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Abstract

Out-of-Distribution (OOD) detection is a chal-001
lenging task that requires great generalization002
capability for the practicality and safety of task-003
oriented dialogue systems (TODS). With the004
dawn of large language models (LLMs), their005
enhanced ability to handle diverse patterns and006
contexts may aid in addressing this challenging007
task. In this paper, we investigate the current008
performance of LLMs in the near-OOD set-009
ting, where OOD queries belong to the same010
domain but different intents. To take advantage011
of out-of-the-shelf capabilities of LLMs, we012
do not use fine-tuning. We study the perfor-013
mance of one of the leading frontier models,014
GPT-4o, in 3 well-known public datasets and 3015
in-house datasets, using 10 different methods016
and prompt variations. We study the perfor-017
mance of different prompts and techniques in018
Gemini 1.5 Flash and Llama 3.1-70b. We in-019
vestigate the effect of increasing the number020
of In-Distribution (ID) intents. We propose a021
novel hybrid method that is cost-efficient, high-022
performing, highly robust, and versatile enough023
to be used with smaller LLMs without sacrific-024
ing performance. This is achieved by combin-025
ing ID success of smaller text classification026
models and high generalization capabilities of027
LLMs in OOD detection.028

1 Introduction029

As the field of natural language processing (NLP)030

progresses rapidly, task-oriented dialogue systems031

(TODS) are experiencing a significant increase032

in their overall capabilities. Their efficiency, ac-033

cessibility, and coverage have improved with the034

emergence of the Large Language Model (LLM)035

paradigm, as shown by Zhao et al. (2024).036

In TODS, natural language understanding (NLU)037

tasks begin with intent detection, where the user038

query is mapped to a set of known intents to con-039

trol the flow of the dialogue, select appropriate040

knowledge sources, and so on. Prior to LLMs, this041

Figure 1: An example of a TODS dialogue in banking
domain. Without OOD detection support, conversations
may go astray.

task was handled by transformer models such as 042

BERT (Devlin et al., 2019) and RoBERTa (Liu 043

et al., 2019). These models operate under the 044

closed world hypothesis, as discussed by Lang 045

et al. (2023), and can only detect what is present 046

in their training data. However, the real world is 047

open-ended, and users often submit unseen or unre- 048

lated queries. The need to reject such out-of-scope 049

queries — illustrated in Figure 1 — has led to the 050

development of Out-of-Distribution (OOD) detec- 051

tion systems, described in surveys by Lang et al. 052

(2023) and Yang et al. (2024). The improved gen- 053

eralization capabilities introduced by LLMs hold 054

great promise for addressing this challenge. 055

As an intent detection model is trained with a 056

fixed set of intents and utterances, the problem of 057

OOD detection can be framed as the task of iden- 058

tifying a distribution shift. In NLP, two primary 059

types of distributional shift are typically discussed. 060

The first is semantic shift, where OOD queries 061

arise from a different intent space and must be 062

filtered before being incorrectly mapped to known 063

intents. The second is covariate shift, where the 064

intent space remains the same, but the input dis- 065

tribution changes, leading to novel utterances for 066
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familiar intents, as discussed by Lang et al. (2023)067

and Yang et al. (2024). In this paper, we focus on068

semantic shifts.069

The challenges of OOD detection extend beyond070

distributional shifts. Training datasets, often con-071

structed by domain experts without machine learn-072

ing expertise, may be imbalanced, with certain in-073

tents represented by very few examples. Addition-074

ally, the scope of intents can vary widely — some075

may be fine-grained while others are overly broad.076

This work focuses on a more demanding sub-077

set of the problem, known as near-OOD detection078

(Liu et al., 2024a), also referred to as In-Domain079

and Out-of-Scope Detection (ID-OOS) by Zhang080

et al. (2022). In this setting, unknown examples081

do not come from entirely different domains but082

instead belong to different intent labels within the083

same general distribution. Near-OOD detection084

mimics the presence of long-tail intents unseen dur-085

ing training by identifying semantically similar yet086

label-divergent in-domain examples.087

In this paper, we investigate the performance of088

LLMs on near-OOD detection without fine-tuning.089

We aim to provide insights into the latest models,090

their performance with different techniques, and091

how they can be better utilized. Our main contribu-092

tions are:093

1. We investigate the performance of GPT-4o in094

the challenging task of near-OOD detection us-095

ing 3 well-known public datasets, and 3 in-house096

datasets. We use zero-shot and few-shot prompts097

and their k-Nearest (k-N) variations, as well as a098

hybrid method with various prompting strategies.099

The results demonstrate exceptional performance,100

surpassing prior studies on the benchmarks.101

2. We introduce a novel hybrid method. Our102

method, on average, is the highest performing103

amongst all strategies. It also improves the perfor-104

mance of smaller or open source LLMs to match105

GPT4o, reduces the input-token numbers and cost,106

is robust, and easy to implement.107

3. We compare the performance of Gemini 1.5108

Flash, Llama 3.1-70b, and GPT-4o when using109

zero-shot, few-shot, and two hybrid methods.110

4. We study the effect of increasing the number of111

ID intents in 3 datasets using GPT-4o.112

2 Related Work113

Hendrycks et al. (2020) systematically measures114

performance in the OOD detection task. Various115

older methods are seen to perform worse than ran-116

dom guess, but pre-trained models such as BERT 117

and RoBERTa (Devlin et al., 2019; Liu et al., 2019) 118

have performed well and are accepted as the in- 119

dustry standard. Numerous studies have been con- 120

ducted on the fine-tuning performance of such mod- 121

els. Uppaal et al. (2023) presents a systematic com- 122

parison of fine-tuning methods. It is observed that 123

pre-trained models achieve near-perfect OOD de- 124

tection in far-OOD, which is the case where the 125

distributional shift corresponds to a domain shift. 126

In near-OOD problems where no examples of 127

OOD data are given, there have been various ef- 128

forts. Zhang et al. (2022) fine-tune different va- 129

rieties of BERT-based models and observe that 130

fine-grained near-OOD problems with few exam- 131

ples remain a significant challenge. Zhan et al. 132

(2021) and Wang et al. (2023) employ discrimina- 133

tive fine-tuning methods, while Zhou et al. (2021) 134

and Zeng et al. (2021) investigate contrastive fine- 135

tuning methods. Since models in real-world scenar- 136

ios typically have no access to OOD data, Baran 137

et al. (2023) focus on post hoc methods. 138

The main categories of methods for OOD detec- 139

tion problems are summarized in recent surveys by 140

Lang et al. (2023) and Yang et al. (2024) as: 141

(1) output-based (Hendrycks and Gimpel, 2018; 142

Liu et al., 2020; Qian et al., 2022), 143

(2) gradient-based (Huang et al., 2021), 144

(3) density-based (Arora et al., 2021), and 145

(4) distance-based (Sun et al., 2022; Podolskiy 146

et al., 2022). 147

Zawbaa et al. (2024) present an output-based 148

method called Dual Encoder for Threshold-Based 149

Re-Classification (DETER) that achieves signifi- 150

cant improvements in near-OOD problems. In ad- 151

dition, as seen in the works of Rawat et al. (2021) 152

and Kim et al. (2023), creating synthetic OOD data 153

is also a valuable approach. Li et al. (2024) study 154

the effect of employing ChatGPT (OpenAI, 2022) 155

in creating synthetic near-OOD data. 156

LLMs such as GPT-4o (OpenAI, 2024a), Gem- 157

ini 1.5 Flash (Google, 2024), and Llama 3.1 158

(Grattafiori, 2024) have become the leading 159

paradigm in NLP. Their performance in multiple 160

NLP tasks such as machine translation, informa- 161

tion extraction, summarization, and clustering is 162

impressive (Zhao et al., 2024). However, the study 163

of the performance of LLMs on the OOD detection 164

task is still lacking. Arora et al. (2024) investi- 165

gates the In-Context Learning (ICL) ability in the 166

far-OOD detection task. Seven of the most recent 167

LLMs are tested together with a hybrid model that 168
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utilizes SetFit (Tunstall et al., 2022) with negative169

data augmentation. Their hybrid model aims to170

reduce cost and latency, and they also propose a171

two-step methodology that utilizes the representa-172

tion of the last prompt token of the LLM decoder173

layer. Wang et al. (2024) examines the zero-shot174

and few-shot capabilities of ChatGPT in the near-175

OOD setting and compares them with unsupervised176

SOTA methods, including those proposed by Mou177

et al. (2022). They find that ChatGPT struggles178

when the number of in-distribution (ID) intents is179

large. In addition, they claim that fine-grained in-180

tent labels are challenging for ChatGPT and that it181

is difficult to transfer knowledge from ID examples182

to OOD tasks.183

3 Methodology184

3.1 Problem Formulation185

Let S = {i1, i2, . . . , iN} be the predefined set of186

N intents. Let q = {t1, t2, . . . , tn} be the user187

input query, composed of the tokens ti. The output188

is prediction ipre ∈ S ∪ {OOD}. We employ 4189

different performance metrics: total (ALL), OOD190

and ID macro-F1; OOD recall.191

3.2 Datasets192

We employ 3 widely used benchmarks and a col-193

lection of internal production data. The bench-194

mark datasets are CLINC150 (Larson et al., 2019),195

BANKING77 (Casanueva et al., 2020), and DSTC196

Finance dataset from DSTC11 Track 2 (Gung et al.,197

2023b,a). In the test splits we limit the utterance198

per intent number to 10. To the best of our knowl-199

edge, DSTC Finance is used in similar tasks like200

intent clustering and open intent induction, but it is201

the first time an OOD detection paper has utilized202

it. We employ their utterance test set and split it203

50% − 50% in a stratified fashion to be used as204

train and test sets. The in-house collection dataset205

is called BIT31, consisting of banking, insurance,206

and telecommunication domains. The correspond-207

ing subsets are called BIT3-bank, BIT3-ins, and208

BIT3-tele, and their statistics can be seen in Ta-209

ble 1. These datasets are collected directly from210

real-world applications. They are PII redacted and211

cleaned by 3 experts.212

1This dataset is created for the purpose of this study; hence,
experiment results may differ from production performance.

Dataset # Intent Train Test
Size UPL Size UPL

CLINC150 150 15000 100 1500 10
BANKING77 77 10003 130 770 10
DSTC 38 565 15 365 9.6
BIT3-bank 88 852 10 546 6
BIT3-ins 62 340 5 336 5
BIT3-tele 58 273 5 270 4.5

Table 1: The statistics of datasets. DSTC stands for
DSTC Finance. UPL stands for average utterance per
label.

3.3 Methods 213

3.3.1 Baseline 214

As a baseline method, we adopt a threshold-based 215

classification system using a fine-tuned, quantized 216

version of "sentence-transformers/all-distilroberta- 217

v1" (Reimers and Gurevych, 2019; Sanh et al., 218

2020), reflecting a basic, production-oriented text 219

classification pipeline. We attach a lightweight 220

feedforward classification head, train it with cross- 221

entropy loss while keeping the encoder frozen, and 222

classify examples as OOD when prediction con- 223

fidence falls below a threshold (T = 0.9). Full 224

architectural and training details are provided in 225

Appendix A.1. 226

3.3.2 Zero-Shot Detection 227

We use two variations of zero-shot detection. First, 228

we create tools for each intent using only intent 229

names, adding an OOD class as a tool named "fall- 230

back." All tools are then fed to the LLM. No intent 231

utterance is used; only intent names. In this and 232

the following experiments, we force LLMs to use 233

tool calling, removing formatting issues. To our 234

knowledge, this is the first use of tool calling for 235

this task. Example is given in Appendices A.2. 236

Second; using OpenAI’s "text-embedding-ada- 237

002" (OpenAI, 2023) as a text embedding model, 238

we choose the k-Nearest tools with k = 5, and 239

only feed them to the LLM. This variation is called 240

zero-shot k-Nearest method. Related prompts are 241

in the Appendices A.3. 242

3.3.3 Few-Shot Detection 243

We employ two variations of few-shot detection. 244

First, we create tools for each intent using both 245

intent names and example utterances. We experi- 246

ment with 10 and 45 example utterances per intent. 247

In the BIT3 dataset, there are cases where an intent 248

has fewer examples. In those cases, we use all the 249

examples in a few-shot prompting. 250
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Second, using OpenAI’s "text-embedding-ada-251

002" as a text embedding model, we choose the252

k-Nearest tools with k = 5, and only feed them to253

the LLM. This method is called few-shot k-Nearest.254

Related prompts are in the Appendices A.4.255

3.3.4 Hybrid-Methods256

Arora et al. (2024) shows that LLMs’ OOD detec-257

tion performance drops as the number and scope of258

intents grow. Moreover, with a high number of in-259

tents, few-shot prompting becomes costly and slow.260

To address these challenges, we devise a two-step261

hybrid method. First, the baseline model predicts262

an ID intent, as its ID performance is satisfactory.263

Then, using examples and specialized prompts, we264

ask GPT-4o to verify or reject the baseline’s predic-265

tion—thus focusing LLM usage solely on OOD de-266

tection and avoiding unrelated examples in prompts.267

Chain-of-thought style prompts are generated with268

OpenAI o1 (OpenAI, 2024b) and customized for269

the task. Few-shot toy examples highlighting ID270

vs. OOD distinctions are added, as detailed in the271

appendices. We use three different prompts: Bal-272

anced, OOD-Focused, and Contrastive.273

Balanced. This is a concise prompt that aims to be274

unbiased in predicting ID or OOD. It also priori-275

tizes efficiency and clarity and uses a step-by-step276

approach. We use at most 45 utterances of the277

predicted intent.278

OOD-Focused. This is a skeptic version of the279

balanced prompt, more suited for cases where OOD280

intents are easier to miss. The inclination is towards281

detecting the OOD examples.282

Contrastive. This prompt uses cross-referencing283

between two sets of examples, one of which is a set284

of positive examples and the other is a set of neg-285

ative but similar examples that are obtained from286

the second and third predictions of the front end.287

This aims for higher coverage around the query288

and creates further separation between challenging289

near-OOD examples.290

4 Experiments and Results291

We devise three different experiments. In Sec 4.1,292

we want to see how different approaches compare293

to each other. To that end, we employ all the meth-294

ods in Sec 3.3 using GPT-4o as the LLM repre-295

sentative. In Sec 4.2, we aim to compare the per-296

formance of different LLMs using zero-shot and297

few-shot prompting with all the intents, and using298

the hybrid method with balanced prompt and con-299

trastive prompt. For this purpose, we use GPT-4o300

(OpenAI, 2024a), Gemini 1.5 Flash (Google, 2024), 301

and Llama 3.1-70b-instruct (Grattafiori, 2024) . 302

Lastly, in Sec 4.3, the goal is to see the effect of 303

the number of ID intents on OOD detection perfor- 304

mance. We use the same LLMs and methods as in 305

the previous experiment. 306

4.1 Comparison of Methods 307

To compare the methods, we use all 6 datasets. 308

We split the labels 50% − 50% as ID and OOD, 309

respectively. We use F1 scores as well as OOD 310

recall, since it is important to see how much of 311

the OOD examples are captured without sacrificing 312

ID performance. The results are shown in Table 313

2. The best score is shown in bold, and the second 314

best is underlined. In Figure 2, the performance in 315

BANKING77 is visualized. 316

The baseline model’s ID performance is compa- 317

rable to LLMs on public datasets. It achieves the 318

highest ID F1 on CLINC150 and outperforms GPT- 319

4o on BANKING77 in both zero-shot and few-shot 320

settings. In BIT3, GPT-4o leads. Few-shot gener- 321

ally outperforms zero-shot, though gains diminish 322

or slightly drop beyond 10–45 examples, indicat- 323

ing an upper bound. In OOD performance, we 324

see a significant improvement when using LLMs. 325

OOD F1 is significantly higher than the baseline 326

in the vast majority of cases. It is also important 327

to note that in all the datasets, the highest OOD 328

F1 belongs to the hybrid methods. In public sets, 329

different prompts perform better, but in BIT3 the 330

contrastive method seems to outperform the rest, 331

which may suggest the robustness of this strategy 332

in real life. Through all datasets but BIT3-ins we 333

see few-shot improves performance over zero-shot 334

in terms of ALL F1 scores. In public datasets, zero- 335

shot k-Nearest decreases zero-shot performance, 336

whereas in BIT3 it results in a slight increase. This 337

may be the result of noise in intent names in BIT3. 338

A similar situation occurs in few-shot as well. In 339

public datasets, k-Nearest is beneficial both in 10 340

and 45 example few-shots whereas in BIT3 there 341

may be a slight drop in performance. 342

Comparing balanced prompt and OOD-focused 343

prompt variations of the hybrid method, it is ob- 344

served that OOD recall is significantly increased 345

on all 6 datasets (up to 21 points) with a similar 346

or lower decrease on ID F1. This suggests that a 347

simple prompt engineering can shift the balance in 348

the ID-OOD trade-off without having a significant 349

decrease on the either side. 350

In all 6 datasets, it is observed that OOD recall 351
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BANKING77 CLINC150 DSTC Finance
ALL ID OOD ALL ID OOD ALL ID OOD

Model Method F1 F1 Recall F1 F1 F1 Recall F1 F1 F1 Recall F1
Baseline Threshold 76.7 92.7 42.5 61.1 82.4 95.9 56.0 70.4 86.1 89.2 78.5 84.2

GPT-4o

Z-S 69.4 77.2 66.0 71.6 83.7 88.5 82.9 84.5 87.7 85.7 92.3 90.4
Z-S k-N 67.2 77.2 58.9 67.0 76.5 83.8 74.5 78.7 87.3 87.0 87.8 90.4
F-S (10) 78.7 90.6 54.9 68.9 91.3 94.8 87.1 90.6 93.3 91.3 92.7 94.5
F-S (10) k-N 79.6 90.5 58.6 71.6 90.0 92.2 91.1 90.9 94.5 91.9 94.2 94.8
F-S (45) 78.4 90.7 53.9 68.8 91.6 95.7 85.6 90.2 94.9 93.0 92.6 95.0
F-S (45) k-N 79.5 90.8 56.4 70.4 92.2 94.8 90.5 92.4 94.8 92.6 93.1 95.1

Hybrid

Balanced 83.2 93.0 62.7 75.0 95.7 95.8 96.8 96.2 95.1 92.1 95.9 96.0
OOD-Focused 86.3 89.7 84.0 85.9 91.4 90.5 99.4 93.6 92.3 88.4 98.4 94.0
Contrastive 85.8 93.3 70.7 80.2 95.3 95.5 96.4 95.7 94.4 91.9 94.1 94.7

BIT3-bank BIT3-ins BIT3-tele
ALL ID OOD ALL ID OOD ALL ID OOD

Model Method F1 F1 Recall F1 F1 F1 Recall F1 F1 F1 Recall F1
Baseline Threshold 72.1 74.7 81.7 79.1 69.6 72.3 85.6 79.4 63.9 66.3 86.3 79.1

GPT-4o

Z-S 68.7 72.9 84.9 77.5 74.4 77.7 80.7 80.3 77.8 82.6 81.2 85.4
Z-S k-N 69.8 74.1 84.1 77.9 75.5 81.1 76.1 79.2 77.8 84.1 77.8 84.2
F-S (10) 86.0 90.0 84.3 86.9 83.7 91.1 70.7 80.3 73.4 78.0 78.6 81.3
F-S (10) k-N 84.5 88.4 85.1 85.7 83.1 87.0 82.7 85.9 75.6 78.7 85.5 83.2
F-S (45) 86.8 90.2 84.5 87.5 83.7 90.5 72.2 81.3 72.6 76.7 80.4 81.0
F-S (45) k-N 85.3 89.0 86.3 87.0 83.9 87.6 83.0 86.5 72.3 75.0 86.6 82.7

Hybrid

Balanced 84.8 87.3 84.6 86.6 82.6 86.4 79.8 84.0 80.2 83.1 83.4 87.6
OOD-Focused 81.3 81.4 94.0 85.9 80.0 82.3 85.6 84.3 75.6 75.6 93.0 87.4
Contrastive 86.1 87.7 89.6 88.5 84.5 85.7 90.2 88.5 80.6 82.3 88.5 88.3

Table 2: The performance metrics across different methods and datasets. All results are average of 3 runs. Z-S
stands for zero-shot, and F-S stands for few-shot.

Figure 2: The comparison of all the methods in BANKING77 in terms of ALL F1 and OOD Recall.

is decreased (up to 8 points) on zero-shot prompt352

when the k-Nearest method is used, while it is in-353

creased on few-shot prompt (up to 12 points) when354

the k-Nearest method is used. This may suggest355

that using at least a few example utterances may356

help to detect related intents much better. However,357

this observation needs further investigation.358

4.2 Comparison of LLMs359

To see whether the high performance in OOD de-360

tection depends on the success of GPT-4o, we com-361

pare the performance of GPT-4o, Gemini 1.5 Flash,362

and Llama 3.1-70b in CLINC150, DSTC Finance,363

and BIT3-ins. We split the labels 50% − 50% 364

into ID and OOD, respectively. We compare each 365

LLM using the zero-shot and few-shot (10) prompt- 366

ing methods. Then, we complete using the hy- 367

brid method with balanced prompt and contrastive 368

prompt. The results are shown in Table 3. In Figure 369

3 results of CLINC150 are visualized. 370

The largest model of all performs the best. The 371

greatest performance difference is in zero-shot 372

method. Few-shot generally improves ALL F1 373

score by about ∼10 points. In Gemini 1.5 Flash and 374

Llama 3.1-70b, there is significant improvement 375

when using hybrid methods. This may indicate that 376
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CLINC150 DSTC Finance BIT3-ins
ALL ID OOD ALL ID OOD ALL ID OOD

Method Model F1 F1 Recall F1 F1 F1 Recall F1 F1 F1 Recall F1

Zero-Shot
GPT-4o 83.7 89.0 81.3 83.9 88.2 85.8 93.6 91.1 75.0 78.5 79.5 80.1
Gemini 74.9 86.1 54.8 67.3 76.0 81.1 52.2 67.2 69.9 77.3 48.9 61.5
Llama 72.6 81.6 55.5 66.7 81.9 84.8 73.1 82.4 68.0 79.3 45.6 58.0

Few-Shot
GPT-4o 91.3 94.8 87.1 90.6 93.8 91.5 92.7 94.5 83.7 91.1 70.7 80.3
Gemini 83.7 87.1 86.4 87.9 93.7 90.6 95.7 95.1 76.3 84.2 63.9 74.1
Llama 80.7 78.3 56.8 69.9 91.3 91.5 85.2 91.5 76.3 84.3 55.6 68.9

Hybrid
Balanced

GPT-4o 95.7 95.8 96.8 96.2 95.1 92.1 95.9 96.0 82.6 86.4 79.8 84.0
Gemini 94.7 94.9 96.5 95.4 93.5 92.1 91.2 93.3 82.5 86.7 78.9 84.7
Llama 95.0 95.8 95.1 95.4 94.5 92.1 91.4 94.2 81.1 87.2 72.5 81.0

Hybrid
Contrastive

GPT-4o 95.3 95.5 96.4 95.7 94.4 91.9 94.1 94.7 84.5 85.7 90.2 88.5
Gemini 94.8 95.2 96.1 95.3 93.9 91.6 93.7 94.4 81.7 84.7 85.4 85.6
Llama 94.9 95.6 95.6 95.4 94.4 92.1 94.1 94.8 82.9 86.5 82.3 84.9

Table 3: Performance comparison for LLMs using various techniques. GPT-4o stands for gpt-4o-2024-08-06,
Gemini stands for Gemini 1.5 Flash, and Llama stands for Llama 3.1-70b. All results are average of 3 runs.

Figure 3: The comparison of different LLMs in
CLINC150 in terms of ALL F1 and OOD recall.

a large classification task may be challenging for377

them, and narrowing the task scope given to them is378

highly beneficial. We see comparable performance379

for all the models when we use hybrid methods,380

which demonstrates the robustness of our proposed381

system. This shows that through intelligent design,382

smaller models may perform on par with the largest383

models.384

4.3 Comparison of Number of Intents385

Wang et al. (2024) observes that LLMs may strug-386

gle with fine-grained near-OOD cases where there387

is also a large number of intents (30–40). As LLMs388

progress rapidly, checking the performance in this389

aspect is a necessity. As a good representative of 390

current LLMs, we use GPT-4o in this experiment. 391

CLINC150 , DSTC Finance, and BIT3-ins datasets 392

are used. We split 25% of their intents to the OOD 393

class. All of the OOD examples are used in the 394

test set. Then, we sample the rest of the intents 395

33%, 66%, 100% as ID intents. To make a fair 396

comparison, these splits are crafted to ensure that 397

smaller splits are a subset of the larger splits. We 398

report OOD recall and binary F1 between ID and 399

OOD classes in Table 4. To calculate the binary F1 400

metric, we assume all ID classes have the same la- 401

bel; thus, we only measure the ability of models to 402

differentiate OOD samples from ID samples. The 403

results are visualized in Figure 4. 404

In CLINC150 the OOD test sets make up 38 405

intents resulting in 33%, 66%, 100% sets to have 406

37, 74, 112, respectively. We see high OOD perfor- 407

mance even in zero-shot methods through all intent 408

numbers. The performance drops from 37 intents 409

to 112 intents significantly (∼10) in zero-shot and 410

few-shot methods. The performance drop in hy- 411

brid methods is approximately half of that amount, 412

indicating the robustness of our hybrid approach. 413

In DSTC Finance, the OOD test sets make up 414

about 9 intents, leaving 9, 18, 29 for the ID splits. 415

The overall performances are higher, with almost 416

perfect scores, in hybrid methods. The worst per- 417

forming of all, few-shot method, shows the least 418

deviation. 419

In BIT3-ins we have 17 intents reserved for 420

OOD, and ID splits have 17, 33, 51 intents. Most 421

of the intents have less utterances than enough to 422

fill few-shot prompts. In the smaller splits few-shot 423

6



CLINC150 DSTC Finance BIT3-ins
Method Metric 33% 66% 100% 33% 66% 100% 33% 66% 100%

Zero-Shot
OOD Recall 87.4 82.1 78.7 98.1 94.6 92.3 89.9 82.5 81.9
Binary F1 87.6 81.7 78.6 98.1 90.7 84.0 85.4 75.1 72.1

Few-Shot
OOD Recall 91.0 86.8 78.1 96.1 90.8 92.7 87.9 80.0 63.7
Binary F1 93.8 90.6 87.1 95.2 95.1 95.1 92.7 88.2 81.3

Balanced
Prompt

OOD Recall 97.9 96.6 94.9 98.8 96.6 96.6 88.1 79.1 82.3
Binary F1 97.4 95.0 93.3 99.1 96.7 94.9 90.7 85.8 82.1

Contrastive
Prompt

OOD Recall 96.8 95.7 94.0 99.6 94.7 93.8 90.2 91.0 93.4
Binary F1 96.2 93.9 91.7 99.4 95.9 93.3 89.4 87.3 79.6

Table 4: Effect of number of intents on GPT-4o across three datasets. The highest score per each split in each dataset
is bolded. All results are average of 3 runs.

Figure 4: Performance of different methods with increasing number of intents in terms of F1 Score and OOD recall.

performs the best, however, in 100%, hybrid bal-424

anced method takes the lead. In all the methods,425

drop in F1 score is approximately ∼10 points. This426

may indicate the effect of having extremely few427

examples per intent.428

5 Discussion429

OOD detection is a challenging task that is criti-430

cal for the practicality and safety of AI systems.431

Our study sheds light on the current state of one432

of the frontier models, GPT-4o, which performs433

significantly better than its older successors like434

GPT-4 and GPT-3.5, as reported by Wang et al.435

(2024). Their experiments on BANKING77 using436

GPT 3.5 with zero-shot prompting show 33.8 OOD437

F1, whereas our GPT-4o experiments score 71.6438

with the same combination, as can be seen in Table439

2. There are prompt details and split differences440

that can change the result; however, approximately441

∼40 points improvement indicates the model gets 442

better at an impressive pace. In CLINC150 a simi- 443

lar ∼35 point improvement is seen in Table 2. 444

In few-shot prompting, Wang et al. (2024) re- 445

ports the performance of GPT 3.5 with different 446

numbers of intents and different numbers of ut- 447

terances per intent. They demonstrate a signifi- 448

cant performance drop in OOD F1. From 5 intents 449

to 40 intents, GPT 3.5 suffers a loss of approxi- 450

mately ∼50 points. In Table 4 we see a less drop 451

through all datasets. In CLINC150, our few-shot 452

prompt (with 10 examples) suffers approximately 453

∼6 points from 37 intents to 112 intents. This 454

shows that the current frontier models are signifi- 455

cantly more robust in this aspect. 456

We also believe the performance of OOD de- 457

tection strongly depends on the dataset quality. If 458

any intent has a misleading label name, has noisy 459

examples, or it has utterance examples that can 460
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be used in another intent as well, the results get461

affected significantly. We suggest that the low per-462

formance in BANKING77 in comparison to other463

public datasets is due to these kinds of effects, as464

reported by Ying and Thomas (2022).465

In BIT3 datasets, the results in Table 2 show a466

greater challenge than public data. The main rea-467

sons are the differences in the nature of the datasets468

and the imbalanced number of utterance examples469

for each intent. The imbalance affects few-shot470

prompting, and the hybrid method the most. The471

ID classifier in the hybrid method is dependent on472

our baseline method, which is more sensitive to473

such imbalances.474

We also note, Wang et al. (2024) shows that the475

longer a prompt takes, the less consistent the output476

labels become. This may result from forgetting the477

middle part of the prompt, as suggested by Liu et al.478

(2024b). This limits the prompt length, the domain479

information we can inject, and the number of few-480

shot examples. However, by using a transformer-481

based classifier as a front end, we avoid prompt482

length issues in our hybrid systems and achieve483

higher performance with lower cost and latency.484

Liu et al. (2024a) shows that OOD detection suc-485

cess improves with the scale of LLMs. Our results486

in Table 3 support this claim. However, the pre-487

training and supervised fine-tuning steps also play488

a substantial role in task success. To factor these489

out, detailed comparison of same-family models490

needs to be done. In addition, our results demon-491

strate that using a hybrid method may remove this492

disadvantage.493

6 Conclusion and Future Work494

In this paper, we extensively study the current state495

of LLMs in one of the challenging tasks of NLU,496

the near-OOD detection task. Using 10 methods497

across 3 public and 3 in-house datasets, we evalu-498

ate GPT-4o and compare it with Gemini 1.5 Flash499

and Llama 3.1-70b. We study how the increasing500

number of intents affects the performance of GPT-501

4o. We introduce a novel hybrid method that is502

robust, high-performing, easy to use, that enables503

the usage of smaller or open-source models without504

sacrificing performance.505

Despite broad coverage, several research direc-506

tions remain:507

Cost and Latency. By combining cost and latency508

into a metric we may find the most beneficial strat-509

egy to run large scale intent detection with OOD510

detection support. 511

Alternative Hybrid Methods. The hybrid method 512

provided here focuses on combining the ID strength 513

of transformer models with the generalization capa- 514

bility of LLMs. It is cost-efficient as it doesn’t re- 515

quire every intent and utterance to be fed to LLMs; 516

however, we still send each intent even though the 517

baseline method is extremely confident. Using a 518

post hoc method and using LLMs only when the 519

method is unsure may provide further efficiency 520

and speed. 521

Detailed LLM Comparison. To clearly see the 522

comparison of different providers and open-source 523

models, we need thorough experimentation. The 524

frontier models, the newly emerging reasoning 525

models, and small language models are all rich 526

future directions. 527

Multi-Label Intent Detection. Intent detection 528

systems often do a simplification that is rather un- 529

realistic of human communication. It is to expect 530

each utterance to have a single intent. In reality, 531

communication often involves more intricate infor- 532

mation having multiple levels of intentions. One 533

may ask a couple of things at once, or ask a more 534

abstract concept with non-trivial bounds, or ask 535

something that can be understood in different lev- 536

els of detail. The LLMs open the door for such 537

advanced NLU cases. 538

Limitations 539

First of all, we do not include thorough LLM com- 540

parisons. Comparison of different sizes of the same 541

family of models, comparison of the largest models 542

of all providers, comparison of generative models 543

and reasoning models are required to come to a 544

conclusion about the state of the LLMs. 545

In the hybrid method as a front-end, we rely on 546

a simple yet effective sentence transformer that is 547

known to be ∼ 1-2 points below the SOTA in the 548

public datasets we use. The change may be caused 549

by the performance gap should be studied. 550

The hybrid method contrastive prompt uses 551

slightly more utterance examples than other 552

prompts as it includes the second and the third 553

prediction examples. We omit its further investiga- 554

tions due to page limitations. 555

It is possible that few-shot example size and 556

intent number are correlated. Their extensive study 557

is required. In this paper, we only have insights on 558

these. 559
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A Appendix808

A.1 Training Details for Threshold-Based809

Baseline810

The classification head is a four-layer structure811

starting with an input layer (embedding size 768),812

followed by two hidden layers with 512 and 64813

neurons respectively, and concluding with an out-814

put layer matching the number of classes. We815

use ReLU activations for hidden layers, and cross-816

entropy loss for optimization. Training was per-817

formed over 100 epochs with a learning rate of818

0.001, while keeping the sentence-transformer819

backbone frozen.820

A.2 Tool Calling821

We define tools as822
tool = {823
"name": name,824
"description": desc_limited,825
...826
}827

where828
desc_limited = f"""Below are some example utterances for when to call this tool:829

830
Utterances:831
- <utterance1>832
- <utterance2>833
...834

"""835
In zero-shot setting we put empty string to description field.836

A.3 Zero-Shot Prompt837
Classify given utterances into pre-defined intents,838
using the "fallback" intent for out of scope samples.839
You will receive a list of intents, each with a name but no description,840
and an additional intent called "fallback".841
If an utterance aligns with one of the predefined intents,842
classify it under that intent. Otherwise, classify it as "fallback".843

844
# Steps845

846

1. **Identify Intents**: Receive a list of intent names without descriptions, 847
including an additional "fallback" intent. 848
2. **Analyze Utterance**: Carefully analyze the provided utterance 849
to determine its intent. 850
3. **Classify Utterance**: 851

- If the utterance matches any given intent, 852
classify it under that specific intent. 853
- If it does not match any of the provided intents, 854
classify it as "fallback". 855

856
Remember that you need to choose intents via tool calling only. 857

A.4 Few-Shot Prompt 858
Classify user utterances based on a set of predefined tools 859
and identify any out-of-scope requests, assigning them 860
to a fallback tool if necessary. 861

862
You will be provided with a list of tools, 863
each defined by a name and a description 864
containing sample utterances. Your task is to match user utterances 865
to the appropriate tool name, evaluating their relevance and context. 866

867
# Steps 868
1. **Analyze User Input:** 869
Carefully read and understand the given user utterance. 870
2. **Evaluate Tool Descriptions:** 871

- Review the names and descriptions of all provided tools, 872
including sample utterances. 873
- Compare the user utterance to the samples and context provided. 874

3. **Determine Intent:** 875
- Identify if the user utterance corresponds closely with any tool 876
based on the descriptions. 877
- If the utterance does not clearly match any tool, 878
assign it to the "fallback" tool. 879

4. **Output the Appropriate Tool Name:** 880
- Output the name of the identified tool 881
or "fallback" if the intent is out-of-scope. 882

883
# Output Format 884
Output the result as a simple text line containing 885
only the name of the matched tool or 886
"fallback" if no match is found. 887

888
# Example 889
tools = ["credit_card_cancellation", "billing_payment", 890
"lost_or_stolen_card", "i_am_hungry", "fallback"] 891

892
**Input**: "I want to pay my bills" 893
You need to call "billing_payment" tool. 894

895
**Input**: "I want to cancel my credit card." 896
You need to call "credit_card_cancellation" tool. 897

898
**Input**: "I want to cancel my account." 899
You need to call "fallback" tool. 900

901
**Input**: "I want to cancel my miles&fly card." 902
You need to call "fallback" tool. 903

904
**Input**: "I lost my card, so I want to deactivate it" 905
You need to call "lost_or_stolen_card" tool. 906

907
**Input**: "I want to learn my credit card balance." 908
You need to call "fallback" tool. 909

910
**Input**: "I want to change my billing address." 911
You need to call "fallback" tool. 912

913
**Input**: "I am starving. Lets eat something." 914
You need to call "i_am_hungry" tool. 915

916
**Input**: "Do you want to have a drink tonight?" 917
You need to call "fallback" tool. 918

919
# Notes 920
- Be precise in intent matching and ensure the fallback is used only 921
when no other tool is applicable. 922
- Handle ambiguities in user input by leveraging 923
the breadth of tool descriptions and samples. 924
- Continuously refer back to the tool descriptions 925
to ensure accuracy in intent classification. 926

A.5 Hybrid Method 927

A.5.1 Balanced Prompt 928
Decide if a new utterance belongs to a given intent. You will be provided with 929
an intent name and sample utterances for that intent, 930
followed by a new utterance. 931
Determine if the new utterance corresponds to the intent. 932
- Analyze the provided intent name 933
and sample utterances to understand the common thematic elements or purpose. 934
- Compare the new utterance with the sample utterances 935
to decide if it conveys the same intent. 936
- Consider variations in phrasing and terminology when deciding. 937
# Steps 938
1. **Understand the Intent:** Review the intent name and 939
sample utterances provided to capture the core idea or action they represent. 940
2. **Analyze the New Utterance:** Examine the new utterance, 941
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identifying key elements and themes.942
3. **Compare and Decide:** Cross-reference the analysis of943
the new utterance with the intent description944
and sample utterances to check for alignment.945
4. **Conclusion:** Decide if the new utterance matches the intent.946
If yes, output "yes"; if not, output "no".947
# Output Format948
- A single word response: "yes" or "no".949
# Examples950
**Example 1**951
- **Intent Name:** "Order Food"952
- **Sample Utterances:** "I'd like to place an order for a pizza.",953
"Can I get a delivery for sushi?", "I want to order dinner."954
- **New Utterance:** "I'd like to schedule a meal."955
- **Output:** yes956
**Example 2**957
- **Intent Name:** "Order Food"958
- **Sample Utterances:** "I'd like to place an order for a pizza.",959
"Can I get a delivery for sushi?", "I want to order dinner."960
- **New Utterance:** "What's the weather like today?"961
- **Output:** no962
# Notes963
- Be mindful of synonyms and different phrases conveying the same intent.964
- Consider the context and overarching theme rather than specific word matches.965

A.5.2 OOD-Focused Prompt966
You will be provided with an intent name and a set of sample utterances967
associated with that intent.968
Additionally, a new utterance will be given.969
Your task is to determine whether the new utterance970
aligns with the defined intent971
based on the provided samples. Provide a thorough analysis to ensure972
the decision accounts for subtle differences,973
recognizing when a new utterance closely resembles974
but does not fully match the intent.975
# Steps976
1. **Review the Intent Name**:977
Understand the overall purpose978
and category defined by the intent name.979
2. **Analyze Sample Utterances**:980
Examine the given sample utterances981
to identify common themes, language patterns, and key details982
that characterize the defined intent.983
3. **Evaluate New Utterance**:984
Compare the new utterance against985
the identified characteristics of the intent's sample utterances.986

- Consider synonyms, language variations,987
and context to determine similarity.988
- Pay close attention to subtle differences989
that may indicate a different intent.990

4. **Decision Making**:991
- If the new utterance matches the intent characteristics,992
conclude with “yes.”993
- If it does not match, conclude with “no.”994
# Output Format995
- A single word response: 'yes' or 'no'.996
# Examples997
### Example 1998
**Input:**999
- Intent Name: BookFlight1000
- Sample Utterances:1001
["I want to book a flight", "Can you help me reserve a ticket?",1002
"Find me a flight ticket"]1003
- New Utterance: "I need to book a cab"1004
**Reasoning:**1005
Review the sample utterances for intent "BookFlight."1006
They all involve reserving or booking flight tickets.1007
The new utterance refers to booking a cab,1008
which is different from booking a flight despite structural similarities.1009
**Output:**- "no"1010
### Example 21011
**Input:**1012
- Intent Name: BookFlight1013
- Sample Utterances:1014
["I want to book a flight", "Can you help me reserve a ticket?",1015
"Find me a flight ticket"]1016
- New Utterance: "Can you book me a flight?"1017
**Reasoning:**1018
The new utterance closely aligns with the intent to book a flight,1019
sharing both context and action with the sample utterances.1020
**Output:**- "yes"1021
# Notes1022
- Pay attention to context shifts, even when phrasing similarities exist.1023
- Carefully consider synonyms and phrasing that might1024
subtly change the intent."""1025

A.5.3 Contrastive Prompt1026
Based on the given intent, sample in-scope utterances,1027
and out-of-scope utterances, classify whether1028
a new utterance belongs to the intent.1029
Output must strictly be 'yes' or 'no'.1030
- You will receive the intent name, a set of sample utterances1031
that fall under this intent, and another set that do not.1032
- Carefully evaluate both sets of utterances to determine1033
the defining characteristics and scope of the intent.1034
- Analyze the new utterance in this context.1035
- Decide if the new utterance appropriately falls under1036
the specified intent.,1037

# Steps,1. 1038
**Understand the Intent Scope**: 1039

- Review the name and characteristics of the intent. 1040
- Examine in-scope utterances to understand 1041
typical expressions that belong to the intent. 1042
- Analyze out-of-scope utterances to understand 1043
boundaries and what differentiates them from in-scope utterances. 1044
2. **Evaluate the New Utterance**: 1045
- Compare the new utterance against 1046
the characteristics derived in the previous step. 1047
- Determine whether it aligns more closely with 1048
the in-scope or out-of-scope examples. 1049
3. **Classify the New Utterance**: 1050
- If it aligns with in-scope, conclude with 'yes'. 1051
- If it matches out-of-scope features, conclude with 'no'., 1052

# Output Format, 1053
- The output must be a single word: either 'yes' or 'no'. 1054
No other text, explanations, or alterations are permitted. 1055
# Examples 1056

**Example 1:** 1057
- **Input**: 1058
- Intent: Credit Card Cancellation 1059
- In-Scope Utterances: "I want to cancel my credit card", 1060
"How do I close my credit card account?" 1061
- Out-of-Scope Utterances: "What is my credit card balance?", 1062
"I need to change my credit card limit." 1063
- New Utterance: "Please terminate my credit card", 1064
**Output**: yes, 1065

**Example 2:** 1066
- **Input**: 1067
- Intent: Travel Request 1068
- In-Scope Utterances: "I need to book a flight for my trip", 1069
"Can you arrange transportation for my travel?" 1070
- Out-of-Scope Utterances: "What are the hotel prices in New York?", 1071
"I need to know my car rent balance." 1072
- New Utterance: "When is the best time to visit Paris?", 1073
**Output**: no, 1074

# Notes, 1075
- Remember that it's crucial to understand the nuanced differences 1076
between intents, especially when they are closely related. 1077
- Avoid assumptions beyond the given utterances; 1078
strictly adhere to the linguistic patterns and examples provided. 1079
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