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Figure 1: We present RoSE, a method using video generative model for monocular normal map
estimation, built on a new paradigm that reformulates normal estimation as a shading sequence
estimation task. Results on complex and diverse scenario show that RoSE reconstructs fine-grained
geometric details and generalizes robustly to unseen datasets, achieving state-of-the-art performance
in object-based monocular normal estimation on benchmark datasets.

ABSTRACT

Monocular normal estimation aims to estimate normal map from a single RGB
image of an object under arbitrary lighting. Existing methods rely on deep models
to directly predict normal maps. However, they often suffer from 3D misalignment:
while the estimated normal maps may appear to have a correct appearance, the
reconstructed surfaces frequently fail to align with the geometry details. We argue
that this misalignment stems from the current paradigm: the model struggles to
distinguish and reconstruct spatially-various geometry, as they are represented in
normal maps only by relatively subtle color variations. To address this issue, we
propose a new paradigm that reformulates normal estimation as shading sequence
estimation, where shading sequences are more sensitive to various geometry in-
formation. Building on this paradigm, we present RoSE, a method that leverages
image-to-video generative models to predict shading sequences. The predicted
shading sequences are then converted into normal maps by solving a simple or-
dinary least-squares problem. To enhance robustness and better handle complex
objects, RoSE is trained on a synthetic dataset, MultiShade, with diverse shapes,
materials, and light conditions. Experiments demonstrate that RoSE achieves
state-of-the-art performance on real-world benchmark datasets for object-based
monocular normal estimation. Code and dataset will be released to facilitate
reproducible research.
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Figure 2: Illustration of 3D misalignment. The estimated normal maps of previous methods may
appear to have an overall correct color distribution, yet the reconstructed surfaces often fail to align
with the accurate geometry details, showing over-smooth results. Our estimated normal map has a
higher 3D alignment compared to others.

1 INTRODUCTION

Normal maps of surface encode 3D geometry by representing the orientation of the surface elements
at each pixel, making them essential for a wide range of applications, including relighting
et al.} 2024} [Sang & Chandraker, [2020; [Li et al., 2018}, [Liu et al., 2020; [Li et al.| [2023), 3D mesh
reconstruction (Ye et al., 2025)), and modern gaming pipelines (Wong & Bishop), [2006; Moreira et al.,
[2022)). Traditionally, capturing accurate normal maps of an object requires specialized equipment
and incurs significant cost, motivating the development of intelligent methods that can reliably infer
them from casually captured RGB images of the object.

To tackle this task, previous works (Yoon et al., 2016}
et all} 2024b} [Li et al.| 2015} [2024; [Fu et al., [2024; [Bae et al.,
2021)) directly estimate normal maps from a single RGB im-

age using deep models. Despite achieving promising results,
these methods often produce normal maps that appear to
have a correct appearance but fail to remain consistent with I
the underlying 3D geometry. We refer to this limitation as Tv=0.31 Tv=0.14 Low
“3D misalignment” (see Fig.[2). This limitation arises from

the current paradigm, where the model learns to recover Figure 3: Validation of sensitivity
geometry primarily by aligning with the color representation  to geometry variations for different
of normal maps. The deep model struggles to distinguish  representations, including the pro-
and reconstruct fine geometric details because normal maps  posed shading sequence (left) and the
encode geometry in a highly compact form, where surface  normal map (right), measured by av-
variations across different positions appear only as subtle erage total variation (TV). TV is com-
color differences. As a result, the model’s ability to recover puted as the mean magnitude of the
details is restricted, especially when cues from input images first-order image’s gradient in terms of
are limited in monocular normal estimation. different representaﬁon, where h]gher

TV indicates stronger sensitivity to
spatial geometric variation.

Normal High

To reduce 3D misalignment, this work proposed a new
paradigm for normal estimation by modifying the training
target. The main idea is to adopt a representation that is
more sensitive to geometry variation as the training target, thereby enhancing the network’s ability to
distinguish and reconstruct geometric details. Guided by this intuition, we propose using a shading
sequence, defined as the clamped dot product between the normal map and a set of canonical light
directions, as the new training target. The idea of using shading sequence is motivated by two key
observations. First, shading sequences capture geometry variation through brightness variation, while
excluding material influences, making them sensitive to only the geometric variations, as illustrated
in Fig. 3] Second, predicting shading sequence given canonical light directions is equivalent to
predicting the normal map. As shading sequence can be losslessly converted to the normal map
using Ordinary Least Square (OLS) solver, the final outcome remains unchanged.
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Based on the new paradigm, we propose RoSE, a method that Reformulating normal estimation as
the Shading sequence Estimation based on the monocular input image. Specifically, as the shading
sequence can be regarded as a video, we leverage recent image-to-video generative models (Voleti
et al.| |2024; |Blattmann et al., 2023)) to predict shading sequences. Once the shading sequence is
obtained, we recover the normal map using an OLS solver (Woodhaml, [1980). In practice, to improve
the 3D alignment when handling more complex materials and lights, we train our model on a dataset
named MultiShade, enriched with more diverse materials and light conditions compared to previous
dataset. Experimental results demonstrate that our method achieves superior performance compared
to state-of-the-art methods. Overall, we summarize the main contributions of this paper as:

* We introduce a new paradigm that reformulate the task of monocular normal estimation as
shading sequence estimation.

* Under the new paradigm, we propose RoSE, a monocular normal estimation method using
a image-to-video generative model that predicts a shading sequence of an object under
predefined parallel lights and analytically derives normal maps from it.

* We train RoSE on MultiShade, a synthetic dataset with diverse material and light conditions.
Experiments show that our method achieves state-of-the-art performance on several datasets,
especially on the widely-used real-world benchmark datasets (i.e, DiLiGenT, LUCES).

2 RELATED WORKS

Monocular Normal Estimation. Despite persistent research efforts in monocular normal estimation,
achieving high accuracy remains significantly challenging due to the complexity of this task that
requires the prediction of an accurate normal map with highly limited input information. Early
works (Eigen & Fergus| 20155 |Do et al.,2020; |[Fouhey et al.||[2013; Wang et al., 2015; Zhang et al.,
2019} Bansal et al.| 2016} |[Ladicky et al., 2014} |Li et al.,[2015; Wang et al.| 2020) relied on handcrafted
features, empirical priors, or conventional deep neural networks. However, these methods often
suffer from limited generalization ability. Recent methods based on generative models (Voleti et al.}
2024; [Fu et al) 2024; He et al.l [2024a)), physics-inspired deep networks (Bae & Davisonl [2024]),
and auto-regressive frameworks (Ye et al.,[2025) have demonstrated improved generalization ability
and the capacity to estimate relatively accurate normal maps. However, the estimated normal maps
suffer from 3D misalignment, a problem that stems from the current paradigm where the model fails
to capture the compact information in the normal maps under current paradigm. To address this,
other works (Tiwari et al., 2024; He et al., |2024b) attempt to first generate more input images under
controlled light conditions and subsequently estimate normals from these multi-light images. Yet, the
accuracy of such methods is often degraded by artifacts in the generated input images, resulting in
more severe 3D misalignment. In contrast, we propose a new paradigm that uses shading sequences,
a representation that is sensitive to geometry, as the training target, and leverage video generative
models to predict them from the input image, which achieves improved 3D alignment.

Video Generation. Recent advancements in video generation (Rombach et al., [2022; |[Peebles &
Xiel 2023} [Zhang et al.| [2023} Ho et al.l |2022) have significantly transformed the field of video
synthesis. Specifically, the video generator (Blattmann et al.| 2023 Deng et al.| 2024; a1, [2024} |[Lin
et al., 2024} (Guo et al.l 2023) generates high-fidelity videos by enforcing temporal consistency across
generated frames using deep models like temporal UNet (Blattmann et al.l 2023}, |Guo et al.| [2023)),
Transformers (Deng et al.,[2024; Lin et al.,2024) . In 3D generation, video diffusion models are used
to facilitate cross-view consistency (Voleti et al., 2024; [Tang et al., [2024; Dai et al., 2023) to improve
the quality of generated 3D models. In 3D estimation, recent work (Bin et al.|[2025)) employs a video
diffusion model for normal estimation. They focus on predicting per-frame normals for an input
video. In contrast, our work leverages the capability of video generative models to predict a shading
sequence that follows a pre-defined light path consists of multiple canonical parallel lights, using only
a single input image. This enables accurate monocular normal estimation for objects with diverse
shapes and materials.

Shading Utilization. In photometric stereo methods, shadings are often used to explain the behavior
of deep model in normal map estimation based on RGB images of an object captured at multiple
parallel lights. Previous studies (Chen et al., [2020; Wei et al.| 2025) have shown that the learned
features are highly similar to shading sequence, which has motivated to adopt shading sequence as
auxiliary supervision to improve network performance (Wei et al., |2025). Motivated by these findings,
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we reformulate normal estimation as shading sequence estimation and use shading sequences as the
training target to train the video diffusion model.

3 METHODS

3.1 ON EQUIVALENCE OF NORMAL ESTIMATION AND SHADING SEQUENCE ESTIMATION

Shading map and shading sequence. In this paper, we define shading map (Wei et al., 2025) as:
S = {sp = max(ny, - 1,0)[p € P}, M

where n is the normal map, and 1 is the direction of parallel light, max(., 0) is the nonlinear maximum
operation that clamp the negative values, P is the points that belong to the object. Shading maps
remove the effects of surface reflectance and occlusion-induced cast shadows while preserving
the geometry information and the attached shadow. The pixel value variations across a sequence
of shading maps under multiple canonical lights, defined as a shading sequence, S° = {S;|i €
1,..., f}, offer sensitive cues to the underlying 3D geometry.

Normal map estimation. Given an observed image I of an object captured under arbitrary light
conditions, the goal of monocular normal estimation is to recover the normal map N £ {n,|p € P}.
This requires learning a mapping:

d:T— N. 2)

Previous methods rely on deep models to learn a direct color mapping between a single RGB image
and normal maps. This often produces visually aligned appearance but inaccurate 3D geometry,
leading to 3D misalignment. A more recent line of works (He et al., [2024b; [Tiwari et al.| [2024)
explore generating a series of RGB images under simple light sources first and then estimating
normals from them. The main idea of these works is to augment the input with additional generated
images that introduce more cues benefiting the prediction of normal maps. However, in practice,
as the materials, lights, and geometry in the input image become more complex, the process of
generating additional RGB images itself introduces substantial bias, ultimately leading to more
pronounced 3D misalignment artifacts.

Shading sequence estimation. The shading sequence under a set of non-coplanar parallel lights
(canonical lights) can be converted to a normal map. Based on this rule, we can switch our training
target to predict a shading sequence with light varying along a pre-defined path L £ {L;|i € 1, ..., f}.

Bg: 1, > S°, 3)

where I, denotes the grayscale input image. Then, the shading-to-normal estimation S® — N can be
solved via Ordinary Least Squares (OLS) (Woodham, |1980):

N = argmin INTL - S*||? = (LTL)"'L'Ss". )

The solution is unique when L is full rank. In practice, the introduction of the max(.,0) operation
introduces bias in OLS solutions if we directly apply OLS to the shading sequence. To solve this, we
treat only shading values greater than 0 as valid equations for OLS when solving the normal.

3.2 SHADING SEQUENCE-BASED TRAINING TARGET

Reformulating monocular normal estimation as shading se-
quence estimation introduces additional flexibility in design- —a RS EAN
ing the training target, since different choices of L yield 4 v
different shading sequences. As long as each surface point
is illuminated by at least three non-coplanar parallel light
sources (i.e, the lighting matrix L is full rank in Eq. (@),
normal maps can be recovered from the shading sequence
without information loss. In our setup, this means that each '

surface point should correspond to at least three positive Object Ring Light

shading values. In this paper, we adopt a classic ring light
setup from photometric stereo (Zhou & Tan, |[2010), where Figure 4: Ring light setup.
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Figure 5: Pipeline of RoSE. Given a monocular RGB image under arbitrary lighting, RoSE first
converts it into a grayscale image, which is then used to generate a consistent sequence of multi-light
shading sequence via a video diffusion model. This generation is guided by two complementary
feature representations extracted from a CLIP encoder and a VAE encoder. Finally, an ordinary least
squares problem is solved using an analytical solver to estimate the normal map from the generated
shading sequence. We train the video diffusion model while freezing the CLIP and the VAE encoder.

canonical lights are uniformly placed on a latitude ring in the upper hemisphere of object’s surface,
each light oriented toward the surface center (see Fig. d). With an appropriate choice of the ring’s
latitude (45° in our setup), these lights collectively illuminate all surface points. The remaining
question is: what is the minimum number of such lights, 1., required to guarantee that every
surface point is illuminated by at least three sources with positive shading values? We address this in
Lemmal[il

Lemma 1. Define a point is considered illuminated when max(0,S) > 0, then a single parallel light
covers at least half of the upper hemisphere. Thus, n = 2 lights are sufficient to ensure that every
point on the sphere is illuminated at least once. By the pigeonhole principle, in order to guarantee
that every point is covered by at least m = 3 lights, one needs at least l i, = m X n = 6 uniformly
distributed light sources on the ring.

In our experiments, we observed that increasing the number of light sources consistently improved
the accuracy of both normal and shading estimation. The best performance was achieved when
the number of light sources reached 9, yielding a 0.74° improvement compared to 6 lights. While
appropriately introducing additional light sources can further enhance accuracy, it also incurs longer
training and convergence time as well as higher resource consumption. For instance, under the same
settings, performance dropped by 1.31° under 12 lights.

3.3 ROSE: A MONOCULAR NORMAL ESTIMATOR BASED ON VIDEO GENERATIVE MODEL

Architecture of RoSE is shown in Fig. [5] Firstly, the shading generator go(-) is designed to take
grayscale images I, as input, effectively eliminating redundant chromatic information that may
distract the model from learning geometric cues. It produces grayscale shading sequences that follow
a predefined light path, which introduces structured patterns and temporal coherence well-suited for
video generation models. In this paper, we implement gy (-) using a standard video diffusion U-Net
composed of multiple spatial and temporal transformer blocks (Voleti et al.,[2024; Blattmann et al.|
2023)). The grayscale input image I, is used as an additional condition to guide the denoising process
during shading sequence generation.

Specifically, following previous works (He et al., [2024bj [Voleti et al., 2024; Blattmann et al.| 2023)),
we adopt the similar dual-branch conditioning strategy that combines global guidance from CLIP
embedding and local guidance from VAE latent concatenation to reuse the pre-trained weights of
the model. 1) CLIP embedding: We extract a global feature vector c, from the input image using a
pretrained CLIP encoder. This semantic embedding is injected into the denoising U-Net via cross-
attention, guiding the shading generation with object-level context. 2) VAE latent concatenation:
to preserve spatial details, we encode the grayscale input I; with a pretrained VAE encoder &£
and concatenate the resulting latent with the noisy latent z; at each denoising step. Since I is
single-channel, we replicate it to three channels before feeding it into the VAE and CLIP encoders:
I, = repeat(I;, B x H x W — B x H x W x 3), where B is the batch size. Combining both
two condition techniques, the generated shading sequence retains fine geometric structures while
maintaining consistency with the input appearance, which is particularly important in recovering the
fine-grained 3D details. The output of the denoising process is decoded by the VAE decoder D and
averaged across channels, to obtain the final grayscale shading sequence.
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Training. During training, we use the standard training objectives on latent space encoded by £. The

video generative model will learn to predict the noise given the noisy latent z;, zg = £(S®), where

z; = ay€ + 04Z¢g. The diffusion loss follows calculation of zy-reparameterization (Ho et al., 2020):
7 — 8o (74|, 1)

Lait = Eqy et |20 — zol|” 20 = > . 5)
t

where z( the one-step denoised version of z;.

Dataset Curation. To improve the 3D alignment when handling more complex materials and lights,
we curate a dataset named MultiShade, featuring diverse shapes, materials, and light conditions to
ensure robust generalization. MultiShade is built upon a list of pre-filtered 3D models (90K) curated
from Objaverse (Deitke et al.| 2023 He et al., 2024b)), a widely adopted resource for 3D generation
and reconstruction. For each object, we render observed images under three lighting setups: (1)
parallel lights randomly placed around the object; (2) point lights with randomly sampled positions
and intensities; and (3) environment lights using high-dynamic-range (HDR) maps sampled from a
public collection of 780 real-world environments (pol, 2025). Each object is rendered from six distinct
viewpoints (top, left, right, bottom, front, and one random view) to ensure comprehensive geometric
coverage. To avoid lighting from the object’s backside, we apply view-dependent transformations
to keep light sources in the upper hemisphere relative to the view direction. During rendering, we
implement material augmentation to the dataset by either retaining the object’s original texture
or applying material augmentation. With a probability of 0.5, an additional material is assigned
from the MatSynth dataset (Vecchio & Deschaintre, |2024), which contains 5,657 high-quality PBR
materials. Specifically, we assign a probability of 0.25 to sample materials from the metallic category,
while 0.25 to extract materials from non-metallic categories such as plastic, wood, and fabric. This
augmentation improves surface diversity and model robustness, especially for metallic materials.
All images are rendered using Blender at a resolution of 576 x 576 following (Voleti et al.,[2024),
generating approximately 3 million image-normal pairs. Precomputed shading sequence under known
canonical light sources are also provided. More details on rendering parameters, camera setup, and
augmentation strategies are in the appendix.

4 EXPERIMENTS

4.1 EXPERIMENT SETUP

Datasets. We evaluate the proposed method on widely used benchmarks, including LUCES (Mecca
et al., 2021) for near-light monocular normal estimation, DiLiGenT (Shi et al.| 2016) for parallel-light
settings, and a curated test set of 100 unseen objects from the Objaverse dataset (Deitke et al.,[2023)
rendered with diverse materials and light conditions.

Baselines. We compare RoSE with 7 other monocular normal estimation methods, i.e, GeoWizard (Fu
et al.,[2024), DSINE (Bae & Davisonl 2024)), StableNormal (Ye et al.,[2024), Lotus-G & Lotus-D (He
et al.,[2024a), Neural LightRig (He et al., 2024b)), and NiRNE (Ye et al., [2025)).

Implementation details and evaluation metrics. All training experiments are conducted on 8 X
NVIDIA H100 GPUs with 80GB memory. The model is trained at a learning rate of 1 x e~®, using
AdamW as the optimizer. The diffusion architecture follows previous work (Voleti et al., 2024). More
details can be found in the appendix. To assess the accuracy of predicted normal maps, following the
common protocol in previous works (Ye et al., 20245 2025; Bae & Davison| [2024} |He et al.,2024a),
we use the mean angular error (MAE) as the evaluation metrics for all experiments.

4.2 PERFORMANCE ON BENCHMARK DATASET

We conduct monocular normal estimation experiments on the DiLiGenT (Shi et al.,[2016)) and LUCES
benchmark dataset (Mecca et al., [2021])) to evaluate our method’s ability in handling objects captured
under distant and near-field light sources. For each object, we select 10 images with relatively
centered lights so that the light can cover enough details. The index of the images used for testing
can be found in the appendix.

Quantitative analysis on normal estimation. The results in Table |1| and Table [2] present the
average MAE for each object across selected 10 images. Additionally, we report the overall average
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Table 1: Quantitative comparison in terms of MAE ({) of the normal map on DiLiGenT bench-

mark dataset. Highlighted numbers indicate the best and second best results among monocular
estimation methods.

Method BALL BEAR BUDDHA CAT Cow GOBLET HARVEST Porl PoT2 READING Mean
GeoWizard 16.85  14.58 26.38 21.82  19.54 17.70 29.78 21.86  19.97 29.42 21.79
DSINE 2382 14.15 28.09 1822 19.35 22.63 35.90 2090 19.14 30.25 23.25
StableNormal 17.11  13.17 21.84 2246 22.63 15.96 32.14 17.43 1653 25.15 20.44
Lotus-D 36.83  11.29 21.68 2393 22.62 13.93 34.99 2145 17.14 25.49 22.94
Lotus-G 1274 13.02 23.27 22.68 2278 15.52 32.94 2327 19.23 28.67 21.41
Neural LightRig | 10.16  14.47 26.23 28.39 21.16 22.70 76.82 2471 31.84 34.51 29.10
NiRNE 10.26  10.87 21.28 1543 15.03 17.91 27.40 15.27 16.15 23.08 17.27
Ours 5.51 9.22 20.72 15.78 13.28 16.55 28.62 16.05 14.24 23.65 16.36

Table 2: Quantitative comparison in terms of MAE of the normal map on LUCES benchmark

dataset (Mecca et al., 2021). Highlighted numbers indicate the best and second best results among
monocular estimation methods.

Method BALL BELL BowL BUDDHA BUNNY Cup DIE HippO HOUSE JAR OWL QUEEN SQUIRREL TOOL | Mean
GeoWizard 30.09 9.08 2229 22.71 1590 2020 1576 17.55 42.15 11.07 28.68 25.36 35.48 18.57 | 22.49
DSINE 26.88 15.00 9.53 22.34 15.82 2265 3202 1442 3695 1626 2746 23.76 25.26 17.19 | 21.82
StableNormal 958 936 31.39 20.80 1473 2940 11.88 20.80 37.55 825 2323 21.10 27.24 19.49 | 20.34
Lotus-D 1794 950 1143 19.70 1299 3744 13.14 1585 3530 9.69 20.53 19.72 23.52 13.15 | 18.56
Lotus-G 17.82  8.66 10.89 19.71 1290 2326 1259 1694 3532 10.69 1894 20.65 24.05 11.74 | 17.44
Neural LightRig | 9.52  11.95 21.71 20.66 1525 18.08 25.13 18.54 39.67 19.78 2340 23.35 25.32 20.97 | 20.95
NiRNE 10.55 12.00 17.35 20.62 16.14 1578 1257 1585 3499 1037 2246 2241 21.90 17.34 | 17.88
Ours 9.09 594 6.84 17.58 1270 1380 8.26 14.14 36.79 593 19.60 19.99 21.34 10.66 | 14.48

MAE across all objects and the average variance among the five images. These quantitative results
demonstrate a significant advantage of our method over the state-of-the-art method (16.36° for ours
vs. 17.27° for NiRNE (Ye et al.,[2025) on DiLiGenT dataset (Shi et al., [2016J); 14.48° for ours vs.
17.88° for NiRNE (Ye et al.| [2025) on LUCES dataset (Mecca et al.l 2021)). This validates the
effectiveness of our method in achieving more consistent performance in normal estimation under
various materials and lights. However, we observe that for certain objects, such as GOBLET in
DiLiGenT and HOUSE in LUCES, our method does not rank within the top two. We attribute this to
the inherent variance of the model. Note that even the previous SOTA method NiRNE fails to deliver
consistently strong performance across all cases. Another possible reason may be attributed to the
used training set. We provide a more detailed discussion in Sec. .4}

Qualitative analysis on normal estimation. We present a qualitative comparison between our
method and state-of-the-art methods in Fig.[6] Our method consistently produces accurate object
details in the estimated normal map, with an improvement in MAE. In contrast, previous methods
tend to generate over-smooth results or inaccurate distribution, significant artifacts (He et al.| 2024b)
(e.g., tails and back part of the SQUIRREL). This demonstrates the effectiveness of normals derived
from generated shading sequence and highlights RoSE’s capability in preserving fine shape details
for accurate normal estimation.

Analysis on shading sequence estimation. We conduct quantitative analyses{]_-] of the predicted
shading sequences on the LUCES dataset to illustrate RoSE’s ability to recover accurate shading
sequences. The shading map of all other methods (including the ground truth) is computed as the
dot product between the lights’ directions and the surface normal, with negative values clamped to
zero. We use PSNR (1), SSIM (1), and LPIPS (]) as the evaluation metrics, as shown in Table[d] The
results demonstrate that RoSE achieves SOTA performance in predicted shading sequence, which
also align with the results of normal estimation.

4.3 PERFORMANCE ON MULTISHADE

To further evaluate our method’s performance under various types of lights and materials, the test
set of the applied synthetic dataset consists of 100 unseen objects from Objaverse (Deitke et al.,
2023). Each object is rendered with random materials selected from the MatSynth test set (Vecchio
& Deschaintrel [2024)). For lighting, we employ one random point light, one directional (parallel)

"Please refer to the the appendix for qualitative analyses.
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Figure 6: Qualitative comparison on selected objects from two benchmark dataset (COw from

DILIGENT (Shi et al., 2016) and SQUIRREL from LUCES (Mecca et al| 2021). Row 1 & 3: normal

map comparison. Row 2 & 4: error map comparison.) Best viewed in color with zooming in.

Table 3: Quantitative comparison in terms of Mean and Median Angular Errors of the normal map
on MultiShade test set, and the percentage of objects below a specific error bound. Highlighted

numbers indicate the best and second best results among monocular estimation methods.

Method Mean |, Median | 3°7 5% 1 7.5° 1 11.25° ¢ 22.5° 1 30° 1
GeoWizard 20.46 11.61 12.84 25.41 37.34 49.09 68.53 76.29
DSINE 22.53 14.04 12.38 22.47 32.18 43.27 65.19 74.16
StableNormal 19.71 11.23 6.83 18.67 34.65 50.08 71.66 79.48
Lotus-D 18.48 10.63 14.51 26.34 38.78 51.78 72.47 79.82
Lotus-G 18.76 10.65 14.67 27.13 39.19 51.63 71.83 79.54
Neural LightRig 20.59 11.36 17.65 27.59 37.90 49.69 70.85 78.54
NiRNE 19.57 13.57 4.06 11.92 25.53 42.10 71.42 81.21
Ours 15.37 7.78 26.99 38.38 49.00 60.32 78.30 84.28

light, and two environmental lights selected from Poly Haven [2025)) that are different from
the training dataset. Each object is rendered from seven viewpoints, including the front, back, left,
right, and top views, as well as two randomly sampled views. This setup yields a total of 2800 test
samples. Following the evaluation protocol in prior work 2024b)), we report the mean and
median angular error (MAE) across all objects, as well as the percentage of objects with MAE below
specified angular thresholds. As shown in Table [3] our method consistently outperforms baseline
approaches across all metrics, with particularly strong performance under tighter thresholds (i.e,
3°-7.5°), highlighting the robustness and accuracy of the proposed RoSE.

4.4 ABLATION STUDY

We conduct ablation experiments using LUCES benchmark dataset (Mecca et al.} 2021) as the test set
to analyze the effectiveness of the proposed RoSE and MultiShade. Additional experiments, analysis
and discussion are in the appendix.

Validation on details alignment. Following 2023), we compute the shape normal error,
including the normal estimation error in boundary regions, on the LUCES dataset to evaluate detail
alignment. Our method achieves performance comparable to the state-of-the-art NIRNE model and
demonstrates a clear advantage over other methods. It is worth noting that NiRNE was trained on a
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Table 4: Quantitative comparison on estimated shading sequence in terms of PSNR (1), SSIM (7),
and LPIPS (]) on LUCES benchmark dataset (Mecca et al., 2021). Highlighted numbers indicate the

best and second best results.

Metrics | GeoWizard DSINE StableNormal Lotus-D Lotus-G ~ Neural LightRig NiRNE  Ours

PSNR (1) 16.86 17.05 18.40 18.80 19.19 17.88 18.99  20.74
SSIM (1) 0.6920 0.7199 0.7411 0.7492  0.7589 0.7139 0.7503  0.7744
LPIPS () 0.2806 0.3100 0.2972 0.2868  0.2724 0.2831 0.2688  0.2583

Table 5: Quantitative analysis in terms of MAE and SNE of the normal map on LUCES benchmark
dataset (Mecca et al., [2021). Bold number indicates the best performance.

GeoWizard DSINE StableNormal Lotus-D  Lotus-G  Neural LightRig NiRNE  Ours

MAE ({) 22.49 21.82 20.34 18.56 17.44 20.95 17.88  14.48
SNE () 37.76 33.08 29.20 33.20 29.85 32.77 26.78  26.74

dataset nearly 10x larger and containing significantly more diverse and complex 3D models than
ours. These results highlight that the proposed RoSE is capable of generating fine-grained details
even with substantially lower resource consumption during training.

Validation on negative-clamping on shading sequence. After clamping negative values, the shading
sequence is rescaled to the range [—1, 1] (by applying a linear transformation S — S x 2 — 1) to
match the input requirements of the VAE encoder. This rescaling makes the shading sequence more
sensitive to geometric variations (total variance increase from 0.21 to 0.31, in example of Fig.3). The
effectiveness of this strategy is validated in Table[6] with comparison between ‘ours’ and ‘ours w/o
clamp’.

Validation on material augmentation. To evaluate the effectiveness of the proposed dataset, we
train RoSE on the publicly available LightProp (He et al.l 2024b)) dataset. Both datasets are rendered
under comparable settings, but our dataset incorporates material augmentation to increase material
diversity. Compared with LightProp, our model trained without material augmentation (w/o MA”)
achieves comparable performance on the LUCES (Mecca et al.,[2021) benchmark. When material
augmentation is applied, however, the performance improves notably. Specifically, comparing models
trained with and without augmentation (“w/o MA” uses only the original object materials), we
observe consistent gains, as shown in Table[6 demonstrating that material augmentation enhances
generalization to complex reflectance variations.

Validation on dataset impact. We also retrained the previous SOTA method on LUCES (i.e,
Lotus-G) using our dataset (“Lotus-G+M”), which led to consistent improvements, further validating
the effectiveness of our data. More importantly, under equal dataset conditions, our method still
outperforms: Neural LightRig vs. “Ours+L” and “Lotus-G+M” vs. Ours clearly show that our
method achieves SOTA performance, highlighting its efficiency and competitiveness. Finally, we
also observed that for some specific objects, such as HOUSE, retraining Lotus-G with our dataset
resulted in decreased performance (35.32° for Lotus-G vs. 38.90° for “Lotus-G+M?”). This suggests
that dataset variations may affect estimation accuracy on certain objects.

Validation on model variants impact. We train RoSE using a different video diffusion backbone,
namely Stable Video Diffusion XL (SVD XL) (Blattmann et al.| 2023), on the MultiShade dataset.
We denote this variant as “Ours w/ SVD XL”. As shown in Table 6] this model achieves performance
comparable to RoSE built on SV3D (14.58° for “Ours w/ SVD XL and 14.58° for Ours). This
demonstrates that our framework generalises well even when the backbone is pretrained on large
scale, general purpose video data rather than a domain-specific object-centric dataset.

Validation on gray-scale input. We train a variant of RoSE that replaces the grayscale input with an
RGB input (i.e, Ours w/ RGB). The performance drops by 0.79° on the LUCES benchmark. The
result indicates the importance of the grayscale input that eliminates redundant chromatic information
for accurate shading sequence estimation.

Validation on ring-light setup. We train RoSE using a different light path where the elevation
decreases from 60° to 30° while rotating 360° around the z-axis. We denote this variant as “Ours w/
spiral”. As shown in Table[6] this more complex light path leads to a performance drop (MAE of
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Table 6: Ablation study in terms of MAE of the normal map on LUCES benchmark dataset (Mecca
et al.| [2021)). In particular, “+M”(“+L"”) means training on Multishade (LightProp) dataset, ‘w/o
clamp’ means removing clamping on shading sequence. ‘w/o MA’ means training on dataset without

material augmentation. Highlighted numbers indicate the best and second best results.

Method BALL BELL BOwL BUDDHA BUNNY CuP DIE HiPPo HOUSE JAR OWL QUEEN SQUIRREL TOOL | Mean
Lotus-G 17.82  8.66 10.89 19.71 12.90 2326 1259 1694 3532 10.69 18.94 20.65 24.05 11.74 | 17.44
Neural LightRig 9.52 1195 21.71 20.66 15.25 18.08 25.13 18.54 39.67 19.78 2340 2335 25.32 20.97 | 20.95
Lotus-G+M 16.21 8.95 7.11 16.57 11.50 2241 1640 14.04 38.90 13.14  24.69 19.78 18.96 1435 | 17.36
Ours+L 9.37 7.03 8.46 19.42 12.24 14.05 8.73 15.06 38.14 581 2094 2022 22.19 11.23 | 15.21
Ours w/o MA 9.65 7.55 9.27 18.86 12.53 1336 10.2 13.26 40.19 6.51 19.89  21.06 20.91 13.46 | 15.48
Ours w/o clamp 10.76  8.21 9.67 18.66 13.16 1435 15.04 13.84 40.15 7.24 21.6 20.12 21.79 13.15 | 16.27
Ours w/ spiral 1632 9.25 10.97 20.23 16.78 16.70 12.17  16.06 39.68 738 2225 21.86 22.50 14.29 | 17.60
Ours w/ RGB 1036 8.56 8.99 18.28 13.89 1156 9.22 13.70 38.49 574 19.80 20.45 20.78 13.99 | 15.27
Ours w/ SVD XL | 8.69 7.68 9.16 18.34 12.43 12.15  8.47 14.11 37.60 694 18.73 19.10 19.28 11.38 | 14.58
Ours 9.09 5.94 6.84 17.58 1270 1380 826 14.14 36.79 593 19.60 19.99 21.34 10.66 | 14.48

17.60°). This result highlights that the proposed ring-light setup is an effective and efficient design
for the model to predict shading sequence.

5 DISCUSSION

Conclusion. We propose RoSE, a novel method for monocular normal estimation that addresses the
limitations of previous methods in training paradigm to reduce the 3D misalignment. By reformulating
normal estimation to shading sequence estimation, RoSE facilitates normal estimation through image-
to-video generative model and simple analytical solver. To further improve the performance on more
general scenarios, we train RoSE on MultiShade, a large-scale dataset with diverse materials and
lighting. Experiments show that RoSE outperforms state-of-the-art methods.

Limitations & Future Work. While RoSE demonstrates strong performance in normal estimation
across various settings, it has several limitations. First, employing video diffusion models for shading
sequence generation introduces additional computational overhead, which may limit the applicability
of the method in real-time scenarios. Second, RoSE may struggle under extreme lighting conditions,
particularly when large regions of the object receive insufficient illumination, resulting in degraded
shading quality and less reliable normal predictions in those areas. Third, RoSE fails to produce
high-quality normal maps on transparent or semi-transparent objects, and extending support for such
cases will be an important direction for future work. Finally, the current evaluation is primarily object-
centric, with a focus on robustness to varying light sources and reflectance properties. Extending
ROSE to scene-centric settings remains an important direction for future work.
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