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Figure 1: (a) Grad-CAM visualizations of adversarial examples targeting hard cases. (b) Performance overview. The x-axis
represents the average extra time cost required per sample compared to MI-FGSM on an NVIDIA RTX 3090 GPU.

Abstract

The efficiency and high transferability of transformation-based
adversarial attacks (TAAs) make them a promising tool for robust-
ness analysis. Despite the improvements in transferability brought
by various image transformations, their underlying causes remain
unclear, and there is still room for further improvement. We find
that with attention-based models as surrogate models, adversarial
examples generated by TAAs with relatively lower transferability
tend to exhibit checkerboard artifacts, whereas those with higher
transferability do not. This motivates us to explore the relationship
between transferability and checkerboard artifacts. We confirm
that checkerboard artifacts originate from the patching operation
in attention-based surrogate models. Checkerboard artifacts van-
ish under the condition that spatial transformations are applied
and gradients are calculated with respect to perturbations. Based
on whether checkerboard artifacts are eliminated, we categorize
model augmentations into cross-pixel augmentations and in-
place augmentations. The former promotes interactions between
pixels, breaks patch isolation, and thereby improves transferability
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while removing artifacts. The latter in-place augment the diversity
of parameter features, enhancing transferability but failing to break
isolation and remove artifacts. They constitute two distinct ways
toward enhancing transferability. Integrating them enables higher
transferability. Therefore, we propose an attack design paradigm
to fully leverage both augmentations. To verify this paradigm, we
design a basic In-place and Cross-pixel Attack (I-C Attack)
with simple transformations. Extensive experiments demonstrate
that, despite its simplicity, I-C attack can achieve much higher trans-
ferability while maintaining low computational cost. The code is
available at https://github.com/chinaliangjiaming/I-C- Attack.git.
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« Computing methodologies — Computer vision.
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1 Introduction

Deep neural networks (DNNs) are widely used in safety-critical do-
mains due to their exceptional pattern recognition capabilities [17,
21, 45, 60, 77]. Unfortunately, adversaries can deceive models with
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imperceptible perturbations, known as adversarial attacks [56]. In
white-box settings, iterative gradient-based attacks achieve satisfac-
tory performance [30]. In contrast, under black-box settings where
the adversary has limited or no knowledge of the target model, plain
attacks perform unsatisfactorily. To improve performance, relying
on the principle that the same adversarial example could be effective
against multiple models, transfer-based strategies [28, 31, 66, 69]
have been proposed. Transformation-based attacks, known for high
transferability, low complexity, and plug-and-play flexibility, form
a promising branch of transfer-based attacks.

Transformation-based attacks enhance transferability by trans-
forming images before inputting them into surrogate models. As
shown in Figure 1(b), while existing methods have made notable
progress in black-box settings, significant room for improvement
remains. In addition, pioneering work [66] suggests that image
transformations effectively augment surrogate models, enriching
perturbation features and boosting transferability. However, the
detailed mechanism underlying model augmentation and transfer-
ability remains unclear. Therefore, this study attempts to explore
the following problem: What is the intrinsic mechanism between
model augmentations and adversarial transferability?

We find that some transformation-based attacks, when using
attention-based models as surrogates, generate adversarial exam-
ples with checkerboard artifacts and generally exhibit low transfer-
ability. In contrast, other attacks do not produce such artifacts and
achieve relatively higher transferability. This prompts us to con-
sider: Does the presence or absence of checkerboard artifacts indicate
some inherent characteristic of different model augmentations? Is this
characteristic closely related to transferability?

To investigate this question, we conduct an in-depth review of
transformation-based attacks and find that there exist two distinct
differentiation modes: (a) Differentiate with respect to the perturba-
tion of the preceding iteration; (b) Differentiate with respect to the
transformed image of the current iteration. With attention-based
models as surrogates, all attacks exhibit checkerboard artifacts
under differentiation mode (b), whereas under mode (a), artifacts
disappear only in attacks employing spatial transformations. This
suggests a potential relation between checkerboard artifacts and
differentiation modes. Theoretical analysis demonstrates that mode
(a) includes additional inverse transformations! compared to mode
(b). When spatial transformations are applied, mode (a) allows pixel
interactions that merge perturbation information, breaking the
patch-wise isolation from the attention mechanism and eliminating
checkerboard artifacts. In contrast, mode (b) is equivalent to a pixel-
wise constant addition transformation, regardless of the applied
transformation, and thus cannot eliminate checkerboard artifacts.

Therefore, checkerboard artifacts serve as an indicator of whether
perturbation information from interacting pixels across different
positions is provided. The presence of checkerboard artifacts sug-
gests a lack of such perturbations, resulting in low transferability.
Based on whether checkerboard artifacts can be eliminated, we
can categorize model augmentations that enhance transferability
into two types: in-place augmentations and cross-pixel aug-
mentations. In-place augmentations enhance transferability by

'In this paper, forward propagation through the transformation module is called
transformation, while backpropagation through it is termed inverse transformation.
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augmenting the surrogates through non-pixel interactions, and
are unable to eliminate artifacts. Cross-pixel augmentations aug-
ment the surrogates based on pixel interactions, with the core idea
being the integration of perturbation information from different
positions to improve transferability. Thereby, the transferability of
transformation-based attacks stems from these two augmentations.

Building on this mechanism, we propose a design paradigm to
enhance transferability by exploiting in-place and cross-pixel aug-
mentations. In-place augmentations focus on designing auxiliary
functions for each pixel, whereas cross-pixel augmentations cen-
ter on enabling pixel interactions, simplified as pixel relocation.
To illustrate the performance baseline achievable by this design
paradigm, we designed a basic In-place and Cross-pixel Attack
(I-C Attack) using three simple transformations. The employed
noise addition transformation provides in-place augmentations,
while bilinear integration and block shuffle offer local and global
interactions, respectively. Extensive experiments demonstrate that
I-C attack not only has low computational complexity, but also
outperforms existing methods in various scenarios.

Our main contributions are summarized as follows:

e To the best of our knowledge, this is the first study that

identifies checkerboard artifacts in transformation-based

attacks and uncovers their origin.

Based on whether checkerboard artifacts are eliminated, we

refine model augmentations into cross-pixel and in-place

augmentations, and reveal their connection to transferability.

e We propose a design paradigm that integrates in-place and
cross-pixel augmentations for higher transferability.

e We develop the I-C attack as the baseline for the paradigm.
Extensive experiments demonstrate that I-C attack achieves
state-of-the-art while maintaining low computational cost.

2 Related Work

2.1 Adversarial Attacks

2.1.1
amples by adding imperceptible perturbations to clean samples to
fool models. In a white-box setting, adversaries can derive precise
perturbations by differentiating target model’s output loss with
respect to the input sample, allowing flawless attacks. However, in
a black-box setting, adversaries cannot access precise gradients and
have to rely on other strategies to carry out attacks.

Existing black-box attacks can be categorized into query-based
and transfer-based strategies. Query-based strategies assume ad-
versaries have access to target model’s hard outputs (class labels)
or soft outputs (logits), leading to decision-based query attacks
(DQAs) [8, 9, 12, 29, 33, 44, 62] and score-based query attacks
(SQASs) [1, 4, 13, 29, 43, 61]. By iteratively modifying the perturba-
tions and observing the changes in the output, the adversaries up-
date the perturbations accordingly. However, real-world deployed
applications often impose query limits, and access to hard or soft
outputs may not always be guaranteed. In contrast, transfer-based
strategies offer greater flexibility.

Transfer-based attacks rely on the transferability of adversar-
ial examples, where the same adversarial examples may be effec-
tive against multiple models. These attacks generate adversarial

Overview. Adversarial attacks aim to craft adversarial ex-
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examples on surrogate models to attack target models. Gradient-
based strategies [22, 47, 63] enhance transferability by rectify-
ing perturbations or altering their accumulation patterns. Model-
related strategies [49, 65, 69, 74] enhance transferability by ex-
ploring similarities and differences between models. Ensemble-
based strategies [11, 28] integrate multiple models as surrogates
to bridge differences between models. Objective-optimized strate-
gies [31, 68, 73, 75, 78] improve transferability by adjusting the
objective function to prevent adversarial examples from overfitting
surrogate models. Generation-based attacks [6, 32, 34] leverage
generative structures such as GANs [24] and diffusion models [55]
to learn the transferable patterns of perturbations. Transformation-
based strategies [23, 36, 42, 64, 66, 67] improve transferability by
augmenting samples before feeding them into surrogate models.

2.1.2  Transformation-based Attacks. Transformation-based strate-
gies can be used independently or combined with other strategies
to form stronger attacks. They enable plug-and-play generation of
highly transferable adversarial examples, making them promising.
Existing methods explored various possible image transformations.
DIM [70], TIM [19], and SIM [35] enhance transferability by using
resizing, shifting, and scaling for image augmentation, respectively.
Admix [66] employs mixup for image augmentation. SSIM [42] uti-
lizes discrete cosine transform to augment images in the frequency
domain. STM [23] applies a stylization neural network. SIA [67]
integrates multiple transformations, including shifting, flipping,
rotation, scaling, noise addition, and blurring. DeCoWA [36] dis-
torts images for augmentation. BSR [64] uses block shuffle and
rotation for image augmentation. Unfortunately, the underlying
causes of transformation-based transferability remain unclear, lead-
ing to a lack of design paradigm for guiding the development of
more effective attacks.

2.2 Explanations of Transformation-based
Transferability

Preliminary explanations for transformation-based transferability
have been proposed. Jiadong Lin et al. proposed the concept of
model augmentation [35]. They regard surrogate model together
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Figure 2: Illustrative example of checkerboard artifacts in perturbations. These perturbations are generated based on R50,
V-B16, and V-B32, respectively. Each attack is combined with MI-FGSM. Every perturbation is min-max normalized.

with image transformation with random parameters as a new uni-
fied model. Varying the transformation parameters is equivalent to
changing the surrogate model, preventing the generated perturba-
tions from fitting a single model and thus enhancing transferability.
However, they provide limited discussion on how different trans-
formations contribute to transferability enhancement. In addition,
their definition of model augmentation relies on loss-preserving
transformations [35], a prior assumption that empirical findings
suggest may warrant further examination. Kunyu Wang et al. argue
that transformation-based transferability stems from the consis-
tency of attention heatmaps across different models for the same
adversarial example. [64] However, significant differences in atten-
tion heatmaps across models for the same adversarial example do
not necessarily impede transferability. Therefore, transformation-
based transferability remains an open question. This work aims to
further explore the fundamental causes of transformation-based
transferability and how to refine its categorization.

3 Proposed Method

3.1 Preliminaries

3.1.1  Notation Definition. Given a sample-label pair (x,y) € (X,Y)
and a target model Mr € M, the adversary aims to find an attack
A € A with perturbation budget € that satisfies

arg max My (A(x); Op;) # 9, s.t.||x —x[|p <€,

1
where A(x) outputs adversarial example %, and @y, indicates pa-
rameters of target model. X, Y, M, and A represent the spaces of
samples, labels, models, and attack algorithms, respectively. Con-
sistent with previous work, this paper focuses on the perturbation
budget € of the Lo, norm. Without incorporating advanced strate-
gies, the basic iterative I-FGSM follows the recurrence equation

2] (M (G ). 1) @

Xy
where J is the loss function, Mg denotes the surrogate model, and
Xt is the adversarial example at iteration ¢. T is the number of
iterations, and a@ = €/T is the step size per iteration. The Clip
function truncates the output within the range (0, 1).

it+1=Clip(J”ct+a- ),OStST—l,
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Figure 3: Illustration of two differentiation modes.

3.1.2  Framework of Transformation-based Attacks. Transformation-
based attacks apply transformations N times to X; with varying
parameters 07 in each iteration, averaging the resulting N gradi-
ents to yield the perturbation for the current iteration. Thus, the
complete recurrence equation of transformation-based attacks is

S 9 (Ms (T (%13 61,); Ois), y)
axt

X1 = Clip(%; + ). (3

i=1
For clarity, no additional operation for other strategies is introduced
to discuss. In addition, the Clip function will be omitted in the

following discussions.

3.2 Motivation: Checkerboard Artifacts

We find that some attacks, such as Admix [66], SSIM [42], and
STM [23] generate adversarial examples with checkerboard arti-
facts when using attention-based models as surrogates, and exhibit
relatively low transferability. In contrast, other attacks such as
SIA [67], DeCoWA [36], and BSR [64] do not produce checkerboard
artifacts and exhibit higher transferability, as shown in Figure 2.
This raises the following questions:

(1) What causes checkerboard artifacts to appear?

(2) How are checkerboard artifacts related to transferability?
With these questions in mind, we start from Equation 3 to analyze
the causes of checkerboard artifacts.

3.3 Differentiation Modes

3.3.1 Definitions of Two Differentiation Modes. Recurrence Equa-
tion 3 represents a common differentiation mode in transformation-
based attacks. In the Equation 3, X; = x + §;, where x is a constant
and the variable §; represents the adversarial perturbation at it-
eration t. Because d8;/d(x + &;) = I, according to the chain rule,
Equation 3 can be deduced as

3] (Ms(T(x4;01,); 0
xt+1—Xt+NZ J (Ms (T (%13 67,): Oty ). y)

4
i=1 98¢

This means that Equation 3 essentially generates new perturba-
tions by differentiating with respect to the perturbations from the
previous iteration. Although Equation 4 is more commonly used,

there exists another mode that differentiates with respect to the
transformed example T(X;; 0r;), with the recurrence equation by

a ] (Ms(T (%t;01,); OMs), )
ty Z :

aT(xt, 9]‘1) (5)

X4l =
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The difference in backpropagation between the two differentiation
modes is illustrated in Figure 3. For backpropagation path II cor-
responding to recurrence Equation 5, it passes only through the
loss function and the surrogate model. In contrast, backpropaga-
tion path I, corresponding to recurrence Equation 4, additionally
passes through the inverse transformation. For description, this
paper defines the differentiation mode corresponding to Equation 4,
which computes the gradient with respect to the perturbation, as
differentiation mode (a), while the mode corresponding to Equa-
tion 5, which differentiates with respect to the transformed image,
is defined as differentiation mode (b).

3.3.2  Equivalence Conditions of Two Differentiation Modes.

THEOREM 3.1. T being a pixel-wise addition transformation is a
sufficient condition for the equivalence of two modes.

Proor. When T is a transformation of pixel-wise constant addi-
tion, Equation 5 becomes

9] (Ms(x + 8 + 01,); Om5). y)
= — . 6
o1 = xt+N; a(x + 8, +07) (©)
Since the equation could be further simplified to
9] (Ms(x + 8 + 0r,); OM), y)
T =X+ Z 25, ™)

i=1
Similarly, substituting T into Equation 4 also leads to Equation 7.
O

This indicates that when using a pixel-wise addition transfor-
mation, modes (a) and (b) are functionally equivalent. Moreover,
mode (b) can reduce backpropagation latency.

3.3.3 Discrepancies of Two Differentiation Modes.

THEOREM 3.2. Any image transformation combined with differen-
tiation mode (b) is equivalent to a pixel-wise addition transformation.

Proor. In Equation 5, the partial derivative variable is T'(X; 67r;).
We could replace this whole term with T(%;; 07;) = 8; + ¢, where ¢
is a constant, leading to

] (Ms(8; + ¢; 0pm5), 1)
(6 +¢)

®)

ZIQ

Xp41 = Xt +

5
=1
Treating J; as the variable, Equation 8 can be further simplified to

3] (Ms (8¢ + ¢; 0pp,),
xt+1—xt+ﬁz S Ms y)

)
i=1 96

This essentially corresponds to the recurrence equation of transfor-
mation based attacks with a pixel-wise addition transformation. O

Thus, transformations combined with differentiation mode (b)
always degenerate into pixel-wise addition transformations. As
shown in Figure 3, this degradation stems from skipping the in-
verse transformation in backpropagation. In contrast, differentia-
tion mode (a) fully leverages the augmentation introduced by the
inverse transformation, making transformations take effect.
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Figure 4: In-place and cross-pixel augmentations.

THEOREM 3.3. Differentiation mode (a) incorporates augmenta-
tion information from the inverse transformation based on different
transformations.

PRroOF. According to the chain rule, Equation 4 could be ex-
panded as

N %, 07.); 0 T (%1; 0
. .« 9] (Ms(T(x+; 01;); Oms)» y) 9T (X5 0r;)

i . (10
e ' N,; aT(ft;GTi) 90 "

The first factor matches Equation 5, representing the shared back-
propagation path of modes (a) and (b), while term 9T (X;; 07,)/93:
in mode (a) captures the information gain from the inverse trans-
formation. O

At this point, we have a preliminary understanding of the possi-
ble outcomes when transformations are combined with differenti-
ation modes (a) or (b). Any transformation combined with mode
(b) is equivalent to a pixel-wise addition transformation, while
transformations combined with mode (a) introduce a gain term
oT (%; 6r,)/88;. However, the contribution of the gain term re-
mains unclear. In fact, as we will see next, when a spatial trans-
formation is applied, the gain term helps eliminate checkerboard
artifacts.

3.4 In-place and Cross-pixel Augmentations

3.4.1 Pixel-correlated Path and Spatial Transformations. For de-
scription, we first define the concepts of pixel-correlated path and
spatial transformations.

Definition 3.4. Pixel-correlated path of a pixel x; j refers to
the ordered sequence of neurons it passes through during forward
propagation in the neural network.

Definition 3.5. Non-spatial transformations transform each
pixel (i, j) independently as T(x); ; = fr(x; ). Spatial transfor-
mations make T(x); ; dependent on multiple pixels, expressed as
T(0)ij = fr (Xig jis Xigsjos -+ Xi,jn)-

3.4.2  Gains Introduced by Non-spatial and Spatial Transformations.
When differentiation mode (a) is combined with a non-spatial trans-
formation, the gradient at (i, j) in the transformed image T (%;; 61)
propagates only back to (i, j) in X; after the inverse transformation.
This prevents pixel-correlated path information from spreading
across different locations in (i, j) in X;, isolating perturbations. As
shown in Figure 4(a), we define such a model augmentation, which
produces isolated perturbations, as In-place Augmentations. In

contrast, when differentiation mode (a) is combined with spatial
transformations, the gradient at (i, j) in the transformed image
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Model-NP  Model-P

Figure 5: Perturbations generated on CIFAR-10.

T (%;; O7) undergoes an inverse transformation, propagating to mul-
tiple locations in the image X;. This distributes pixel-correlated path
information beyond (i, j), facilitating the fusion of pixel-correlated
path information across different locations. As shown in Figure 4(b),
we define such a model augmentation, which enhances the fusion
of pixel-correlated path information across different locations, as
Cross-pixel Augmentations.

Thus, from the perspective of pixel-correlated path informa-
tion interaction, the gain term 8T (X;; 01,)/d8; enables information
exchange across different locations. In addition, according to Theo-
rem 3.2, any transformation combined with differentiation mode
(b) degenerates into a pixel-wise addition transformation, meaning
mode (b) can only achieve in-place augmentations.

3.4.3 Explanations of Checkerboard Artifacts and Transferability.
Based on the concepts of in-place and cross-pixel augmentations,
we could explain the conditions under which checkerboard artifacts
occur and further clarify the mechanism of model augmentations
for transformation-based transferability.

Checkerboard artifacts arise due to the patching operation typically
performed in the first layer of attention-based surrogate models. This
operation leads to gradient isolation between patches during back-
propagation. To further illustrate, we conduct the following experi-
ments. We design two models: Model-P and Model-NP. Both models
have six intermediate convolution layers of (K =3,S=1,P = 1)
with BN2 and ReLU, followed by a fully connected layer. The only
difference between the two models is that the 1% layer of Model-
P is a 8 x 8 patching operation of (K = 8,S = 8,P = 0), while
the 15t layer of Model-NP is a standard convolution layer with
(K =3,5S=1,P=1). These two models are trained on CIFAR-10,
and adversarial perturbations are generated by Admix. The results
after max-min normalization are shown in Figure 5. Perturbations
generated by Model-P exhibit significant checkerboard artifacts,
whereas those generated by Model-NP do not. This fact indicates
that the checkerboard artifacts originate from the patching oper-
ation rather than the attention in the intermediate layers. If the
inverse transformation enables interaction between perturbation
information from different locations, this isolation is broken, and
checkerboard artifacts disappear. Otherwise, they persist. In other
words, in-place augmentations cannot eliminate checkerboard arti-
facts, whereas cross-pixel augmentations can. Checkerboard arti-
facts serve as an indicator of the use of cross-pixel augmentations
to improve transferability.
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Table 1: Summary of existing methods under the proposed
classification framework. Mode indicates differentiation
mode. w/o indicates whether the corresponding attack in-
cludes non-spatial transformations. long-range and local
suggest whether the spatial transformation operates on dis-
tant pixels or within a local neighborhood. 7T and | indicate
the flexibility of transformation. Num indicates the number
of transformation types included. All indicates whether all
transformations are used in each augmentation. Artifact in-
dicates the presence of checkerboard artifacts.

Transformation Type

Attack Year Mode Num All Artifact

long-range local w/o

DIM [70] 19 a v 1 v v
TIM [19] 19 a Vv 1 v v
SIM [35] 19 a v 1 v v
Admix [66] 21 a v 1 v v
SSIM[42] 22 (b v v 1 v v
STM [23] 23 (b v 1 v v
SIA[67] 23 (a v VERVARR'

DeCoWA [36] 24 a v 1 v

BSR [64] 24 (a /1 v 2

I-C (Ours) - (a) V1 v v 3

In-place and cross-pixel augmentations offer two complementary
ways for improving transferability, and leveraging both is essential to
achieving desirable performance. In-place augmentations augment
the pixel-correlated paths in an isolated, pixel-wise manner using
external auxiliary functions, with their transferability stemming
from the new parameters and structures introduced by these func-
tions. In contrast, cross-pixel augmentations boost transferability
by integrating information from pixel-correlated paths across dif-
ferent spatial locations. By utilizing internal features from various
locations within the model, it helps prevent overfitting.

4 The Attack Paradigm

Based on the identified mechanism for enhancing transferability,
we propose a design paradigm that fully leverages in-place and
cross-pixel augmentations to improve transferability. To demon-
strate the paradigm’s effectiveness, we follow it to design a novel
attack using simple transformations to explore its lower bound.
Extensive experiments in Section 5 will validate the superiority of
the proposed paradigm.

4.1 Design Paradigm

4.1.1 Auxiliary Functions. To integrate the transferability of in-
place augmentations, designers need to construct pixel-wise auxil-
iary functions. For an image x with channel count C, width W, and
height H, we could design C X W X H distinct pixel-wise auxiliary
functions fr,; ; = (xc,i,j; 01, ;). They could be arbitrarily complex
differentiable functions, and their optimal forms remain an open
question for future research.

4.1.2  Pixel Interaction. To integrate the transferability of cross-
pixel augmentations, we adopt the differentiation mode (a). Pixel

interactions across different locations could be categorized into
long-range interactions and local interactions. Long-range pixel-

correlated paths exhibit greater variation, enriching features di-
versity, while local pixel-correlated paths have smaller differences,
accelerating attack convergence.

5350

Jiaming Liang and Chi-Man Pun

Table 2: List of surrogate and target models.

CNNs ViTs
(1 ResNet-50 (R50) [25] (4) ViT-B/32 éV-B32; [20
a 2) EfficientNet-B0 EBO; 59] (5) ViT-B/16 V-B16
3) MobileNet-V2 (MV2) [53] (6) BeiT-B/16 (BT-B16) [7
1) ConvNeXt-B  (ConNX- B; 41] (9) ViT-B/8 (V-B8) [20
2) WResNet50-2 (WRSO 72] (10) Swinformer-B (Swin-B) [40
3) DenseNet-161 D161) 27] (11) PiT-B (PiT-B) [26
5 (4) EfficientNet-B2 (EB2) [59] (12) ConvFormer-B  (Conv-B) [37
=(5 GoogLeNet (GoogLeN) [58] (13) XCiT-S/12/8 (XCIiT-S) [2
(6) Xception-71 (Xcept71) [15] (14) Visformer-S (Visf-S) [14
g7g IncRes-V2 IncResVZ; 57 515; Caformer-M/36 (Caf—Mg 76
8) RegNetX800MF  (Reg-X) [50] (16) PoolFormer-M/36 (Pool-M) [71

4.2 The I-C Attack

We design a new transformation-based attack In-place and Cross-
pixel Attack (I-C Attack) using simple auxiliary functions and pixel
interaction transformations. The auxiliary function applies a basic
noise addition transformation, i.e. ch’U (xc,i,j; 01) = xcij + BTC“.,
where 671, ; follows a uniform distribution U (-a, a). Long-range
interactions are introduced by block shuffle, where the image is un-
evenly divided into b X b blocks and shuffled. Bilinear interpolation
is employed for local interactions, where the image is up-sampled
by an expansion ratio of r via bilinear interpolation and then center
cropped. These three transformations are sequentially cascaded
in the order of: block shuffle — noise addition — bilinear inter-
polation. Despite I-C attack is a simple design example, thanks to
the effective utilization of in-place and cross-pixel augmentations,
extensive experiments in Section 5 will demonstrate that I-C at-
tack outperforms existing methods in both attack performance and
computational efficiency across various scenarios.

5 Experiments and Results

In this section, we will empirically compare existing transformation-
based attacks with the proposed I-C attack across various scenarios,
including single and ensemble surrogate models, non-targeted and
targeted attacks, undefended and defended targets, different per-
turbation budgets, and combinations with various gradient-based
attacks. In addition, we will conduct ablation studies on the compo-
nents of the I-C attack and further analyze the relationship between
checkerboard artifacts and transferability.

5.1 Setup

Dataset. Following previous works, this paper adopts a subset of
the ImageNet validation set [51] for attacks. This subset consists of
one image per class across 1, 000 classes.

Baselines and Parameter Settings. This paper compares I-C
attack with various advanced baselines, including Admix (ICCV’21),
SSIM (ECCV’22), STM (ACMMM’23), SIA (ICCV’23), DeCoWA (AA-
AT’24) and BSR (CVPR’24). For Admix, the number of scaled copies
mj = 5, admixed image number my = 4 and the admix ratio n = 0.2.
For SSIM, the tuning factor p = 0.5. For STM, the mixing ratio
y = 0.5 and the noise upper bound § = 2. For SIA, the splitting
number s = 3. For DeCoWA, the number of control points M = 9 and
the learning rate f = 0.01. For BSR, images are split into 2 2 blocks
with the maximum rotation angle v = 24°. For I-C, when attacking
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Figure 6: Non-targeted attacks on single surrogate with varying iterations T. Each point represents the average ASR (%) across
16 target models. T indicates the performance gain of I-C over the suboptimal method.
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Figure 7: Cross-genus targeted attacks. Each bar represents
the average ASR (%) across eight cross-genus target models. T
indicates the performance gain of I-C over the suboptimal
method.

an undefended target, a = 0.07, b = 3 and r = 1.40. When attacking
a defended target, this paper sets a = 0.15, b = 3 and r = 1.10. By
default, the number of iteration T = 10, the perturbation budget
€ = 16/255, the step size @ = 1.6/255, and the number of image
transformations is N = 20. All attacks are combined with MI-FGSM.
Surrogates and Targets. For comprehensive experimental results,
various CNN and ViT models are selected as surrogates and targets,
as listed in Table 2.

5.2 Comparisons with SOTA Methods

5.2.1 Non-targeted Attacks on Single Surrogate and Convergence
Analysis. In this experiment, we compare the black-box perfor-
mance of different attacks under a single surrogate model set-
ting. Meanwhile, we analyze the convergence of different attacks
by varying the number of iterations T. Specifically, we set T =
10, 20, 30, 40, 50 with a step size of @ = 16/255/T. Each attack gen-
erates adversarial examples using the 6 surrogate models in Table 2
and attacks 16 target models. The average attack success rates
(ASRs) are presented in Figure 6. The results show that I-C attack
consistently outperforms state-of-the-art methods across different
iterations T. Additionally, at T = 10, all attacks are nearly con-
verged, with only slight improvements as T increases. Unless stated
otherwise, subsequent experiments of non-targeted attacks follow
previous works [23, 64, 66] and set T = 10.

5.2.2 Cross-genus Targeted Attacks. This experiment evaluates
different attacks on the challenging cross-genus targeted attacks,
where CNNss attack ViTs or vice versa, using the models in Table 2.
Since targeted attacks require more iterations to converge than

non-targeted attacks, this experiment sets the iterations T = 50.
The experimental results are presented in Figure 7. Across all surro-
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Figure 8: Non-targeted attacks on ensemble surrogate. Each
bar represents the average ASR (%) across 16 target models. T
indicates the performance gain of I-C over the suboptimal
method.

gate models, I-C significantly outperforms existing transformation-
based attacks.

5.2.3 Non-targeted Attacks on Ensemble Surrogate. Beyond using
transformation-based attacks alone, we also evaluate their per-
formance when combined with other strategies. This experiment
examines these attacks by integrating them with ensemble-based
strategies. For a comprehensive evaluation, we construct four en-
semble models: E;={R18, R34, R50}, Eo={R34, MV2, V-S16, V-S32},
E3={V-S16, V-S32, BT-B16} and E4={EB0, MV 2, IncV3, Reg-Y}. Con-
sistent with [39], the ensemble loss is
|2|
Loss = ](Z a;iM;(x),y), (11)
i=1

where @ is the model set for each ensemble model. The weighting
coeflicient ¢; is set to IT{\ in this experiment. Figure 8 shows that
I-C outperforms existing attacks under ensemble settings.

5.2.4 Combined with Different Gradient-based Strategies. Addi-
tionally, we combine transformation-based attacks with different
gradient-based strategies to compare their performance. We inte-
grate each transformation-based attack with FGSM, I-FGSM [30],
MI-FGSM [18], PI-FGSM [22] and GI-FGSM [63] to evaluate their
non-targeted attack performance under single surrogate model.
The experimental results are presented in Figure 9(a). The results
show that when integrated with these gradient-based attacks, I-
C attack consistently outperforms existing transformation-based
attacks. This suggests that for a new gradient-based strategy, I-C
attack is more likely to achieve better performance when combined
compared to other attacks.
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Figure 9: (a) Average ASR (%) of each transformation-based
attack when integrated with different gradient-based strate-
gies. (b) Average ASRs (%) against advanced adversarially
trained models. T indicates the performance gain of I-C over
the suboptimal method.

5.2.5 Attacks under Different Perturbation Budgets. The above ex-
periments are conducted with a perturbation budget of € = 16/255.
In practice, an adversary may adjust the budget for stealth or ef-
fectiveness. This study evaluates non-targeted attack performance
under € = 8/255,12/255, 16/255, 20/255, 24 /255, 28/255. The results
are shown in Figure 10. Across all perturbation budgets, I-C outper-
forms existing methods, especially when attacking attention-based
models.

5.2.6 Attacking Adversarially Trained Models. Additionally, we are
curious about the performance of these transformation-based at-
tack against defense mechanisms. Therefore, this experiment eval-
uates them to attack 20 advanced adversarially trained models: (1)
ConvNX-L [3], (2) ConvNXV2-L + SwinT-L [5], (3)WR50 [10], (4)
XCiT-L [16], (5) XCiT-M [16], (6) XCiT-S [16], (7) ConvNX-B [38],
(8) ConvNX-L [38], (9) Swin-B [38], (10) Swin-L [38], (11) Swin-
B [46], (12) ViT-B [46], (13) RaWR101 [48], (14) WR50 [52], (15)
ConvNX-B + ConvStem [54], (16) ConvNX-L + ConvStem [54], (17)
ConvNX-S + ConvStem [54], (18) ConvNX-T + ConvStem [54], (19)
ViT-B + ConvStem [54], (20) ViT-S + ConvStem [54]. The results in
Figure 9(b) demonstrate the superiority of I-C attack in attacking
adversarially trained models.

5.3 Ablation Studies

5.3.1 Parameter Ablation. This experiment conducts an ablation
study on the three transformations that constitute the I-C attack
by individually analyzing their parameters. This aims to further
investigate the characteristics of I-C and the roles played by in-
place and cross-pixel augmentations. We fix two parameters while
varying the other to examine the relationship between parameter
changes and the success rate curve of single-surrogate non-targeted
attacks. The surrogate and target models are presented in Table 2.
The average ASR results are shown in Figure 11. It can be observed
that when the noise addition parameter a = 0, the block shuffle
parameter b = 1, or the bilinear interpolation parameter ¢ = 1, the
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attack success rate drops significantly. This indicates that in-place
augmentations, long-range cross-pixel augmentations, and local
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Figure 10: Average ASRs (%) on six surrogate models under
different perturbation budgets. The x-axis represents target
models (1) to (16) in Table 2.
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Figure 11: I-C performance with (a) varying noise addition
parameter a, (b) different block shuffle parameter b, (c) vary-
ing bilinear interpolation parameter r.

cross-pixel augmentations each provide unique features that cannot
be substituted by the other two transformations. Additionally, as
the parameters a, b and c increase beyond their optimal values, the
ASRs begin to decline significantly. This suggests that, for a fixed
number of iterations, excessive transformations introduce features
that hinder adversarial transferability.

6 Conclusion

Inspired by checkerboard artifacts, this paper classifies model aug-
mentations into in-place and cross-pixel augmentations and pro-
poses a transformation-based attack design paradigm to enhance
transferability. Instead of relying on traditional image transfor-
mations, our paradigm emphasizes designing auxiliary functions
and pixel interaction mechanisms, reducing trial-and-error and
improving efficiency. Despite its simplicity, the proposed I-C at-
tack surpasses existing transformation-based attacks across various
scenarios. In future work, further exploring the optimal forms of
auxiliary functions and pixel interaction mechanisms to fully ex-
ploit in-place and cross-pixel augmentations would be promising.
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