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Abstract

Adder neural networks (ANNs) are designed for low energy cost which replace
expensive multiplications in convolutional neural networks (CNNs) with cheaper
additions to yield energy-efficient neural networks and hardware accelerations.
Although ANNs achieve satisfactory efficiency, there exist gaps between ANNs
and CNNs where the accuracy of ANNs can hardly be compared to CNNs without
the assistance of other training tricks, such as knowledge distillation. The inherent
discrepancy lies in the similarity measurement between filters and features, however
how to alleviate this difference remains unexplored. To locate the potential problem
of ANNs, we focus on the property difference due to similarity measurement. We
demonstrate that unordered heavy tails in ANNs could be the key component which
prevents ANNs from achieving superior classification performance since fatter
tails tend to overlap in feature space. Through pre-defining Multivariate Skew
Laplace distributions and embedding feature distributions into the loss function,
ANN features can be fully controlled and designed for various properties. We
further present a novel method for tackling existing heavy tails in ANNs with only
a modification of classifier where ANN features are clustered with their tails well-
formulated through proposed angle-based constraint on the distribution parameters
to encourage high diversity of tails. Experiments conducted on several benchmarks
and comparison with other distributions demonstrate the effectiveness of proposed
approach for boosting the performance of ANNs.

1 Introduction

Deep Convolutional Neural Networks have been widely adopted in various computer vision tasks
due to their satisfactory performance, including image classification [12, 9, 10, 20], object detection
[13, 17, 6, 7], super-resolution [29, 5, 11, 18], etc.. However, the success of CNNs can hardly be
presented for practical usage without further modifications since the majority of computer vision tasks
are usually deployed on low-power platforms, such as portable and embedded devices, where the
computational resources are significantly constrained while prompt inference is required. As a result,
the acceleration of deep neural networks and reduction of energy cost become urgent requirements
and attract massive research efforts in recent years [8, 24, 15, 27, 4, 30, 21].

Recently, Chen et al.[3] introduced Adder Neural Network to replace the cross-correlation in CNNs
with ℓ1-norm for the similarity measurement between input features and filters, which eliminates the
massive multiplications in CNNs. Through replacing existing multiplications with additions in deep
neural networks, ANNs achieve considerable energy reduction since addition is a cheaper operation
than multiplications [19, 23]. Furthermore, ANN can be more friendly for hardware designs of deep
learning acceleration [25, 28]. Although ANNs achieve comparable results with CNNs, there exist
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Figure 1: (a) and (b) denote histograms of ANN weights and features respectively. (c) denotes a toy
example of overlapped heavy tails of feature distributions and a solution through skewness constraint.

gaps in classification task (e.g. 67.0% top-1 accuracy on ImageNet with ANN-18 while 69.8% with
CNN-18). Progressive Kernel Based Knowledge Distillation (PKKD) has been proposed to establish
ANN with better performance. However a concomitant CNN with the same architecture and a parallel
optimization of both ANN and CNN are required, which largely raises the cost of training [26]. The
natural difference between CNNs and ANNs mainly lies in the similarity measurement, which is
always ignored and how to relieve the gaps from inherent properties of ANNs remains unexplored.
Thus, the difference caused by the replacement of cosine distance with ℓ1 norm is shed light on to
explore potentially more powerful classification capability of ANNs.

The discrepancy between ANNs and CNNs due to different similarity measurements lies in various
aspects. In this work, we mainly focus on the ANN features for classification. A well-studied property
of ANNs is that the features corresponding to different classes are clustered towards different centers
since ℓ1 norm is used for similarity measurement [3]. Meanwhile, ANN weights tend to follow a
Laplace distribution which denotes the prior of ℓ1. Actually the heavy-tailed distributions widely
exist not only in ANN weights but also in ANN features, as shown in Figure1 (a) and (b). Since the
features are clustered for different classes, the existing fatter tails can be easily overlapped with each
other, which could hurt the classification performance.

In this paper, we propose to pre-define the feature distributions in order to model the heavy-tailedness
in ANNs. We demonstrate the limitations of Gaussian for ANNs and instead make use of a mixture of
Multivariate Skew Laplace Distributions which not only involves mean and variance for optimization
but also includes higher-order moment skewness. With skewness, the overlapped areas of heavy tails
can be reduced for preventing the entanglement of feature distributions. We propose to embed this
mixture of skew Laplace into the loss function through substituting the distribution parameters for the
classifier head. A likelihood regularization comes naturally for fitting ANN features to pre-defined
distributions. With distribution parameters, we introduce a well-formulated angle-based constraint
on the feature distributions based on their locations, covariance and skewness, which drives the
distribution tails to different angle regions for disentanglement. Our proposed method improves the
classification accuracy by 0.7% on both CIFAR-100 with ResNet-20 and ImageNet with ResNet-18
compared to vanilla ANN with only a modification to the ANN classifier head.

2 Preliminaries

Adder Neural Networks. Chen et al.[3] proposed the Adder Neural Network to eliminate the
multiplications in traditional convolution networks and replace them with additions to significantly
reduce computational and energy costs. Consider an intermediate feature map X ∈ RH×W×cin in
deep neural network with weight W ∈ Rw×w×cin×cout where H , W denote the height and width of
input feature, w denotes the kernel size, and cin, cout denote the number of input and output channel
respectively. The convolution and adder operation are defined as

Yconv(m,n, c) =

w∑
i=1

w∑
j=1

cin∑
k=1

X(m+ i, n+ j, k)×W (i, j, k, c),

Yadder(m,n, c) = −
w∑
i=1

w∑
j=1

cin∑
k=1

|X(m+ i, n+ j, k)−W (i, j, k, c)|.
(1)

Comparing the adder operation with the traditional convolution in Eq. 1, the dot product is replaced
by the ℓ1-norm for measuring the similarity between the filter and input feature. Although ANN can
achieve similar performance to CNN, there still exist gaps between ANNs and CNNs. For example,
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ANN has 0.7% accuracy drop with ResNet-32 on CIFAR-100 compared to CNN. Since the major
difference between ANN and CNN lies in the operation, we mainly focus on addressing the potential
adverse properties of this operation substitution for improving ANN performance.

3 Skew Laplace Mixture Loss with Angle-based Constraint

In this section, we analyze potential problems of ANNs and propose a novel framework which
replaces classifier head with appropriate trainable distribution parameters. Furthermore, we introduce
an angle-based constraint for controlling feature distribution tails to avoid potential entanglement.

3.1 Embedding Skew Laplace Mixture into Loss Function

With ℓ1-norm as similarity measurement, the weights in ANNs are close to Laplace distribution since
the prior of ℓ1-norm is Laplace distribution, as discussed in [3]. Laplace density is expressed by the
absolute difference from mean while Gaussian density is expressed by the squared difference, which
results in a fatter tails of Laplace distributions compared to Gaussian distributions. We empirically
verifies the heavy tails in both ANN weights and features through histograms of sampled layer
from a pre-trained ANN with ResNet32 on CIFAR-10, as shown in Figure 1 (a) and (b). Another
important property lies in the features for classification. As discussed and verified in [3], ANN
features are clustered and classified by Manhattan distance while CNN features by cosine distance.
Combing aforementioned properties, a concern arises that the heavy tails could become a potentially
troublesome issue for ℓ1-norm based clustering classification since the feature tails corresponding
to different classes are more likely to be overlapped, which significantly reduces the classification
margin and constrains the generalization of ANNs, as illustrated in Figure 1 (c). Directly tackling
this issue can be rather difficult since the distributions of features are unknown, which motivates us to
pre-define an appropriate feature distribution for ANNs to obtain a high-level control of heavy tails.

Thus, we make an assumption that deep features of neural networks follow learnable distributions,
with which the feature distribution can be better formed to achieve expected properties. An naive
selection can be Multivariate Gaussian distribution N (µ,Σ) where µ denotes the mean and Σ
denotes the covariance matrix. However, there exist several concerns in ANNs. For example,
the features and weights of ANN always form long-tailed distributions instead of the bell curves
with Gaussian distributions, which indicates that pre-defined Gaussian distributions might not fit
the real ANN features well. Moreover, Gaussian distribution contains two parameters µ and Σ
for optimization. However, the heavy-tailedness can hardly be controlled by these two lower-order
moments, which indicates a higher-order moment is required to be involved in pre-defined distribution.
Thus, Multivariate Gaussian distribution needs to be replaced by a more appropriate one in ANNs.

In this work, we make use of Multivariate Skew Laplace distribution (SL) [1] to fulfill aforementioned
requirements. Considering a classification task with K classes, the density of ANN last-layer features
x ∈ Rd with respect to its corresponding class k is given by

fSL(x;µk,Σk, γk) =
|Σk|−1/2

2dπ(d−1)/2αkΓ(
d+1
2 )

e−αk

√
(x−µk)TΣ−1

k (x−µk)+(x−µk)
TΣ−1

k γk , (2)

where µ, Σ, γ denote the location, covariance and skewness parameters respectively, αk =√
1 + γT

k Σ
−1
k γk and Γ denotes the Gamma function. Skew Laplace distribution is selected for

several reasons. First, Laplace distribution fits ANN well since ANN filters empirically follow
Laplace distributions and the heavy tails of ANN features can be well-approximated by Laplace
distributions. Moreover, the skewness parameters in Multivariate Skew Laplace naturally incorporate
a high-level control of distribution tails in ANNs. According to the definition of skewness, it indicates
the direction and relative magnitude of a distribution deviation from its center location. Through
optimizing skewness parameters to appropriate values, the overlapped area of heavy tails can be
easily eliminated since skewness directly controls the shape of distributions, especially the direction
of heavy tails, to achieve disentanglement in angle space, as shown in Figure 1 (c).

Note that each class k follows independent SL(µk,Σk, γk), which makes ANN feature x follows a
mixture of Multivariate Skew Laplace distributions. The distribution of x can be computed as

p(x) =

K∑
k=1

SL(x;µk,Σk, γk)p(k) (3)

3



Input ANN Feature Extraction

Feature location

covariance

skewness

Mahalanobis distance

Cosine distance

Affinity Score

Classifier

… …

Constraint

Figure 2: An illustration of proposed method. ANN feature extraction network remains the same
while proposed classifier imposes constraints on features which involves both Mahalanobis and cosine
distance to form a clustering classification with distribution tails dispersed in different directions.

where p(k) denotes the prior probability. Although the real distribution of ANN feature is hard to
derive, how well the extracted features fit this mixture of Multivariate Skew Laplace distributions can
be measured through sampling subsets from training set and computing the negative log likelihood as

Lnll = −log[L(µ,Σ, γ|x)] = −log[fSL(x|µk,Σk, γk)p(k)],

=

N∑
i=1

αk + 0.5|Σk|+ αk

√
(xi − µk)TΣ

−1
k (xi − µk)

− (xi − µk)
TΣ−1

k γk − log[p(k)],

(4)

where L denotes the likelihood. Through incorporating the negative log likelihood into the objective
loss, ANN features x can be well-formulated as learned SL(µk,Σk, γk). Since ANN features
now follow a mixture of Multivariate Skew Laplace distributions, the classification loss can be
easily derived. With the predefined distribution with its parameters, we can derive the conditional
probability of class label yi ∈ [1,K] through Bayes’ theorem. Similar to the traditional classification
loss which computes the cross-entropy between affinity scores and one-hot encoding of class labels,
the classification loss can be computed through treating p(yi|xi) as the affinity score as

Lc = − 1

N

N∑
i=1

log[p(yi|xi)] = − 1

N

N∑
i=1

log[
p(xi|yi)p(yi)

p(xi)
],

= − 1

N

N∑
i=1

log[
fSL(xi;µyi ,Σyi , γyi)p(yi)∑K
k=1 fSL(xi;µk,Σk, γk)p(k)

].

(5)

Through combing Eq. 4 and 5, we embed the feature distributions into the loss function and make
x follow a mixture of SL distributions, where the observed heavy tails can be parameterized and a
direct connection between ANN features and trainable distribution parameters can be established to
provide a focus for tackling existing overlapping issue.

3.2 Angle-based Constraint

Note that the prior probability p(k) = 1
K and the distribution parameters of different classes are

independent from each other, which indicates there is no direct correlation among different feature
distributions. If we directly optimize SL(µk,Σk, γk) for each class, it could be difficult to reduce
the overlapping of distribution tails since each class is formulated independently in Sec 3.1 without
taking feature distributions of other classes into consideration. Thus, we take the feature distributions
of all the classes as a whole and propose to explore the constraints among classes which diverge
the heavy tails of their feature distributions to enlarge classification margin. Since the type and
corresponding parameters of feature distributions are available during training phase, constraints can
be easily applied on the distribution parameters µ, Σ and γ to achieve desired performance.
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We now introduce a simple yet effective constraint on the feature distributions, which leads to diversity
of distribution tails. We first explore the existing similarity measurements in proposed classifier. The

location µ and covariance Σ form a Mahalanobis distance
√
(x− µk)TΣ

−1
k (x− µk) in Eq. 2 for

measuring the distance from feature x to the center of class k. Similarly, the involvement of skewness
γ forms inner product (x− µk)

TΣ−1
k γk in Eq. 2 for measuring the cosine distance from normalized

feature x to the skewness of class k. Now we focus on the similarity measurement among classes.
Given random pair of classes m and n, the relative distance from class m to n can be easily derived
through replacing feature x with the distribution parameters of other classes in aforementioned
distance. Since our objective is incorporating disentanglement of feature distributions, we propose to
arrange their heavy tails to different angle regions. In order to fulfill this potential, we measure the
distance of feature distribution skewness among different classes and impose constraint to encourage
tail divergence in angle space. Given a set of skewness parameters γ1:K = [γ1, γ2, ..., γK ] ∈ RK×d,
we compute the skewness distance Dγ ∈ RK×K through computing the cosine similarity between
each class pair. For example, Dγ between class m and n is given by

Dγ(m,n) = cosθ(γm, γn) =
γm · γn

∥γm∥ ∥γn∥
. (6)

Although Dγ can be easily derived, the target D̂γ remains undefined. Note that the skewness itself
denotes the direction and relative magnitude of its corresponding distribution heavy-tailedness, which
controls the shape of distribution and provides an implicit similarity measurement among classes, as
illustrated in Figure 2. Meanwhile, the first-order moments µ provides a more explicit measurement
for describing the distance among classes, which suggests the distances among the centers of different
clusters could become an indicator for obtaining target skewness distance among classes. Thus, we
propose to make use of location parameters µ to obtain an adaptive target D̂γ . For class m, we first
take the location parameter µm as the center point and make use of square of Mahalanobis distance
for measuring the location difference between µu and the feature distributions of other classes as

Dµ(m,n) = D2
SLn

(µm) = (µm − µn)
TΣ−1

n (µm − µn), (7)
where SLn denotes the Multivariate Skew Laplace distribution corresponding to class n and D
denotes the Mahalanobis distance. With Eq. 6 and 7, we design the constraint based on two
simple principles: (a). For class m, target D̂γ(m,n) where n ∈ [1, 2, ...,K] can always achieve the
maximum and minimum values of cosine distance to fully utilize the angle space; (b). Dµ(m,n)

determine how D̂γ(m,n) are distributed in range [−1, 1] where the tail direction difference D̂γ is
inverse proportion to the location difference Dµ. Thus, the propose angle-based constraint is given by

Lac =
1

K2

K∑
m=1

K∑
n=1

[Dγ(m,n)− D̂γ(m,n)]2,

where D̂γ(m,n) =
max(Dµ(m, 1:K))− 2 Dµ(m,n)

max(Dµ(m, 1:K))
,

(8)

where function max takes the maximum value among all K classes. Eq. 8 computes the mean
squared error between current skewness distance and target one, where D̂γ purely depends on current
location and covariance parameters of feature distributions to form an adaptive target distance. D̂γ

is designed by projecting the pre-computed Mahalanobis distance into range [−1, 1] in a reverse
order. Note that D̂γ(m,m) becomes 1 since Dµ(m,m) = 0 and D̂γ(m,n) becomes −1 when
class n has the maximum Mahalanobis distance Dµ(m,n) = max(Dµ(m, 1:K)). An illustration
of how proposed constraint influence the pre-defined feature distributions is shown in Figure 2.
With the combination of Mahalanobis and cosine distance for angle-based constraint, Skew Laplace
distribution introduces a clustering classification without long tails entanglement through controlling
the heavy tails. Finally, combing Eq. 4, Eq. 5 and Eq. 8, the objective loss is defined as

Lobj = Lc + λLnll + βLac, (9)
where λ and β are the hyper-parameters for balancing these terms.

3.3 Optimization

Our final objective loss named Skew Laplace Loss with angle-based constraint (SLAC) can be
simply optimized through stochastic gradient decent (SGD). Similar to vanilla ANN, we make use

5



Algorithm 1 Skew Laplace Mixture Loss with Angle-based Constraint for AdderNet
Input: The training set {X , Y}; Batch size n; Hyperparameter λ, β;
Initialize ANN network N with W where W is initialized by uniform distribution;
Initialize Multivariate Skew Laplace distributions SL(µ,Σ, γ) where µ is initialized by Xavier
initialization, Σ by 1.0 and γ by 0.0;
while not converge do

Sample a batch of data {X , Y}ni=1 from {X , Y};
Forward ANN network to get feature xn

i=1 = N (Xn
i=1,W );

Forward classifier to get affinity score p(Yn
i=1|xn

i=1) with Eq. 5;
Calculate objective loss Lobj with Eq. 9;
Update the SL(µ,Σ, γ) through SGD and pass gradients to N with Eq. 10;
Update ANN parameters W through full-precision gradient with SGD;

end while

of full-precision gradient to update filters W , which is computed based on ℓ2-norm. The major
difference lies in the gradients passed by the classifier. In SLAC ANN, the partial derivative of Lobj

with respect to last-layer feature x is calculated as

∂Lobj

∂x
= (1− p(yi|x) + λ)(αyi

((x− µyi
)TΣ−1

yi
(x− µyi

))−1/2Σ−1
yi

(x− µyi
) + Σ−1

yi
γyi

)

+
∑
k ̸=yi

p(k|x)(Σ−1
k γk − αk((x− µk)

TΣ−1
k (x− µk))

−1/2Σ−1
k (x− µk)).

(10)

Although proposed constraint Lac is not directly involved in Eq. 10, the gradients passed to ANN
layers from classifier are heavily determined by the feature distribution parameters µ, Σ and γ, which
are significantly influenced by Lac. Similar to Eq. 10, the partial derivative of Lobj with respect to
µ, Σ and γ can be computed through SGD accordingly. The entire algorithm named Skew Laplace
Mixture Loss with Angle-based constraint for AdderNet (SLAC-ANN) is shown in Algorithm 1.
Since our proposed SLAC-ANN involves a constraint on the distribution parameters to encourage tail
diversity in angle space which significantly improves the classification margin, the complexity of
optimization is relatively enlarged .The superiority of our method becomes more obvious when the
number of epochs are enlarged, which will be verified in empirical evaluations.

4 Experiments

In this section, we conduct empirical evaluation of the proposed SLAC ANN on several image classi-
fication benchmarks, including CIFAR-10, CIFAR-100 and ImageNet. ANN variants comparison
and ablation studies are provided to demonstrate the effectiveness of the proposed algorithm.

4.1 Experiments on CIFAR

CIFAR-10 and CIFAR-100 dataset contain 50K training images and 10K validation images with
size of 32× 32 from 10 categories. All the training and validation sets are pre-processed according
to the same protocol as in [9]. We make use of SGD optimizer with an initial learning rate of 0.1,
weight decay of 5× 10−4, momentum of 0.9 and a cosine learning rate schedule. The entire training
takes 800 epochs with a batch size of 256. The learning rate of trainable parameter Σ is downscale
by 1 × 102, λ is set to 0.01 and β to 0.1. For comparison, we include CNN, ANN and binary
neural network (BNN) [30] as baselines. Note that the first and last layers are set to full-precision
convolutional layer in vanilla ANN [3]. For a fair comparison, SLAC-ANN adopts a similar setting,
which uses convolutional operation for the first layer but replaces the last layer by the proposed SL
distributions parameters. All the baseline results are cited from [3].

The classification results are reported in Table 1. We first evaluate the performance of proposed
SLAC-ANN on VGG-small model [2]. SLAC-ANN achieves better performance on both CIFAR-10
and CIFAR-100 compared to other baselines. For example, SLAC-ANN improves vanilla ANN
by 0.99% [72.64% → 73.63%] on CIFAR-100. We further compare on the widely used ResNet
models [9]. For ResNet-20, SLAC-ANN achieves 92.29% and 68.31% accuracy on CIFAR-10 and
CIFAR-100 respectively, which improves vanilla ANN by 0.45% on CIFAR-10 and 0.71% on CIFAR-
100. Although higher efficiency can be achieved, BNN cannot achieve competitive classification
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Table 1: Classification results on CIFAR-10 and CIFAR-100 datasets.
Model Method #Mul. #Add. #XNOR. CIFAR-10 CIFAR-100

VGG-small

CNN 0.65G 0.65G 0 93.80% 72.73%
BNN 0.05G 0.65G 0.60G 89.80% 67.24%
ANN 0.05G 1.25G 0 93.72% 72.64%

SLAC-ANN 0.05G 1.25G 0 93.96% 73.63%

ResNet-20

CNN 41.17M 41.17M 0 92.25% 68.14%
BNN 0.45M 41.17M 40.72M 84.87% 54.14%
ANN 0.45M 81.89M 0 91.84% 67.60%

SLAC-ANN 0.46M 81.90M 0 92.29% 68.31%

ResNet-32

CNN 69.12M 69.12M 0 93.29% 69.74%
BNN 0.45M 69.12M 68.67M 86.74% 56.21%
ANN 0.45M 137.79M 0 93.01% 69.02%

SLAC-ANN 0.46M 137.80M 0 93.24% 69.83%

performance. Through formulating the feature distributions, our proposed algorithm successfully
alleviates the unfavorable gap between ANNs and CNNs. Compared to CNN, SLAC-ANN achieves
competitive results on CIFAR-100 with only 0.44% accuracy drop. The evaluation on ResNet-32
also demonstrates the superiority of our algorithm. Similarly, SLAC-ANN reduces the existing
accuracy gap by 0.23% on CIFAR-10 [0.28% → 0.05%] compared to CNN and improves ANN by
0.81% on CIFAR-100. We attribute this superiority to the elimination of existing overlapped areas of
distribution tails, which boosts the potential classification performance of ANNs.

4.2 Experiments on ImageNet

We further conduct evaluation on ImageNet dataset [12], which contains 1.2M training images
and 50k testing images with size of 224× 224 from 1000 categories. The pre-processing and data
augmentation follow the same protocols as in [9]. We make use of SGD optimizer with an initial
learning rate of 0.1, weight decay of 1× 10−5, momentum of 0.9 and a cosine learning rate schedule.
The entire training takes 300 epochs with a batch size of 256. The learning rate of trainable parameter
Σ is downscale by 1× 103, λ is set to 0.01 and β to 0.1. The models are trained on 4 NVIDIA Tesla
V100 GPUs. Similar to CIFAR experiments, we include CNN, ANN and BNN for comparison.

The results are reported in Table 2. We evaluate the performance of SLAC-ANN on ResNet-18
model. XNOR-Net replaces the multiplication by XNOR operations in ResNet trained on ImageNet
[16]. Although high efficiency can be achieved, the performance gap is tremendous compared
with CNN, with only 51.2% top-1 accuracy and 73.2% top-5 accuracy. On the contrary, ANNs
can achieve competitive results. With proposed algorithm, we further narrow the existing gap
between ANN and CNN. Comparing with vanilla ANN, SLAC-ANN improves the top-1 accuracy
by 0.7% [67.0% → 67.7%] and top-5 accuracy by 0.3% [87.6% → 87.9%]. Similarly, we conduct
experiments on ResNet-50. Comparing with vanilla ANN, SLAC-ANN improves the top-1 accuracy
by 0.4% [74.9% → 75.3%] and top-5 accuracy by 0.9% [91.7% → 92.6%], which demonstrates
that ANN classification performance can be improved through eliminating the overlapping tails.

4.3 Comparison with Loss Variants

To illustrate the necessity of the proposed mixture of multivariate skew Laplace distribution with
angle-based constraint, we introduce several loss variant for comparison. We first include L-SoftMax

Table 2: Classification results on ImageNet datasets.
Model Method #Mul. #Add. #XNOR. Top-1 Acc Top-5 Acc

ResNet-18

CNN 1.8G 1.8G 0 69.8% 89.1%
BNN 0.1G 1.8G 1.7G 51.2% 73.2%
ANN 0.1G 3.5G 0 67.0% 87.6%

SLAC-ANN 0.1G 3.5G 0 67.7% 87.9%

ResNet-50

CNN 3.9G 3.9G 0 76.2% 92.9%
BNN 0.1G 3.9G 3.8G 55.8% 78.4%
ANN 0.1G 7.6G 0 74.9% 91.7%

SLAC-ANN 0.1G 7.6G 0 75.3% 92.6%
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(c) SL ANN (d) SLAC ANN(a) LGM ANN (b) Mixture of GM ANN

Figure 3: Visualization of feature distributions of LeNet on MNIST with various ANN variants. (a)
denotes ANN with Large-margin Gaussian Mixture loss. (b) denotes ANN with mixture of Gaussian
mixture. (c) denotes ANN with mixture of skew Laplace distributions. (d) denotes ANN with mixture
of skew Laplace distributions equipped with angle-based constraint.

Table 3: Comparison of different ANN variants on CIFAR-10 and CIFAR-100 datasets.
Classifier L-SoftMax LGM MoM SL SLAC
CIFAR-10 91.83% 92.00% 91.95% 91.99% 92.29%

CIFAR-100 67.53% 67.56% 67.73% 67.51% 68.31%

[14] as the baseline. We further compare SLAC-ANN with different types of distributions, such as
the mixture of Gaussian distributions with large-margin (LGM) [22]. To further demonstrate the
superiority of SLAC-ANN, we also include a modified version of LGM named a mixture of Gaussian
mixture (MoM) as a stronger baseline which replaces the Gaussian distribution corresponding to each
class in [22] with a mixture of two Gaussian distributions since the representation power of Gaussian
mixture can be quite powerful to explore potential optimal distribution for ANNs. Skew Laplace
distribution (SL) without angle-based constraint is also included for comparison.

First, we visualize the feature distributions of aforementioned baselines in Figure 3. Consistent
with the analysis in Sec 3.1, the direction of distribution heavy-tailedness cannot be optimized with
only lower-order moments µ and Σ, as shown in Figure 3 (a). We further visualize the feature
distributions of MoM and SL ANNs, as shown in Figure 3 (b) and (c). In MoM, we replace the
Gaussian distribution for each class with a mixture of Gaussian to explore larger space of distributions.
The feature distribution tails of both MoM-ANN and SL-ANN form minor and irregular directions,
which demonstrates that pre-defining the feature distributions alone cannot achieve desired properties
that the heavy tails of different feature distributions form angle discrepancy. A visualization of
proposed SL loss with angle-based constraint is shown in Figure 3 (d) where every class successfully
forms a cluster with its distribution tail separated in various angle areas.

We further compare the performance of these ANN variants. All the variants are trained under the
same training setting on CIFAR-10/100 with ResNet-20 mentioned in Sec 4.1. Note that all the
baselines are trained with 800 epochs for a fair comparison. For the hyper-parameters of LGM and
MoM, we adopt the same setting in [22]. The results are reported in Table 3. L-SoftMax can be treated
as a naive approach for addressing the distribution overlapping issue through enlarging classification
margin. However, L-SoftMax achieves the similar performance as vanilla ANN, which demonstrates
that directly including margin optimization in SoftMax loss function could be ineffective in ANNs
due to the heavy-tailedness. Comparing different distributions on CIFAR-10 dataset, ANN with LGM,
MoM, and SL distribution achieve similar performance while SLAC-ANN achieves the best accuracy
with 0.29% improvement compared to LGM. On CIFAR-100, the gaps become more obvious. Both
LGM and SL cannot achieve competitive results. For LGM, we attribute this gap the natural limitation
that single Gaussian distribution can hardly fit the long-tailed one in ANNs. For SL, although the
heavy tails in ANNs can be easily fitted, the overlapped areas of them cannot be handled, which leads
to misclassification. MoM achieves similar performance compared to vanilla ANN, which indicates
the enlarged distribution space is not the major contributor to the improvement. SLAC achieves the
best performance among all the baselines, which demonstrates its effectiveness.

4.4 Ablation Studies

Number of Epochs. As mentioned in Sec. 3.3, we enlarge the number of epochs due to the higher
training complexity of SLAC-ANN. To demonstrate the effectiveness of proposed algorithm, we
enlarge the training epochs to 800 for vanilla ANN and conduct experiments under different training
epochs. We first compare the training and testing curves of SLAC-ANN and vanilla ANN. As
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Figure 4: Training and testing accuracy curves with 800 training epochs on CIFAR-10 abd CIFAR-
100 in (a) and (b) respectively. (c) denotes the testing accuracy of vanilla ANN and SLAC-ANN on
CIFAR-10 and CIFAR-100 under different training epochs.

Table 4: Ablation Studies of SLAC-ANN on CIFAR-100.
Location Covariance Skewness λ β Accuracy

SL Parameters
✗ ✓ ✓ 0.01 0.1 64.82%
✓ ✗ ✓ 0.01 0.1 67.73%
✓ ✓ ✗ 0.01 0.1 62.04%

Loss Terms
✓ ✓ ✓ 0.0 0.0 67.39%
✓ ✓ ✓ 0.01 0.0 67.51%
✓ ✓ ✓ 0.0 0.1 67.73%

SLAC-ANN ✓ ✓ ✓ 0.01 0.1 68.31%

shown in Figure 4 (a), we train both SLAC-ANN and ANN with a ResNet-20 on CIFAR-10 where
SLAC-ANN consistently has higher training accuracy than vanilla ANN, which enables SLAC-ANN
to achieve better classification performance on CIFAR-10. The superiority becomes more obvious on
CIFAR-100, as shown in Figure 4 (b). There exist large gaps between SLAC-ANN and vanilla ANN
in terms of both training and testing curves, which empirically verifies that SLAC-ANN successfully
improves the classification performance besides the enlargement of epochs. To further demonstrate
the influence of training epochs, we conduct experiments on CIFAR-10 and CIFAR-100 under
different training epochs including 400, 800 and 1200 epochs, as shown in Figure 4 (c). Through
enlarging the training epochs on CIFAR-10, both SLAC-ANN and ANN achieve better performance,
and SLAC-ANN consistently surpasses vanilla ANN with around 0.1% to 0.2% improvement under
different epochs. On CIFAR-100, although SLAC-ANN has similar performance with ANN with
400 epochs, the superiority becomes more obvious with increasing epochs. We attribute this gap to
the natural training complexity of SLAC which introduces a clustering algorithm with angle-based
constraint on tails. After enlarge epochs to 800, SLAC-ANN achieves 0.52% accuracy improvements
compared with ANN. When the epochs are enlarged to 1200, both SLAC-ANN and vanilla ANN
reach sub-optimal areas with accuracy reduction. Thus, we set the training epochs to 800.

Effectiveness of Different Components. We conduct ablation studies of the proposed SLAC-ANN
to verify the effectiveness of the distribution parameters and loss terms. Since we assume ANN
features follow a mixture of Multivariate Skew Laplace distributions, all the distribution parameters
including location, covariance, and skewness are studied. The influence of different loss terms is
included in our studies. We make use of a ResNet-20 with ANN as the baseline model and evaluate
all the variants on CIFAR-100. The results are reported in Table 4. For SL parameters, ✗ denotes
corresponding parameters are fixed after initialization while ✓ denotes involved in optimization.
As shown in rows of SL Parameters, all the distribution parameters contribute to the classification
accuracy. Location and skewness play more importance roles since they are the key factors in
clustering and proposed constraint while covariance models the variance of each feature dimension
for different classes. Without the involvement of regularization term or angle-based constraint, all
the variants have relatively large accuracy drop, as shown in the rows of Loss Terms. Through
incorporating the optimization of all distribution parameters and including proposed loss terms,
SLAC-ANN achieves the best performance.
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5 Conclusion

Adder Neural Networks are more efficient for hardware designs and achieve a satisfactory energy
reduction, which has wide application potential for computer vision tasks. To alleviate the existing
performance gaps between ANNs and CNNs in classification task, we propose to investigate the
potential natural weakness due to the replacement of operations. We argue that the heavy-tailed
feature distributions in ANNs could lead to worse classification and propose to pre-define ANN
features to follow a mixture of Multivariate Skew Laplace distributions, with which the heavy tails
in ANNs can be better controlled with high order moment skewness. We introduce an angle-based
constraint on distribution parameters to incorporate high diversity of distribution tails in angle space
so that the overlapping can be eliminated. We conduct experiments on various models and datasets
where the proposed SLAC-ANN consistently achieves superior performance.
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