposes the combinatorial
premise search, leading to more steps; (2) In ToT,
multiple derivations can occur within a single step
(Figure 6d), whereas our framework restricts each
step to at most one derivation. The enhanced rea-
soning granularity ensures strict step-by-step rea-
soning, optimally increasing reasoning length and

ParaRules ProofWriter RobustLR
w/o0 prioritize 17.8 41.0 19.7
P (93.0) 91.7) (94.6)
L 11.6 30.6 17.5
LLM-based pricritize o5 s, (94.8) (96.7)
Proposed prioritize 9.5 23.5 138
posecp (96.3) (97.0) (97.9)

Table 2: Ablation results on GPT-40: average reasoning
steps and proof accuracy (gray, in parentheses).

leveraging additional inference-time computation
to achieve higher proof accuracy, as shown in the
shaded areas of Figure 4 and Figure 8.
Premise-prioritization heuristics for efficient
scaling. We introduce two premise-prioritization
heuristics for strategic proof exploration (§ 3.3). To
evaluate their impact on proof search efficiency, we
conduct an ablation study across three scenarios:
(1) without premise prioritization, where both facts
and selected rules are sampled in a random order
for exploration; (2) using LLM-based premise pri-
oritization, where two LLM modules are applied:
one for fact ranking and one for rule ranking, with
details provided in Appendix G; and (3) using our
proposed LLM-free heuristics. As shown in Ta-
ble 2, our proposed heuristics facilitate fewer rea-
soning steps in proof-finding while attaining higher
proof accuracy by avoiding the increased error risk
associated with longer reasoning paths.

6 Conclusion

In this work, we propose LogicTree, a novel
inference-time modular framework for logical rea-
soning. Our framework employs algorithm-guided
search (DFS) to automate structured exploration
while ensuring logical coherence. It incorporates
caching mechanism to effectively utilize historical
knowledge, preventing reasoning stagnation and
minimizing redundancy. Furthermore, we address
the combinatorial complexity of premise search
and enhance reasoning granularity by restricting
inference to at most one derivation per step. This
improves stepwise reasoning accuracy and strength-
ens reasoning rigor. Additionally, we introduce
LLM-free heuristics that provide low-computation,
explainable strategies to improve proof search ef-
ficiency. Experimental results show that Logic-
Tree optimally leverages inference-time scaling to
achieve higher proof accuracy, surpassing other
modular frameworks and reasoning models, high-
lighting its strength in logical reasoning.

Limitations

While our framework demonstrates strong perfor-
mance in logical reasoning tasks, it has some limi-
tations that could open avenues for future work.

First, we evaluate our framework in the domain
of logical reasoning, as it represents a distinct type
of challenge in reasoning tasks that requires struc-
tured and extensive exploration. Our goal is to
address this type of reasoning challenge, which of-
ten demands more deliberate reasoning. In future
work, we plan to extend the framework to more
complex domains such as theorem proving.

Second, our framework assumes that all
premises (i.e., facts and rules) are explicitly pro-
vided. Future work could incorporate premise
augmentation with plausible knowledge retrieved
from LLM, rather than relying solely on the given
premises. Additionally, when facts and rules are
not clearly separated, an extra pre-processing step
with assistance from LLM may be required (Sun
et al., 2024). Also, our premise prioritization strate-
gies rely on simple heuristics. Developing more ad-
vanced approaches for proof planning and premise
prioritization remains an important direction for
future research.

Ethics Statement and Broader Impact

Our work adheres to the Code of Ethics. All uti-
lized methods, models, and datasets are properly
cited. The datasets used in our experiments are pub-
licly available, and our research does not involve
any private or sensitive information. We confirm
that our use of datasets and LLMs aligns with their
intended purposes and usage guidelines. A poten-
tial risk of our framework lies in the misuse of its
outputs in high-stakes domains without sufficient
validation or expert review, as LLMs cannot al-
ways guarantee fully correct outputs. Nevertheless,
when properly applied, our framework contributes
to the development of interpretable and automated
reasoning systems. Our work has the potential to
extend to real-world applications that require rigor-
ous, multi-step decision-making.

References

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama
Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman,
Shyamal Anadkat, and 1 others. 2023. Gpt-4 techni-
cal report. arXiv preprint arXiv:2303.08774.

Maciej Besta, Nils Blach, Ales Kubicek, Robert Gersten-
berger, Michal Podstawski, Lukas Gianinazzi, Joanna
Gajda, Tomasz Lehmann, Hubert Niewiadomski, Pi-
otr Nyczyk, and 1 others. 2024. Graph of thoughts:
Solving elaborate problems with large language mod-
els. In Proceedings of the AAAI Conference on Artifi-
cial Intelligence, volume 38, pages 17682-17690.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, and 1 others. 2020. Language models are
few-shot learners. Advances in neural information
processing systems, 33:1877-1901.

Qiguang Chen, Libo Qin, Jinhao Liu, Dengyun Peng,
Jiannan Guan, Peng Wang, Mengkang Hu, Yuhang
Zhou, Te Gao, and Wangxiang Che. 2025. Towards
reasoning era: A survey of long chain-of-thought
for reasoning large language models. arXiv preprint
arXiv:2503.09567.

Xinyun Chen, Ryan Andrew Chi, Xuezhi Wang, and
Denny Zhou. 2024. Premise order matters in reason-
ing with large language models. In Proceedings of
the 41st International Conference on Machine Learn-
ing, volume 235 of Proceedings of Machine Learning
Research, pages 6596-6620. PMLR.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin,
Maarten Bosma, Gaurav Mishra, Adam Roberts, Paul
Barham, Hyung Won Chung, Charles Sutton, Sebas-
tian Gehrmann, and 1 others. 2023. Palm: Scaling
language modeling with pathways. Journal of Ma-
chine Learning Research, 24(240):1-113.

Peter Clark, Oyvind Tafjord, and Kyle Richardson. 2020.
Transformers as soft reasoners over language. In Pro-
ceedings of the Twenty-Ninth International Joint Con-
ference on Artificial Intelligence, IJCAI-20, pages
3882-3890. International Joint Conferences on Arti-
ficial Intelligence Organization. Main track.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, and 1 others. 2021. Training verifiers
to solve math word problems. arXiv preprint
arXiv:2110.14168.

Antonia Creswell, Murray Shanahan, and Irina Higgins.
2023. Selection-inference: Exploiting large language
models for interpretable logical reasoning. In The
Eleventh International Conference on Learning Rep-
resentations.

Bradley Harris Dowden. 2020. Logical reasoning.
Bradley Dowden.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela
Fan, and 1 others. 2024. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783.

https://doi.org/10.24963/ijcai.2020/537
https://openreview.net/forum?id=3Pf3Wg6o-A4
https://openreview.net/forum?id=3Pf3Wg6o-A4
https://openreview.net/forum?id=3Pf3Wg6o-A4

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao
Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shi-
rong Ma, Peiyi Wang, Xiao Bi, and 1 others. 2025.
Deepseek-rl: Incentivizing reasoning capability in
Ilms via reinforcement learning. arXiv preprint
arXiv:2501.12948.

Subbarao Kambhampati, Karthik Valmeekam, Lin
Guan, Mudit Verma, Kaya Stechly, Siddhant Bham-
bri, Lucas Paul Saldyt, and Anil B Murthy. 2024.
Position: Llms can’t plan, but can help planning in
IIm-modulo frameworks. In Forty-first International
Conference on Machine Learning.

Mehran Kazemi, Najoung Kim, Deepti Bhatia, Xin
Xu, and Deepak Ramachandran. 2023. LAMBADA:
Backward chaining for automated reasoning in nat-
ural language. In Proceedings of the 61st Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), Toronto, Canada.
Association for Computational Linguistics.

Tushar Khot, Harsh Trivedi, Matthew Finlayson, Yao
Fu, Kyle Richardson, Peter Clark, and Ashish Sab-
harwal. 2023. Decomposed prompting: A modular
approach for solving complex tasks. In The Eleventh
International Conference on Learning Representa-
tions.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yu-
taka Matsuo, and Yusuke Iwasawa. 2022. Large lan-
guage models are zero-shot reasoners. Advances in

neural information processing systems, 35:22199—
22213.

Aviral Kumar, Vincent Zhuang, Rishabh Agarwal,
Yi Su, John D Co-Reyes, Avi Singh, Kate Baumli,
Shariq Igbal, Colton Bishop, Rebecca Roelofs, and
1 others. 2024. Training language models to self-
correct via reinforcement learning. arXiv preprint
arXiv:2409.12917.

Bingbin Liu, Jordan T. Ash, Surbhi Goel, Akshay Kr-
ishnamurthy, and Cyril Zhang. 2023. Transformers
learn shortcuts to automata. In The Eleventh Interna-
tional Conference on Learning Representations.

Hanmeng Liu, Zhizhang Fu, Mengru Ding, Ruoxi Ning,
Chaoli Zhang, Xiaozhang Liu, and Yue Zhang. 2025.
Logical reasoning in large language models: A sur-
vey. arXiv preprint arXiv:2502.09100.

Junjie Liu, Shaotian Yan, Chen Shen, Liang Xie, Wenx-
iao Wang, and Jieping Ye. 2024. Concise and or-
ganized perception facilitates reasoning in large lan-
guage models. arXiv preprint arXiv:2310.03309.

OpenAl. 2024a. Learning to reason with llms.
OpenAl. 2024b. Reasoning best practices.
OpenAl. 2025. Openai 03-mini.

Soumya Sanyal, Zeyi Liao, and Xiang Ren. 2022. Ro-
bustLR: A diagnostic benchmark for evaluating logi-
cal robustness of deductive reasoners. In Proceedings

10

of the 2022 Conference on Empirical Methods in Nat-
ural Language Processing, Abu Dhabi, United Arab
Emirates. Association for Computational Linguistics.

Abulhair Saparov and He He. 2023. Language models
are greedy reasoners: A systematic formal analysis
of chain-of-thought. In The Eleventh International
Conference on Learning Representations.

Abulhair Saparov, Richard Yuanzhe Pang, Vishakh Pad-
makumar, Nitish Joshi, Mehran Kazemi, Najoung
Kim, and He He. 2023. Testing the general deductive
reasoning capacity of large language models using
OOD examples. In Thirty-seventh Conference on
Neural Information Processing Systems.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu,
Junxiao Song, Xiao Bi, Haowei Zhang, Mingchuan
Zhang, YK Li, Y Wu, and 1 others. 2024. Deepseek-
math: Pushing the limits of mathematical reason-
ing in open language models. arXiv preprint
arXiv:2402.03300.

Charlie Snell, Jachoon Lee, Kelvin Xu, and Aviral Ku-
mar. 2024. Scaling llm test-time compute optimally
can be more effective than scaling model parameters.
arXiv preprint arXiv:2408.03314.

Hongda Sun, Weikai Xu, Wei Liu, Jian Luan, Bin Wang,
Shuo Shang, Ji-Rong Wen, and Rui Yan. 2024. De-
termLR: Augmenting LLM-based logical reasoning
from indeterminacy to determinacy. In Proceedings
of the 62nd Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
Bangkok, Thailand. Association for Computational
Linguistics.

Oyvind Tafjord, Bhavana Dalvi Mishra, and Peter
Clark. 2020. Proofwriter: Generating implications,
proofs, and abductive statements over natural lan-
guage. arXiv preprint arXiv:2012.13048.

Jidong Tian, Yitian Li, Wenqing Chen, Ligiang Xiao,
Hao He, and Yaohui Jin. 2021. Diagnosing the first-
order logical reasoning ability through LogicNLI. In
Proceedings of the 2021 Conference on Empirical
Methods in Natural Language Processing, Online
and Punta Cana, Dominican Republic. Association
for Computational Linguistics.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Roziere, Naman Goyal, Eric Hambro, Faisal
Azhar, and 1 others. 2023. Llama: Open and effi-
cient foundation language models. arXiv preprint
arXiv:2302.13971.

Lei Wang, Wanyu Xu, Yihuai Lan, Zhiqgiang Hu,
Yunshi Lan, Roy Ka-Wei Lee, and Ee-Peng Lim.
2023a. Plan-and-solve prompting: Improving zero-
shot chain-of-thought reasoning by large language
models. arXiv preprint arXiv:2305.04091.

Siyuan Wang, Enda Zhao, Zhongyu Wei, and Xiang Ren.
2025. Stepwise informativeness search for improving
IIm reasoning. arXiv preprint arXiv:2502.15335.

https://doi.org/10.18653/v1/2023.acl-long.361
https://doi.org/10.18653/v1/2023.acl-long.361
https://doi.org/10.18653/v1/2023.acl-long.361
https://doi.org/10.18653/v1/2023.acl-long.361
https://doi.org/10.18653/v1/2023.acl-long.361
https://openreview.net/forum?id=_nGgzQjzaRy
https://openreview.net/forum?id=_nGgzQjzaRy
https://openreview.net/forum?id=_nGgzQjzaRy
https://openreview.net/forum?id=De4FYqjFueZ
https://openreview.net/forum?id=De4FYqjFueZ
https://openreview.net/forum?id=De4FYqjFueZ
https://openai.com/index/learning-to-reason-with-llms/
https://platform.openai.com/docs/guides/reasoning-best-practices
https://openai.com/index/openai-o3-mini/
https://doi.org/10.18653/v1/2022.emnlp-main.653
https://doi.org/10.18653/v1/2022.emnlp-main.653
https://doi.org/10.18653/v1/2022.emnlp-main.653
https://doi.org/10.18653/v1/2022.emnlp-main.653
https://doi.org/10.18653/v1/2022.emnlp-main.653
https://openreview.net/forum?id=qFVVBzXxR2V
https://openreview.net/forum?id=qFVVBzXxR2V
https://openreview.net/forum?id=qFVVBzXxR2V
https://openreview.net/forum?id=qFVVBzXxR2V
https://openreview.net/forum?id=qFVVBzXxR2V
https://openreview.net/forum?id=MCVfX7HgPO
https://openreview.net/forum?id=MCVfX7HgPO
https://openreview.net/forum?id=MCVfX7HgPO
https://openreview.net/forum?id=MCVfX7HgPO
https://openreview.net/forum?id=MCVfX7HgPO
https://doi.org/10.18653/v1/2024.acl-long.531
https://doi.org/10.18653/v1/2024.acl-long.531
https://doi.org/10.18653/v1/2024.acl-long.531
https://doi.org/10.18653/v1/2024.acl-long.531
https://doi.org/10.18653/v1/2024.acl-long.531
https://doi.org/10.18653/v1/2021.emnlp-main.303
https://doi.org/10.18653/v1/2021.emnlp-main.303
https://doi.org/10.18653/v1/2021.emnlp-main.303

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V Le,
Ed H. Chi, Sharan Narang, Aakanksha Chowdhery,
and Denny Zhou. 2023b. Self-consistency improves
chain of thought reasoning in language models. In
The Eleventh International Conference on Learning
Representations.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,
and 1 others. 2022. Chain-of-thought prompting elic-
its reasoning in large language models. Advances
in neural information processing systems, 35:24824—
24837.

xAl 2025. Grok 3 beta — the age of reasoning agents.

Yuxi Xie, Kenji Kawaguchi, Yiran Zhao, James Xu
Zhao, Min-Yen Kan, Junxian He, and Michael Xie.
2023. Self-evaluation guided beam search for rea-
soning. Advances in Neural Information Processing
Systems, 36:41618-41650.

Fangzhi Xu, Qika Lin, Jiawei Han, Tianzhe Zhao, Jun
Liu, and Erik Cambria. 2025. Are large language
models really good logical reasoners? a comprehen-
sive evaluation and beyond. IEEE Transactions on
Knowledge and Data Engineering.

Jundong Xu, Hao Fei, Meng Luo, Qian Liu, Liang-
ming Pan, William Yang Wang, Preslav Nakov,
Mong-Li Lee, and Wynne Hsu. 2024a. Aristotle:
Mastering logical reasoning with a logic-complete
decompose-search-resolve framework. arXiv
preprint arXiv:2412.16953.

Jundong Xu, Hao Fei, Liangming Pan, Qian Liu, Mong-
Li Lee, and Wynne Hsu. 2024b. Faithful logical rea-
soning via symbolic chain-of-thought. arXiv preprint
arXiv:2405.18357.

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui,
Bo Zheng, Bowen Yu, Chengyuan Li, Dayiheng Liu,
Fei Huang, Haoran Wei, and 1 others. 2024. Qwen2.
5 technical report. arXiv preprint arXiv:2412.15115.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran,
Tom Griffiths, Yuan Cao, and Karthik Narasimhan.
2023. Tree of thoughts: Deliberate problem solving
with large language models. Advances in neural
information processing systems, 36:11809—-11822.

Edward Yeo, Yuxuan Tong, Morry Niu, Graham Neu-
big, and Xiang Yue. 2025. Demystifying long
chain-of-thought reasoning in llms. arXiv preprint
arXiv:2502.03373.

Yifan Zhang, Jinggin Yang, Yang Yuan, and Andrew C
Yao. 2024. Cumulative reasoning with large language
models.

Zhuosheng Zhang, Aston Zhang, Mu Li, and Alex
Smola. 2023. Automatic chain of thought prompting
in large language models. In The Eleventh Interna-
tional Conference on Learning Representations.

11

Denny Zhou, Nathanael Schirli, Le Hou, Jason Wei,
Nathan Scales, Xuezhi Wang, Dale Schuurmans,
Claire Cui, Olivier Bousquet, Quoc V Le, and Ed H.
Chi. 2023. Least-to-most prompting enables com-
plex reasoning in large language models. In The
Eleventh International Conference on Learning Rep-
resentations.

https://openreview.net/forum?id=1PL1NIMMrw
https://openreview.net/forum?id=1PL1NIMMrw
https://openreview.net/forum?id=1PL1NIMMrw
https://x.ai/blog/grok-3/
https://openreview.net/forum?id=lifLHzadgr
https://openreview.net/forum?id=lifLHzadgr
https://openreview.net/forum?id=lifLHzadgr
https://openreview.net/forum?id=5NTt8GFjUHkr
https://openreview.net/forum?id=5NTt8GFjUHkr
https://openreview.net/forum?id=5NTt8GFjUHkr
https://openreview.net/forum?id=WZH7099tgfM
https://openreview.net/forum?id=WZH7099tgfM
https://openreview.net/forum?id=WZH7099tgfM

A Computation for Semantic Overlap
and Cumulative Connectivity

For each fact f, rule r, as well as the hypothesis H,
we extract a structured triple:

(szuby Sgred, Sgp) from a fact,
(Sglij’ Sgred’ SgP)
(S;‘lbj, nged, Sg'f,) from the hypothesis.

from a rule,

In each triple:

* Ssubj denotes the Set of Subjects,

¢ Spred denotes the Set of Predicates,

» Sgp denotes the Set of Subject-Predicate pairs

identified via parent-child relations in spaCy.

These sets are extracted using spaCy’s dependency
parser. We represent them as sets to account for
the possibility of multiple subjects and predicates
within a single fact, rule, or hypothesis.

The semantic overlap Sem/(f, r) between a fact
f and a rule r is defined as:

Sem(f, 1) = 0.25 - I(SL; N Sy # 0)
+ 0.25 - 1(Sh g N Shrea # 0)
+ 0.5 1(SE N S%) #0), (1)

and similarly, the semantic overlap Sem(r, H)
between a rule r and hypothesis H is defined as:

Sem(r,H) = 0.25 - I(Sg; N Seby; # 0)
+ 0.25- H(Sgred N Sg’-rted # (Z))

+ 0.5-1(SHp NS #0), (2

where (-) is an indicator function:

1, if condition is true

0,

I(condition) = { otherwise

We set the coefficients as 0.25, 0.25, and 0.5 re-
spectively, such that the semantic overlap is upper-
bounded by 1, achieved when all three conditions
are satisfied. Partial (i.e, subject or predicate) over-
laps are assigned with non-zero coefficient (0.25)
because they may still indicate logical relevance.
For example, in the case where the fact is “Dave is
hungry.” and the rule is “If someone is hungry, they
are uncomfortable.”, only the predicate overlaps,
but the fact is logically connected to the rule.

The cumulative connectivity C(f, R) between
a fact f and the entire rule set R is defined as the
sum of its semantic overlap with each rule in R,
ie.,

12

C(f,R)=>_ Sem(f,r).

reR

3)

A higher cumulative connectivity value indicates
that the fact f is likely to initiate more reasoning
branches through its relevant rules.

B Linear Premise Search in LogicTree

In our framework, premise search is simplified by
decomposing it into forward (rule) selection and
backward (fact) selection (§ 3.2), resulting in a
linear rather than combinatorial search process.

During forward selection, the framework takes
a fact as an anchor and identifies all relevant rules.
Although multiple rules may be retrieved in a single
LLM query, LLM can perform a process analogous
to a linear iteration over the rule set, evaluating
each rule independently for relevance without re-
quiring joint combinations.

Similarly, in backward selection, we consider
a general conjunctive reasoning case (e.g., fi A
fo AN ... A fn A1 = dy), where an anchor fact
f1 partially satisfies a rule r1. Once this rule ry is
identified, the remaining required facts (f2 through
fn) are identified from the rule’s conditions and
subsequently checked for existence in Fact Repos-
itory by Backward Selection Module. LLM can
implement this step in a way that resembles a lin-
ear scan by verifying the existence of each required
fact individually.

In contrast, CoT and ToT require combinatorial
search for fact—rule combinations, where the facts
and rules must be jointly selected and logically
relevant to each other as shown in Table 3, thereby
increasing the complexity of LLM’s search process.

C Experimental Details

C.1 Dataset

We evaluate on five English-language logical rea-
soning datasets, as detailed below:

RobustLR (Sanyal et al., 2022) includes Logical
Contrast and Logical Equivalence sets for testing
the logical robustness on conjunctive, disjunctive,
and contrapositive reasoning. We randomly sample
240 examples from the test set.

PrOntoQA-OOD (Saparov et al., 2023) is a syn-
thetic question-answering dataset using fictional
names. For evaluation, we use the most challenging
4-hop subset. We randomly sample 200 examples
from the test set.

ProofWriter (Tafjord et al., 2020) is a commonly
used benchmark for deductive logical reasoning.
We evaluate the open-world assumption (OWA)
subset, focusing on the hardest depth-5 subset. We
randomly sample 600 examples from the test set.
ParaRules (Clark et al., 2020) paraphrases data
from ProofWriter into more natural language using
crowdsourcing, enhancing text diversity and natu-
ralness. We randomly sample 600 examples from
the test set.
LogicNLI (Tian et al., 2021) is the most challeng-
ing dataset, featuring a large premise space and
numerous reasoning paths, only one of which leads
to the proof. We randomly sample 150 examples
from the test set.

Few-shot demonstrations for each LLM module
are sampled from the training set of each dataset.
An example of each dataset is shown in Appendix I.

C.2 Models

Here are the versions of OpenAl’s models:
GPT-40-mini: gpt-40-mini-2024-07-18
GPT-40: gpt-40-2024-08-06
ol-mini: 01-mini-2024-09-12
03-mini (medium): 03-mini-2025-01-31

All OpenAl models are accessed through Ope-
nAI API?. Llama-3.3 70B is accessed through To-
gether AT API®. We set the temperature to 0.1 for
all experiments to encourage more deterministic
generation. All results are obtained from a single
run. We utilize the Microsoft Guidance library in
our implementation®.

The version of spaCy model used in our frame-
work is en_core_web_1g-3.8.0 (382 MB).

D Error Analysis on CoT, o1-mini,
03-mini, LogicTree

We manually conduct error analysis on CoT,
ol-mini, o03-mini, and our framework using
ProofWriter dataset. For CoT, we randomly sample
100 failed proofs, while for o1-mini, 03-mini, and
our framework, we analyze all failed cases. We
categorize the errors into three types: (1) insuf-
ficient exploration, (2) wrong derivation, and (3)
hallucinated premise. The proportion of these er-
ror types for each method, along with illustrative
examples, is shown in Figure 9. Our framework
exhibits significantly fewer errors caused by insuffi-
cient exploration. In addition, our framework does
2https://platform.openai.com/docs/overview

3https://www.together.ai/models/llama—3—3—7®b
*https://github.com/guidance-ai/guidance

13

not suffer from hallucinated premises, as access to
the hypothesis is restricted to Verification Module
only. This prevents the generation of unsupported
premises that favor verifying the hypothesis during
premise selection and inference.

Our findings on why CoT struggles with com-
plex logical reasoning align with prior research:
(1) it faces difficulty when premises are unordered
and contain distractions (Chen et al., 2024), and
(2) it lacks systematic exploration when reasoning
requires navigating extensive branching (Saparov
and He, 2023). The high branching factor that
complicates exploration, along with sensitivity to
distractions, also limits the performance of o1-mini
and 03-mini in complex logical reasoning com-
pared to their effectiveness in coding and math.
To address this, a modular method for precise
premise selection which strengthens robustness to
distractions, combined with an algorithm-guided
approach for systematic proof searching, provides a
promising foundation. Our framework builds upon
and extends these components, addressing their
limitations to develop a logically complete algo-
rithm that enables rigorous and coherent reasoning,
ultimately achieving superior proof accuracy.

E Number of Reasoning Steps, Generated
Tokens, and Inference Time

The following elaborates on how we measure the
number of reasoning steps for each approach.

(1) For CoT, we define one reasoning step as a
combination of premise selection and an inference
based on the selected premises. To make step count-
ing explicit in LLM’s output, we number each rea-
soning step in few-shot demonstrations (Figure 17).
(2) For SI, we set the maximum number of itera-
tions to 10, as we find the framework typically fails
to generate new derivations beyond this point. Each
iteration consists of one query to LLM selection
module and one query to LLM inference module.
The process terminates early if the hypothesis is
successfully verified. We define the total number
of reasoning steps in SI as the total number of LLM
module queries made across the iterations.

(3) For CR, we use the framework’s default hyper-
parameters for reasoning. The total number of
reasoning steps in CR is calculated as the total
number of LLM module queries made during the
iterations, plus the number of steps in the final CoT
reasoning process.

(4) For ToT, LAMBADA, and LogicTree, each

https://platform.openai.com/docs/overview
https://www.together.ai/models/llama-3-3-70b
https://github.com/guidance-ai/guidance

query to an LLM module is counted as one reason-
ing step. We set the step limit L (in Algorithm 1)
to 80 for all methods. Tree search terminates early
if the hypothesis is successfully verified.

(5) Since reasoning with ol-mini and 03-mini in-
cludes unobservable intermediate steps, we exclude
them from the analysis of reasoning steps.

Table 6 shows the average number of reason-
ing steps across five logical reasoning datasets for
different methods. Table 7 presents the average
number of generated tokens and inference time
for those different methods. The number of gener-
ated tokens is obtained using completion_tokens
from the completion response.

F Performance Analysis: Forward vs.
Backward Reasoning

In Table 4, we present in-depth analysis to explain
why backward reasoning requires more reasoning
steps than forward reasoning in iterative tree search,
based on three key factors: (1) utilization of histor-
ical knowledge; (2) evaluation of hypothesis and
its negation; and (3) branching complexity in rea-
soning paths.

The lower proof accuracy of LAMBADA (back-
ward reasoning) compared to forward reasoning
methods (ToT and LogicTree) can be explained by
two main reasons: (1) LLMs demonstrate higher
stepwise inference accuracy in forward reasoning
as shown in Figure 3b (§ 5.1); (2) the larger number
of reasoning steps in backward reasoning increases
the likelihood of making errors.

G Using LLM Modules for Premise
Prioritization

The prompts used for the LLM modules in fact
and rule ranking are provided in Appendix 1. We
do not apply predefined criteria in these prompts,
allowing us to assess LLM’s inherent ability on
premise prioritization. For the average reasoning
steps (LLM-based prioritize) reported in Table 2,
we do not include LLM queries related to fact and
rule ranking. Even without this overhead, LLM-
based premise prioritization results in more rea-
soning steps than our LLM-free heuristics. This
reflects the limitation in LLM-based proof plan-
ning. Successfully guiding the reasoning process
requires the model to already have an accurate un-
derstanding of how to reach the proof in advance,
yet this ability is not evidenced by the limited per-
formance of CoT (Table 1). Based on the results

14

in Table 2, our simple LLM-free heuristics prove
effective for strategic proof exploration.

H Extension to Mathematical Reasoning

LogicTree is primarily designed to strengthen the
logical reasoning capabilities of LLMs. Beyond its
original focus, it can be readily adapted to other
types of reasoning tasks that start from a given
set of information. Our framework systematically
combines relevant information for derivation, lever-
ages derived information, and facilitates structured
problem solving. In Figure 10, we illustrate how
LogicTree performs mathematical reasoning on an
example from GSM8K (Cobbe et al., 2021). We
further compare the accuracy of CoT, ToT, and
LogicTree on a subset of 300 randomly selected
examples from GSMSK test set. All methods are
evaluated on Qwen2.5-7B (Yang et al., 2024), with
LogicTree demonstrating superior performance.

I Dataset Example and Prompt for LLM
Modules

Figure 11, Figure 12, Figure 13, Figure 14, Fig-
ure 15 show an example of LogicNLI, PrOntoQA-
OOD, ProofWriter, RobustLR, ParaRules, respec-
tively.

Figure 16 shows the prompts for reasoning with
OpenAl’s 01-mini and 03-mini model. We use the
same prompts for all the five datasets.

Figure 17 shows the prompts for chain-of-
thought. The instructions in the prompt are iden-
tical across all five datasets, while the demon-
strations are sampled from the training set of
each respective dataset. We use examples from
ProofWriter as illustrations.

Figure 18, Figure 19, Figure 20, Figure 21 sep-
arately show the prompts for Forward Selection
Module, Backward Selection Module, Derivation
Module, Verification Module in our framework.
The instructions in the prompt are consistent across
all five datasets, while the demonstrations are sam-
pled from the training set of each respective dataset.
We use examples from ProofWriter as illustrations.

Figure 22 and Figure 23 respectively show the
prompts for Fact Ranking Module and Rule Rank-
ing Module, which are used in the ablation studies
with results presented in Table 2.

Facts:

1.The bear chases the lion.
2.The bearisred.

3. The bearis round.

4. The lion needs the bear.
5. The mouse is round.

Rules:

1. If something visits the bear and it eats the mouse,
then the bear chases the mouse.

2. If something is red, then it needs the mouse.

3. If something is kind and it eats the lion,

then it chases the mouse.

4. If the bear is red, then the lion eats the squirrel.

5. If something is round, then it is kind.

6. If something needs the mouse and it chases the lion,
then it eats the lion.

7. If something is red, then it sees the bear.

8. If something is round, then it visits the squirrel.

9. If something is kind, then it needs the squirrel.

Hypothesis:
The bear chases the mouse.
(True/False/Unknown)

Fact (Root) Ranking
» Step 1: Semantic (subject) alignment

. The bear chases the lion.

. The bear is red.
The bear is round.

The lion needs the bear.

The mouse is round.

SIS SRI SIS

» Step 2: Cumulative connectivity

R o (no connectivity)

» Ranking
2.The bearisred. #1
3. The bear is round. #2

1.The bear chases the lion. #3
5. The mouse is round. #4

4. The lion needs the bear.

_

-- Tree 1, Depth 0

-
1 Root (given fact):

1 2. The bear is red.

i
i

'

| Relevant rules: Forward Selection E
i

i

i

i

1 2. If something is red, then it needs the mouse.
| 4. Ifthe bear is red, then the lion eats the squirrel.
\ 7. If something is red, then it sees the bea

-
! Derive facts and verify hypothesis:

1

1
| fact 2 A rule 2 = derive 1: Derivation E
! The bear needs the mouse. Verification !
\fact2 Arule 4= derive 2: Derivation !
| The lion eats the squirrel. Verification !
\ fact2 A rule 7= derive 3: Derivation !

| The bear sees the bear.

Verification !

| Fact Repo:
| fact 1, fact 2, fact 3, fact 4, fact 5,

-
! Leaf (derived fact): 1
1 1. The bear needs the mouse. i
| Relevant rules: Forward Selection
! 6. If something needs the mouse i
| and it chases the lion, then it eats the lion. E

i Find missing facts:

| Need: The bear chases the lion. i
I
1 1 Find missing facts: 1
| Need: The bear eats the lion. 1
I
'
'

| From Fact Repo: 4. The bear eats the lion.

| Derive facts and verify hypothesis: '

| derive 1 Afact 1 A rule 6 = derive 4: Derivation |

\ Fact Repo:
| fact 1, fact 2, fact 3, fact 4, fact 5,

i 1 Derive facts and verify hypothesis:

Backward Selection | H
1

Tree 2, Depth O -

1 Root (given fact): 1
1 3. The bear is round. i
| Relevant rules: Forward Selection |
1 5. If something is round, then it is kind. E

'

| 8. If something is round, then it visits the squirrel. !

Derive facts and verify hypothesis:

1 fact 3 A rule 5 = derive 5: Derivation
| The bear is kind. Verification
\ fact 3 A rule 8 = derive 6: Derivation

Verification

P i
1 Fact Repo:
| fact 1, fact 2, fact 3, fact 4, fact 5, derive 1,

E-Leaf(derived fact): E
1 5. The bear is kind. !
! Relevant rules: Forward Selection !
H 3. If something is kind and it eats the lion, !
| then it chases the mouse. !
I
I
1
!

1 9. If something is kind,

| then it needs the squirrel.
| derive 5 A rule 3 = Pseudo dead-end Derivation

H Backward Selection

1 Derive facts and verify hypothesis:
| derive 5 A derive 4 A rule 3 = derive 7: Derivation
| The bear chases the mouses. Verification

Constructed Proof Chain for Hypothesis Verification

2.The bearisred.

2. If something is red, then it needs the mouse.
1. The bear needs the mouse.

1. The bear chases the lion.

6. If something needs the mouse and it chases the lion,

then it eats the lion.
4. The bear eats the lion.

3. The bearis round.

5. If something is round, then itis kind.

5. The bearis kind.

3. If something is kind and it eats the lion,
then it chases the mouse.

7.The bear chases the mouse.

< Hypothesis

Figure 5: The proof exploration trace of LogicTree on an example from ProofWriter (Tafjord et al., 2020). Rule
Ranking, Derivation HashMap and some leaves (derive2, derive3, derive6) are omitted for brevity.

LLM Premise Selectior

®
+@ => 0
®

LLM Inference

LLM Premise Selection
+ Inference

g

g

(a) Chain-of-Thought (b) Selection-Inference

(c) Cumulative Reasoning

Random Selection

h'd

LLM Inference

h'd
LLM Verifier @
Valid, Non-redundant 1

LLM CoT

(d) Tree-of-Thought

LLM
Premise Selection

LLM
Rule Selection

Goal Decomposition

LLM

Fact Check
(if goals € facts)

Note: backward chaining doesn’t derive facts.

@ given fact
e.g., The bear is round.
8 rule
e.g., If something is round, it is kind.
@ derived fact
e.g., The bear is kind.
@ hypothesis

e.g., The bear is red.

(e) LAMBADA (backward chaining)

Figure 6: Schematic illustrations of baseline approaches for logical reasoning with LLMs: (a) Chain-of-Thought;
(b) Selection-Inference; (c) Cumulative Reasoning; (d) Tree-of-Thought; (¢) LAMBADA.

15

Algorithm 1 LogicTree DFS Algorithm
Require:
Premises F U R, Hypothesis H
Large language model LL M, NLP library spaCy

Algorithm 2 Inference Function

Require:
fi,ri, Fact_Repo, s
Large language model LLM

1: s < 0 > Number of reasoning steps 1: d; < Derivation(
2: step_limit < L LLM, fi,ri,s+1)
3: for each f; € F do 2: if d; # null then
4: result < Early_Stop(LLM, f;,H,s) 3: return d;
5: if result # Unknown then 4: end if
6: return result - Verified 5: > Use textual pattern matching
7: end if 6: if PseudoDeadEnd(d;) then
8: end for 7: > Search missing fact
9: Fact_Repo + F 8: fs < Backward_Selection(
10: Derivation_HashMap <+ {} LLM, fi,7:, Fact_Repo,s + 1)
11: Frank < Fact_Ranking(spaCy, F,R) 9: if fs # null then
12: for each f; € Frqni do 10: d; < Derivation(
13: if s > step_limit then LLM, fy\fs,ri,s+1)
14: break 11: return d
15: end if 12: end if
16: Tree « [fl] > Initiate the root of a tree 13: end if
17: while T'ree # 0 do 14: return null
18: fi < Tree.pop() & LIFO, get the leaf fact
19: R < Forward_Selection(
LLM, fi,R,s+1)
20: Rrely <« Rule_Ranking(spaCy, R™", H)
21: for each r; € Rﬁgl;jk do
22: d; < Inference(LLM, f;,r;, Fact_Repo, s) - ,
23 result Early_Stop(LLM, d;, H, s) Algorithm 3 Early_Stop Function
24 if result # Unknown then Require:
25: return result > Verified fiordi, H, s
26: end if Large language model LLM
27: if (d; # null) A (d; ¢ Fact_Repo) then 1: result < Verification(
28: T'ree.append(d;) - Extend branches LLM, fiord;,H,s+ 1)
29: Fact_Repo < Fact_Repo U {d;} 2: if result # Unknown then
30: Derivation_HashMap|d;] < pathg, 3: > H is verified
31: end if 4. > result is either True or False
32: end for 5: return result
33: end while 6: end if
34: end for 7: > H is not verified
35: return Unknown 8: return Unknown

16

Facts 7 + Rules R:
[...] The bald eagle likes the dog. The bald eagle needs the tiger. The bald eagle sees the tiger. The bald eagle needs the dog.

The dog is blue. The dog sees the tiger. The rabbit is green. The tiger needs the bald eagle. [...]
[...]

If someone needs the bald eagle and the bald eagle sees the tiger then they are rough.
If someone needs the dog and they like the dog then they like the tiger.

If someone likes the bald eagle then the bald eagle needs the dog.

If someone is rough and they like the dog then the dog needs the tiger.

[...]
Hypothesis:

The bald eagle likes the tiger.

» CoT » ToT

Premise Search # Parent node (anchor)

The bald eagle likes the dog. Q The bald eagle likes the dog.

The bald eagle needs the dog. # Premise Search

If someone needs the dog and they like the dog then they The bald eagle needs the dog.

like the tiger. If someone needs the dog and they like the dog then they

like the tiger.

One-step search One-step search

Combinatorial complexity Combinatorial complexity

» LAMBADA » LogicTree

Parent node (anchor) # Parent node (anchor)

Q The bald eagle likes the tiger. Q The bald eagle likes the dog.

Premise (rule) Search # Forward (rule) Selection

If someone needs the dog and they like the dog then they If someone needs the dog and they like the dog then they
like the tiger. like the tiger.

Fact Check (if f € F) # fact-rule pair (anchor)

The bald eagle needs the dog. Q +

The bald eagle likes the dog.
Backward (fact) Selection

The bald eagle needs the dog.

One-step search + one-step check Two-step search
Linear complexity Linear complexity

Table 3: Complexity of premise search in CoT, ToT, LAMBADA, and our framework. An example involving
conjunctive reasoning from ProofWriter is used for analysis. Note that although ToT’s complexity becomes linear
in non-conjunctive cases, the reasoning type is not known beforehand. Therefore, ToT must retain its higher search
complexity in the general case to accommodate complex scenarios.

17

Factor

Forward Reasoning

Backward Reasoning

Utilization of historical knowl-
edge (intermediate derivations)

Evaluation of hypothesis and its
negation

Branching complexity in reason-
ing paths

(1) Immediate utilization: Derived facts
are immediately valid and can be utilized
across reasoning chains through caching,
enabling efficient information sharing and
minimizing redundant computation.

(i) Dead ends still contribute: Even if a
reasoning chain fails to reach the final hy-
pothesis, its intermediate derived facts are
valid and can be utilized to support other
inference paths.

Forward reasoning starts from the given
premises and derives logically valid conclu-
sions, using those results to determine the
truth value of the hypothesis. The deriva-
tion process does not explicitly attempt to
prove or disprove the hypothesis.

Forward reasoning applies rules to known
facts independently.

Path count grows additively.

E.g., given the facts:

Dave is blue and Dave is cold,

suppose there are:

m rules of the form: If Dave is blue, then ...
n rules of the form: If Dave is cold, then ...
The total number of paths to be explored is
m 4+ n.

(i) Delayed utilization: Intermediate facts
are only validated upon completing a
successful reasoning chain and cannot
be utilized across other chains while the
current chain is still in progress.

(ii) Dead ends yield nothing: If a reasoning
chain fails, none of its intermediate facts
are proven valid and therefore cannot be
utilized in other inference paths.

Backward reasoning must start from and
evaluate both the hypothesis and its nega-
tion to determine the truth value, as failure
to prove one does not imply the truth of the
other—due to the possibility of an unknown
outcome. This requirement increases the
overall reasoning steps.

E.g., to evaluate the hypothesis Dave is blue,
backward reasoning explores both the sup-
porting path starting with

If ..., then Dave is blue,

and the opposing path starting with

If ..., then Dave is not blue.

Backward reasoning explores all combina-
tions of rules whose conclusions match in-
termediate goals.

Path count grows multiplicatively.

E.g., to satisfy the conjunction of goals:
Dave is blue and Dave is cold,

suppose there are:

m rules of the form: If ..., then Dave is blue.
n rules of the form: If ..., then Dave is cold.
The total number of paths to be explored is
m*n.

Table 4: Analysis of three key factors that lead to more reasoning steps in backward reasoning compared to forward
reasoning in iferative tree search for logical reasoning tasks: (1) Utilization of historical knowledge, (2) Evaluation
of hypothesis and its negation, and (3) Branching complexity in reasoning paths. Together, these factors result in a
higher average number of reasoning steps in backward reasoning, as illustrated in Figure 4 and Figure 8.

18

Proof Accuracy (%)
®©
[=}

CoT SI CR

LAMBADA

LogicTree

Depth-0 = Depth-1 mDepth-2 ®Depth-3 m Depth-5

ToT

Figure 7: Proof accuracy of different methods across different levels of task difficulty (measured by depth) in
ProofWriter on GPT-40. LogicTree consistently outperforms other methods at all depths, demonstrating superior
robustness to problem difficulty.

LogicNLI ParaRules PrOntoQA-OOD ProofWriter RobustLR
e Llama-3.3 70B
LogicTree w/o fact repo 68.7 81.7 90.0 88.7 92.1
LogicTree 74.7 92.3 97.0 95.8 97.5
o GPT-40
LogicTree w/o fact repo 72.0 87.5 88.0 90.0 93.8
LogicTree 78.7 96.3 99.0 97.0 97.9

Table 5: Impact of the fact repository (fact repo) on proof accuracy across five datasets within our framework.

80

Proof Accuracy (%)
D ~J
S S

W
(=]

40

B LogicTree

m ToT

B LAMBADA
® SI ® CR
A
CoT
5 10 15 20 25

Number of Reasoning Steps
(a) GPT-40-mini

30

Proof Accuracy (%)

100

90

80

70

60

B LogicTree

m ToT
B LAMBADA
A ® CR
([}
CoT SI
5 10 15 20 25

Number of Reasoning Steps

(b) Llama-3.3 70B

30

Figure 8: Proof accuracy vs. reasoning steps, averaged across five datasets for (a) GPT-40-mini and (b) Llama-3.3
70B. The shaded area illustrates that our framework optimally scales inference-time computation to achieve higher
proof accuracy.

19

Dataset
Model Method Avg.’
LogicNLI ~ ParaRules PrOntoQA-OOD ProofWriter ~ RobustLR

CoT 3.4 3.0 3.7 3.5 4.8 35
s 166 189 86 185 17 164
GPT-40-mini CR 25.7 23.1 22.1 233 26.7 23.8
LAMBADA 14.0 23.7 22.6 18.0 24.0 209
ToT 36.2 5.1 217 17.0 8.5 14.0
. LogicTree 432 68 82 22 176
CoT 52 3.5 3.8 43 6.6 4.4
st 96 170 07 194 146 170
GPT-4o CR 24.1 25.1 21.8 257 234 24.6
LAMBADA 229 21.2 225 19.6 25.6 215
ToT 32,9 6.4 23.1 20.2 10.3 15.7
. LogicTree 456 95 »2 35 138 203
CoT 6.3 3.5 4.0 5.6 6.8 49
s 725 38 216 62 167
Llama-3.3 70B CR 27.1 24.6 222 27.3 24.2 25.4
LAMBADA 19.6 25.2 17.9 14.0 26.4 203
ToT 313 7.4 23.1 21.2 12.3 16.4
. LogicTree 300 73 06 256 144 197

Table 6: Average number of reasoning steps for different methods across five logical reasoning datasets on GPT-40-
mini, GPT-40, and Llama-3.3 70B. Avg." is calculated as the total number of reasoning steps divided by the total
number of examples across all five datasets.

Dataset

Method LogicNLI ParaRules PrOntoQA-OOD ProofWriter RobustLR

Token # Time (min) Token # Time (min) Token # Time (min) Token # Time (min) Token # Time (min)

CoT 145.4 0.11 105.5 0.08 125.9 0.09 103.2 0.08 171.9 0.12

SI 681.7 0.80 688.3 0.79 233.2 0.28 490.5 0.68 502.1 0.60

CR 1231.6 1.43 871.6 1.04 490.4 0.62 816.7 0.94 800.7 0.97
LAMBADA 1181.0 1.36 758.6 0.97 566.3 0.67 550.5 0.74 921.4 1.07
ToT 1896.7 2.13 258.4 0.30 568.2 0.70 709.3 0.86 355.6 0.42
ol-mini 3253.3 1.11 464.5 0.19 943.0 0.39 953.1 0.42 534.8 0.24
03-mini 2412.3 1.02 589.2 0.27 683.0 0.34 849.1 0.36 481.9 0.21
LogicTree 3627.0 4.07 440.6 0.54 1082.0 1.47 738.4 0.89 493.9 0.61

Table 7: Average number of generated tokens and inference time (in minutes) for different methods across five
logical reasoning datasets. CoT, SI, CR, LAMBADA, ToT, and LogicTree results are based on GPT-4o0.

20

Insufficient Exploration ‘Wrong Derivation Hallucinated Premise

0,
9.0% 9.2% 13.7%
18.0% 16.1% 33.3%
19.2%
73.0% 74.7% 67.1% 66.7%
(a) CoT (b) o1-mini (c) 03-mini (d) LogicTree

An example of Insufficient Exploration

Facts: The bald eagle chases the cat. The bald eagle is kind. The bald eagle sees the dog. The cat is rough. The dog is blue. The dog is red. The dog is rough. The
dog sees the cat. The dog does not see the lion. The lion sees the bald eagle.

Rules: If something chases the cat then the cat chases the dog. If something chases the dog then it eats the bald eagle. If something is kind and it sees the lion then it
is not red. If something chases the dog then the dog chases the bald eagle. If the dog eats the bald eagle then the dog sees the bald eagle. If something is cold then it
sees the lion. If something sees the cat and it is blue then the cat is kind. If something is blue and it chases the bald eagle then the bald eagle is cold.

Hypothesis: The cat eats the bald eagle. (True)

Inference: 1. The bald eagle chases the cat. According to the rule, if something chases the cat, then the cat chases the dog. So, the cat chases the dog.

2. There is no rule that directly or indirectly states that if the cat chases the dog, then the cat eats the bald eagle.

3. None of the given rules or statements indicate that the cat eats the bald eagle.

4. Therefore, based on the provided information, it is unknown whether the cat eats the bald eagle.

An example of Wrong Derivation

Facts: Anne is blue. Erin is quiet. Fiona is big. Fiona is furry. Fiona is nice. Harry is furry. Harry is not rough.

Rules: Round people are blue. If something is round and not big then it is not nice. Quiet things are nice. All blue, round people are nice. Nice, rough things are
round. If something is furry then it is round. Furry, blue things are quiet. Nice things are furry. If something is round and blue then it is not rough.

Hypothesis: Anne is quiet. (Unknown)

Inference: 1. Anne is blue. 2. Round people are blue, so Anne is round. 3. All blue, round people are nice, so Anne is nice.

4. Nice things are furry, so Anne is furry. 5. Furry, blue things are quiet, so Anne is quiet.

Based on the given information, we can deduce that Anne is quiet.

An example of Hallucinated Premise

Facts: The bald eagle sees the cat. The cat is round. The cat needs the rabbit. The cat sees the lion. The cat visits the lion. The lion is big. The lion is cold. The lion
is nice. The lion visits the rabbit. The rabbit is nice. The rabbit is round. The rabbit sees the cat.

Rules: If something is nice then it is big. If something is kind and it sees the rabbit then it needs the lion. If something needs the rabbit then it is nice. All cold, big
things are kind. If something sees the bald eagle and the bald eagle is nice then it needs the rabbit. If something sees the lion then it visits the rabbit. If the bald
eagle sees the cat then the bald eagle visits the rabbit. If something visits the rabbit then it needs the rabbit. If something is big then it is cold.

Hypothesis: The lion needs the lion. (Unknown)

Inference: 1. The lion is big and cold. According to the rule "All cold, big things are kind," the lion is kind.

2. The lion sees the rabbit. According to the rule "If something is kind and it sees the rabbit then it needs the lion," the lion needs the lion.

Therefore, the statement "The lion needs the lion" is true.

(e) Examples of wrong proof corresponding to the three error types. The erroneous step is highlighted in red.

Figure 9: Error analysis. (a—d) show the proportions of three error types for CoT (on GPT-40), o1-mini, 03-mini,
and LogicTree (on GPT-40), respectively. (e) Examples of wrong proof corresponding to the three error types.

Eliza's rate per hour for the first 40 hours she works each week is $10. 100
She also receives an overtime pay of 1.2 times her regular hourly rate.
If Eliza worked for 45 hours this week, how much are her earnings for this week?

40 hours regular time Given information % 94.3
F()rwar(W\ Derived information s
s 92
45 hours worked $10/hour regular rate g 90.3
Derivation § 88.7
. . Q
fsxiri(l)] (;u;s].q $10/hour regular rate 4];ig111})ar:%?/60 < 88
Backward Selection [
Overtime pay 1.2x o0° Overtime pay: $60 84
\:OC\\R
5 x (1.2 x 10) = $60 $400 + $60 = $460 CoT ToT LogicTree

Verification

Figure 10: LogicTree on GSM8K. Left: Case study illustrating how LogicTree solves a math problem. Right:
Accuracy comparison among CoT, ToT and LogicTree.

21

LogicNLI

Premises (Facts + Rules):

Carrick is filthy. Carrick is not financial. Galvin is grieving. Blake is filthy. Oscar is not relieved. Perry is not filthy.
Blake is financial. Perry is relieved. Toby is financial. Perry is filthy. Oscar is not filthy. Toby is not filthy.

Someone who is filthy is always unlikely. It can be concluded that Carrick is not unlikely and Galvin is not filthy once
knowing that Carrick is relieved and Perry is filthy. If there is at least one people who is both not relieved and filthy,
then Blake is grieving. Someone being both filthy and not unlikely is equivalent to being relieved. If Blake is unlikely
and Galvin is relieved, then Oscar is filthy. If Perry is relieved, then Carrick is not filthy, and vice versa. Carrick being
not grieving or Toby being not filthy implies that Carrick is filthy. If Perry is not filthy or Carrick is not grieving, then
Conway is not filthy. If there is at least one people who is not filthy, then Oscar is financial. Someone who is filthy is
always both not filthy and not financial. If there is someone who is either not filthy or grieving, then Toby is not filthy.
If there is someone who is both not grieving and filthy, then Blake is filthy.

Hypothesis:
Carrick is relieved.

Figure 11: An example of LogicNLI (Tian et al., 2021).

1 510)i1710)-010) D)

Premises (Facts + Rules):

Rex is a tumpus. Rex is a vumpus. Rex is a lempus. Rex is a lempus. Rex is a wumpus. Rex is a jompus.

Zumpuses are grimpuses. Each dumpus is a gorpus. Everything that is a lempus, a wumpus, and a brimpus is a grimpus,
a dumpus, and a zumpus. Each grimpus is an impus. Zumpuses are shumpuses. Grimpuses are gorpuses. Everything
that is a lempus and a wumpus and a brimpus is a rompus. Everything that is a tumpus and a lempus and a vumpus is a
gorpus. Grimpuses are yumpuses.

Hypothesis:
Rex is an impus.

Figure 12: An example of PrOntoQA-OOD (Saparov et al., 2023).

Premises (Facts + Rules):

The bald eagle chases the cow. The bald eagle is kind. The bald eagle is rough. The bald eagle needs the rabbit. The
cow chases the rabbit. The cow is cold. The cow is green. The cow is red. The rabbit does not chase the bald eagle. The
rabbit chases the cow. The rabbit does not eat the bald eagle. The rabbit eats the cow. The rabbit is cold. The rabbit is
green. The squirrel eats the cow. The squirrel does not eat the rabbit.

If something needs the bald eagle then the bald eagle chases the rabbit. If the squirrel is rough and the squirrel is not
kind then the squirrel is green. If something chases the bald eagle then it needs the squirrel. If something needs the
rabbit then it chases the bald eagle. If something chases the cow then the cow eats the bald eagle. If something chases
the bald eagle and it does not need the bald eagle then it is red. If something needs the squirrel then the squirrel needs
the rabbit.

Hypothesis:
The squirrel needs the rabbit.

Figure 13: An example of ProofWriter (Tafjord et al., 2020).

22

RobustLR

Premises (Facts + Rules):

Fiona is not Bob’s mother. Harry is Charlie’s son.

The father of Dave is Bob if Gary is not green. If Fiona is not Bob’s mother then Charlie is not Dave’s aunt. If Fiona is
not Bob’s son then Charlie is the aunt of Dave. If Bob is rough then Bob is Dave’s daughter. Fiona is not the son of Bob
if Bob is rough. Dave is not kind if Fiona is not the son of Bob. If The son of Bob is not Fiona then Harry is not white.
If Fiona is Harry’s grandfather then Harry is white. If Bob is rough then The grandfather of Harry is not Fiona. Anne is
not furry if The aunt of Dave is not Charlie. Bob is not Dave’s father if Bob is rough. Gary is green if Bob is rough. The
husband of Dave is not Anne if The son of Bob is not Fiona. If Bob is not the daughter of Dave then Gary is not green.
Fiona is the grandfather of Harry if The mother of Bob is not Fiona. If Anne is not the husband of Dave then Anne is
furry. If Harry is white and The son of Charlie is Harry then The daughter of Dave is Bob.

Hypothesis:
The daughter of Dave is not Bob.

Figure 14: An example of RobustLR (Sanyal et al., 2022).

Premises (Facts + Rules):

Bob is a cold and round man who has red and green skin. Charlie is a kind person and he is also often cold. That guy
Eric sure is nice. Harry is a really nice guy with a big round body, usually wearing red.

People who are round and red tend to be rough. If a person acts cold yet nice and green, they will be kind. If you meet
someone with rough skin who is cold from being outside, you’ll notice they are nice. Every time you meet someone
kind and nice, they’ll be green, too. Big people with red hair are cold because they cannot find coats that fit. It’s a
certainty that any green, big and kind individual is going to be nice. A big round young person is often blue.

Hypothesis:
Bob is nice.

Figure 15: An example of ParaRules (Clark et al., 2020).

Prompts for o1-mini & 03-mini

Instructions:

You will do logic reasoning tasks. You will be given a set of premises and a hypothesis. You need to answer if the
hypothesis is *True* or *False* or *Unknown* based on the premises.

(The last sentence in the response should be in the format of "Therefore, the hypothesis is True / False / Unknown.")

Query:

Premise:
query_premise
Hypothesis:
query_hypothesis
Reasoning:
LLM_output

Figure 16: The prompts for reasoning with OpenAI’s ol-mini and 03-mini model. Following OpenAI’s guid-
ance (OpenAl, 2024b), we adopt zero-shot prompting and keep the prompts simple and direct.

23

Prompts for Chain-of-Thought

Instructions:

Suppose you are one of the greatest Al scientists, logicians. Given some context as premise, the task is to answer if a
logical reasoning question (hypothesis) is *True* or *False* or *Unknown*.

Definitions:

- True: The hypothesis can be logically derived from the premises.

- False: Only the negation of the hypothesis can be logically derived from the premises.

- Unknown: Neither the hypothesis nor its negation can be logically derived from the premises.

Let us think step by step.

Demonstrations:
#iH#H### Example_1
Example’s hypothesis is *True*

#i#H#H### Example_2

Example’s hypothesis is *False*

Premise:

The lion is cold.

The lion is nice.

The lion likes the squirrel.

The squirrel is round.

The squirrel sees the lion.

The squirrel visits the cow.

The tiger likes the cow.

The tiger likes the squirrel.

If something is cold then it visits the tiger.

If something visits the tiger then it is nice.

If something sees the tiger and it is young then it is blue.

If something is nice then it sees the tiger.

If something likes the squirrel and it likes the cow, then it visits the tiger.
If something is nice and it sees the tiger then it is young.

If the cow is cold and the cow visits the lion then the lion sees the squirrel.

Question:
Based on the above information, is the following statement true, false, or unknown? The tiger is not young.

Reasoning: # Expected results

1. The tiger likes the cow. The tiger likes the squirrel. If something likes the squirrel and it likes the cow, then it visits
the tiger. So the tiger visits the tiger.

2. If something visits the tiger then it is nice. So the tiger is nice.

3. If something is nice then it sees the tiger. So the tiger sees the tiger.

4. If something is nice and it sees the tiger then it is young. So the tiger is young.

5. It contradicts "The tiger is not young." in the given question. So the answer is False.

#iHH#H# Example_3
Example’s hypothesis is *Unknown*

Query:

Premise:
query_premise
Question:
query_hypothesis

Reasoning:
LLM_output

Figure 17: The prompts for chain-of-thought reasoning. We number the reasoning steps in demonstrations to make
the step counting explicit in LLM’s output. Demonstrations with hypotheses labeled as True and Unknown are
omitted for brevity.

24

Prompts for Forward Selection Module

Instructions:

Imagine you are one of the greatest Al scientists. You are given **a fact** and **a list of rules** (each rule being a
premise with condition(s)). Your task is to evaluate each rule in the list and select those that meet *any* of the following
requirements:

- Full Condition Match: The fact fully and directly satisfies all condition(s) of the rule, allowing a valid derivation to
obtain a new proposition.

- Partial Condition Match: The fact directly satisfies some, but not all, conditions of the rule. This means that additional
fact(s) would be required to make a full derivation and obtain a new proposition.

If no rule is selected, return **None™**.

Demonstrations:

####H## Example_1

The given fact:

Bob is red.

The given list of rules:

All red, round people are quiet.

Red people are young.

If someone is round and smart then they are not red.
All white people are red.

Quiet people are green.

If someone is red and not white then they are not green.
If someone likes the dog and they are red then they are blue.

Let’s go through each rule from the given list of rules and think step by step.

The selected rules (partial or full condition directly matched) are: # Expected results
All red, round people are quiet.

Red people are young.

If someone is red and not white then they are not green.

If someone likes the dog and they are red then they are blue.

#itHHH# Example_2
The given fact:
Anne is quiet.

The given list of rules:

If something is furry and not blue then it is nice.

If Anne is furry then Anne is nice.

Smart, furry things are round.

Let’s go through each rule from the given list of rules and think step by step.

The selected rules (partial or full condition directly matched) are: # Expected results
None

Query:

The given fact:
query_given_fact

The given list of rules:
query_given_list_of_rules

Let’s go through each rule from the given list of rules and think step by step.
The selected rules (partial or full condition directly matched) are:
LLM_output

Figure 18: The prompts for Forward Selection Module for rule selection in LogicTree.

25

Prompts for Backward Selection Module

Instructions:
Suppose you are one of the greatest Al scientists, logicians. Given a specific fact, a rule, and a repository of facts, your
task is to identify the missing fact(s) required to fully satisfy the rule’s conditions and check if the missing fact(s) exist
in the fact repository.
- The given one specific fact already satisfies one of the rule’s conditions. Identify the missing fact(s) needed to fully
satisfy the rule.
- Automatically adapt pronouns (e.g., ‘they’, ’something’, ’someone’) to the correct subject based on the context of the
given rule and the given fact.
- Check if the missing fact(s) are present in the fact repository.

- If the missing fact(s) are present in the fact repository, return **True** along with the identified missing fact(s).

- Otherwise, return **False**.

Demonstrations:

##H#H## Example_1

The given one specific fact:
The cat likes the rabbit.

The given rule:
If someone is cold and they like the rabbit then the rabbit likes the cat.

The given fact repository:

The cat eats the bear.

The cat is cold.

The cat is kind.

The cat likes the rabbit.

The rabbit likes the tiger.

The tiger likes the bear.

The tiger visits the cat.

Let’s go through each condition of the given rule. First identify the missing fact(s) needed to fully satisfy the rule.
Then check if the missing fact(s) are present in the fact repository: # Expected results
The cat is cold.

True. The identified missing fact(s) in the fact repository: The cat is cold.

#it##H# Example_2
The given one specific fact:
The rabbit likes the squirrel.

The given rule:
If someone likes the squirrel and the squirrel sees the cow then they are red.

The given fact repository:
The cow likes the rabbit.
The cow needs the mouse.
The mouse likes the squirrel.
The rabbit needs the cow.
The rabbit sees the cow.

The squirrel is nice.

The squirrel needs the cow.
The rabbit likes the squirrel.

Let’s go through each condition of the given rule. First identify the missing fact(s) needed to fully satisfy the rule.
Then check if the missing fact(s) are present in the fact repository: # Expected results

The squirrel sees the cow.

False

Query:

The given one specific fact:

query_given_fact

The given rule:

query_given_rule

The given fact repository:

query_given_fact_repo

Let’s go through each condition of the given rule. First identify the missing fact(s) needed to fully satisfy the rule.
Then check if the missing fact(s) are present in the fact repository:

LLM_output

Figure 19: The prompts for Backward Selection Module for fact selection in LogicTree.

26

Prompts for Derivation Module

Instructions:
Suppose you are one of the greatest Al scientists, logicians. Your task is to derive a new **Proposition** based on a
given **rule** and some **fact(s)**.
Follow these instructions carefully:
1. Ensure that the **Proposition™**:

- Must be a valid logical derivation from the provided **rule** and **fact(s)**.

- Must not duplicate any of the provided **fact(s)**.

- Must not include any information not directly derived from the provided information.

- Automatically adapt pronouns (e.g., they’, ’something’, ’someone’) to the correct subject based on the context.
2. Do not apply the rule unless all conditions of the rule are met.
3. If no new **Proposition** can be derived, return **None**, and classify the reason into one of the following
categories:

- A. **Partial Information Met**: The given fact(s) meet some but not all conditions of the given rule.

- B. **No Information Met**: The given fact(s) do not meet any conditions of the given rule.

Demonstrations:

Example_1

The given fact(s):

Erin is tall. Erin is cold.

The given rule:

Cold, tall people are not furry.

The derived proposition is: # Expected results

Erin is not furry.

#i#H#H# Example_2

The given fact(s):

Bob is round.

The given rule:

If someone is round and smart then they are not red.

The derived proposition is: # Expected results (pseudo dead-end)
None

Example_3

The given fact(s):

Alice is happy.

The given rule:

If Alice is sad and red, she is quiet.

The derived proposition is: # Expected results (dead end)
None

Query:

The given fact(s):
query_given_facts
The given rule:
query_given_rule

The derived proposition is:
LLM_output

Figure 20: The prompts for Derivation Module in LogicTree.

27

Prompts for Verification Module

Instructions:

Suppose you are one of the greatest Al scientists, logicians. Your task is to verify the relationship between a given
Proposition and a **Conclusion**. There are three possibilities:

1. **Same:** The **Proposition** is directly equivalent to the **Conclusion**, meaning both the subject and the
predicate (attributes) are the same.

2. **QOpposite:** The **Proposition** directly contradicts the **Conclusion**. The subjects are the same, but the
predicates (attributes) are in direct opposition, such as ’predicate’ versus 'not predicate’.

3. **Indeterminate:** Neither **Same** nor **QOpposite**. The **Proposition** and the **Conclusion** either have
different predicates (attributes) or there is no clear relationship between them.

Demonstrations:

##H#HH Example_1

Proposition:

Erin is not round.

Conclusion:

Erin is not green.

Verify the relationship between the given Proposition and the Conclusion: # Expected results
Indeterminate

#it### Example_2
Proposition:
The rabbit is cold.

Conclusion:
The rabbit is cold.

Verify the relationship between the given Proposition and the Conclusion: # Expected results
Same

##H#H### Example_3

Proposition:

The tiger is not young.

Conclusion:

The tiger is young.

Verity the relationship between the given Proposition and the Conclusion: # Expected results
Opposite

Query:

Proposition:
query_proposition
Conclusion:
query_conclusion

Verify the relationship between the given Proposition and the Conclusion:
LLM_output

Figure 21: The prompts for Verification Module in LogicTree.

28

Prompts for Fact Ranking Module (ablation study)

Instructions:

Imagine you are one of the greatest Al scientists, logicians. You are given a logic reasoning question that involves: a list
of facts, a list of rules, a hypothesis to be verified.

Your task is to plan and prioritize the reasoning path:

- Sort the given **facts** based on their likelihood of being the starting point in the correct reasoning path to verify the
hypothesis.

- The first fact in the sorted list should have the highest probability of being the right starting point, and the last fact
should have the lowest probability.

Demonstrations:

###HH Example_1

The given list of facts:

Bob is young.

Dave is blue.

Erin is blue.

Fiona is blue.

Fiona is kind.

Fiona is quiet.

Fiona is white.

The given list of rules:

If someone is kind then they are white.
Young people are quiet.

If someone is kind and white then they are blue.
All quiet, kind people are white.

If someone is quiet then they are kind.
If someone is white then they are young.
All blue, kind people are green.

The hypothesis to be verified:

Fiona is not green.

Let’s sort the given **facts** based on their likelihood of being the starting point in the correct reasoning path.
The sorted facts are (each fact in a new line): # Expected results
Fiona is blue.

Fiona is kind.

Fiona is quiet.

Fiona is white.

Bob is young.

Dave is blue.

Erin is blue.

#HHHE Example_2

Query:

The given list of facts:

query_fact_list

The given list of rules:

query_rule_list

The hypothesis to be verified:

query_hypothesis

Let’s sort the given **facts** based on their likelihood of being the starting point in the correct reasoning path.

The sorted facts are (each fact in a new line):
LLM_output

Figure 22: Prompts for Fact Ranking Module, used in the ablation study reported in Table 2.

29

Prompts for Rule Ranking Module (ablation study)

Instructions:

Imagine you are one of the greatest Al scientists, logicians. You are given a logic reasoning question that involves: a list
of facts, a list of rules, a hypothesis to be verified.

Additionally, you are provided with a set of **selected rules**, which serve as potential intermediate steps in the
reasoning process.

Your task is to plan and prioritize the reasoning path:

- Sort the **selected rules** based on their likelihood of being part of the correct reasoning path.

- The first rule in the sorted list should have the highest probability of being in the correct reasoning path, and the last
rule should have the lowest probability.

Demonstrations:

#i#H#H## Example_1

The given list of facts:

Bob is young.

Dave is blue.

Erin is blue.

Fiona is blue.

Fiona is kind.

Fiona is quiet.

Fiona is white.

The given list of rules:

If someone is kind then they are white.
Young people are quiet.

If someone is kind and white then they are blue.
All quiet, kind people are white.

If someone is quiet then they are kind.
If someone is white then they are young.
All blue, kind people are green.

The hypothesis to be verified:
Fiona is not green.

The given set of **selected rules**:

If someone is kind then they are white.

If someone is kind and white then they are blue.
All quiet, kind people are white.

All blue, kind people are green.

Let’s sort the given **selected rules** based on their likelihood of being part of the correct reasoning path.
The sorted rules are (each rule in a new line): # Expected results

All blue, kind people are green.

If someone is kind then they are white.

If someone is kind and white then they are blue.

All quiet, kind people are white.

#iH#HH Example_2

Query:

The given list of facts:

query_fact_list

The given list of rules:

query_rule_list

The hypothesis to be verified:

query_hypothesis

The given set of **selected rules®*:

query_selected_rules

Let’s sort the given **selected rules** based on their likelihood of being part of the correct reasoning path.

The sorted rules are (each rule in a new line):
LLM_output

Figure 23: Prompts for Rule Ranking Module, used in the ablation study reported in Table 2.

30

	Introduction
	Related Work
	Reasoning through Strategic Prompting
	Inference-time Scaling for Reasoning

	LogicTree for Logical Reasoning
	Task Definition
	Components of LogicTree Framework
	LLM-free Premise Prioritization
	LogicTree Algorithm

	Experiments
	Experimental Setup
	Main Results

	Further Analysis
	Factors Impacting Proof Accuracy
	Scaling of Reasoning Length

	Conclusion
	Computation for Semantic Overlap and Cumulative Connectivity
	Linear Premise Search in LogicTree
	Experimental Details
	Dataset
	Models

	Error Analysis on CoT, o1-mini, o3-mini, LogicTree
	Number of Reasoning Steps, Generated Tokens, and Inference Time
	Performance Analysis: Forward vs. Backward Reasoning
	Using LLM Modules for Premise Prioritization
	Extension to Mathematical Reasoning
	Dataset Example and Prompt for LLM Modules

