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ABSTRACT

Partial differential equations (PDEs) underpin the modeling of many natural and
engineered systems. It can be convenient to express such models as neural PDEs
rather than using traditional numerical PDE solvers by replacing part or all of the
PDE’s governing equations with a neural network representation. Neural PDEs are
often easier to differentiate, linearize, reduce, or use for uncertainty quantification
than the original numerical solver. They are usually trained on solution trajectories
obtained by long-horizon rollout of the PDE solver. Here we propose a more
sample-efficient data-augmentation strategy for generating neural PDE training
data from a computer model by space-filling sampling of local “stencil” states.
This approach removes a large degree of spatiotemporal redundancy present in
trajectory data and oversamples states that may be rarely visited but help the
neural PDE generalize across the state space. We demonstrate that accurate neural
PDE stencil operators can be learned from synthetic training data generated by the
computational equivalent of 10 timesteps’ worth of numerical simulation. Accuracy
is further improved if we assume access to a single full-trajectory simulation from
the computer model, which is typically available in practice. Across several PDE
systems, we show that our data-augmented stencil data yield better trained neural
stencil operators, with clear performance gains compared with naïvely sampled
stencil data from simulation trajectories. Finally, with only 10 solver steps’ worth
of augmented stencil data, our approach outperforms traditional ML emulators
trained on thousands of trajectories in long-horizon rollout accuracy and stability.

1 INTRODUCTION

Mechanistic computer models, often formulated as partial differential equations (PDEs), are pivotal
for simulating complex physical systems across fluid dynamics (Kaushik et al., 2015; Li et al., 2023),
climate modeling (Wang et al., 2009; McGuffie & Henderson-Sellers, 2001), biology (Cerrolaza
et al., 2017), and chemistry (Evans, 2022). These PDE-based models simulate underlying governing
processes to predict complex dynamics, informing decision-making, system design, and interven-
tion strategies. In practice, PDEs often lack analytical solutions and rely on classical numerical
methods such as finite difference methods (FDM) (LeVeque, 2007; Strikwerda, 2004), finite vol-
ume methods (FVM) (Moukalled et al., 2015; Versteeg & Malalasekera, 2007), and finite element
methods (FEM) (Logg et al., 2012; Zienkiewicz & Taylor, 2005). These discretization approaches
approximate differential operators via handcrafted stencils, balancing simplicity (FDM), local con-
servation (FVM), and geometric flexibility (FEM). For applications requiring increased accuracy,
high-order schemes like discontinuous Galerkin and spectral methods have emerged (Hesthaven
& Warburton, 2007; Cockburn et al., 2000), at higher computational cost and complexity. All of
these rely on correctly specifying the governing equations, a requirement that breaks down when the
underlying physics are only partially known or prohibitively complex (Quarteroni & Valli, 2008).

Emerging machine learning (ML) approaches seek to learn solution operators or surrogate models di-
rectly from data while retaining physical fidelity and improving flexibility and scalability (Raissi et al.,
2019; Bar-Sinai et al., 2019; Brandstetter et al., 2022). Physics-informed neural networks (PINNs) (La-
garis et al., 1998; Raissi et al., 2019; Cai et al., 2021; Luo et al., 2025) embed PDE residuals into
the loss, enabling mesh-free, often unsupervised training. Neural operators–e.g. DeepONets (Lu
et al., 2021), Fourier Neural Operators (FNOs) (Li et al., 2021)–learn mappings between infinite-
dimensional function spaces, generalizing across inputs without discretization. Despite strong
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promise, both approaches often endure slow or unstable convergence, spectral bias, and sensitivity
to loss-weight choices (Krishnapriyan et al., 2021). Heuristics such as adaptive sampling (Mao &
Meng, 2023; Tang et al., 2024) and weight-update rules (McClenny & Braga-Neto, 2023; Xiang et al.,
2022; Wang et al., 2024) mitigate specific failure modes, but broader challenges–especially efficient,
few-shot learning of surrogates for forecasting–remain open.

An alternative to regression-style ML surrogates is neural differential equations (NDEs), which
learn the governing equations or “right-hand-side” (RHS) of an ordinary (ODE) or partial differen-
tial equation with a neural network, such as U-Net (Takamoto et al., 2022), and make predictions
by timestepping the learned equations using a numerical solver (Chen et al., 2018; Akhare et al.,
2025). When only part of the RHS is learned, the models are termed universal differential equa-
tions (UDEs) (Rackauckas et al., 2020) or hybrid models (Melland et al., 2021; Kochkov et al., 2021;
Yu et al., 2023). NDEs–including neural ODEs (NODEs) and neural PDEs (NPDEs)–inherit the
computational cost of simulation models because they are themselves ODE or PDE solvers, yet
they offer advantages over (possibly physics-constrained) regression-type surrogates. Even when
governing equations are known, recasting a large, complex simulation as an NPDE can simplify
equation-level manipulation–for example, linearizing NPDE for stability analysis (Brenowitz &
Bretherton, 2019) or obtaining gradients via adjoint or automatic differentiation–relative to lineariz-
ing or differentiating the original codebase. When the true governing equations are not known but
are imperfectly approximated by a simulator, an NDE emulator of that simulator can serve as a
“prior” over unknown system dynamics that can be updated with measurements (DeGennaro et al.,
2019). Moreover, intrusive model-reduction techniques can be applied directly to the NPDE to
accelerate simulation while avoiding the software complexity of modifying a mature codebase (Chen,
2012; DeGennaro et al., 2019; Prakash & Zhang, 2025). Some approaches learn resolution-specific
local discretizations for stable long-horizon rollouts on coarse grids (Maddu et al., 2023) , whereas
autoregressive next-step predictors (Bar-Sinai et al., 2019; Hsieh et al., 2019) iteratively apply a
neural network to advance the state–an approach akin to discrete flow-map learning under partial
observation (Churchill & Xiu, 2022).

Learning the governing equations of PDE systems in neural representations can be viewed as a
special form of system identification, and NPDEs/UDEs are commonly trained on long solution
trajectories. When data are generated from a simulation code rather than experiments, we can
greatly control the training data. Specifically, in a simulation, we can precisely control the initial and
boundary conditions, domain size, grid resolution, timestep, and other numerics, enabling designing
more sample-efficient training sets for system identification and neural PDE training. Yet PDE
solutions exhibit strong spatiotemporal redundancy–neighboring cells and successive timesteps often
contain very similar states–so long integrations expend compute on simulating states that provide
little independent information about the system’s governing dynamics. We instead sample from a
space-filling design of local stencil states, emphasizing statistically independent configurations and
underrepresented regions of state space.

To achieve this, we observe that numerical PDE solvers are often implemented in terms of a stencil
operator: a spatially discretized RHS of the PDE determining the evolution of a grid cell’s state
as a function of the state vector in a local “stencil” neighborhood of that cell (Caramia & Distaso,
2025). Due to locality and homogeneity of the PDE’s governing equations, the same stencil oper-
ation is applied at every grid cell at every timestep. Rather than collecting an ensemble of costly,
high-dimensional solutions, we learn this stencil mapping from large numbers of computationally
inexpensive stencil evaluations. This corresponds to running the simulator over the neighborhood of
a single grid cell for a single timestep across a statistically designed collection of local states.

At the core of our proposed approach lies a neural stencil emulator (NSE) that performs system
identification in function space: it infers the model structure or functional form of the PDE RHS
directly from grid-cell simulation data. NSE training leverages large amounts of grid-cell-level
simulation data that are inexpensive to generate and often with no more than a single simulation.
This non-intrusive scheme combines the scalability of data-driven models with the interpretability of
mechanistic stencils, yielding an efficient, physics-aware surrogate for PDE evolution.

Our contributions are as follows:
• We introduce the Neural Stencil Emulator (NSE), a non-intrusive, data-driven system-identification

framework that learns the governing equations of computer models from inexpensive stencil
evaluations, enabling stable forecasting;
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• We develop several data-augmentation strategies, including a novel PCA-based scheme, that
improves our emulator’s sample efficiency and few-shot generalization to unseen initial conditions
using only a handful of full-order simulation snapshots;

• We demonstrate NSE’s effectiveness across multiple PDE systems, achieving low errors relative to
full-order solutions, and show superior long-horizon rollout accuracy and stability compared to
widely used baselines (FNO, U-Net, and PINN) under limited simulation budget.

2 PRELIMINARIES

In this paper, vectors and matrices are denoted by bold lowercase and uppercase letters, respectively.

2.1 DYNAMICAL MODEL

Continuous formulation. Let u(x, t) denote a spatio-temporal variable at spatial location x ∈
Ω = [0, L]d and time t ∈ [0, T ]. The evolution of u is governed by the nonlinear partial differential
equation capturing the system dynamics via a nonlinear operator F that parameterizes the time
derivative ∂u/∂t and the initial condition u(x, t0). Formally, such a PDE can be expressed as:

∂u(x, t)

∂t
= F(u(x, t)) (x, t) ∈ Ω× [0, T ], (1a)

u(x, t0) = u0(x) x ∈ Ω, (1b)

BC
(
u(x, t)

)
= 0 (x, t) ∈ ∂Ω× [0, T ], (1c)

where F encodes the system dynamics and BC(·) enforces the boundary condition applied on
∂Ω =

⋃d
k=1{x ∈ Rd | 0 ≤ xj ≤ L for all j ̸= k, xk ∈ {0, L}}. Lastly, the initial condition

u(x, t0) completes the PDE formulation, enabling the solution of u(x, t) over time.

Space–time discretization. To solve the aforementioned PDE numerically, one can discretize the
spatial domain Ω on n grid points {xi}ni=1 and partition the temporal domain into uniform steps of
size ∆t. Setting tk = t0 + k∆t, we can approximate the continuous u(x, t) variable by discretizing
the state at tk by u(k) =

{
u(xi, tk)

}n

i=1
. Accordingly, a first-order explicit scheme yields

u(k+1) = u(k) +∆tF
(
u(k)

)
, F : Rn → Rn, (2)

where F is the discrete counterpart of F .

2.2 SYSTEM IDENTIFICATION

In a numerical method, a mechanistic PDE solver advances a discretized PDE state by integrating it
in time. As an example, an explicit 2D finite-difference solver using an Euler timestepping can be
formulated via a localized stencil operator F at each grid cell (i, j) and time t as

ut+1
i,j = ut

i,j + F(S(ut
i,j))∆t

Here, ut
i,j denotes the state at grid cell (i, j) and time t. S(·) is the localized stencil at ut

i,j : a set
containing ut

i,j and its neighboring grid cells within the fixed domain of dependence defining the
stencil operator. For example, a 5-point stencil at ut

i,j is a set {ut
i,j , u

t
i−1,j , u

t
i+1,j , u

t
i,j−1, u

t
i,j+1}.

Such stencils are used to approximate spatial derivatives at each grid cell.

3 NEURAL STENCIL EMULATOR

In Equation (1), we ideally wish to recover the continuum PDE’s RHS F(·); but in practice we
learn the discretized operator F and implement it within a numerical solver. While F is known
analytically for simple PDEs, complex simulation codes often contain conditional logic, empirical
closures, and other intricate parameterizations that preclude a closed-form stencil operator. This lack
of an analytical expression for F has traditionally limited the application of intrusive reduced-order
models (ROMs) that require direct access to the governing equations.

3
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Instead, we propose to learn a statistical representation of F from PDE solution data, rendering model
order reduction non-intrusive. Our approach treats F as a black-box mapping

S(ut
i,j) 7→ ut+1

i,j , ut+1
i,j = ut

i,j + F
(
S(ut

i,j)
)
∆t,

and trains a machine learning model F̂θ with parameters θ to approximate it. We emphasize here that
each stencil evaluation is low-dimensional (e.g. five or thirteen inputs plus one output), so a single
high-fidelity simulation can produce a large number of training examples. For instance, a climate
model with 106 grid cells over 106 timesteps yields ∼ 1012 stencil evaluations. Moreover, compared
with existing state-of-the-art PDE surrogates based on PINN or neural operator learning that train on
full spatial field instances, the stencil input is orders of magnitude lower dimensional, significantly
reducing model size and training cost.

Various ML models can serve as F̂θ(·). One natural choice is Sparse Identification of Nonlinear
Dynamics (SINDy) (Brunton et al., 2016), which performs sparse regression on a set of nonlinear
functions of state snapshots versus derivatives to identify the governing equations. While effective
for “clean” PDE systems, SINDy’s basis may be too restrictive for the complex parameterizations
in large-scale simulations. Here we instead use a neural-network-based stencil emulator, which is
a more flexible and expressive functional approximator, for learning the RHS of high-dimensional
PDEs (see Fig. 1), hence the name neural stencil emulator (NSE). We use a standard mean squared
error loss over a dataset D = {Sz(uz), δuz}Zz=1, where δuz = (ut+1

z − ut
z)/∆t and z denotes

spatial coordinate:

L(θ) = 1

Z

Z∑
z=1

∥∥F̂θ(Sz)− δuz

∥∥2.
Optionally, physics-informed penalties (e.g. enforcing ∇·u = 0) can be added.

Once trained, our NSE, F̂θ , replaces conventional timestepping, evolving the state while maintaining
high accuracy relative to the original solver. By approximating F directly–rather than the full state
evolution–our surrogate remains non-intrusive and readily deployable alongside legacy solvers.

3.1 ADAPTIVE SAMPLING STRATEGIES

Neural network 
approximation of
the local stencil
operator 𝐹(𝒖; 𝜃)
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Figure 1: Left. A neural network learns the stencil operator F: a
mapping from a localized stencil of a state (S) to its finite difference-
based time derivative Right. A 5-point stencil schematic.

Stencil data from a single PDE
trajectory are highly redundant:
neighboring grid cells and succes-
sive timesteps are strongly corre-
lated, so the effective sample size
is far smaller than the total stencil
evaluations obtained. To achieve
desired sample efficiency in NSE
training, we design space-filling
and adaptive sampling strategies
that (i) decorrelate stencil samples
and (ii) increase coverage of rare
but dynamically relevant states.
By synthetically constructing lo-
calized stencil states and forcing
the simulator to evaluate them, we
avoid long integrations and enable few-shot learning. Hence, we use the forward model to obtain
one-step labels (S, δu) for supervised learning of the stencil operator.

3.1.1 PURE STRATEGIES.

On-trajectory (“Short-Traj”) sampling. As a baseline, we use all available stencils from a
given simulation trajectory when only short simulation is available. This ergodic sampler provides
dynamically common states but yields strong space–time correlations and under-represents tail events.

Off-trajectory synthetic sampling. We introduce two synthetic stencil design and sampling
schemes that expand coverage of rare (tail) states in NSE training data, particularly when only short
simulation trajectories are available.
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(i) Random sampling. Sample S̃ ∈ [0, 1]m via i.i.d. uniform draws or Sobol’ quasi-random
sequences for space-filling coverage. Affinely rescale each state within a sampled stencil to the
simulation data range. These i.i.d.-like inputs increase effective sample size and oversample corners
of state space, promoting interpolation rather than extrapolation at training time for rare states.

(ii) PCA-guided design. Given a collection of actual on-trajectory stencils {Sz}, we compute PCA
using stencil mean µ, loading matrix P ∈ Rm×r, and PC scores Z = P⊤(S − µ). We set r = m
(possible as Z > m in our case) yielding full PCA. Next, we construct a hyper-rectangle in PC space
using per-PC minima and maxima [Lk, Uk] observed in Z. Then perform the following steps:

1. Draw z̃ ∈ [0, 1]m via uniform or Sobol’ sampling and map to PC ranges: ẑk = Lk+ z̃k(Uk−Lk).

2. Back-project to the state space: Ŝ = µ+ P ẑ.
3. Filter out stencil samples outside simulation data range (applying physical constraints).
4. Repeat until the desired number of synthetic stencil states are collected.

This targets high-variance directions while retaining plausibility inherited from the empirical PCs.

3.1.2 MIXED STRATEGIES.

Figure 2: On-trajectory downsam-
pling. We downsample stencils uni-
formly in space-time to increase ef-
ficiency in our mixed strategies for
training neural stencil emulators.

To balance frequent and rare regimes, we form a mixture sam-
pler combining: (i) stencils from an ergodic simulation and (ii)
auxiliary stencils with one-step evaluations obtained using solver.

On-trajectory downsampling. A single long full-order simula-
tion can produce millions of near-duplicate stencils. In our mixed
strategies, we assume access to one such run and first downsample
its stencil states (uniformly in space–time) to reduce correlation
(Fig. 2). Next, we assume that we have a small additional compute
budget to further augment the downsampled set by evaluating an
equal-sized batch obtained via one of four options: (a) a short
burst from a new initialization, (b) a short extension from the
run’s terminal state, (c) one-step evaluations of synthetically de-
signed random stencils, or (d) one-step evaluations of PCA-guided
synthetic stencils.

(i) Downsampled+Diff Init: Combine downsampled stencils with
short simulation from a new initialization to the same stencil count.

(ii) Downsampled+Extend: Combine downsampled stencils with a short extension of the original
simulation from its terminal state to the same stencil count.

(iii) Downsampled+Random: Combine downsampled stencils with an equal number of one-step
evaluations of randomly generated stencils via uniform or Sobol’ sampling.

(iv) Downsampled+PCA: Combine downsampled stencils with an equal number of one-step evalua-
tions of PCA-guided stencils generated with uniform or Sobol’ space filling design.

These four data augmentation choices yield four mixed strategies that combine the downsampled
on-trajectory data with one of the pure strategies from Section 3.1.1. These mixes reduce redundancy
while injecting state-space diversity.

Remark. As per-dimension grid size N grows on a d-dimensional grid, the stencil size m and
NSE F̂θ remain fixed, while the number of available stencils scales as Z ∝ Nd. With fixed spatial
∆x, doubling the domain in each dimension doubles N and multiplies Z by 2d. Consequently, a
model trained at lower domain sizes can be rolled out at higher domain sizes provided ∆x, boundary
conditions, and the timestep ∆t are unchanged. This underscores NSE’s few-shot aspect.

4 EXPERIMENTS

We test our Neural Stencil Emulator (NSE) on canonical PDEs to evaluate:
1. how sampling design affects data efficiency and forecast accuracy;

5
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Figure 3: Residual network inspired neural network architecture used in our neural stencil emulator.

2. whether synthetic, PCA-guided designs improve few-shot generalization over on-trajectory and
random space-filling baselines; and

3. whether hybrids that mix decorrelated on-trajectory stencils with synthetic/non-synthetic stencils
offer the best robustness–efficiency trade-off; and

4. how sample-efficient NSE is relative to recent ML-based emulators, and how its long-horizon
rollout accuracy and stability compares to these emulators?

NSE learns the discretized RHS from local inputs and is rolled out with an explicit integrator for
forecasting. We evaluate on nonlinear PDEs–Allen-Cahn, Advection-Diffusion, and (scalar) Burgers’–
to assess generalization to unseen initial conditions. Details of each PDE are in Appendix A.

NSE architecture and training details. Our NSE uses a two-block residual network (Fig. 3) with
64-unit linear layers. It predicts time derivative, advanced via explicit Euler timestepping. We train
with Adam (initial learning rate 0.01) with cosine decay schedule for 5,000 epochs.

Data and strategies. For pure strategies, we use a short run of 10 timesteps from one initial
condition on a 32× 32 grid, yielding 10,240 stencils for Short-Traj strategy. Random strategies draw
10,240 stencils from the PDE’s physically admissible range; PCA-guided strategies build 10,240
synthetic stencils by sampling in a principal-component space estimated from the short run and
mapping them back to state space. For mixed strategies, we assume one full simulation of 1,000
timesteps over t ∈ [0, 1] plus a small budget equivalent to 10 timesteps, which we allocate to (i)
extending the trajectory (Downsampled+Extend), (ii) a short burst from a different initialization
(Downsampled+Diff Init), or (iii) generating synthetic stencils (Downsampled+Random, Downsam-
pled+PCA). In all mixed variants, we uniformly downsample the on-trajectory data to 10,240 stencils
to reduce space–time correlation and combine them 1:1 with the supplemental batch of 10,240
synthetic/non-synthetic stencils yielding a total of 20,480 stencils. Under a small, fixed numerical
solver budget, mixed strategies therefore train on twice as many stencils as pure strategies.

Baselines. We benchmark NSE against widely used ML-based emulator models: (1) U-Net neural-
PDE surrogate (Takamoto et al., 2022), (2) Fourier Neural Operator (FNO) (Li et al., 2021), and (3)
physics-informed neural network (PINN) (Raissi et al., 2019). Complete descriptions of the baseline
implementations are provided in Appendix B.

Evaluation protocol. We take 10 unseen initial conditions and evolve each with NSE trained under
the pure or mixed strategies above. Performance is reported as the trajectory of log–RMSE between
2D snapshots from the full-order numerical solver and NSE over the rollout horizon (Figures 4, 5, and
6). In Table 1, we report global NRMSE values for baselines along with their simulation data budget
used in training. We downsample trajectories predicted by NSE in all sampling strategies by a factor of
10 for a fair comparison with baselines which are trained and tested on downsampled trajectories (refer
to Appendix B). The expressions of the evaluation metrics are provided in Appendix C.

Results. Figures 4, 5, and 6 summarize Allen-Cahn, Advection-Diffusion, and Burgers’, respec-
tively, in a 2×3 layout: rows compare Pure vs. Mixed strategies; columns sweep diffusion coefficients
D ∈ {5× 10−4, 10−3, 2× 10−3} from left to right. In Allen–Cahn system (Fig. 4), PCA-guided
designs consistently outperform Short-Traj within the pure setting. Pure Random designs outper-
form both PCA and Short-Traj across all D values–especially at longer horizons where coverage of
rare stencil configurations matters; within the Random and PCA families, Sobol’ low-discrepancy
sampling typically slightly outperforms i.i.d. Uniform sampling.

6
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Figure 4: Allen–Cahn system: Neural stencil emulator’s PDE rollout errors across different strategies using
3 diffusion coefficients. Columns (left→right) use D ∈ {5× 10−4, 10−3, 2× 10−3}; rows compare Pure vs.
Mixed sampling strategies. Curves aggregate NSE solutions over 10 unseen initial conditions providing mean of
log-RMSE and the bands show 2-σ variability around that mean.

Figure 5: Advection–Diffusion system: Neural stencil emulator’s PDE rollout errors across different strategies
using 3 diffusion coefficients. Columns (left→right) use D ∈ {5× 10−4, 10−3, 2× 10−3}; rows compare Pure
vs. Mixed sampling strategies. Curves aggregate NSE solutions over 10 unseen initial conditions providing mean
of log-RMSE and the bands show 2-σ variability around that mean.

In the mixed setting, Downsampled+PCA shows clear, substantial gains over its pure PCA counterpart
across all D values. Downsampled+Diff Init and Downsampled+Extend also improve relative to their
pure variants but generally trail Downsampled+PCA. Downsampled+Random offers only marginal
gains over pure Random, likely because it does not exploit relationships in the on-trajectory data and
downsampled stencils alone provide limited additional coverage. Overall, Downsampled+PCA and
Downsampled+Random outperform Downsampled+Diff Init and Downsampled+Extend; within the
mixed setting, we do not observe a consistent separation between Sobol’ and Uniform variants.
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Figure 6: Burgers’ equation: Neural stencil emulator’s PDE rollout errors across different strategies using
3 viscosity coefficients. Columns (left→right) use ν ∈ {5× 10−4, 10−3, 2× 10−3}; rows compare Pure vs.
Mixed sampling strategies. Curves aggregate NSE solutions over 10 unseen initial conditions providing mean of
log-RMSE and the bands show 2-σ variability around that mean.

Why does Downsampled+PCA help? In mixed strategies, PCA is fit to a full trajectory (not a short
burst), capturing a broader basis of stencil states and their correlations; the synthesized stencils
then better target rare but dynamically important directions, yielding consistent gains over pure
PCA and other mixed baselines. Uniform downsampling (Extend/Diff Init) adds little span, so their
improvements are modest over Short-Traj. In the pure setting, PCA’s basis is narrow due to short run
data–hence it performs worse than Random yet still better than Short-Traj.

In Advection-Diffusion system (Fig. 5), the Pure setting shows a clear ordering: PCA-guided designs
are the best across the diffusion sweep, with PCA-Sobol’ typically lowest error, followed closely by
PCA-Uniform. Both Random variants trail the PCA designs, and Short-Traj (Ergodic) is consistently
the worst. The separation is most pronounced at lower diffusion and narrows as D increases (rightward
columns), but the PCA strategy’s lead persists throughout the horizon.

In the Mixed setting, results are more nuanced. Downsampled+PCA does not uniformly dominate: de-
pending on D, it is often among the top performers but is comparable to Downsampled+Random, with
overlapping error bands for much of the rollout. Downsampled+Diff Init and Downsampled+Extend
again lag the remaining strategies highlighting importance of data augmentation. Overall, mixed
strategies narrow the performance spread seen in the pure case; rankings vary with D and horizon
length, and no consistent Sobol’ vs. Uniform winner among the compared strategies emerges.

In scalar Burgers’ equation (Fig. 6), the Pure panels show little separation across diffusion coefficients:
trajectories and bands largely overlap, especially in the first two columns. In the last column, Random-
Sobol’ and PCA-Uniform exhibit slightly lower late-time errors. Overall, under our short-run budget,
sampling choice has only a modest effect; long-horizon error appears to be dominated by shock
dynamics rather than the specific pure sampler.

In the Mixed panels, error bands are visibly larger and rankings become diffusion-dependent. Down-
sampled+PCA does not uniformly dominate; Downsampled+Random, Downsampled+Extend, and
Downsampled+Diff Init are often comparable with overlapping error bands. The spread widens at
lower diffusion (stronger advection/sharper features); among the non-synthetic mixed variants, Down-
sampled+Extend and Downsampled+Diff Init frequently underperform relative to Short-Traj. These
patterns suggest that the performance on Burgers’ is sensitive to augmentation: injecting synthetic or
off-trajectory stencils can shift the data distribution near shocks and amplify compounding rollout
error. Overall, no single method consistently wins across columns in mixed setting.
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Table 1: Performance of NSE compared to baseline emulators under different data-sampling strategies.
The top section reports baselines; the middle and bottom sections report NSE with pure and mixed
strategies, respectively. Values are shown as 103×NRMSE (lower is better); divide by 103 to recover
raw NRMSE. The best NRMSEs among all models and among our pure strategies in each column
are specified in boldface and via underline, respectively. Simulation budget represents overall solver
timesteps needed to generate training data for each model. DS abbreviates downsampled.

Model Allen-Cahn Advection-Diffusion Burgers’ Simulation
D=5e-4 D=1e-3 D=2e-3 D=5e-4 D=1e-3 D=2e-3 ν=5e-4 ν=1e-3 ν=2e-3 Budget

PINN 995.433.0 1007.224.3 999.524.2 887.121.4 875.837.2 869.331.8 1121.847.8 1135.431.7 965.048.6 0
U-Net 532.013.3 639.334.4 414.026.1 813.234.7 768.343.0 679.658.1 2178.9222.6 2017.5234.9 2082.6328.9 1×105

FNO 390.316.7 353.020.2 198.324.5 416.547.9 320.649.2 457.174.1 555.135.9 562.641.3 432.945.1 1×105

U-Net 401.87.5 218.69.1 166.413.2 236.219.7 174.720.6 195.525.3 902.48.7 916.616.8 945.030.4 2×106

FNO 112.312.1 106.78.2 74.510.8 120.418.6 85.211.3 54.66.4 218.913.1 229.818.3 142.712.1 2×106

Random Uniform 1.80.2 2.30.2 5.50.5 9.51.5 12.12.0 18.04.0 133.09.4 180.920.0 438.566.8 10
Random Sobol’ 0.80.0 2.70.5 4.60.5 13.22.3 11.71.6 14.22.3 145.516.1 172.313.8 114.613.0 10
PCA Uniform 6.51.0 12.41.8 25.24.7 6.11.4 5.10.8 5.21.0 125.311.1 137.213.8 190.021.7 10
PCA Sobol’ 11.01.9 8.31.0 28.15.0 4.40.6 4.30.7 4.10.9 219.812.9 155.915.8 248.042.3 10
Short-Traj 56.82.9 42.73.8 53.17.0 21.38.0 20.710.0 11.54.6 183.721.6 138.822.5 266.644.6 10

DS+Random Uniform 0.70.1 0.70.1 2.00.3 2.20.1 1.20.1 3.20.3 19.310.2 15.31.3 16.61.6 1.01×103

DS+Random Sobol’ 0.50.0 0.80.1 0.80.2 3.30.3 2.00.1 3.50.4 23.83.1 30.83.8 16.31.9 1.01×103

DS+PCA Uniform 0.70.1 0.40.0 1.40.2 1.70.1 3.50.4 1.20.1 29.53.7 37.45.0 76.010.7 1.01×103

DS+PCA Sobol’ 1.30.1 0.90.1 1.90.3 1.60.1 1.40.1 4.20.5 11.52.0 19.12.6 16.02.4 1.01×103

DS+Diff Init 3.10.4 2.60.2 2.10.3 2.40.4 1.71.0 2.00.4 29.08.5 20.05.9 11.90.9 1.01×103

DS+Extend 3.00.3 3.50.5 3.60.6 2.60.8 2.80.6 3.31.4 31.012.9 28.814.9 14.32.5 1.01×103

Table 1 summarizes NRMSE results for our NSE approach under Pure and Mixed strategies and
ML-based emulators. Using a very small simulation budget to generate stencil training data, NSE
consistently outperforms PINNs, U-Nets, and FNOs on Allen–Cahn, Advection–Diffusion, and
Burgers’ PDE systems. We attribute this gap to three key factors: (1) local, low-dimensional inputs.
NSE operates on compact stencils (5-point neighborhood) rather than full fields, reducing input
dimensionality by orders of magnitude and filtering out irrelevant global context. This alleviates
the curse of dimensionality faced by full-field surrogates; (2) high sample efficiency. Each spatial
grid location, along with its stencil, at a given timestep, yields an independent training sample. For
instance, under a budget of 100 (or 2,000) simulations equaling a total of 105 (or 2×106) solver
timesteps, full-field surrogates effectively obtain either 500 (or 104) training samples (additional
details in Appendix B), as each rollout step consumes an entire spatial field. In contrast, NSE
leverages every local stencil update as a training example, resulting in roughly 104 effective samples
from a budget of only 10 timesteps; (3) robust temporal integration. NSE learns discretized local
time derivatives rather than approximating a global functional of the PDE residual, as in PINNs.
Although PINNs in principle do not require explicit training samples, their optimization landscape
is notoriously ill-conditioned, especially for high-dimensional PDEs, leading to slow convergence
and large residual errors. In contrast, NSE learns a simple, low-dimensional mapping aligned with
the underlying time-stepping scheme, which makes training significantly more stable and yields
more accurate long-horizon rollouts. Together, these three factors enable NSE to achieve consistently
superior performance over baselines, especially in data-limited regimes where efficient sample
utilization and model complexity become critical. Lastly, Appendix E provides visualizations of the
emulated dynamics, qualitatively comparing NSE against ML-based emulators.

5 CONCLUSION

In this work, we propose space-filling, spatial-correlation-preserving, data-augmentation strategies
that generate localized stencil data and train NSE to learn PDE governing equations in a non-
intrusive and sample-efficient (∼10 timesteps’ worth of simulation) manner. Our data-augmented
stencils enable few-shot learning and accurate forecasts across Allen-Cahn, Advection–Diffusion,
and Burgers’ PDE systems from limited snapshots under tight compute budgets. Operationalized
via NSE, our approach consistently outperforms on-trajectory sampling, underscoring the value of
independent, space-filling stencil sampling for robust modeling of computer simulations. Finally,
using only 10 solver steps’ worth of stencil data, our approach outperforms ML emulators (FNO,
U-Net, PINN) trained on thousands of trajectories in long-horizon accuracy and stability. We discuss
limitations of our approach in Appendix D.
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A PDE SYSTEMS

A.1 ALLEN-CAHN SYSTEM

The following system of equations describes the Allen–Cahn formulation:

∂u(x, t)

∂t
= D∇2u(x, t) + 5(u(x, t)− u(x, t)3) on Ω, (3a)

u(x, t0) ∼ GP
(
m(x), k(x,x)

)
on Ω, (3b)

∇u(x, t) = 0 on ∂Ω. (3c)

Here D is the diffusion coefficient and 5(u(x, t) − u(x, t)3) represents the source term. The GP
represents the Gaussian process, used to generate the initial spatial field u(x, t0), and a zero-gradient
boundary condition is imposed on the boundary ∂Ω.

A.2 ADVECTION-DIFFUSION SYSTEM

The following system of equations describes the Advection–Diffusion formulation on the domain
Ω = [0, L]n:

∂u(x, t)

∂t
= −a∇u(x, t) +D∇2u(x, t) on Ω, (4a)

u(x, t0) ∼ GP
(
m(x), k(x,x)

)
on Ω. (4b)

u(x+ Lei, t) = u(x, t) ∀x ∈ ∂Ω, i = 1, 2, . . . , n (4c)

Here D is the diffusion coefficient, a is the advection velocity, and ei denotes the unit vector along
the ith coordinate axis. The GP represents the Gaussian process, used to generate the initial spatial
field u(x, t0), and a periodic boundary condition is imposed on the boundary ∂Ω.

A.3 SCALAR BURGERS’ SYSTEM

The following system of equations describes the Scalar Burgers’ formulation on the domain Ω =
[0, L]n:

∂u(x, t)

∂t
= −∇

(u2(x, t)

2

)
+ ν∇2u(x, t) on Ω, (5a)

u(x, t0) ∼ GP
(
m(x), k(x,x)

)
on Ω. (5b)

u(x+ Lei, t) = u(x, t) ∀x ∈ ∂Ω, i = 1, 2, . . . , n (5c)

Here ν is the viscosity, u is the scalar velocity, and ei denotes the unit vector along the ith coordinate
axis. The GP represents the Gaussian process, used to generate the initial spatial field u(x, t0), and a
periodic boundary condition is imposed on the boundary ∂Ω.

B BASELINE ARCHITECTURES AND TRAINING PROTOCOLS

We benchmark our Neural Stencil Emulator (NSE) against three representative ML-based emulator
approaches, using their implementations provided in PDEBench (Takamoto et al., 2022).

U-Net. We employ a standard 2D U-Net as a data-driven PDE surrogate. It follows the classic
encoder–decoder design with skip connections, enabling effective capture of multi-scale spatial
features.

Fourier Neural Operator (FNO). We employ FNO for its efficiency and strong performance in
operator learning. By parameterizing kernels in Fourier space and leveraging FFTs, FNO models
long-range dependencies, supports mesh invariance, and generalizes across resolutions.

Physics-Informed Neural Networks (PINNs). We employ PINNs as physics-guided surrogates that
embed PDE residuals directly into the loss function. This design enforces physical consistency while
enabling data-efficient learning under sparse observations.
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We employed the trajectories of length 1,000 timesteps for training and testing – consistent with our
NSE setup – but downsampled them by a factor of 10 to sequences of 100 timesteps. This reduction
was necessary because the baseline surrogates struggle to converge and remain stable over very
long-horizons, where error accumulation prevents convergence. PINNs were trained directly on the
full spatio–temporal mesh, enforcing the governing equations at all grid points. U-Net and FNO
are trained autoregressively by minimizing prediction error over 20 rollout timesteps. We consider
two simulation budgets: 100 or 2,000 numerical simulations, corresponding to 105 and 2 × 106

solver timesteps, respectively. After downsampling each trajectory to 100 steps, we extract five
non-overlapping 20-step subsequences {[1, 20], [21, 40], [41, 60], [61, 80], [81, 100]}, yielding 500 or
104 training samples overall. For evaluation, we first downsample 10 held-out trajectories by a factor
of 10 to generate trajectories of 100 timesteps and then roll out U-Net and FNO for the full 100
timesteps. PINNs are not rolled out autoregressively; instead, we assess them by comparing their
predicted solutions over the mesh to ground-truth simulations.

C EVALUATION METRICS

To assess the accuracy and stability in long-horizon autoregressive rollout, we rely on (1) log root-
mean-squared-error (log-RMSE) and (2) normalized RMSE (NRMSE). We compute RMSE for each
state snapshot ut at time t on a 2D grid N ×N as follows:

RMSEt =
∥ût − ut∥F

N
,

where ||.||F is the Frobenius norm. In Fig. 4, 5, and 6, we report log10(RMSEt) over time. For
numerical robustness, when plotting log10(RMSEt), a small ε (e.g., 10−12) may be added inside the
logarithm. Next, we provide the expression for the scale invariant global NRMSE reported in Table 1.
Specifically, NRMSE at time t is calculated as:

NRMSEt =
∥ût − ut||F

||ut||F
.

From this, we compute the global NRMSE by uniformly averaging the normalized RMSEs over time.

D LIMITATIONS

We assume a model whose dynamics are fully governed by a stencil operator; training is performed
offline; we do not enforce structure-preserving constraints (e.g., symmetries or conservation laws) on
the learned stencil; and our data-augmentation strategies are static (i.e., no dynamic/active learning).
Furthermore, NSE targets stencil-based computer model system identification, but standardized
benchmarks with ground-truth operators and physics-aware diagnostics are scarce. Our primary
evaluation–rollout error (characterized by log-RMSE, NRMSE, and absolute errors) on held-out initial
conditions–provides useful signal yet only indirectly reflects physical fidelity (e.g., conservation,
shock resolution, boundary fluxes). Although non-intrusive, NSE remains coupled to the discretization
and time integrator; modeling and integration errors may be conflated, and transferability across grids,
boundary conditions, and to 3D or multiphysics settings remains untested. Developing standardized
operator-identification benchmarks and richer, physics-grounded metrics is an important future
direction of work.

E VISUALIZATIONS OF EMULATED DYNAMICS

In Figures 7-12, we show ground-truth trajectories (from the test set of 10 trajectories) alongside
the corresponding best (overall or out of Pure strategies) performing NSE model’s autoregressive
rollout predictions and their absolute errors, over 1,000 timesteps for all three PDE systems (for
single diffusion or viscosity coefficients). In every case, NSE maintains high accuracy on an unseen
initial condition over the entire rollout horizon.

Allen–Cahn system exhibits curvature-driven coarsening with interfaces that thicken and merge.
NSE preserves the geometry and motion of these phase boundaries over entire rollout; the error
remains small and concentrates along moving interfaces rather than diffusing across the domain. This
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holds for both the overall best strategy, Downsampled + PCA-Uniform (Fig. 7), and the best Pure
strategy, Random-Uniform (Fig. 8), closely matching solver snapshots throughout 0-1.0 seconds. The
maximum absolute error of the overall-best NSE is ∼ 9× lower than that of the best Pure strategy
NSE, highlighting the usefulness of a single full-order simulation.

In Advection–Diffusion system, NSE tracks the phase-accurate transport of smooth modes while
accurately capturing the gradual diffusion-driven amplitude decay. The absolute errors appear as thin,
wave-like ridges aligned with advection structures and remain bounded over time in both the overall
best strategy, Downsampled + Random-Uniform (Fig. 9), and the best Pure strategy, PCA-Sobol’
(Fig. 10). Here, the maximum absolute error is ∼ 6.5× lower for the overall-best NSE than for the
best Pure strategy NSE, again underscoring the value of one full-order simulation.

Burgers’ equation is the most visually demanding: nonlinear steepening generates sharp fronts and
shock interactions. NSE maintains coherent shock locations as well as overall patterns over the full
rollout horizon. As expected, errors are largest near emerging and interacting shocks, yet they do not
trigger spurious oscillations or global drift. In comparison to the solver, discrepancies are confined to
the steepest gradients, especially at later times, for both the overall best strategy, Downsampled +
Random-Uniform (Fig. 11), and the best Pure strategy, Random-Uniform (Fig. 12). The maximum
absolute error is ∼ 3× lower for the overall-best NSE than for the best Pure strategy NSE, reinforcing
the benefit of even a single full-order simulation.

Next, to complement the quantitative results provided in Table 1, we provide qualitative comparisons
of predicted dynamics and corresponding absolute error maps for U-Net, FNO, and Best NSE (overall
or out of Pure strategies). We omit PINN from these visualizations because its large error fields made
the comparisons less informative and reduced the contrast needed to highlight differences among
other models. Figures 13, 14, and 15 visualize the predicted trajectories alongside the ground truth
for Allen–Cahn, Advection–Diffusion, and Burgers’ PDE systems respectively. For each model, we
additionally show the spatial absolute error fields. We take the square root for the error field, which
does not change the relative distribution of errors but improves visual contrast, making differences
between emulated dynamics by different models more distinguishable.

The visualizations reveal markedly different error patterns across different models. First, U-Net cap-
tures coarse spatial structures but fails to preserve amplitude fidelity, producing visually under-scaled
rollouts. The error maps show structured regions of bias that accumulate rapidly with time, reflecting
its inability to stabilize predictions over long-horizon rollouts. Second, FNO better maintains global
amplitudes but exhibits frequency-dependent artifacts. Its error maps often display wave-like or
grid-aligned patterns, particularly evident at intermediate and late timesteps. This suggests that certain
spectral modes – especially high-frequency components – are poorly represented, consistent with
the Fourier parametrization that favors low-frequency dynamics with high amplitude. Third, NSE
demonstrates more balanced and stable behavior. NSE pure model (represents best Pure strategy) al-
ready reduces systematic biases and yields more homogeneous error maps. However, for challenging
systems such as Burgers’, faint oscillatory errors can still be observed, gradually accumulating with
time and indicating residual long-horizon instability under limited sampling strategies. In contrast,
NSE Overall (represents overall best sampling strategy), which effectively incorporates data selection,
further suppresses these accumulative effects and produces nearly structureless error fields even at
the end of rollouts. These findings suggest that our local downsampled stencils, when combined
with auxiliary batch of stencils, not only reduce redundancy but also enhance stability and predictive
accuracy, while – by virtue of their structural design – providing the flexibility needed to reliably
identify and represent diverse dynamical regimes.
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Figure 7: Allen-Cahn system (D = 1× 10−3): the overall best sampling strategy in our NSE approach of
Downsampled + PCA-Uniform strategy. NSE maintains highly accurate and stable predictions for rollout of
unseen initial state over 1000 timesteps.
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Figure 8: Allen-Cahn system (D = 1 × 10−3): the best Pure sampling strategy in our NSE approach
of Random-Uniform strategy. Here, NSE trained on just 10 timesteps maintains highly accurate and stable
predictions for rollout of unseen initial state over 1000 timesteps.
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Figure 9: Advection-Diffusion system (D = 1 × 10−3): the overall best sampling strategy in our NSE
approach of Downsampled + Random-Uniform strategy. NSE maintains highly accurate and stable predictions
for rollout of unseen initial state over 1000 timesteps.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

0.0 0.2 0.4 0.6 0.8 1.00.0

0.2

0.4

0.6

0.8

1.0 Numerical Solver (Time: 0.0 sec.)

0.0 0.2 0.4 0.6 0.8 1.00.0

0.2

0.4

0.6

0.8

1.0 Neural Stencil Emulator (Time: 0.0 sec.)

0.0 0.2 0.4 0.6 0.8 1.00.0

0.2

0.4

0.6

0.8

1.0 Absolute Error (Time: 0.0 sec.)

0.697

0.462

0.227

0.008

0.244

0.479

0.714

0.00000

0.00171

0.00341

0.00512

0.00683

0.00854

0.01024

0.01195

0.01366

0.01536

0.0 0.2 0.4 0.6 0.8 1.00.0

0.2

0.4

0.6

0.8

1.0 Time: 0.2 sec.

0.0 0.2 0.4 0.6 0.8 1.00.0

0.2

0.4

0.6

0.8

1.0 Time: 0.2 sec.

0.0 0.2 0.4 0.6 0.8 1.00.0

0.2

0.4

0.6

0.8

1.0 Time: 0.2 sec.

0.442

0.215

0.013

0.240

0.468

0.695

0.923

0.00000

0.00171

0.00341

0.00512

0.00683

0.00854

0.01024

0.01195

0.01366

0.01536

0.0 0.2 0.4 0.6 0.8 1.00.0

0.2

0.4

0.6

0.8

1.0 Time: 0.4 sec.

0.0 0.2 0.4 0.6 0.8 1.00.0

0.2

0.4

0.6

0.8

1.0 Time: 0.4 sec.

0.0 0.2 0.4 0.6 0.8 1.00.0

0.2

0.4

0.6

0.8

1.0 Time: 0.4 sec.

0.481

0.257

0.033

0.191

0.415

0.640

0.864

0.00000

0.00171

0.00341

0.00512

0.00683

0.00854

0.01024

0.01195

0.01366

0.01536

0.0 0.2 0.4 0.6 0.8 1.00.0

0.2

0.4

0.6

0.8

1.0 Time: 0.6 sec.

0.0 0.2 0.4 0.6 0.8 1.00.0

0.2

0.4

0.6

0.8

1.0 Time: 0.6 sec.

0.0 0.2 0.4 0.6 0.8 1.00.0

0.2

0.4

0.6

0.8

1.0 Time: 0.6 sec.

0.691

0.461

0.232

0.002

0.227

0.457

0.686

0.00000

0.00171

0.00341

0.00512

0.00683

0.00854

0.01024

0.01195

0.01366

0.01536

0.0 0.2 0.4 0.6 0.8 1.00.0

0.2

0.4

0.6

0.8

1.0 Time: 0.8 sec.

0.0 0.2 0.4 0.6 0.8 1.00.0

0.2

0.4

0.6

0.8

1.0 Time: 0.8 sec.

0.0 0.2 0.4 0.6 0.8 1.00.0

0.2

0.4

0.6

0.8

1.0 Time: 0.8 sec.

0.754

0.514

0.275

0.036

0.204

0.443

0.682

0.00000

0.00171

0.00341

0.00512

0.00683

0.00854

0.01024

0.01195

0.01366

0.01536

0.0 0.2 0.4 0.6 0.8 1.00.0

0.2

0.4

0.6

0.8

1.0 Time: 1.0 sec.

0.0 0.2 0.4 0.6 0.8 1.00.0

0.2

0.4

0.6

0.8

1.0 Time: 1.0 sec.

0.0 0.2 0.4 0.6 0.8 1.00.0

0.2

0.4

0.6

0.8

1.0 Time: 1.0 sec.

0.708

0.462

0.216

0.030

0.276

0.522

0.767

0.00000

0.00171

0.00341

0.00512

0.00683

0.00854

0.01024

0.01195

0.01366

0.01536

Figure 10: Advection-Diffusion system (D = 1 × 10−3): the best Pure sampling strategy in our NSE
approach of PCA-Sobol’ strategy. Here, NSE trained on just 10 timesteps maintains highly accurate and stable
predictions for rollout of unseen initial state over 1000 timesteps.
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Figure 11: Burgers’ equation (ν = 1× 10−3): the overall best sampling strategy in our NSE approach of
Downsampled + Random-Uniform strategy. NSE maintains highly accurate and stable predictions for rollout of
unseen initial state over 1000 timesteps.
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Figure 12: Burgers’ equation (ν = 1 × 10−3): the best Pure sampling strategy in our NSE approach of
Random-Sobol’ strategy. Here, NSE trained on just 10 timesteps maintains highly accurate and stable predictions
for rollout of unseen initial state over 1000 timesteps.
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Figure 13: Visualizations of predicted dynamics and error maps for Allen–Cahn system (D = 1× 10−3).
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Figure 14: Visualizations of predicted dynamics and error maps for Advection–Diffusion system (D =
1× 10−3).
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Figure 15: Visualizations of predicted dynamics and error maps for Burgers’ equation (ν = 1× 10−3).
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