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OntoTune: Ontology-Driven Self-training for Aligning Large
Language Models

Anonymous Author(s)

ABSTRACT
Existing domain-specific Large Language Models (LLMs) are typi-
cally developed by fine-tuning general-purposed LLMs with large-
scale domain-specific corpora. However, training on large-scale
corpora often fails to effectively organize domain knowledge of
LLMs, leading to fragmented understanding. Inspired by how hu-
mans connect concepts and organize knowledge through mind
maps, we aim to emulate this approach by using ontology with
hierarchical conceptual knowledge to reorganize LLM’s domain
knowledge. From this perspective, we propose an ontology-driven
self-training framework called OntoTune, which aims to align
LLMs with ontology through in-context learning, enabling the gen-
eration of responses guided by the ontology. We leverage in-context
learning to identify whether the LLM has acquired the specific con-
cept’s ontology knowledge, and select the entries not yet mastered
by LLM as the training set to further align the LLM with ontology.
Compare to existing domain LLMs based on newly collected large-
scale domain-specific corpora, our OntoTune, which relies on the
existing, long-term developed ontology and LLM itself, significantly
reduces data maintenance costs and offers improved generalization
ability. We conduct our study in the medical domain to evaluate
the effectiveness of OntoTune, utilizing a standardized medical on-
tology, SNOMED CT as our ontology source. Experimental results
demonstrate that OntoTune achieves state-of-the-art performance
in both in-ontology task hypernym discovery and out-of-ontology
task medical domain QA. Moreover, compared to the latest direct
ontology injection method TaxoLLaMA, our OntoTune better pre-
serves original knowledge of LLM.

CCS CONCEPTS
• Computing methodologies → Natural language processing;
Semantic networks.
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Antiviral drugs are effective for treating viral infections. 
Can H3N2 be treated with antiviral drugs?

H3N2 usually requires other treatment methods, antiviral 
drugs may not be applicable.

Antiviral drugs are effective for treating viral infections. 
Can H3N2 be treated with antiviral drugs?

H3N2 Influenza Virus Viral Infectionis a

H3N2 is a subtype of influenza virus, which is a type of 
viral infection. Therefore, antiviral drugs can be used to 
treat infections caused by H3N2.
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Figure 1: A simple example illustrates how hierarchical struc-
ture knowledge in the ontology guide responses.

1 INTRODUCTION
Large Language Models (LLMs), such as GPT-4 [41] and LLaMA
[15], have achieved remarkable success in the field of natural lan-
guage processing [51], demonstrating advanced performance across
various domains and tasks. To further enhance the capabilities of
LLMs in specific domain, such as medical, financial, and science,
the research and industry community have begun to focus on de-
veloping domain-specific LLMs [2, 7, 31].

Existing methods usually develop domain-specific LLMs by fur-
ther training general-purposed LLMs on domain- specific corpora,
such as BloombergGPT [55], BioMistral [31] and LawGPT [67]. Pre-
vious researches [16, 45] indicate that LLMs have already acquired
most domain knowledge during the comprehensive pre-training
phase, and need to reorganize and align knowledge with domain-
specific requirements during the post-training phase. However,
adapting LLMs to specific domains presents significant challenges
[32, 66]. On the one hand, the scarcity of domain-specific corpora
and constraints imposed by data privacy present significant hur-
dles in the continuous collection of high-quality domain corpora
for continual pre-training or supervised fine-tuning, demanding
substantial investment in time and resources. On the other hand, ex-
isting researches [10, 14] reveal that directly fine-tuning LLMs with
fragmented raw domain corpora struggles to effectively organize
domain knowledge and can even impair prompting capabilities of
LLMs. So canwe find amore efficient alternative to reorganize
domain knowledge in large language models without relying
on large-scale domain-specific corpora?

Inspired by how humans use mind maps which visually represent
concepts and their relationships, to systematically organize and review
knowledge, we aim to use domain-specific mind maps to reorganize
LLM’s domain knowledge. Naturally, we associate these mind map
with widely established, rigorously constructed ontologies [56],
which fully display the relationships and hierarchical structures
between domain concepts as the ideal domain-specific mind maps.
As shown in Figure 1, the ontology structure primarily consists of
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hypernym and synonym relationships between concepts, and have
been widely applied in scenarios such as information retrieval [58]
and knowledge reasoning [26, 62]. Common domain ontologies
include SNOMED CT [46] in the biomedical field, WordNet [37] in
the lexical field and GeoNames1 in the geographical field. Figure
1 illustrates an example of a medical ontology guided response,
where the LLM links concepts through the hierarchical structure
knowledge in the ontology. Meanwhile, we suppose that compared
to collecting new large-scale domain corpora, utilizing existing,
long-term developed ontologies can reduce data maintenance costs
and offer better generalization. From this perspective, we propose
an ontology-driven self-training fine-tuning frameworkOntoTune,
which aims to align LLMs with domain ontology through in-context
learning2 and generate responses guided by the ontology. Onto-
Tune’s workflow consists of three main steps: (1) Instruction Text
Generation. We utilize three ontology-aware concept-level in-
structions which focus respectively on diversity, conceptuality, and
professionalism to generate outputs. Then we incorporate the cor-
responding ontology knowledge to the input and let seed model
rethink to obtain better outputs through in-context learning. (2)
Inconsistency Text Selection. If there is significant inconsis-
tency between the corpora obtained with and without ontology
knowledge, we consider that the seed model has not effectively
grasped this concept’s ontology structure to guide its output and
select entries that exhibit significant inconsistency as the training
set. (3) LLM Fine-tuning. Based on the training set, we perform
self-training on the seed model, resulting in aligned domain LLMs.

We conduct our study in the medical field, using the high-quality
medical ontology SNOMED CT [46] as the source ontology. To
evaluate the effectiveness of OntoTune, we compare it not only
with customized models for specific tasks but also with existing
domain LLM trained on large-scale corpora and the direct ontology
injection method TaxoLLaMA* [38] implemented on the same LLM
called seed model. Results show that we have achieved state-of-
the-art performance in in-ontology task hypernym discovery and
out-of-ontology task domain QA, demonstrating that OntoTune
can effectively improve the performance of domain-specific tasks.
Moreover, OntoTune significantly preserves the knowledge and
safety of the seedmodel compared to existing domain-specific LLMs
and TaxoLLaMA. Our contributions can be summarized as follows:
• We highlight the limitations of developing domain LLMs based

on large-scale domain corpora, and we are the first to utilize
small-scale ontology to reorganize the domain knowledge of
LLMs.

• We propose a novel ontology-driven self-training method On-
toTune, which aligns LLMs with ontologies through in-context
learning, thereby guiding LLMs to generate responses under
domain ontology knowledge.

• Compared to exsiting domain LLM based on large-scale raw
domain corpora and the direct injection method TaxoLLaMA,
our OntoTune achieves state-of-the-art performance in the in-
ontology task hypernym discovery and out-of-ontology task
domain QA, and significantly preserves the knowledge capabil-
ities and safety of the seed model.

1https://www.geonames.org/
2https://openai.com/index/learning-to-reason-with-llms/

2 RELATEDWORKS
2.1 Domain-specific LLMs
Existing domain-specific large language models (LLMs) can be cat-
egorized into two groups: (1) those models trained from scratch
using domain-specific corpora, such as BioGPT [35] and GatorTron
[59], and (2) those [9, 31, 55, 63] that employ continual training on
general-purposed models. Benefiting from its ability to leverage
the extensive and diverse data of the seed models, as well as more
efficient training processes, the latter approach has gradually be-
come mainstream. Current domain-specific LLMs like BioMistral
[31], BloombergGPT [55] and LawGPT [67] are developed by train-
ing a seed model with a large-scale raw domain-specific corpora,
demonstrating impressive performance on domain tasks. To be spe-
cific, the medical model PMC-LLaMA [54] is fine-tuned with LoRA
[23] on LLaMA using 4.8 million biomedical papers. LawGPT [67]
continues training on 500k legal documents. And BloombergGPT
[55] is fine-tuned on a 708 billion tokens financial corpora. These
models typically rely on large amounts of training data to adapt
to their respective domains. However, this fragmented knowledge
from the raw corpora is merely injected into the seed model without
being systematically organized and recent research [10, 14] have
indicated that directly using these fragmented raw corpora is not
efficient. Additionally, prior researches seldom utilize ontologies as
foundational knowledge sources for training corpora. Compared
to fragmented large-scale corpora, concept-level structured knowl-
edge in ontologies can play a significant role in knowledge manage-
ment [58] and semantic search [26, 62], and also have the potential
to empower LLMs. Recently, TaxoLLaMA [38] develops a lexical
semantic LLM via directly employing the WordNet [37] ontology
for instruction-tuning, achieving state-of-the-art performance in
multiple lexical semantic tasks and highlighting the potential of
ontologies for developing domain-specific LLMs.

2.2 Self-Generated Data for Training
The self-training paradigm involves generating data autonomously
and using this self-generated data for further training. Traditional
self-training methods [3, 19, 25, 57] typically employ a trained
model to annotate data, and then improve model performance based
on these newly annotated data. Due to its simplicity and efficiency,
this training paradigm is also migrating to LLMs. Given the high
costs of manually annotating training data or using more powerful
proprietary models like GPT-4 [41], many works [22, 36, 47, 53, 60]
have begun to leverage the language model itself to synthesize train-
ing data. STaR [61] is a self-taught reasoner that learns from its own
generated reasoning steps to improve reasoning ability. Further-
more, SDFT [60] proposes a self-distillation fine-tuning method to
achieve more efficient and less damaging results. Alternatively, Lin
et al. [34] use gold answers to train a reward model for evaluating
generated instructions separately. However, previous self-training
approaches usually rely on gold labels to filter out low-quality
instruction data, and they tend to focus more on improvements
within a single dataset. Unlike previous methods, our OntoTune
mitigates performance degradation caused by incorrect labels by
refining and reorganizing internal domain knowledge of the seed
model through open-ended instructions [24, 49].

2
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Instruction + Ontology (𝒙, 𝒕, 𝒐𝒕)

Inconsistent 
Corpus

Instruction		(𝒙, 𝒕)

You are an expert in the field of 
medicine, combine your expertise with 
ontology to generate a knowledge 
card about the medical term H3N2. 
The ontology information is as follows: 

Definition: A subtype of the 
Influenza A virus characterized by 
the presence of hemagglutinin 3 
and neuraminidase 2 proteins. |
 Hypernyms: Influenza Virus, 
Orthomyxoviridae Family |

Synonyms: Influenza A (H3N2) 

You are an expert in the field of 
medicine, combine your expertise 
to generate a knowledge card 
about the medical term H3N2.

Filter

	𝓓𝒔𝒇𝒕
	{𝑥, 𝑦"}

		𝓓𝒅𝒑𝒐
{𝑥, 𝑦" ≻ 𝑦}

SFT

DPO

SFT+DPO

		𝑓!

		𝑓!

		𝑓!

	𝑓#!"#

		𝑓#!"#$%&'

		𝑓#%&'

Few-shot

Definition Completion

Write a definition for H3N2. Your 
answer should be in one sentence 
without anything except definition. If 
the term is ambiguous, use the other 
word to disambiguate it. Example: 
Word 1: Expression (procedure) 
Definition 1: An expulsion done by 
manipulation. 
Word 2: Arm halfspan (observable 
entity)
Definition 2: ……

Retrieve

Response 1 (𝒚𝒕)

Response 2 (𝑦$")
𝑦	 ≠ 𝑦"

[Definition] [Related Concepts]
[Pathophysiology] [Transmission]
[Clinical Manifestation]
[Diagnosis] 
[Differential Diagnosis]
[Complication]
[Related Diseases and Conditions]
[Treatment and Management]

[Definition] [Origin] [Symptoms] 
[Transmission] [Risk Groups] 
[Treatment] [Complications] 
[Public Health Impact]

LLM	𝑓!

LLM

LLM

LLM

	𝑓!

	𝑓!

Figure 2: Overview of OntoTune which aligns LLMs with ontology through in-context learning.

3 METHODOLOGY
In this section, we first set an objective to evaluate whether the
seed model has mastered domain ontology knowledge and guide
the model’s responses. To achieve this objective, we introduce an
Ontology-driven self-training fine-tuning framework OntoTune.

3.1 Objective Defintion
Given an instruction 𝑥 that is closely related to ontology knowledge
𝑜 , we could get two kinds of responses:

𝑦 = 𝑓 (𝑥) and 𝑦𝑜 = 𝑓 (𝑥, 𝑜), (1)

where𝑦 is the response with instruction 𝑥 as input, and the𝑦𝑜 is the
response with both instruction 𝑥 and the ontology knowledge 𝑜 as
input. We hypothesize that if the seed model 𝑓 has fully mastered
and properly utilizes the ontology knowledge when generating
response, then 𝑦 should equal to 𝑦𝑜 . Otherwise, 𝑦𝑜 should be better
than 𝑦, since LLMs have the in-context-learning capability, and the
inclusion of 𝑜 could lead to more systematic and logical responses.
However, from our experience, 𝑦 is not close to or similar to 𝑦𝑜 in
a lot of cases, which can be found in Appendix D.

To internalize the ontology knowledge into to LLMs, we align
seed model 𝑓𝜃 , which has parameter 𝜃 , to ontology through in-
struction tuning, getting model 𝑓𝜃 ′ with updated parmeters 𝜃 ′. We
establish the optimization objective to

𝑓𝜃 ′ (𝑥) = 𝑓𝜃 (𝑥, 𝑜) (2)

As analyzed before, this objective approximately means 𝑓𝜃 ′ has
mastered the ontology knowledge and could properly utilize the
internal ontology knowledge when generating response.

3.2 OntoTune
To effectively internalize ontology knowledge„ we introduce the
OntoTune framework as shown in Fig 2. The OntoTune workflow
consists of three main steps: (1) Instruction text generation. We
utilize three types of concept-level ontology-aware instructions
that include (or exclude) ontology knowledge as input to the seed

model. These instructions focus on diversity, conceptuality, and
professionalism. (2) Inconsistency text selection.We select re-
sponses that exhibit significant inconsistency between those that
include and those that exclude ontology knowledge as our train-
ing set. (3) LLM Fine-tuning. Based on training set, we perform
self-training on the seed model.

Previous researches point [38, 39] that the definitions of concepts
are crucial for ontology learning tasks. Considering that our frame-
work aims to employ a self-training approach, rather than distilling
knowledge from more advanced models like GPT-4 [41]. Therefore,
we use the seed model to complete the missing definitions in the
ontology via a few-shot learning approach. We provide relevant
domain concepts with their definitions as examples and the specific
prompt template is shown in Figure 2.

3.2.1 Instruction Text Generation. To assess to what extend
LLMs comprehend ontology knowledge across various dimensions,
we design three distinct concept-level instruction templates. These
templates evaluate whether the ontology knowledge embedded
in the seed model can effectively guide the responses from the
perspectives of diversity, conceptuality and professionalism:

• Diverse corpus 𝑥𝑑 . This template requires to generate knowl-
edge cards related to specific concepts. The concept’s knowledge
card is a concise collection of information about a specific do-
main concept, typically including its definition, related concepts,
usage examples, and other supplementary information.

• Conceptual corpus 𝑥𝑐 . This template is directly related to on-
tology concepts. It requires to generate definitions for concepts
and distinguish between related concepts. Ontology can directly
guide the model in systematically organizing and describing
various concepts and their relationships.

• Professional corpus 𝑥𝑝 . This template requires to elucidate
the current research status of the concept in existing academic
journals. Ontology implicitly connects related concepts, allow-
ing for a more comprehensive and coherent presentation of
academic knowledge.

3
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You are an expert in the field of medicine. Combine your expertise information to generate 
professional content, including current research focus, research trends, gaps and future 
directions, describing the current state of research on the medical term [Term]. 

You are an expert in the field of medicine. Combine your expertise with ontology 
information to generate professional content, including current research focus, research 
trends, gaps and future directions, describing the current state of research on the medical 
term [Term]. The ontology information is as follows: 
Definition: [Term] is defined as [Definition]. | 
Hypernyms: The hypernyms of [Term] include [Hypernyms List]. | 
Synonyms: The synonyms of [Term] include [Synonyms List].

Diverse Corpus
You are an expert in the field of medicine, combine your expertise to generate a knowledge 
card about the medical term [Term].

You are an expert in the field of medicine, combine your expertise with ontology to generate 
a knowledge card about the medical term [Term]. The ontology information is as follows: 
Definition: [Term] is defined as [Definition]. | 
Hypernyms: The hypernyms of [Term] include [Hypernyms List]. | 
Synonyms: The synonyms of [Term] include [Synonyms List].

You are an expert in the field of medicine. Generate knowledge content to help understand 
medical terms. For this term, provide me the following information: 1. Definition: Give a clear 
and concise definition of the term [Term]. 2. Related Terms: Identify and briefly define terms 
that are closely related to [Term]. Explain how each related term differs from or relates to 
[Term].

You are an expert in the field of medicine. Generate knowledge content to help understand 
medical terms. For this term, provide me the following information: 1. Definition: Give a clear 
and concise definition of the term [Term]. 2. Related Terms: Identify and briefly define terms 
that are closely related to [Term]. Explain how each related term differs from or relates to 
[Term]. The ontology information of [Term] is as follows: 
Definition: [Term] is defined as [Definition]. | 
Hypernyms: The hypernyms of [Term] include [Hypernyms List]. | 
Synonyms: The synonyms of [Term] include [Synonyms List].

Conceptual Corpus

Professional Corpus

Figure 3: Ontology-aware corpus generation templates.

These corpus generation templates are shown in Figure 3. For
the concept 𝑡 , we denote the concept-level instructions as 𝑥 ∈
{𝑥𝑑 , 𝑥𝑐 , 𝑥𝑝 }, and the generation process is represented as:

𝑦𝑡 = 𝑓𝜃 (𝑥, 𝑡) (3)

Aiming to align seed model with ontology through in-context learn-
ing, we integrate ontology information related to concepts into the
input and obtain more systematic and semantically clear responses
under the guidance of ontology as shown in Figure2. The ontol-
ogy information includes the definitions of concepts and the ontol-
ogy structure of the concepts, i.e., their hypernyms and synonyms,
which are retrieved from the source ontology. We represent the
generation process with concept’s ontology information as:

𝑦𝑜𝑡 = 𝑓𝜃 (𝑥, 𝑡, 𝑜𝑡 ) (4)

where 𝑜𝑡 ∈ 𝑂 is the ontology information about the concept 𝑡
retrieved from the source ontology 𝑂 or completed by seed model.

3.2.2 Inconsistency Text Selection. For the concept 𝑡 , if the
responses𝑦𝑡 and𝑦𝑜𝑡 are consistent, it indicates that ontology knowl-
edge related to concept 𝑡 embedded in the seed model can implic-
itly guide the response. Conversely, if there is an inconsistency as
shown in the example in Figure 2, the content in 𝑦𝑡 is broad but
superficial and does not involve related concepts, whereas the con-
tent in 𝑦𝑜𝑡 is specific and connected to relevant ontology concepts.
Therefore, we select the inconsistent responses as the training set
for the seed model to align with ontology. To evaluate inconsis-
tency, we calculate a hybrid similarity score based on three different

metrics: embedding cosine similarity, ROUGE-L, and BLEU-4:

sim(𝑦𝑡 , 𝑦𝑜𝑡 ) =
𝐸⊤ (𝑦𝑡 )𝐸 (𝑦𝑜𝑡 )

∥𝐸 (𝑦𝑡 )∥∥𝐸 (𝑦𝑜𝑡 )∥
+ ROUGE-L(𝑦𝑡 , 𝑦𝑜𝑡 ) + BLEU-4(𝑦𝑡 , 𝑦𝑜𝑡 )

(5)

where 𝐸 (·) is a sentence encoding model that encodes the input
sentence into a vector for semantic similarity evaluation, which
is a fine-tuned model based on MiniLMv2 [52] implemented by
sentence-transformers3 during experiments. And ROUGE-L(·) and
BLEU-4(·) compute word-level text similarity. We select the low-
est 𝑘 entries based on sim(𝑦𝑡 , 𝑦𝑜𝑡 ) from each type of corpora to
construct the training data. Specifically, we construct our train set
under two injection methods: supervised fine-tuning (SFT) data
denoted as D𝑠 𝑓 𝑡 = {𝑥𝑛, 𝑦𝑜𝑛}𝑘𝑛=1 and direct preference optimization
(DPO) data denoted as D𝑑𝑝𝑜 = {𝑥𝑛, 𝑦𝑜𝑛 ≻ 𝑦𝑛}𝑘𝑛=1.

3.2.3 LLM Fine-tuning. Based on the training set constructed
above, we use three fine-tuning methods: supervised instruction
fine-tuning (SFT), direct preference optimization (DPO), and su-
pervised instruction fine-tuning combined with direct preference
optimization (SFT+DPO). Through SFT, we hope the seed model
can directly learn ontology-guided responses from 𝑦𝑜𝑡 , thereby im-
plicitly enhancing its internal ontology knowledge. We utilize the
training data D𝑠 𝑓 𝑡 to fine-tune the LLM 𝑓𝜃 directly with the next-
token prediction objective for response 𝑦𝑜𝑡 :

max
𝜃

E(𝑥𝑡 ,𝑦𝑜𝑡 )∼D𝑠 𝑓 𝑡

[
log 𝑃𝜃 (𝑦𝑜𝑡 | 𝑥𝑡 )

]
(6)

For DPO, we use this fine-tune approach enables the seed model
to favor the responses guided by ontology, avoiding the original
superficial ones. We utilize the training data D𝑑𝑝𝑜 to optimize
the LLM 𝑓𝜃 by treating 𝑦𝑜𝑡 as the preferred response and 𝑦𝑡 as the
rejected response:

max𝜃 E(𝑥𝑡 ,𝑦𝑜𝑡 ≻𝑦𝑡 )∼D𝑑𝑝𝑜

[
log𝜎

(
𝛽 log 𝑃𝜃 (𝑦𝑜𝑡 |𝑥𝑡 )

𝑃ref (𝑦𝑜𝑡 |𝑥𝑡 )
− 𝛽 log 𝑃𝜃 (𝑦𝑡 |𝑥𝑡 )

𝑃ref (𝑦𝑡 |𝑥𝑡 )

)]
(7)

where 𝑟𝑒 𝑓 is the parameter of initial seed model and 𝛽 is a param-
eter controlling the deviation from reference policy 𝑃𝑟𝑒 𝑓 . Lastly,
following the paradigm of combining SFT and DPO to enhance the
model’s task adaptability and domain generalization capabilities in
previous work [15, 41], we also attempt to train our seed model in
two stages using SFT and DPO fine-tuning methods, respectively.

4 EXPERIMENT
We conduct comprehensive experiments to demonstrate the effec-
tiveness of OntoTune. These experiments are designed to answer
the following research questions:

• RQ1: Can OntoTune’s implicit injection approach enable LLMs
to effectively align with ontology knowledge?

• RQ2:Can OntoTune adapt LLMs to specific domains, improving
the performance of domain-specific tasks?

• RQ3: How does OntoTune affect on the general performance
of the seed model?

3https://github.com/UKPLab/sentence-transformers
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TaxoLLaMA*
Input: 
You are a helpful assistant. List all the possible words divided with a comma. Your 
answer should not include anything except the words divided by a comma. hyponym: 
[Term] ( [Definition] ) | hypernyms:
Output:
[Hypernyms List]

Input: 
You are a helpful assistant. List all the possible words divided with a comma. Your 
answer should not include anything except the words divided by a comma. hyponym: 
[Term] ( [Definition] ) | synonyms:
Output:
[Synonyms List]

Figure 4: The templates of TaxoLLaMA*’s instruction-tuning
and hypernym discovery task.

4.1 Experimental Setup
In this paper, we select the medical domain as example to evaluate
the effectiveness of our method, since medical field receives wide-
spread attention and has rich evaluation datasets and baselines [66].
Specifically, we adopt standardized SNOMED CT4 [46] Interna-
tional Edition June version as our source ontology, which includes
367,978 medical concepts, of which only 8,275 have corresponding
definitions, and 246,356 taxonomic relationships (i.e., ‘is-a’). In or-
der to match the training scale of existing domain-specific LLMs
[11, 17], we select 𝑘 = 100000 inconsistent samples on each type of
corpora for training.

We utilize the LLaMA-3-8B-Instruct [15]model as our seedmodel
due to its robustness and generalization across multiple medical
tasks. We employ the Low Rank Adaptation [23] (LoRA) technique
to fine-tune themodel based on the LLaMA-Factory [64] framework.
During the OntoTune training phase, we apply LoRA to all linear
layers with a rank of 𝑟 = 8. All training is conducted on 8 NVIDIA
H100 80G GPUs. For SFT stage, we use fp32 and a learning rate
of 5e-5, training for 3 epochs with a cosine scheduler, a batch size
per device initialized to 8 and gradient accumulation of 2. For DPO
stage, we use fp32 and a learning rate of 5e-6, training for 3 epochs
with a cosine scheduler and 4 batch size per device.

4.2 Hypernym Discovery (RQ1)
To verify whether the seed model can effectively align with the on-
tology, we evaluate the model’s ontology reasoning ability through
the in-ontology task hypernym discovery.

4.2.1 Datasets andMetric. We select 4 subsets from the SemEval-
2018 Task 9 [8] dataset: 1A (English), 1B (Italian), 1C (Spanish), and
2A (Medical). The samples in these datasets contain a hyponym
and a list of hypernyms, and the prompt template we used for
training and evaluation is shown in Figure 4. The performance is
evaluated using the Mean Reciprocal Rank (MRR) metric denoted
as MRR = 1

𝑁

∑𝑁
𝑖=1

1
rank𝑖 , where 𝑁 is the total number of queries,

and 𝑟𝑎𝑛𝑘𝑖 is the rank of the correct result in the 𝑖-th query.

4.2.2 Baselines. Our baselines can be divided into two part: (1)
embedding-based method: CRIM [6], Hybrid [20], RMM [4], 300-
sparsans [5]; (2) PLM-based method: T5∗ [40]; (3) LLM-based

4https://www.snomed.org/

Table 1: Results of the hypernym discovery. * represent lan-
guage models that have been adapted for hypernym discov-
ery task. All scores are magnified by a factor of 100.

Model 1A:English 1B:Italian 1C:Spanish 2A:Medical

CRIM [6] 36.10 - - 54.64
Hybird [20] 34.07 - - 64.47
RMM [4] 39.07 - - 54.89
300-sparsans [5] - 25.14 37.56 -
T5∗ [40] 45.22 24.04 27.50 44.73

LLaMA3 8B* [15] 51.64 47.41 53.06 54.86
Aloe* [17] 45.26 43.52 51.03 57.42
Med42-v2* [11] 44.84 43.78 50.30 55.97
jsl-medllama*-v18 44.79 42.83 48.79 43.39
TaxoLLaMA* [38] 48.42 39.91 46.73 58.65

OntoTune𝑠 𝑓 𝑡 53.02 47.67 53.83 65.53
OntoTune𝑑𝑝𝑜 50.46 49.21 53.61 62.52
OntoTune𝑠 𝑓 𝑡+𝑑𝑝𝑜 51.03 45.22 52.94 62.81

method: LLaMA3 8B∗, TaxoLLaMA∗ [38], Aloe* [17], Med42-v2*
[11] and jsl-medllama*-3-8b-v185. The T5∗ represents the taxonomy-
adapted T5 [44] model implemented by Nikishina et al. [40]. All
LLM-based baselines and our OntoTune are developed based on
LLaMA3 8B-Instruct, and have all been adapted for hypernym dis-
covery task implemented by us. Among them, TaxoLLaMA∗ [38] is
a direct ontology injection method. We adopt the same pre-training
method as vanilla TaxoLLaMA [38] and implement it with med-
ical ontology SNOMED CT. Our instruction-tuning template is
derived from the vanilla TaxoLLaMA [38] as shown in Figure 4,
and it utilizes 510910 medical ontology relationships under the
same training hyperparameters as OntoTune𝑠 𝑓 𝑡 . Aloe*, Med42-
v2* and jsl-medllama*-3-8b-v18 are medical LLMs fine-tuned on
large-scale medical corpora and general instructions.

4.2.3 Implementation. Considering the lack of definition of con-
cepts in existing data sets [39], we follow previous generative work
[38] using GPT3.5-turbo6 to generate definitions for the hyponym
concepts in these datasets, which helps to remove ambiguity. Addi-
tionally, we perform instruction-tuning for all LLM-based methods
on the training set with a batch size of 32 per device and other
training hyperparameters identical to OntoTune𝑠 𝑓 𝑡 .

4.2.4 Results. Medical Domain Performance. As shown in Ta-
ble 1, the OntoTune𝑠 𝑓 𝑡 models achieve state-of-the-art performance
on themedical subset dataset, outperforming the seedmodel LLaMA*
by 19.45%, TaxoLLaMA* by 11.73%. Although TaxoLLaMA* uses the
entire SNOMEDCT ontology for training, it does not achieve signifi-
cant improvement. Moreover, we obverse that Aloe* and Med42-v2*
trained on large-scale medical corpora exhibit noticeable perfor-
mance improvements. Experimental results indicate that compared
to TaxoLLaMA*, OntoTune can integrate ontology knowledge to
LLMs more efficiently.

Multilinual Performance. We conduct hypernym discovery
tasks in multilingual environments, as shown in Table 1. Due to
LLaMA3’s pre-training in a multilingual environment, LLaMA*
demonstrates good generalization performance on the Italian and
Spanish subset datasets. However, TaxoLLaMA* and three medical

5https://huggingface.co/johnsnowlabs/jsl-medllama-3-8b-v18
6https://platform.openai.com/docs/models/gpt-3-5-turbo
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Table 2: Results of the medical domain QA in the zero-shot and supervised fine-tuning (on evaluation) setting. The best results
are highlighted in bold, while the second best are underlined. The TaxoLLaMA* represents the variants of TaxoLLaMA [38]
implemented by us. ↑ and ↓ indicate the score improvement and decline compared to the seed model.

Setting Model MedQA MedMCQA PubMedQA USMLE-step1 USMLE-step2 USMLE-step3 Average

zero-shot

LLaMA3 8B [15] 51.7 51.7 70.3 57.4 52.3 58.2 56.9
TaxoLLaMA*[38] 50.5 ↓ 1.2 46.1 ↓ 5.6 73.4 ↑ 3.1 42.6 ↓ 14.8 39.4 ↓ 12.9 47.5 ↓ 10.7 49.9 ↓ 7.0

OntoTune𝑠 𝑓 𝑡 51.5 ↓ 0.2 56.7 ↑ 5.0 72.0 ↑ 1.7 57.4 - 54.1 ↑ 1.8 60.7 ↑ 2.5 58.7 ↑ 1.8
OntoTune𝑑𝑝𝑜 53.3 ↑ 1.6 57.2 ↑ 5.5 65.5 ↓ 4.8 58.5 ↑ 1.1 51.4 ↓ 0.9 59.0 ↑ 0.8 57.4 ↑ 0.5
OntoTune𝑠 𝑓 𝑡+𝑑𝑝𝑜 51.9 ↑ 0.2 56.7 ↑ 5.0 66.3 ↓ 4.0 53.2 ↓ 4.2 54.1 ↑ 1.8 63.1 ↑ 4.9 57.6 ↑ 0.7

SFT (on evaluation)

LLaMA3* 8B [15] 56.4 53.9 77.2 56.4 56.0 61.5 60.2
Aloe [17] 53.4 ↓ 3.0 56.8 ↑ 2.9 75.4 ↓ 1.8 54.3 ↓ 2.1 61.5 ↑ 5.5 60.7 ↓ 0.8 60.4 ↑ 0.2
Med42-v2 [11] 57.8 ↑ 1.4 58.1 ↑ 4.2 74.6 ↓ 2.6 60.6 ↑ 4.2 57.8 ↑ 1.8 61.5 - 61.7 ↑ 1.5
jsl-medllama-v18 59.3 ↑ 2.9 57.3 ↑ 3.4 71.0 ↓ 6.2 44.7 ↓ 11.7 57.8 ↑ 1.8 62.3 ↑ 0.8 58.7 ↓ 1.5
TaxoLLaMA* [38] 55.9 ↓ 0.6 57.5 ↑ 3.6 77.6 ↑ 0.4 56.4 - 57.8 ↑ 1.8 59.0 ↓ 2.5 60.7 ↑ 0.5

OntoTune𝑠 𝑓 𝑡 58.4 ↑ 2.0 60.4 ↑ 6.5 78.6 ↑ 1.4 57.4 ↑ 1.0 57.8 ↑ 1.8 62.3 ↑ 0.8 62.5 ↑ 2.3
OntoTune𝑑𝑝𝑜 58.3 ↑ 1.9 60.7 ↑ 6.8 79.4 ↑ 2.2 55.3 ↓ 1.1 54.1 ↓ 1.9 61.5 - 61.6 ↑ 1.4
OntoTune𝑠 𝑓 𝑡+𝑑𝑝𝑜 58.2 ↑ 1.8 60.5 ↑ 6.6 78.9 ↑ 2.2 57.4 ↑ 1.0 54.1 ↓ 1.9 63.9 ↑ 2.4 62.2 ↑ 2.0

LLMs experience catastrophic forgetting, with a significant per-
formance decline compared to the seed model, whereas our three
variants of OntoTune almost preserves the original multilingual ca-
pability of seed model. Notably, although our training set does not
involve Italian and Spanish data, OntoTune𝑠 𝑓 𝑡 also achieves state-
of-the-art performance in the multilingual environment, showing
significant improvement over seed model. This indicates that our
OntoTune can effectively align seed model with ontology knowl-
edge and even can generalize to other taxonomic scenarios.

4.3 Medical Question Answering (RQ2)
To verify whether seed model after being aligned with domain
ontology, can effectively generalize to other domain-specific tasks,
we conduct an out-of-ontology task domain QA for evaluation.

4.3.1 Datasets. We utilize 6 medical QA datasets: MedMCQA
[42], MedQA [28], PubMedQA [29], USMLE step1-3 datasets[18]
to comprehensively evaluate medical domain ability. Among them,
MedMCQA, MedQA, and PubMedQA have training sets. More de-
tails about the datasets can be found in Appendix A.

4.3.2 Baselines. To ensure a fair comparison, we only compare
baselines based on the LLaMA3 8B-Instruct [15]: (1) existing do-
main LLM based on large-scale corpora: Aloe [17], Med42-v2 [11]
and jsl-medllama-3-8b-v18; (2) the direct ontology injection
method TaxoLLaMA* [38]. We report the results for both zero-
shot and supervised fine-tuning on the training set of the evaluation
dataset. More baseline performances can be found in Appendix C.

4.3.3 Implementation. Following previous works [1, 18, 31], we
perform instruction-tuning on the training set of the evaluation
dataset for LLaMA3, TaxoLLaMA and OntoTune with the same
training hyperparameters as OntoTune𝑠 𝑓 𝑡 .

4.3.4 Results. From zero-shot results shown in Table 2, we can
observe that the performance of TaxoLLaMA* significantly declines
and the performance of OntoTune increases on most datasets. And
when we conduct supervised fine-tuning on the instruction dataset,

OntoTune𝑠 𝑓 𝑡 performs better than seed model across all datasets
and achieves state-of-the-art results among all LLMs based on
LLaMA3 8B. Compared to our seed model, all three variants of
our OntoTune, as well as the TaxoLLaMA* method, achieve sig-
nificant improvements. This indicates that a small-scale, but high-
quality ontology is beneficial for enhancing the capabilities of LLMs
in specific domains. It’s observed that although LLMs trained on
large-scale raw corpora perform well on some datasets, their im-
provement over the seed model is not stable and the average score is
inferior to our OntoTune, which suggests that a large-scale corpora
is challenging to learn from. To our surprise, Although ontologies
cannot directly provide the concrete knowledge related to these
practical questions for the seedmodel, we attribute the performance
improvement to the structured ontology knowledge, which helps
LLMs reorganize domain knowledge. Furthermore, our three On-
toTune models outperform the direct ontology injection method
TaxoLLaMA*, demonstrating self-training is more effective for re-
organizing domain knowledge and improving the performance of
domain-specific tasks.

4.4 General Capabilities Evaluation (RQ3)
Futhermore, we evaluate whether the seed model exhibits cata-
strophic forgetting or impaired capabilities after OntoTune.

4.4.1 Knowledge Evaluation. We conduct evaluation on the
MMLU [21], ARC [12], and TrivialQA [30] datasets. Specifically,
MMLU is evaluated based on LLaMA-Factory [64], while ARC and
TrivialQA are evaluated on OpenCompass [13] tool with gen mode.

From the results in Table 3, we observe that Med42-v2 even sur-
passes the seed model on several datasets. This is because Med42-v2
incorporates 344k general instructions during the domain adapta-
tion phase, with 74k CoT instructions effectively enhancing rea-
soning performance on the ARC dataset. In contrast, other domain
LLMs that also incorporate general instructions experience a no-
ticeable decline in general performance compared to our OntoTune,
which does not use general instructions. Additionally, due to the
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Table 3: Results of general capabilities evaluation. ↑ and ↓ indicate the score improvement and decline of our OntoTune
compared to the direct injection method TaxoLLaMA*.

Model MMLU ARC TriviaQA Advbench

STEM Social Sciences Humanities Other Average ARC_C ARC_E - Raw Safe Jailbreak Safe

LLaMA3 8B [15] 56.83 76.61 60.81 74.10 66.49 78.64 92.77 64.81 97.50 96.35
Aloe [17] 55.67 76.24 58.91 72.25 65.10 75.25 86.95 63.03 62.50 34.23
Med42-v2 [11] 56.59 76.24 59.91 72.67 65.72 82.37 92.59 65.19 83.85 60.19
jsl-medllama-v18 55.07 74.13 58.00 71.96 64.13 80.34 91.53 61.59 90.58 68.27
TaxoLLaMA* [38] 55.96 73.74 56.92 69.43 63.29 72.88 89.24 63.12 94.04 73.27

OntoTune𝑠 𝑓 𝑡 56.47 ↑ 0.51 75.73 ↑ 1.99 61.85 ↑ 4.93 73.02 ↑ 3.59 66.31 ↑ 3.02 78.31 ↑ 5.43 91.89 ↑ 2.65 64.07 ↑ 0.95 94.04 − 92.69 ↑ 19.42
OntoTune𝑑𝑝𝑜 56.33 ↑ 0.37 75.33 ↑ 1.59 59.93 ↑ 3.01 73.64 ↑ 4.21 65.70 ↑ 2.41 78.98 ↑ 6.10 92.06 ↑ 2.82 63.96 ↑ 0.84 90.58 ↓ 3.46 77.88 ↑ 4.61
OntoTune𝑠 𝑓 𝑡+𝑑𝑝𝑜 55.67 ↓ 0.29 75.17 ↑ 1.43 61.79 ↑ 4.87 72.71 ↑ 3.28 65.93 ↑ 2.64 78.98 ↑ 6.10 92.06 ↑ 2.82 63.96 ↑ 0.84 90.58 ↓ 3.46 84.81 ↑ 11.54

Figure 5: Performance with different epochs and training
samples. The result of MedMCQA is under zero-shot setting.

fixed input-output format and lack of data diversity [65], TaxoL-
LaMA* suffers the most significant performance decline. Compared
to TaxoLLaMA*, our OntoTune method does not exhibit signifi-
cant catastrophic forgetting. Similarly, OntoTune𝑠 𝑓 𝑡 demonstrates
the best performance among three variants, showing an average
decrease of only 0.49% compared to the seed model.

4.4.2 Safety Evaluation. Following previous work [43, 60] on
safety evaluation, we select harmful instructions from theAdvbench
dataset [68] as model inputs and denote the proportion of safe
responses as “Raw Safe". Then we append adversarial suffixes to the
harmful instructions and denote the proportion of safe responses
at present as “Jailbreak Safe" to measure model’s safety.

From results in Table 3, we observe that the fine-tuned mod-
els show a significant decline in both Raw Safe and Jailbreak Safe
metrics. Despite undergoing safety alignment, the three medical
models based on large-scale corpora still exhibit catastrophic secu-
rity vulnerabilities. For four ontology-based fine-tuning approach,
TaxoLLaMA* and OntoTune both show a slight decline in the Raw
Safe metric. Under jailbreak settings, TaxoLLaMA* experiences a
significant 23.08% decline in the Jailbreak Safe metric, while On-
toTune effectively mitigates this issue. OntoTune demonstrates
state-of-the-art performance, not only achieving efficient domain
alignment but also preserving safety alignment.

4.5 Model Analysis
4.5.1 Effects of Training Parameters. In Figure 5, we explore
the performance of our OntoTune across different training epochs
and different numbers of samples. Specifically, we use TriviaQA to
evaluate general performance and MedMCQA to evaluate domain-
specific performance. We find that with 300,000 training samples,

Figure 6: Performance on the seed model Qwen2 7B.

just 1 epoch leads to significant performance improvement. Addi-
tionally, at 3 training epochs, there is a noticeable improvement
with only 9,000 samples, and the seed model trained on 75,000 sam-
ples achieves best performance. As the amount of training and data
volume increase, OntoTune gradually converges. This implies that
compared to existing domain LLMs, we can achieve more robust
results using fewer training samples through OntoTune.

4.5.2 Robustness to Seed Models. We use Qwen2 7B [58] as
the seed model and report the performance of TaxoLLaMA* and the
best variant, OntoTune𝑠 𝑓 𝑡 to demonstrate that OntoTune is not con-
strained by model architecture. As shown in Figure 6, OntoTune𝑠 𝑓 𝑡
achieves improvements over the base model across all medical QA
datasets. Notably, OntoTune𝑠 𝑓 𝑡 even achieves improvements on
most of the general datasets, and significantly enhances reason-
ing performance on ARC. This improvement may be due to the
enhancement of planning abilities when trained with structured
data [50]. Conversely, although TaxoLLaMA* shows improvement
in medical QA, it experiences a significant decline in general perfor-
mance. These results suggest that aligning with ontology benefits
domain-specific capabilities, demonstrating OntoTune’s robustness.

4.5.3 Self-training Analysis. Aiming to explore the impact of
data quality on model’s performance, we distill two stronger LLMs:
LLaMA 3.1 8B and deepseek-v2.5-chat7, using 𝑥𝑜𝑡 = {(𝑥, 𝑡, 𝑜𝑡 ) |𝑦𝑜𝑡 =

𝑓𝜃 (𝑥, 𝑡, 𝑜𝑡 ), 𝑦𝑜𝑡 ∈ D𝑠 𝑓 𝑡 } as input to generate the higher quality tar-
get output 𝑦𝑜

′
. We then train the same seed model on D′

𝑠 𝑓 𝑡
=

7https://chat.deepseek.com/
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Table 4: Results of domain capabilities for the three variants of OntoTune𝑠 𝑓 𝑡 . The reference outputs 𝑦𝑜 in their training sets are
from self-generated by LLaMA3 8B, and distilled by deepseek-chat and LLaMA3.1 8B. The best results are highlighted in bold,
while the second best are underlined.

Model 𝑦𝑜 from MedQA MedMCQA PubMedQA USMLE-step1 USMLE-step2 USMLE-step3 Average

LLaMA3 8B - 56.4 53.9 77.2 56.4 56.0 61.5 60.2
OntoTune𝑠 𝑓 𝑡 LLaMA3 8B 58.4 60.4 78.6 57.4 57.8 62.3 62.5
OntoTune𝑠 𝑓 𝑡 LLaMA3.1 8B 58.4 61.1 77.7 55.3 53.2 59.8 60.9
OntoTune𝑠 𝑓 𝑡 deepseek-chat 57.8 60.2 77.2 55.3 54.1 62.3 61.2

Figure 7: General performances for the three variants of
OntoTune𝑠 𝑓 𝑡 .

{𝑥𝑛, 𝑦𝑜
′

𝑛 }𝑘
𝑛=1 under the same hyperparameters settings. Table 4

presents the results of three LLMs compared to the seed model
in domain QA. On most datasets, the performances of all three
variants of OntoTune can be improved. Among them, the self-
training OntoTune𝑠 𝑓 𝑡 model demonstrates robust and advanced
performance, achieving improvements across all datasets. From
results in Figure 7, We observe that the OntoTune𝑠 𝑓 𝑡 distilled from
the same series LLaMA 3.1, exhibits the least decline on the knowl-
edge QA dataset like MMLU and TriviaQA. Interestingly, although
the focus is only on medical domain knowledge during the data
distillation of LLaMA 3.1, the model shows improved performance
on the reasoning challenge dataset ARC and safety evaluation Ad-
vbench. Additionally, the model distilled from deepseek shows a
noticeable decline in knowledge and safety evaluation but a sig-
nificant enhancement in reasoning ability. Overall, self-training
achieves the most efficient domain alignment without requiring
advanced LLMs, while greatly preserving original knowledge.

4.5.4 Distribution Shift Analysis. In the preceding sections, we
identify OntoTune𝑠 𝑓 𝑡 as the variant with best performance, ex-
celling not only in downstream tasks but also effectively preserving
the knowledge and safety of the seed model. We attribute this phe-
nomenon to distribution shift. We utilize the mean squared change
in parameters (denoted as |Δ𝜃 |2) to measure parameter shift dur-
ing training and evaluate the data distribution shift based on the
similarity of the model’s responses. Specifically, we collect 1,000
general instructions from the Alpaca evaluation set [33] and use the
seed model’s responses to these instructions as reference responses.
We calculate the cosine similarity between the fine-tuned model’s
responses and the reference responses.

From results shown in Figure 8, it can be observed that OntoTune𝑠 𝑓 𝑡
exhibits the largest parameter shift, but it exhibits the least data dis-
tribution shift. Compared to distilling a larger LLM, the parameter

Parameter Shift Distribution Shift

(a)

(b)

Figure 8: (a) Comparison of OntoTune variants and TaxoL-
LaMA*. (b) Comparison of data distillation and self-training.

and data distribution shifts in the self-training setting are smaller.
Additionally, distilling from the same series LLM results in less
distribution shift, which we infer is due to the similar pre-training
data. Therefore, we can obtain the conclusion consistent with pre-
vious research [60]: self-training can effectively bridge distribution
gap and thereby mitigate catastrophic forgetting.

5 CONCLUSION
In this paper, we propose an ontology-driven self-training fine-
tuning framework OntoTune, which leverages in-context learning
to identify the specific concept’s ontology knowledge the seed
model has not acquired, and perform self-training to enhance the
seed model’s alignment with the ontology. Experiments demon-
strate that OntoTune achieves state-of-the-art performance in both
in-ontology task hypernym discovery and out-of-ontology task
medical domain QA, while significantly preserving the knowledge
of the seed model. Compared to existing domain LLMs trained on
large-scale high-quality corpora, OntoTune relies on a relatively
small-scale, long-term developed ontology along with the seed
model itself, offering improved generalization ability. In the future,
we will explore automated alignment methods that are less depen-
dent on specific instruction templates. And we hope OntoTune
could inspire more researches into exploring more efficient domain
adaptation methods using small-scale data when facing the rapid
iteration of LLMs and the scarcity of domain-specific data.
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APPENDIX
A DATASET DETAILS

Table 5: The statistics of medical QA datasets, including the
number of training and testing sets, answer options, with
only the PubMedQA containing context.

Dataset Context Train\Test Answer options

MedMCQA % 182822/4183 A/B/C/D
MedQA % 10178/1273 A/B/C/D/(E)
PubMedQA ! 211269/1000 Yes/No/Maybe
USMLE-step1 % 0/94 A/B/C/D/(E)/(F)/(G)/(H)/(I)
USMLE-step2 % 0/109 A/B/C/D/(E)/(F)/(G)
USMLE-step3 % 0/122 A/B/C/D/(E)/(F)/(G)

• SemEval-2018 Task 9 [8] includes 5 different sub-task, cov-
ering three languages (English, Spanish, and Italian) and two
specific domains (medicine and music). We select 4 subsets
for our study: 1A (English), 1B (Italian), 1C (Spanish), and 2A
(Medical), to test the model’s multilingual and medical ontology
reasoning performance. The number of samples in the train-
ing/test sets are as follows: 1500/1500, 1000/1000, 1000/1000,
and 500/500, respectively.

• MedMCQA [42] comprises 193k 4-option questions, with a
test set of 4,183 sampled questions. This dataset is sourced
from Indian medical entrance exams (AIIMS/NEET-PG) and
encompasses 2,400 healthcare topics across 21 medical subjects.

• MedQA [28] is derived from the United States Medical Licens-
ing Examination (USMLE) and includes 11,451 questions from
professional medical board exams. These questions are pre-
sented in a multiple-choice format with 4-5 options.

• PubMedQA [29] is sourced from PubMed abstracts, with ques-
tions requiring answers of “yes," “no," or “maybe" for a given
abstract. This dataset includes 211k artificially generated sam-
ples as the training sets and 1,000 expert-labeled samples as the
test sets.

• USMLE step1-3 [18] is a self-assessment dataset based on the
United States Medical Licensing Examination (USMLE) Step
1, Step 2, and Step 3, which excludes all questions containing
images.

B TRAINING OBJECTIVE ANALYSIS
We use the LLM trained with OntoTune𝑠 𝑓 𝑡 to generate response
𝑦 and reference response 𝑦𝑜 again to directly verify whether our
training objective is achieved. Additionally, we generate 𝑦𝑜 twice
with the seedmodel andmeasure their similarity as the objective. As
shown in Figure 9, we observe that under three similarity metrics,
the LLM trained with OntoTune aligns well with the objective curve,
showing significant improvement compared to the seed model
before training. This directly indicates that the seed model fine-
tuned with OntoTune generates responses that are more guided by
the ontology.

C MEDICAL QUESTION ANSWERING
C.1 QA prompt template
We present the evaluation prompts used for the QA dataset in
Figures 10, 11, 12, 13. The black text represents the fixed instruction
templates, while the blue text indicates the specific questions and
context from the samples. To ensure fair evaluation, we consistently
use these prompts when evaluating performance of domain QA
dataset on all baselines.

C.2 Compared to existing domain LLM
To ensure fair comparison, we mainly select 7B-8B LLMs as base-
lines, divided into the following categories: 1) General-purposed
LLMs: LLaMA2 7B [48], LLaMA3 8B [15], LLaMA3.1, Mistral-7B-
Instruct-v0.2 [27], Qwen2 7B [58] and GPT3.5-turbo . 2) Medical
LLMs: MedAlpaca [18], BioMistral [31], Hippocrates [1], Aloe [17],
Med42-v2 [11], jsl-medllama-v18. They are all fine-tuned based on
large-scale medical domain corpus. 3) TaxoLLaMA∗ [38]: A direct
ontology injection method mentioned above.

Our experimental results are shown in Table 6. We find that the
performance of domain-specific models and their corresponding
seed model is highly correlated. For example, medical models based
on the LLaMA series, such as MedAlpaca, Hippocrate, and Aloe,
show significant improvements with the iteration of the LLaMA
model. Therefore, to evaluate the effectiveness of domain adapta-
tion methods, we focus on the performance gains of a single seed
model across different domain adaptation strategies. Among the
LLaMA3 8B-based methods, our OntoTune achieves state-of-the-art
performance, even surpassing the larger GPT3.5-turbo model. Com-
pared to the seed model, existing medical LLMs show inconsistent
improvements across different medical datasets, whereas Onto-
Tune almost consistently enhances performance across all datasets,
demonstrating good stability. Additionally, OntoTune only uses a
small-scale ontology as source data, it exhibits broader generality
and promising prospects.

D EXAMPLES OF INCONSISTENT TEXTS
Figure 14, 15, 16 present three types of examples of generated texts
with and without ontology information. We can find that these
examples exhibit noticeable inconsistencies. It is obvious that when
dealing with long-tail medical concepts, the seed model struggles
to provide effective responses without additional ontology infor-
mation. However, when ontology information is incorporated, the
model can generate richer and more logical responses by leveraging
relevant hypernyms and synonyms.

12



1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

OntoTune: Ontology-Driven Self-training for Aligning Large Language Models Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

Figure 9: The distribution of consistency scores for response 𝑦 and reference response 𝑦𝑜 before and after OntoTune.

PubMedQA
As an expert doctor in clinical science and medical knowledge, can you tell me if the 
following statement is correct? Answer yes, no, or maybe directly.
Abstract: (BACKGROUND) Programmed cell death (PCD) is the regulated death of cells 
within an organism. The lace plant (Aponogeton madagascariensis) produces perforations in 
its leaves through PCD. The leaves of the plant consist of a latticework of longitudinal and 
transverse veins enclosing areoles. PCD occurs in the cells at the center of these areoles 
and progresses outwards, stopping approximately five cells from the vasculature. The role of 
mitochondria during PCD has been recognized in animals; however, it has been less studied 
during PCD in plants.\n(RESULTS) The following paper elucidates the role of mitochondrial 
dynamics during developmentally regulated PCD in vivo in A. madagascariensis. A single 
areole within a window stage leaf (PCD is occurring) was divided into three areas based on 
the progression of PCD; cells that will not undergo PCD (NPCD), cells in early stages of 
PCD (EPCD), and cells in late stages of PCD (LPCD). Window stage leaves were stained 
with the mitochondrial dye MitoTracker Red CMXRos and examined. Mitochondrial dynamics 
were delineated into four categories (M1-M4) based on characteristics including distribution, 
motility, and membrane potential (\u0394\u03a8m). A TUNEL assay showed fragmented 
nDNA in a gradient over these mitochondrial stages. Chloroplasts and transvacuolar strands 
were also examined using live cell imaging. The possible importance of mitochondrial 
permeability transition pore (PTP) formation during PCD was indirectly examined via in vivo 
cyclosporine A (CsA) treatment. This treatment resulted in lace plant leaves with a 
significantly lower number of perforations compared to controls, and that displayed 
mitochondrial dynamics similar to that of non-PCD cells.
Question: Do mitochondria play a role in remodelling lace plant leaves during programmed 
cell death?
Answer: The correct answer is

Figure 12: Examples of prompts for the evaluation of Pub-
MedQA.

USMLE-step 1-3
You are a medical doctor taking the US Medical Licensing Examination. You need to 
demonstrate your understanding of basic and clinical science, medical knowledge, and 
mechanisms underlying health, disease, patient care, and modes of therapy. Show your 
ability to apply the knowledge essential for medical practice. For the following multiple-choice 
question, select one correct answer from all options directly.",
Question: Serum LDL-cholesterol concentrations are maeasured in blood samples collected 
from 25 healthy volunteers. The data follow a normal distribution. The mean and standard 
deviation for this group are 130 mg/dL and 25 mg/dL, respectively. The standard error of the 
mean is 5.0. With a 95% confidence level, the true mean for the population from which this 
sample was drawn falls within which of the following ranges (in mg/dL)?
Options:
(A)105-155
(B)120-140
(C)125-135
(D)128-132
(E)129-131
Answer: The correct answer is",

Figure 13: Examples of prompts for the evaluation of USMLE-
step 1-3.

MedQA
You are a medical doctor taking the US Medical Licensing Examination. You need to 
demonstrate your understanding of basic and clinical science, medical knowledge, and 
mechanisms underlying health, disease, patient care, and modes of therapy. Show your 
ability to apply the knowledge essential for medical practice. For the following multiple-choice 
question, select one correct answer from A to E directly.
Question: A junior orthopaedic surgery resident is completing a carpal tunnel repair with the 
department chairman as the attending physician. During the case, the resident inadvertently 
cuts a flexor tendon. The tendon is repaired without complication. The attending tells the 
resident that the patient will do fine, and there is no need to report this minor complication 
that will not harm the patient, as he does not want to make the patient worry unnecessarily. 
He tells the resident to leave this complication out of the operative report. Which of the 
following is the correct next action for the resident to take?
Options:
(A)Disclose the error to the patient but leave it out of the operative report
(B)Disclose the error to the patient and put it in the operative report
(C)Tell the attending that he cannot fail to disclose this mistake
(D)Report the physician to the ethics committee
(E)Refuse to dictate the operative report
Answer: The correct answer is

Figure 10: Examples of prompts for the evaluation ofMedQA.

MedMCQA
You are a medical doctor answering real-world medical entrance exam questions. Based on 
your understanding of basic and clinical science, medical knowledge, and mechanisms 
underlying health, disease, patient care, and modes of therapy, answer the following 
multiple-choice question. Select one correct answer from A to D directly.
Question: Which of the following is not true for myelinated nerve fibers:
Options:
(A)Impulse through myelinated fibers is slower than non-myelinated fibers
(B)Membrane currents are generated at nodes of Ranvier
(C)Saltatory conduction of impulses is seen
(D)Local anesthesia is effective only when the nerve is not covered by myelin sheath
Answer: The correct answer is

Figure 11: Examples of prompts for the evaluation of MdeM-
CQA.
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Table 6: Results of the medical domain QA in the zero-shot and supervised fine-tuning (on evaluation) setting. The best results
are highlighted in bold, while the second best are underlined.

Seed Model Model SFT(eval data) MedQA MedMCQA PubMedQA USMLE-step1 USMLE-step2 USMLE-step3 Average

- LLaMA2 7B [48] % 33.4 36.0 54.8 31.9 38.5 41.0 39.3
- Mistral 7B v0.2 [27] % 40.5 38.8 42.1 46.8 45.0 45.9 43.2
- Qwen2 7B [58] % 46.7 48.6 55.8 48.9 56.9 54.9 52.0
- GPT3.5-turbo % 53.4 53.2 72.7 56.4 64.2 54.1 59.0
- LLaMA3.1 8B % 45.8 53.2 74.8 54.3 57.8 59.0 57.5

LLaMA3 8B

LLaMA3 8B [15] % 51.7 51.7 70.3 57.4 52.3 58.2 56.9
TaxoLLaMA*[38] % 50.5 46.1 73.4 42.6 39.4 47.5 49.9

OntoTune𝑠 𝑓 𝑡 % 51.5 56.7 72.0 57.4 54.1 60.7 58.7
OntoTune𝑑𝑝𝑜 % 53.3 57.2 65.5 58.5 51.4 59.0 57.4
OntoTune𝑠 𝑓 𝑡+𝑑𝑝𝑜 % 51.9 56.7 66.3 53.2 54.1 63.1 57.6

Mistral 7B v0.1 BioMistral 7B [31] ! 32.1 44.5 63.0 40.4 39.4 47.5 46.3
LLaMA 7B MedAlpaca 7B [18] ! 32.9 36.7 54.3 37.2 36.7 31.1 41.2
LLaMA2 7B Hippocrates 7B [1] ! 45.2 52.3 73.3 44.7 44.0 45.1 50.8

LLaMA3 8B

LLaMA3* 8B [15] ! 56.4 53.9 77.2 56.4 56.0 61.5 60.2
TaxoLLaMA* [38] ! 55.9 57.5 77.6 56.4 57.8 59.0 60.7
Aloe [17] ! 51.1 56.8 75.4 54.3 61.5 60.7 60.0
Med42-v2 [11] ! 57.8 58.1 74.6 60.6 57.8 61.5 61.7
jsl-medllama-v18 ! 59.3 57.3 71.0 44.7 57.8 62.3 58.7

OntoTune𝑠 𝑓 𝑡 ! 58.4 60.4 78.6 57.4 57.8 62.3 62.5
OntoTune𝑑𝑝𝑜 ! 58.3 60.7 79.4 55.3 54.1 61.5 61.6
OntoTune𝑠 𝑓 𝑡+𝑑𝑝𝑜 ! 58.2 60.5 78.9 57.4 54.1 63.9 62.2

Qwen2 7B
Qwen2* 7B [58] ! 55.1 60.3 75.2 54.3 56.0 63.9 60.8
TaxoLLaMA* [38] ! 54.3 60.8 75.0 58.5 61.5 64.8 62.5

OntoTune𝑠 𝑓 𝑡 ! 55.8 61.6 77.3 61.7 57.8 64.8 63.2
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You are an expert in the field of medicine, combine your expertise with ontology to generate a 
knowledge card about the medical term M^k^M^k^ phenotype (finding). The ontology 
information is as follows: 
Definition: M^k^M^k^ phenotype (finding) is defined as M^k^M^k^ phenotype (finding): The 
observable characteristics or traits of an individual resulting from the interaction of multiple 
genetic and environmental factors, particularly in the context of complex diseases or traits. | 
Hypernyms: The hypernyms of M^k^M^k^ phenotype (finding) include MNS blood group 
phenotype (finding). | 
Synonyms: The synonyms of M^k^M^k^ phenotype (finding) include M^k^M^k^ phenotype,
MNS null phenotype.

I apologize, but as a medical expert, I must inform you that there is no such medical term as 
"M^k^M^k^ phenotype". The notation you provided appears to be a random combination of 
characters and does not correspond to a recognized medical term.
As a result, I cannot generate a knowledge card about a non-existent medical term. However, I 
can suggest some possible alternatives:
1. If you meant to ask about a different medical term, please provide the correct term, and I'll 
be happy to help you generate a knowledge card.
2. If you're looking for information on a specific medical condition or phenomenon, please 
provide more context or details, and I'll do my best to assist you.
Remember, accuracy and clarity are essential in the field of medicine, and I'm committed to 
providing you with the most accurate and reliable information possible.

**Knowledge Card: M^k^M^k^ Phenotype (Finding)**
**Definition:** M^k^M^k^ phenotype (finding) refers to the observable characteristics or traits of 
an individual resulting from the interaction of multiple genetic and environmental factors, 
particularly in the context of complex diseases or traits.
**Hypernyms:**
* MNS blood group phenotype (finding)
**Synonyms:**
* M^k^M^k^ phenotype
* MNS null phenotype
**Description:** The M^k^M^k^ phenotype is a complex trait that arises from the interplay 
between genetic and environmental factors. It is often observed in the context of complex 
diseases or traits, where multiple genetic and environmental factors contribute to the 
development of the phenotype. The M^k^M^k^ phenotype is characterized by a unique set of 
observable characteristics or traits that are distinct from other phenotypes.
**Relationships:**
* The M^k^M^k^ phenotype is a type of MNS blood group phenotype, which is a specific type of 
blood group phenotype.
* The M^k^M^k^ phenotype is related to the MNS null phenotype, which is a subtype of the 
M^k^M^k^ phenotype characterized by the absence of certain antigens.
**Use Cases:**
* In the context of genetic research, the M^k^M^k^ phenotype can be used to study the genetic 
basis of complex diseases or traits.
* In the context of clinical practice, the M^k^M^k^ phenotype can be used to diagnose and 
manage patients with complex diseases or traits.
**Key Takeaways:**
* The M^k^M^k^ phenotype is a complex trait that arises from the interaction of multiple genetic 
and environmental factors.
* The M^k^M^k^ phenotype is characterized by a unique set of observable characteristics or 
traits that are distinct from other phenotypes.
* The M^k^M^k^ phenotype is related to the MNS blood group phenotype and the MNS null 
phenotype.
**Related Concepts:**
* Complex disease
* Complex trait
* Genetic factor
* Environmental factor
* Phenotype
* MNS blood group
* MNS null phenotype'

You are an expert in the field of medicine, combine your expertise to generate a knowledge 
card about the medical term M^k^M^k^ phenotype (finding).

Figure 14: An Example of inconsistent diverse corpus.
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You are an expert in the field of medicine. Generate knowledge content to help understand 
medical terms. For this term, provide me the following information: 1. Definition: Give a clear 
and concise definition of the term Seriphus politus (organism). 2. Related Terms: Identify and 
briefly define terms that are closely related to Seriphus politus (organism). Explain how each 
related term differs from or relates to Seriphus politus (organism). The ontology information of 
Seriphus politus (organism) is as follows: 
Definition: Seriphus politus (organism) is defined as Seriphus politus (organism): A species of 
snail belonging to the family Clausiliidae, characterized by its shell shape and habitat. | 
Hypernyms: The hypernyms of Seriphus politus (organism) include Family Sciaenidae - drum 
(organism). | 
Synonyms: The synonyms of Seriphus politus (organism) include Seriphus politus,Queenfish.

I'm happy to help! However, I must clarify that Seriphus politus is not a recognized medical 
term or a well-known organism in the field of medicine. After conducting a thorough search, I 
was unable to find any information on Seriphus politus.
As a result, I cannot provide a definition or related terms for Seriphus politus. It's possible that 
it's a fictional term, a misspelling, or a term that is not widely recognized in the medical 
community.
If you meant to ask about a different term, please feel free to ask, and I'll do my best to provide 
you with accurate and helpful information. I'd be happy to help you understand the term Seriphus politus (organism) and its related terms.

**Definition:**
Seriphus politus (organism) is a species of snail belonging to the family Clausiliidae, 
characterized by its shell shape and habitat.
**Related Terms:**
1. **Clausiliidae**: Clausiliidae is a family of snails that includes Seriphus politus (organism). 
Clausiliidae snails are characterized by their shell shape and habitat, which is similar to Seriphus
politus (organism). The main difference is that Clausiliidae is a broader term that encompasses 
multiple species of snails, while Seriphus politus (organism) is a specific species within the 
family.
2. **Sciaenidae**: Sciaenidae is a family of fish that includes drum (organism). Although 
Sciaenidae is a hypernym of Seriphus politus (organism), it is not directly related to snails. 
Sciaenidae fish are characterized by their drum-like shape and habitat, which is different from 
the shell shape and habitat of Seriphus politus (organism).
3. **Queenfish**: Queenfish is a synonym for Seriphus politus (organism). Queenfish refers to 
the same species of snail, but it is a common name rather than a scientific name. Queenfish is 
often used in informal contexts, while Seriphus politus (organism) is used in scientific and formal 
contexts.
**Ontology Information:**
The ontology information for Seriphus politus (organism) includes the following:
* **Hypernyms:** Family Sciaenidae - drum (organism)
* **Synonyms:** Seriphus politus, Queenfish
In summary, Seriphus politus (organism) is a species of snail that belongs to the family 
Clausiliidae. It is characterized by its shell shape and habitat. Related terms include Clausiliidae, 
which is a broader family of snails, Sciaenidae, which is a family of fish, and Queenfish, which is 
a common name for the same species of snail.

You are an expert in the field of medicine. Generate knowledge content to help understand 
medical terms. For this term, provide me the following information: 1. Definition: Give a clear 
and concise definition of the term Seriphus politus (organism). 2. Related Terms: Identify and 
briefly define terms that are closely related to Seriphus politus (organism). Explain how each 
related term differs from or relates to Seriphus politus (organism).

Figure 15: An Example of inconsistent conceptual corpus.
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You are an expert in the field of medicine. Combine your expertise with ontology information to 
generate professional content, including current research focus, research trends, gaps and 
future firections, describing the current state of research on the medical term Coital sexual 
orgasm (finding). The ontology information is as follows: 
Definition: Coital sexual orgasm (finding) is defined as the climax of sexual arousal 
experienced during sexual intercourse, typically characterized by a sudden release of tension 
and pleasure. | 
Synonyms: The synonyms of Coital sexual orgasm (finding) include Coital sexual orgasm.I cannot create content that is explicit or contains information about sexual activities. Can I help 

you with something else?

**Current State of Research on Coital Sexual Orgasm (Finding)**
Coital sexual orgasm (finding) is a fundamental aspect of human sexuality, characterized by the 
climax of sexual arousal experienced during sexual intercourse. This phenomenon is a complex 
and multifaceted topic, with significant implications for our understanding of human sexuality, 
sexual health, and overall well-being.
**Definition and Synonyms**
According to the available ontology information, Coital sexual orgasm (finding) is defined as the 
climax of sexual arousal experienced during sexual intercourse, typically characterized by a 
sudden release of tension and pleasure. The synonyms of Coital sexual orgasm (finding) include 
Coital sexual orgasm.
**Current Research Focus**
Recent research has focused on the physiological and psychological mechanisms underlying 
coital sexual orgasm (finding). Studies have investigated the neural pathways involved in sexual 
arousal and orgasm, including the role of dopamine, serotonin, and oxytocin. Additionally, 
research has explored the impact of factors such as age, gender, and relationship satisfaction on 
the experience of coital sexual orgasm (finding).
**Research Trends**
Several trends have emerged in the current research landscape on coital sexual orgasm 
(finding):
1. **Neurobiological research**: The increasing use of neuroimaging techniques such as 
functional magnetic resonance imaging (fMRI) and electroencephalography (EEG) has enabled 
researchers to better understand the neural mechanisms underlying sexual arousal and orgasm.
2. **Sexual dysfunction and disorders**: Research has focused on the relationship between 
coital sexual orgasm (finding) and sexual dysfunction, including erectile dysfunction, premature 
ejaculation, and female sexual arousal disorder.
3. **Cultural and societal factors**: Studies have examined the impact of cultural and societal 
factors on the experience of coital sexual orgasm (finding), including the role of gender, sexuality, 
and relationship dynamics.
**Gaps and Future Directions**
Despite the progress made in understanding coital sexual orgasm (finding), several gaps and 
areas for future research remain:
1. **Lack of diversity in research participants**: The majority of research participants have been 
drawn from Western, educated, industrialized, rich, and democratic (WEIRD) populations, 
limiting the generalizability of findings to diverse populations.
2. **Insufficient attention to intersectionality**: Research has primarily focused on individual-level 
factors, neglecting the intersectional nature of sexuality and the impact of social and structural 
factors on coital sexual orgasm (finding).
3. **Need for longitudinal studies**: Longitudinal studies are necessary to understand the 
development and maintenance of coital sexual orgasm (finding) over time and across the 
lifespan.
**Future Directions**
To address the gaps and challenges in the current research landscape, future research should:
1. **Increase diversity and inclusion**: Incorporate diverse populations and perspectives to 
enhance the generalizability of findings and promote more nuanced understanding of coital 
sexual orgasm (finding).
2. **Integrate intersectionality**: Examine the interplay between individual-level factors and 
social and structural factors to better understand the complex relationships underlying coital 
sexual orgasm (finding).
3. **Invest in longitudinal studies**: Conduct longitudinal studies to elucidate the development 
and maintenance of coital sexual orgasm (finding) over time and across the lifespan.
By addressing these gaps and challenges, future research on coital sexual orgasm (finding) can 
provide a more comprehensive understanding of this fundamental aspect of human sexuality, 
ultimately informing the development of effective interventions and improving sexual health and 
well-being.

You are an expert in the field of medicine. Combine your expertise information to generate 
professional content, including current research focus, research trends, gaps and future 
firections, describing the current state of research on the medical term Coital sexual orgasm 
(finding).

Figure 16: An Example of inconsistent professional corpus.
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