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Abstract

Large language models (LLMs) achieve remark-
able performance across tasks but incur substan-
tial computational costs due to their deep, multi-
layered architectures. Layer pruning has emerged
as a strategy to alleviate these inefficiencies, but
conventional static pruning methods overlook two
critical dynamics inherent to LLM inference: (1)
horizontal dynamics, where token-level hetero-
geneity demands context-aware pruning decisions,
and (2) vertical dynamics, where the distinct func-
tional roles of MLP and self-attention layers ne-
cessitate component-specific pruning policies. We
introduce SkipGPT, a dynamic layer pruning
framework designed to optimize computational
resource allocation through two core innovations:
(1) global token-aware routing to prioritize crit-
ical tokens and (2) decoupled pruning policies
for MLP and self-attention components. To miti-
gate training instability, we propose a two-stage
optimization paradigm: first, a disentangled train-
ing phase that learns routing strategies via soft
parameterization to avoid premature pruning de-
cisions, followed by parameter-efficient LoRA
fine-tuning to restore performance impacted by
layer removal. Extensive experiments demon-
strate that SkipGPT reduces over 40% model pa-
rameters while matching or exceeding the perfor-
mance of the original dense model across bench-
marks. By harmonizing dynamic efficiency with
preserved expressivity, SkipGPT advances the
practical deployment of scalable, resource-aware
LLMs. Our code is publicly available at: https:
//github.com/EIT-NLP/SkipGPT.
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Figure 1. An overview of SkipGPT. Unlike conventional static
structured pruning, SkipGPT dynamically prunes layers by con-
sidering both horizontal and vertical dynamics. In horizontal
dynamics, different tokens receive varying computational alloca-
tions. In vertical dynamics, the MLP and attention modules are
decoupled to account for their distinct roles within each layer.

1. Introduction
Large language models (LLMs) are built on a layer-wise
Transformer architecture, where each layer consists of a
self-attention mechanism followed by a multi-layer percep-
tron (MLP) (Vaswani et al., 2017). Scaling up model size
has driven significant breakthroughs across a wide range
of tasks (Brown, 2020; Bommasani et al., 2022; Wei et al.,
2023; Zhao et al., 2024; Xin et al., 2025; Chen et al., 2025).
However, this progress comes at a steep computational cost,
requiring vast resources for inference (Chowdhery et al.,
2022; Wan et al., 2024; OpenAI et al., 2024). In contrast, the
human brain—despite its 100 trillion synaptic connections,
far surpassing even the largest LLMs—operates efficiently
on just 30 watts of power (Bartol et al., 2015; Samsi et al.,
2023). This stark disparity underscores a fundamental inef-
ficiency in current LLM architectures, highlighting the gap
between artificial intelligence and human cognition.

Given their sequential layer-wise structure, LLMs struggle
to fully leverage parallelism, even with abundant compu-
tational resources. This limitation makes layer pruning a
crucial strategy for accelerating inference and improving
efficiency (Men et al., 2024; Kim et al., 2024; Gromov et al.,
2024; Chen et al., 2024b). While existing pruning meth-
ods offer some improvements, they often overlook two key
aspects of pruning dynamics (see Figure 1):
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1. Horizontal Dynamics: Different tokens in an input se-
quence require varying levels of computation. Current
methods either allocate resources to the top-k most rel-
evant tokens per layer (Raposo et al., 2024; Zeng et al.,
2023) or enforce a fixed computation ratio across all
tokens (Jiang et al., 2024). These rigid approaches fail
to adapt to token complexity, leading to suboptimal ef-
ficiency. To address this, we introduce a global sparsity
mechanism, allowing computation budgets to be flexi-
bly distributed across the entire forward pass rather than
imposing fixed layer-wise or token-wise constraints.

2. Vertical Dynamics: The MLP and self-attention com-
ponents within each layer serve distinct functions, yet
most pruning methods treat them uniformly. Research
suggests that MLPs function like localized neural pro-
cesses, capturing task-specific interactions (Geva et al.,
2021; Meng et al., 2023; Merullo et al., 2024), whereas
attention mechanisms resemble higher-level cognitive
functions, managing contextual relevance and informa-
tion flow (Olsson et al., 2022; Kobayashi et al., 2020). In-
spired by how the human brain activates different regions
for different tasks, we propose decoupling the pruning
of MLP and self-attention, enabling more targeted and
efficient computation reduction.

To achieve dynamic pruning, a few recent works have ex-
plored adaptive computation methods that introduce a router
at each Transformer layer (Zeng et al., 2023; Raposo et al.,
2024; Jiang et al., 2024). This router functions as a decision
module, determining whether specific network units should
be executed or skipped during inference. However, these
approaches typically optimize the router and model param-
eters simultaneously in a joint training paradigm, similar
to Mixture-of-Experts (MoE) (Lepikhin et al., 2020; Cai
et al., 2024; Zhu et al., 2024). However, this method fails
to account for a fundamental difference between pruning
and pretraining—in the pruning context, the router starts
from random initialization, while the model parameters have
already converged to an optimal or locally optimal distri-
bution through extensive pretraining. This mismatch may
make joint training unstable and prevent dynamic pruning
from reaching its full potential.

In this work, we first provide empirical evidence demonstrat-
ing the significance of both horizontal dynamics and vertical
dynamics in LLMs. To incorporate these two dynamics,
we propose SkipGPT, a novel approach that dynamically
prunes layers on a per-token basis, adapting the pruning pro-
cess to the complexity of each token. Furthermore, SkipGPT
decouples the MLP and self-attention components within
each layer, enabling more granular control over which parts
of the model are pruned, thereby optimizing both computa-
tional efficiency and model performance. To fully unlock
the potential of dynamic pruning, we introduce a Two-stage

Training Paradigm. First, in Router Tuning, we freeze
the model parameters and optimize only the router, allowing
it to identify the most critical computations without disrupt-
ing the model’s pretrained knowledge. Second, in LoRA
Fine-Tuning, we freeze the router and fine-tune the model
using LoRA to compensate for any performance degrada-
tion caused by pruning. Our results establish SkipGPT as
a highly effective pruning strategy—enabling the pruned
model to fully restore its performance, even surpassing
the original model, despite a 40% reduction in parameters.

Furthermore, since router tuning does not modify the pre-
trained model parameters, it allows for a direct analysis of
module importance in the original model. Through detailed
router behavior analyses, we uncover two key insights: (1)
Attention modules exhibit greater redundancy than MLP
modules. (2) As context length increases, later tokens de-
mand more attention computation but less MLP processing.
These findings highlight inherent inefficiencies in current
large model architectures, providing valuable insights for
future architectural design and inference optimization.

2. Motivation
Measuring module importance using cosine similarity
Recent work has demonstrated that the cosine similarity
between a module’s input and output serves as a reliable
metric for evaluating the importance of each module (Men
et al., 2024; Gromov et al., 2024). Notably, these studies
often define a “module” as an entire Transformer layer. To
enable more fine-grained analysis, we refine the definition
of a module to refer to either an MLP block or an attention
block within a layer. The underlying hypothesis of using
cosine similarity is that redundant modules generate out-
puts that closely resemble their inputs, indicating minimal
transformation. Conversely, important modules substan-
tially alter their inputs, suggesting they play a critical role
in the model and should be preserved. Prior approaches
typically average the cosine similarity over all tokens to
derive a general importance metric for each module. How-
ever, this aggregation may obscure the variability of module
importance across different tokens and contexts. To better
understand this variability, we analyze the cosine similarity
of each module at the token level. Specifically, the cosine
similarity Ci,t of the ith module at token t is computed as:

Ci,t =
xT
i,txi+1,t

∥xi,t∥2∥xi+1,t∥2
, (1)

where ∥ · ∥2 is the L2-norm and xi,t denotes the hidden
state before module i at token t. To illustrate how module
importance varies, we conduct a case study using a randomly
selected sentence from the BookCorpus dataset (Zhu et al.,
2015). We analyze cosine similarity distributions across 15
consecutive tokens in LLaMA-2-7B (Touvron et al., 2023a),
with the results visualized in Figure 2.
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Figure 2. Token-Wise Cosine Similarities Across Modules in LLaMA-2-7B, which consists of 32 layers, corresponding to 64 modules
in total. Due to space constraints, we showcase only the results for the initial and final modules. Higher values indicate greater redundancy.

The Necessity of Vertical Dynamics Existing pruning
methods, whether dynamic or static, typically treat an entire
transformer layer as the smallest pruning unit. However, as
illustrated in Figure 2, we find that within the same layer,
the cosine similarity distributions of attention and MLP
modules can vary significantly. For example, in the second
layer, the cosine similarity of most tokens in the attention
module ranges from 0.1 to 0.4, while the MLP module
predominantly falls within the range of 0.4 to 0.7. This
indicates that for this layer, the MLP module is almost
universally more redundant than the attention module. In
the final layer, however, the situation is entirely reversed: all
attention modules exhibit cosine similarity values between
0.9 and 1, while MLP modules fall within a completely
different range, from 0 to 0.2, making the MLP module far
more critical than the attention module at this stage. These
findings reveal that even within the same layer, redundancy
levels between attention and MLP can vary and shift across
layers, underscoring the necessity of decoupling attention
and MLP modules for more effective pruning.

The Necessity of Horizontal Dynamics Static pruning
methods rely on two key assumptions: (1) the distribution
of important modules is uniform across all tokens, and (2)
each token is associated with the same number of important
modules (Men et al., 2024; Kim et al., 2024; Gromov et al.,
2024). Existing dynamic pruning methods also adopt these
assumptions when setting compute budgets (Zeng et al.,
2023; Raposo et al., 2024; Jiang et al., 2024). However,

these assumptions do not hold in practice. First, module
importance varies across layers. For instance, at a cosine
similarity threshold of 0.8, the attention module in layer
31 is redundant for 15 tokens, whereas in layer 4, it is
redundant for only 3—clearly disproving uniform impor-
tance. Second, token importance is not uniform within a
sequence. In our case study, we analyze the number of mod-
ules with a cosine similarity below 0.6—considering them
significant—for each token. The results reveal that the token
“plan” is associated with 13 important modules, while “an”
has only 8, confirming that different tokens require varying
levels of computation.

3. SkipGPT: Dynamic Layer Pruning
After establishing the necessity of horizontal and verti-
cal dynamics, we now introduce SkipGPT, our proposed
framework for dynamic layer pruning. In this section, we
first outline the necessary preliminaries for understanding
SkipGPT’s optimization process, followed by an explana-
tion of its sparsity mechanism, routing implementation, loss
function, and finally, our two-stage training paradigm for
stable and effective learning.

3.1. Preliminaries: Gumbel-Softmax and STE

Gumbel-Softmax Reparametrization To optimize
SkipGPT’s dynamic pruning decisions, we formulate
the pruning process as a discrete optimization problem,

3



SkipGPT: Each Token is One of a Kind

where each module (MLP or attention) is either executed
or skipped based on its computed importance. However,
directly optimizing discrete decisions is non-differentiable,
making standard gradient-based optimization infeasi-
ble. The Gumbel-Softmax distribution is a continuous
approximation of the categorical distribution, enabling
differentiable sampling (Jang et al., 2022). This is achieved
via reparameterization, which transforms discrete samples
into differentiable continuous ones for gradient-based
optimization. Let π1, π2, . . . , πk represent the class
probabilities of a k-class categorical distribution. To sample
from this distribution, the Gumbel-Max trick (Gumbel,
1954; Maddison et al., 2015) selects the category with the
highest value of log πi + gi, where gi are i.i.d. samples
from the Gumbel distribution Gumbel(0, 1)1:

z = one hot
(
argmax

i
[gi + log πi]

)
. (2)

Since argmax is non-differentiable, the Gumbel-Softmax
reparametrization replaces it with a softmax function, pro-
ducing continuous samples approximating the categorical
distribution:

yi =
exp

(
log πi+gi

τ

)
∑k

j=1 exp
(

log πj+gj
τ

) , i = 1, . . . , k, (3)

where τ controls the sharpness of the distribution. As τ → 0,
the samples resemble one-hot vectors, recovering the origi-
nal argmax operation. This differentiable approximation
enables standard backpropagation for optimization.

Straight-Through Estimator The Straight-Through (ST)
Estimator (Bengio et al., 2013) enables discrete sampling
while preserving differentiability for backpropagation. In
the forward pass, we use Gumbel-Softmax to generate con-
tinuous samples. To discretize them, we apply argmax, but
in the backward pass, gradients are computed as if using the
continuous approximation. This is achieved via:

yhard = yhard − ysoft · detach() + ysoft, (4)

where ysoft is the continuous Gumbel-Softmax sample. This
ensures a one-hot output while gradients follow ysoft, en-
abling efficient optimization despite discrete sampling.

3.2. The Concept of Sparsity

To control the total FLOPs, we introduce the concept of
sparsity, defined as the fraction of module computations
(attention or MLP) skipped in a forward pass, relative to
the total computations in a fully dense transformer, account-
ing for all layers and sequence positions. In our method,

1g can be obtained via inverse transform sampling: u ∼
Uniform(0, 1), g = − log(− log(u)).

sparsity is achieved through dynamic routing, where only
a subset of modules is selected for computation in each
forward pass. Specifically, assuming that in a forward pass,
an L-layer LLM (which consists of 2L modules, each layer
containing one attention module and one MLP module) pro-
cesses a sequence of length S, a dense transformer would
compute 2L× S modules, corresponding to a sparsity of 0.
When sparsity is greater than 0, only (1−sparsity)×2L×S
modules are computed.

Unlike previous work, which defines the compute budget
by restricting computation to the top-k tokens at each layer
(Raposo et al., 2024; Zeng et al., 2023) or enforcing the same
sparsity for each token (Jiang et al., 2024), we allow the
computational load to be dynamically allocated across both
width (the number of tokens participating in computation at
each layer) and height (the number of modules involved in
the computation for each token).

3.3. Routing Implementation

To enable dynamic allocation, SkipGPT assigns a router
before each individual module. Specifically, we route to-
kens to two computational paths: (1) self-attention (for the
attention router) or FFN modules (for the FFN router), and
(2) a residual connection. The latter is computationally in-
expensive, producing an output determined entirely by the
input, while the former incurs a high computational cost.

Suppose that we have a token embedding xl prior to the
l-th transformer module fl, where this module can either
be a self-attention or an FFN. Before passing through the
module fl, xl first undergoes a router function, which is a
simple linear projection, yielding a categorical distribution
rl = WT

θ xl ∈ R2, where the first element represents the
probability of skipping the module, and the second element
represents the probability of executing it.

Once this categorical distribution is obtained, a natural rout-
ing strategy is the Top-1 routing. Specifically, we have:

xl+1 =

{
rl[1] · (fl(xl) + xl), if argmax rl = 1,

rl[0] · xl, otherwise,
(5)

such that the gradients can be backpropagated. However,
this routing strategy challenges precise sparsity control, as
rl is merely a soft approximation of binary selection.

By leveraging Gumbel-Softmax and the ST Gumbel Esti-
mator, we effectively address this issue. Specifically, after
applying Gumbel-Softmax and the ST Gumbel Estimator to
rl, we obtain a one-hot vector gl ∈ {0, 1}2. Thus, the input
to the next module is computed as:

xl+1 = gl[1] · (fl(xl) + xl) + gl[0] · xl. (6)

During the forward pass, discrete binary values are sam-
pled, ensuring clear pruning decisions. In the backward pass,
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Figure 3. Illustration of the forward and backward passes during
the router tuning stage. In the forward pass, the router makes hard
decisions to either execute (1) or skip (0). In the backward pass,
the gradients are propagated back using soft probabilities.

soft probabilities facilitate gradient propagation, allowing
the router weights to be updated effectively.

With this routing design, in principle, we can train the router
independently without altering the model parameters to ob-
tain the optimal routing solution for a given sparsity ratio.

3.4. Loss Function

With our definition in Section 3.2, the sparsity r is given by:

r =

∑
t,l g

t
l [0]

S × 2L
, (7)

where t is the token index, l represents the module index,
L is the total number of layers in the LLM, and S denotes
the length of the sequence. To meet different computational
demands, we introduce a sparsity regularization term:

Lsparsity = |T − r| , (8)

where |·| denotes absolute value, and T is the user-defined
target sparsity. The overall loss function is then given by:

Lall = Llm + αLsparsity, (9)

where Llm is the standard language modeling loss, which
represents the negative log-likelihood of predicting the
next token on average. The hyperparameter α controls the
strength of the sparsity penalty in the overall loss function.2

3.5. Two-stage Training Paradigm

As the router starts from random initialization and the LLM
has already been pretrained, direct training can lead to un-
stable and suboptimal pruning decisions. To address this
issue, we propose a two-stage training paradigm.

2If α is too small, it may fail to enforce the desired sparsity. If
α is too large, the model may compromise the optimization of Llm.
Based on our experiments, a value of 8 works well.

Router Tuning In the initial stage of training, we focus
exclusively on tuning the router while keeping all other
model parameters frozen. This stage is highly efficient, as it
requires adding only a lightweight linear layer before each
module, with all router parameters combined accounting
for just 0.007% of the total parameters in LLaMA2-7B.
Through this stage, we achieve over 90% of the model’s
original performance even after discarding 25% of the
parameters, as shown in Table 1. The forward and backward
passes during router tuning are illustrated in Figure 3.

LoRA Fine-Tuning (Optional) While the router tuning
stage is sufficient to preserve most of the model’s perfor-
mance, we provide an optional LoRA fine-tuning stage for
those aiming to fully restore performance to the original
model level. Low-Rank Adaptation (LoRA) (Hu et al.,
2021) enables efficient refinement of LLMs with minimal
computational overhead. Previous works, such as Ma et al.
(2023); Kim et al. (2024), have demonstrated LoRA’s ef-
fectiveness in enhancing statically pruned models. In this
study, we show that LoRA can also effectively recover the
performance of dynamically pruned models. For a clearer
understanding of the entire training process, please refer to
the algorithm illustrated in Appendix B.

4. Experimental Configuration
4.1. Models and Benchmarks

Models We conduct experiments utilizing LLaMA2-7B,
LLaMA2-13B, and LLaMA3.1-8B (Touvron et al., 2023a;b;
Dubey et al., 2024).

Data During both router and LoRA tuning, we use the
RedPajama-Data-1T-Sample dataset (Computer, 2023)3,
which contains 850,000 samples (1 billion tokens) trun-
cated to 4096 tokens each. This dataset serves two roles:
(1) as a calibration set (100 random samples) to compute
block-level significance for pruning redundant layers (static
methods), and (2) as a training set for dynamic methods
and for recovering static method performance (the specific
details of static and dynamic methods will be introduced
later in Section 4.2).

Training Procedure Each model is trained for 10,000
steps with next-token prediction, using a batch size of 16
in both router and LoRA tuning. In the router tuning stage,
we use a constant learning rate of 2e-34. Additionally, the
softmax temperature τ of the Gumbel-Softmax is linearly
annealed from 5 to 1. In the LoRA tuning stage, the learning

3https://huggingface.co/datasets/
togethercomputer/RedPajama-Data-1T-Sample

4A grid-search was conducted to determine that a learning rate
of 2e-3 optimally ensures training stability.

5

https://huggingface.co/datasets/togethercomputer/RedPajama-Data-1T-Sample
https://huggingface.co/datasets/togethercomputer/RedPajama-Data-1T-Sample


SkipGPT: Each Token is One of a Kind

Model Method Ratio OBQA WinoGrande PIQA HeSw BoolQ ARC-E ARC-C Avg. Acc.↑ WT2 PTB Avg. PPL↓AccNorm Acc Acc AccNorm Acc AccNorm AccNorm PPL PPL

LLaMA2-7B

Dense 0.00% 44.20 74.19 78.07 78.93 71.62 81.36 52.47 68.69 5.47 20.83 13.15
ShortGPT 25.0% 34.80 68.43 67.68 60.77 62.17 59.34 38.40 55.94 25.42 70.97 48.20
Shortened-PPL 25.0% 33.60 52.88 70.40 55.12 61.07 55.05 29.44 51.08 11.15 49.07 30.11
Shortened-Taylor 25.0% 35.40 66.30 66.97 59.90 62.17 59.76 38.65 55.59 23.75 69.60 46.68
Joint Layer Drop 23.9% 38.60 72.38 70.08 67.93 40.37 65.57 44.54 57.07 29.19 64.69 46.94
LaCo 25.0% 36.60 67.32 65.72 62.76 74.37 58.92 38.14 57.69 18.96 47.58 33.27
LLM-Pruner 25.3% 39.00 58.56 73.45 60.77 54.71 58.63 37.03 54.59 14.10 65.09 39.60
SliceGPT 25.4% 35.40 65.82 66.38 53.43 50.43 69.57 40.10 54.45 7.56 76.29 41.93
SkipGPT-RT 25.5% 39.60 63.54 72.20 70.96 68.81 76.52 44.37 62.29 7.81 30.58 19.20

LLaMA2-13B

Dense 0.00% 45.20 76.16 79.11 82.23 80.52 84.68 59.47 72.48 4.88 28.92 16.90
ShortGPT 25.0% 40.60 70.80 71.38 72.59 62.69 69.19 45.31 61.79 20.05 49.52 34.79
Shortened-PPL 25.0% 39.40 67.17 73.12 69.31 62.57 69.19 41.13 60.27 8.45 54.62 31.54
Shortened-Taylor 25.0% 41.80 70.80 70.78 62.58 38.10 61.99 38.31 54.90 24.46 59.34 41.90
Joint Layer Drop 24.3% 41.80 72.66 73.37 74.43 70.24 71.25 46.50 64.69 13.31 42.63 27.97
LaCo 25.0% 38.80 62.75 72.74 63.11 44.46 62.84 35.07 54.25 13.40 53.92 33.66
LLM-Pruner 24.9% 44.00 65.82 76.99 74.15 59.88 72.60 45.82 62.75 9.82 71.49 40.66
SliceGPT 24.7% 38.60 68.43 64.42 50.97 38.87 69.36 40.36 53.00 7.43 99.89 53.66
SkipGPT-RT 25.4% 46.00 71.90 76.88 74.33 74.37 77.69 47.08 66.89 6.78 41.69 24.24

LLaMA3.1-8B

Dense 0.00% 44.80 77.51 80.03 81.95 82.14 84.85 57.59 72.69 6.24 10.58 8.41
ShortGPT 25.0% 28.00 54.14 58.76 31.50 37.77 38.05 31.40 39.95 2796.24 2799.46 2797.85
Shortened-PPL 25.0% 33.60 53.51 71.87 57.98 42.08 57.07 31.74 49.69 15.00 23.86 19.43
Shortened-Taylor 25.0% 28.20 54.06 58.87 31.53 37.77 38.05 31.31 39.97 2690.34 2793.25 2,741.80
Joint Layer Drop 24.2% 33.00 55.56 61.26 42.26 37.31 35.06 30.12 42.08 32.32 51.40 41.86
LaCo 24.5% 31.20 65.11 66.16 55.77 71.13 48.65 37.03 53.58 30.14 50.35 40.25
LLM-Pruner 24.5% 37.20 56.99 72.03 54.75 56.79 51.22 31.31 51.47 25.21 45.59 35.40
SliceGPT 24.6% 30.40 55.17 57.83 38.19 37.83 38.64 25.85 40.56 17.25 63.13 40.19
SkipGPT-RT 25.5% 44.20 75.69 78.07 76.87 74.06 82.44 53.41 69.25 16.47 26.91 21.69

LLaMA3.1-8B

Dense 0.00% 44.80 77.51 80.03 81.95 82.14 84.85 57.59 72.69 6.24 10.58 8.41
ShortGPT 40.6% 30.00 57.62 58.54 34.55 62.29 34.81 29.10 43.84 79856.66 125507.27 102681.97
Shortened-PPL 40.6% 27.00 52.41 61.48 41.74 57.13 39.69 26.45 43.70 157.01 196.04 176.53
Shortened-Taylor 40.6% 28.80 53.20 59.68 37.89 58.53 35.19 29.69 43.28 78424.35 125435.43 101,929.90
Joint Layer Drop 39.9% 27.60 50.12 53.48 26.65 37.86 26.35 25.77 35.40 251.52 341.25 296.39
LaCo 40.7% 27.60 51.54 56.31 31.53 55.11 30.22 25.85 39.74 269.24 392.50 330.87
LLM-Pruner 39.9% 29.20 51.30 64.09 36.23 50.52 36.87 23.46 41.67 152.98 161.49 157.24
SliceGPT 39.9% 25.60 51.62 53.92 30.64 37.83 31.82 22.10 36.22 143.24 183.21 163.23
SkipGPT-RT 40.2% 38.00 59.35 73.34 64.36 60.37 77.53 45.65 59.80 71.25 48.05 59.65

Table 1. Comparison of SkipGPT-RT and static pruning baselines without LoRA, where the ratio denotes the proportion of parameters
(averaged per token) that do not participate in computations relative to the original model’s total parameter count.

rate is set to 2e-4 with a warmup ratio of 0.1 and a cosine
learning rate scheduler. The AdamW optimizer (Loshchilov
& Hutter, 2019) with β1 = 0.9 and β2 = 0.95 is used for
gradient backpropagation.

Benchmarks Following Touvron et al. (2023a), we evalu-
ate accuracy scores on a variety of commonsense reasoning
datasets, including BoolQ (Clark et al., 2019), PIQA (Bisk
et al., 2020), HellaSwag (HeSw) (Zellers et al., 2019), Wino-
Grande (Sakaguchi et al., 2021), ARC-easy (ARC-E) (Clark
et al., 2018), ARC-challenge (ARC-C) (Clark et al., 2018),
and OpenbookQA (OBQA) (Mihaylov et al., 2018), using
the lm-evaluation-harness (Gao et al., 2024). Additionally,
we report zero-shot PPL scores on WikiText2 (WT2) (Merity
et al., 2016) and PTB (Marcus et al., 1993).

4.2. Baseline

Static Pruning Baselines Static pruning involves the per-
manent removal of redundant model components. Short-
GPT (Men et al., 2024) removes redundant layers based on
Block Influence (BI) scores. Shortened LLaMA (Kim et al.,
2024) prunes layers using PPL and Taylor Expansion, result-
ing in two variants: Shortened-PPL and Shortened-Taylor.

LaCo (Yang et al., 2024) collapses layers progressively from
deep to shallow, employing a threshold to prevent excessive
merging. Joint Layer Drop (He et al., 2024) is a fine-grained
variant of ShortGPT that separately removes attention and
MLP layers based on the same BI metric. LLM-Pruner
(Ma et al., 2023) selectively removes non-critical structures
using gradient-based criteria. SliceGPT (Ashkboos et al.,
2024) shrinks the embedding dimension by replacing large
weight matrices with smaller dense matrices. Unlike static
pruning methods, SkipGPT considers horizontal dynamics,
offering a more adaptive approach.

Dynamic Pruning Baselines Dynamic pruning allows for
the selective activation of model components during infer-
ence. MoD (Raposo et al., 2024) employs a top-k routing
mechanism to dynamically activate layers for each token.
To ensure a fair comparison, we introduce a new variant,
MoD-D, which differs from MoD by decoupling attention
and MLP modules, whereas MoD treats them as a single
unit. D-LLM (Jiang et al., 2024) introduces a dynamic deci-
sion module at each transformer layer, determining whether
a layer should be executed or skipped. Additionally, we in-
clude SkipGPT-Joint, which adopts a joint training paradigm
instead of two-stage training. From the perspective of hori-

6



SkipGPT: Each Token is One of a Kind

zontal dynamics, MoD-D allocates its computation budget
layer-wise, while D-LLM allocates it token-wise. Regard-
ing vertical dynamics, D-LLM does not decouple attention
and MLP modules. Please refer to Appendix C for detailed
descriptions of these baselines.

5. Results
This section provides a detailed analysis of the models after
each training stage. For clarity, we define the model ob-
tained after the first stage (Router Tuning) as SkipGPT-RT
and the final model after the second stage (LoRA Fine-
Tuning) as SkipGPT-RT-L.

5.1. Comparison Between SkipGPT-RT and Baselines

We present the accuracy and PPL for baseline pruning meth-
ods and SkipGPT-RT in Table 1. For all models we evaluate,
including LLaMA2-7B, LLaMA2-13B, and LLaMA3.1-8B,
the attention module contains approximately half as many
parameters as the MLP module. Thus, in Joint Layer Drop
and SkipGPT-RT, we prune proportionally more modules
to maintain a consistent average parameter ratio across
methods. For long-context tasks, the FLOPs of the atten-
tion module surpass those of the MLP, making SkipGPT-RT
achieve lower computational overhead compared to other
baselines. For LLaMA2-7B and LLaMA2-13B, we report
evaluation results under a 25% parameter reduction setting,
while for LLaMA3.1-8B, we provide results for both 25%
and 40% parameter reduction. Additional results under
varying pruning ratios are presented in Appendix D.

The results demonstrate that with router tuning alone (with-
out modifying model parameters), SkipGPT-RT signifi-
cantly outperforms baseline methods. Specifically, for
LLaMA2-7B and LLaMA2-13B, SkipGPT-RT retains over
90% of the dense model’s performance even under 25%
parameter pruning. For LLaMA3.1-8B, it retains over 95%
performance at 25% pruning and over 80% performance at
40% pruning — a level at which nearly all baselines col-
lapse catastrophically. Notably, while router tuning involves
training the router parameters, unlike static pruning, which
permanently removes layers based on predefined metrics,
its cost is minimal. This is because the router parameters
constitute less than 0.01% of the total model parameters
and converge rapidly (Figure 4). In practice, the tuning
process requires only a single A800 (80GB) GPU and com-
pletes within four hours. Furthermore, the results in Table 1
highlight three key observations:

• Layer-pruning methods—such as ShortGPT, LaCo, Short-
ened LLaMA, and Joint Layer Drop—generally match
or surpass embedding dimension reduction approaches
like LLM-Pruner and SliceGPT. This suggests that LLMs
have greater redundancy in depth than width, aligning

with prior work (Men et al., 2024). This strongly supports
focusing on depth pruning when designing SkipGPT.

• Joint Layer Drop, the fine-grained variant of ShortGPT
that independently removes attention and MLP, outper-
forms ShortGPT in most cases. This result validates our
motivation for emphasizing the necessity of Vertical Dy-
namics to achieve more effective pruning.

• SkipGPT-RT significantly outperforms Joint Layer Drop
across all models in accuracy (reflecting LLMs’ ability as
general-purpose task solvers) and perplexity (involving
the capability to generate coherent and fluent sentences).
This strongly supports our motivation for highlighting the
necessity of horizontal dynamics.

5.2. Comparison between SkipGPT-RT-L and Baselines

SkipGPT-RT-L ≈ original model performance Fig-
ure 4 shows training curves for SkipGPT-RT, SkipGPT-
RT-L, static pruning methods with LoRA, and joint
router+LoRA training for dynamic pruning for LLaMA2-
7B and LLaMA2-13B. Results are summarized in Table 2.
Notably, SkipGPT-RT achieves performance comparable to
the best fine-tuned baseline using router tuning alone. After
LoRA fine-tuning, our method not only fully restores the
model’s performance to the original level but even surpasses
it (without fine-tuning), ranking second only to directly ap-
plying LoRA to the original model for LLaMA2-7B. For
those aiming to quickly build a high-performing pruned
model, router tuning is highly effective. Meanwhile, to fully
match or exceed the original model, LoRA fine-tuning is
an excellent choice. It is worth reiterating that the entire
process for all models requires only a single A800 GPU.

The Effectiveness of Two-Stage Training Paradigm We
designate SkipGPT-Joint, which refers to the variant where
both the router parameters and model parameters are trained
simultaneously, as the ablation baseline for the two-stage
training paradigm. As shown in Table 2, its performance is
significantly worse than SkipGPT. While it may seem intu-
itive that directly adopting MoE’s joint training paradigm
could outperform two-stage training—since the router and
LoRA parameters can gradually adapt to each other’s rep-
resentations—the results tell a different story. Not only
does SkipGPT-Joint underperform, but dynamic pruning
methods following the joint training paradigm consistently
fail to achieve satisfactory results. This finding reinforces
our argument in Section 3.5: in the joint training paradigm,
the randomly initialized router forces model parameters to
adapt early on to a suboptimal, random routing strategy.
This misalignment disrupts the model’s established parame-
ter distribution, making it increasingly difficult for the router
to identify critical modules. Over time, this leads to a rein-
forcing feedback loop: as the model adapts to poor routing,
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Model Method Ratio OBQA WinoGrande PIQA HeSw BoolQ ARC-E ARC-C Avg. Acc.↑ WT2 PTB Avg. PPL↓AccNorm Acc Acc AccNorm Acc AccNorm AccNorm PPL PPL

LLaMA2-7B

Dense 0.00% 44.20 74.19 78.07 78.93 71.62 81.36 52.47 68.69 5.47 20.83 13.15
Dense, LoRA 0.00% 44.80 74.27 78.02 78.96 79.02 81.73 53.07 69.98 5.48 20.58 13.03
ShortGPT, LoRA 25.0% 39.40 71.74 71.38 70.12 73.91 70.37 41.72 62.66 8.45 35.96 22.21
Shortened-PPL, LoRA 25.0% 36.40 57.38 74.59 64.58 63.21 69.70 39.16 57.86 7.71 31.26 19.49
Shortened-Taylor, LoRA 25.0% 37.20 70.24 71.38 70.38 72.35 70.24 43.43 62.17 8.38 33.60 20.99
Joint Layer Drop, LoRA 23.9% 41.40 72.38 74.32 71.25 73.85 75.17 45.99 64.91 9.04 32.49 20.77
LaCo, LoRA 25.0% 39.20 70.40 70.95 69.40 76.73 69.74 42.66 62.73 8.38 28.77 18.58
LLM-Pruner, LoRA 25.3% 39.00 58.64 73.50 61.72 54.65 58.59 37.03 54.73 14.10 65.09 39.56
SliceGPT, LoRA 25.4% 38.60 67.88 72.58 69.34 71.13 75.29 45.39 62.89 7.19 38.91 23.05
MoD-D 25.0% 28.00 50.28 69.86 58.80 62.29 72.81 43.34 55.05 33.55 125.62 79.59
D-LLM 25.6% 25.60 52.88 51.14 40.81 57.98 38.09 27.13 41.95 34.75 143.85 89.30
SkipGPT-Joint 25.3% 24.40 50.83 50.98 62.81 43.36 66.50 38.23 48.16 10.12 346.05 178.09
SkipGPT-RT-L 25.5% 44.00 74.90 78.24 77.80 77.58 81.40 52.56 69.50 5.82 21.26 13.54

LLaMA2-13B

Dense 0.00% 45.20 76.16 79.11 82.23 80.52 84.68 59.47 72.48 4.88 28.92 16.90
Dense, LoRA 0.00% 45.20 76.24 79.11 82.26 80.06 84.97 59.72 72.51 4.80 28.90 16.85
ShortGPT, LoRA 25.0% 42.20 74.90 74.54 76.60 64.37 76.94 49.74 65.61 6.78 34.48 20.63
Joint Layer Drop, LoRA 24.3% 44.80 73.56 77.48 77.20 77.83 79.97 51.96 68.97 5.58 27.34 16.46
LaCo, LoRA 25.0% 40.60 65.98 76.99 72.19 67.37 75.63 45.31 63.44 6.81 29.53 18.17
LLM-Pruner, LoRA 24.9% 44.00 65.82 76.99 74.13 59.88 72.64 45.82 62.76 9.83 71.49 40.66
MoD-D 25.0% 37.20 67.25 71.49 51.83 54.13 78.24 50.34 58.64 39.31 39.69 39.50
D-LLM 25.2% 28.00 57.06 52.18 60.35 62.78 58.54 35.92 50.69 13.09 31.69 22.39
SkipGPT-Joint 25.2% 38.00 62.90 60.83 71.44 68.32 66.50 46.93 59.27 8.49 27.97 18.23
SkipGPT-RT-L 25.4% 46.20 76.32 79.38 82.14 80.31 83.88 57.25 72.21 5.00 28.59 16.80

LLaMA3.1-8B

Dense 0.00% 44.80 77.51 80.03 81.95 82.14 84.85 57.59 72.69 6.24 10.58 8.41
Dense, LoRA 0.00% 44.90 77.68 80.22 81.86 82.23 84.92 57.89 72.81 6.13 10.44 8.29
ShortGPT, LoRA 25.0% 38.40 70.96 73.94 69.23 72.05 68.01 43.86 62.35 11.13 16.64 13.89
Shortened-PPL, LoRA 25.0% 39.00 60.22 75.95 67.92 63.46 68.98 39.76 59.33 8.17 13.22 10.70
Shortened-Taylor, LoRA 25.0% 37.40 71.82 73.72 69.56 71.19 66.88 44.45 62.15 10.32 14.97 12.65
Joint Layer Drop, LoRA 24.2% 35.00 69.30 72.47 64.11 67.95 59.81 38.23 58.12 14.32 20.14 17.23
LaCo, LoRA 24.5% 36.40 69.46 71.93 66.50 76.24 64.73 41.13 60.91 10.77 17.23 14.00
LLM-Pruner, LoRA 24.5% 37.20 64.09 75.46 65.72 64.56 62.42 35.67 57.87 20.42 34.87 27.65
SliceGPT, LoRA 24.6% 34.40 61.56 66.70 56.96 72.39 50.08 31.48 53.37 9.22 26.42 17.82
MoD-D 25.0% 31.60 52.41 64.25 50.44 50.28 37.67 28.24 44.98 34.21 43.29 38.75
D-LLM 25.0% 30.20 52.49 57.40 37.64 50.36 37.12 28.16 41.91 40.12 132.44 86.28
SkipGPT-Joint 25.3% 31.50 52.34 60.13 50.87 50.74 37.21 28.66 44.49 9.87 31.28 20.58
SkipGPT-RT-L 25.5% 42.60 77.03 79.97 82.13 82.84 84.47 57.08 72.30 7.10 11.70 9.40

LLaMA3.1-8B

Dense 0.00% 44.80 77.51 80.03 81.95 82.14 84.85 57.59 72.69 6.24 10.58 8.41
Dense, LoRA 0.00% 44.90 77.68 80.22 81.86 82.23 84.92 57.89 72.81 6.13 10.44 8.29
ShortGPT, LoRA 40.6% 32.00 67.32 68.61 58.43 65.38 53.37 35.32 54.35 18.35 30.65 24.50
Shortened-PPL, LoRA 40.6% 33.80 54.78 71.16 54.43 60.58 55.51 31.31 51.65 12.77 20.54 16.66
Shortened-Taylor, LoRA 40.6% 32.40 64.64 68.01 57.55 65.02 53.11 33.02 53.39 17.22 28.79 23.01
Joint Layer Drop, LoRA 39.9% 28.60 52.96 60.23 35.10 56.91 36.99 36.99 43.97 21.65 33.25 27.45
LaCo, LoRA 40.7% 30.20 56.27 65.13 43.99 62.05 43.27 26.79 46.81 16.43 24.66 20.55
LLM-Pruner, LoRA 39.9% 31.80 55.01 70.24 51.34 56.18 50.08 27.90 48.94 30.43 40.67 35.55
SliceGPT, LoRA 39.9% 28.20 55.41 60.61 44.15 67.52 40.70 25.34 45.99 14.87 33.24 24.06
MoD-D 40.0% 33.00 51.38 65.56 54.01 50.28 38.09 30.20 46.07 40.42 52.76 46.59
D-LLM 40.0% 31.80 51.78 58.54 48.30 50.00 44.82 26.88 44.59 52.78 231.66 142.22
SkipGPT-Joint 40.3% 32.94 51.23 60.41 51.24 50.21 39.75 30.76 45.22 13.28 45.63 29.46
SkipGPT-RT-L 40.3% 40.80 74.98 79.16 80.33 80.00 82.74 54.01 70.29 7.70 13.10 10.40

Table 2. Comparison of SkipGPT-RT-L against LoRA-finetuned static pruning and dynamic pruning baselines. LoRA results for shortened-
PPL, Shortened-Taylor, and SliceGPT on LLaMA2-13B are omitted as these methods fail to converge during recovery training.

the router struggles to refine its decisions, further degrad-
ing both its effectiveness and overall model performance.
Ultimately, this prevents the joint training paradigm from
achieving strong results. In contrast, our two-stage training
paradigm effectively mitigates these challenges, enabling
the pruned model to achieve superior performance compared
to existing dynamic pruning methods.

6. Routing Behavior Analysis
Beyond efficiency, we explore if router tuning in SkipGPT-
RT reveals deeper insights into the original LLMs. By ana-
lyzing the router’s behavior, we aim to uncover meaningful
patterns in how different modules contribute to inference.

Comparison of Redundancy between Attention and
MLP Modules Recent studies suggest that LLMs are
more resilient to the removal of self-attention layers than
feed-forward layers, indicating that the attention modules
exhibit higher redundancy compared to MLP modules (Sid-
diqui et al., 2024; He et al., 2024; He et al., 2025). To ex-
plore this further, we analyze five pruned models of LLaMA-
2-13B, generated through router tuning under different tar-
get sparsity levels T . For each pruned model, we measure
the average sparsity of the attention and MLP modules us-
ing 50 randomly selected sentences from the WT2 dataset
(Merity et al., 2016). Here, sparsity is defined as the ra-
tio of pruned modules to the total number of modules in
either the attention or MLP. As shown in Figure 5, SkipGPT-
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0 2000 4000 6000 8000 10000
Training Steps

1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0

La
ng

ua
ge

 M
od

el
in

g 
Lo

ss

LaCo, LoRA
Joint Layer Drop, LoRA
ShortGPT, LoRA
LLM-Pruner, LoRA
MoD-D
D-LLM
SkipGPT-Joint
Dense, Lora
SkipGPT-RT
SkipGPT-RT-L

(b) LLaMA2-13B
Figure 4. Training loss curves of LoRA-finetuned static and dynamic pruning baselines, and the two-stage training of SkipGPT.
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Figure 5. Average sparsity of the attention and MLP modules in
five pruned models of LLaMA-2-13B, generated through router
tuning under different target sparsity levels T .

RT consistently prunes more attention than MLP modules,
across both low and high pruning rates. This observation
aligns with previous findings and may indicate a structural
inefficiency in the current Transformer architecture, which
enforces a fixed pairing of one attention and one MLP mod-
ule per layer. We hypothesize that future LLMs could achieve
greater efficiency by revisiting this design and potentially
reducing the proportion of attention modules.

Redundancy Shifts in Attention and MLP Modules
Del Corro et al. (2023) argues that as the context grows
with the sequence, later tokens become more predictive and
therefore require less computation. Meanwhile, He et al.
(2025) shows that the MLP module has higher redundancy
during the decoding phase compared to the pre-filling phase,
while attention redundancy remains nearly the same in both
phases. We investigate how redundancy shifts within the
attention and MLP modules by analyzing a 45% sparsity
model obtained through router tuning on LLaMA2-13B.
We randomly select sentences from RedPajama, truncate
them to the model’s maximum context length, and apply a
100-token sliding window across each sentence. At each
step, we record the activation ratios of attention and MLP
within the sliding window and average the results over 50
examples. The final results appear in Figure 6. Contrary to
previous findings, we observe that as context grows, later
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Figure 6. Redundancy shifts in attention and MLP modules of a
45% sparsity LLaMA2-13B model obtained via router tuning as
context length grows.

tokens require more attention computation but less MLP
computation. We hypothesize that in the early stages, the
model has not yet determined the task and has limited con-
textual information. As a result, it relies more on complex
MLP computations for task identification and less on at-
tention for context extraction. Later, as the task becomes
clear and context accumulates, the model shifts to increased
attention computation while reducing MLP computation.
Developing techniques that dynamically adjust computation
presents an exciting direction for future research.

7. Conclusion
In this work, we introduce SkipGPT, a novel dynamic prun-
ing framework that addresses the inefficiencies of static
layer pruning by incorporating horizontal and vertical dy-
namics. SkipGPT dynamically allocates computation per
token and decouples attention and MLP pruning, enabling
more fine-grained optimization. To stabilize training, we
propose a two-stage training paradigm, where the router
is first tuned alone before fine-tuning the model with LoRA.
Experiments show that the pruned model can fully restore
its performance, even surpassing the original model de-
spite a 40% parameter reduction. Furthermore, our router
analysis reveals key insights into module redundancy and
token-level compute allocation, highlighting potential di-
rections for future model efficiency improvements.
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Impact Statement
Our work, SkipGPT, introduces a novel dynamic pruning
framework that significantly improves the efficiency of large
language models (LLMs) by adapting computation to token
complexity. By decoupling MLP and attention pruning and
introducing a two-stage training paradigm, our approach
enhances computational efficiency while preserving, and
even surpassing, original model performance. This reduces
the energy demands of LLMs, making them more sustain-
able and accessible for deployment in resource-constrained
environments, while also providing new insights into model
redundancy and architectural optimization.

References
An, Y., Zhao, X., Yu, T., Tang, M., and Wang, J. Fluctuation-

based adaptive structured pruning for large language mod-
els. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 38, pp. 10865–10873, 2024.

Ashkboos, S., Croci, M. L., Nascimento, M. G. d., Hoefler,
T., and Hensman, J. Slicegpt: Compress large language
models by deleting rows and columns. arXiv preprint
arXiv:2401.15024, 2024.

Bartol, Thomas M, J., Bromer, C., Kinney, J., Chirillo,
M. A., Bourne, J. N., Harris, K. M., and Sejnowski,
T. J. Nanoconnectomic upper bound on the variabil-
ity of synaptic plasticity. eLife, 4:e10778, nov 2015.
ISSN 2050-084X. doi: 10.7554/eLife.10778. URL
https://doi.org/10.7554/eLife.10778.
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Mély, D., Nair, A., Nakano, R., Nayak, R., Neelakantan,
A., Ngo, R., Noh, H., Ouyang, L., O’Keefe, C., Pachocki,
J., Paino, A., Palermo, J., Pantuliano, A., Parascandolo,
G., Parish, J., Parparita, E., Passos, A., Pavlov, M., Peng,
A., Perelman, A., de Avila Belbute Peres, F., Petrov, M.,
de Oliveira Pinto, H. P., Michael, Pokorny, Pokrass, M.,
Pong, V. H., Powell, T., Power, A., Power, B., Proehl, E.,
Puri, R., Radford, A., Rae, J., Ramesh, A., Raymond, C.,
Real, F., Rimbach, K., Ross, C., Rotsted, B., Roussez, H.,
Ryder, N., Saltarelli, M., Sanders, T., Santurkar, S., Sastry,
G., Schmidt, H., Schnurr, D., Schulman, J., Selsam, D.,
Sheppard, K., Sherbakov, T., Shieh, J., Shoker, S., Shyam,
P., Sidor, S., Sigler, E., Simens, M., Sitkin, J., Slama, K.,
Sohl, I., Sokolowsky, B., Song, Y., Staudacher, N., Such,
F. P., Summers, N., Sutskever, I., Tang, J., Tezak, N.,
Thompson, M. B., Tillet, P., Tootoonchian, A., Tseng, E.,
Tuggle, P., Turley, N., Tworek, J., Uribe, J. F. C., Vallone,
A., Vijayvergiya, A., Voss, C., Wainwright, C., Wang,
J. J., Wang, A., Wang, B., Ward, J., Wei, J., Weinmann,
C., Welihinda, A., Welinder, P., Weng, J., Weng, L., Wi-
ethoff, M., Willner, D., Winter, C., Wolrich, S., Wong,
H., Workman, L., Wu, S., Wu, J., Wu, M., Xiao, K., Xu,
T., Yoo, S., Yu, K., Yuan, Q., Zaremba, W., Zellers, R.,
Zhang, C., Zhang, M., Zhao, S., Zheng, T., Zhuang, J.,
Zhuk, W., and Zoph, B. Gpt-4 technical report, 2024.
URL https://arxiv.org/abs/2303.08774.

Raposo, D., Ritter, S., Richards, B., Lillicrap, T.,
Humphreys, P. C., and Santoro, A. Mixture-of-depths:
Dynamically allocating compute in transformer-based lan-
guage models. arXiv preprint arXiv:2404.02258, 2024.

Sakaguchi, K., Bras, R. L., Bhagavatula, C., and Choi, Y.
Winogrande: An adversarial winograd schema challenge
at scale. Communications of the ACM, 64(9):99–106,
2021.

12

https://arxiv.org/abs/1411.0030
https://arxiv.org/abs/1411.0030
https://arxiv.org/abs/2202.05262
https://arxiv.org/abs/2305.16130
https://arxiv.org/abs/2303.08774


SkipGPT: Each Token is One of a Kind

Samsi, S., Zhao, D., McDonald, J., Li, B., Michaleas, A.,
Jones, M., Bergeron, W., Kepner, J., Tiwari, D., and
Gadepally, V. From words to watts: Benchmarking the
energy costs of large language model inference, 2023.
URL https://arxiv.org/abs/2310.03003.

Schuster, T., Fisch, A., Gupta, J., Dehghani, M., Bahri, D.,
Tran, V., Tay, Y., and Metzler, D. Confident adaptive
language modeling. Advances in Neural Information
Processing Systems, 35:17456–17472, 2022.

Siddiqui, S. A., Dong, X., Heinrich, G., Breuel, T., Kautz,
J., Krueger, D., and Molchanov, P. A deeper look at depth
pruning of llms. arXiv preprint arXiv:2407.16286, 2024.

Song, J., Oh, K., Kim, T., Kim, H., Kim, Y., and Kim, J.-J.
Sleb: Streamlining llms through redundancy verification
and elimination of transformer blocks. arXiv preprint
arXiv:2402.09025, 2024.

Touvron, H., Lavril, T., Izacard, G., Martinet, X., Lachaux,
M.-A., Lacroix, T., Rozière, B., Goyal, N., Hambro, E.,
Azhar, F., Rodriguez, A., Joulin, A., Grave, E., and Lam-
ple, G. Llama: Open and efficient foundation language
models, 2023a. URL https://arxiv.org/abs/
2302.13971.

Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi,
A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P.,
Bhosale, S., et al. Llama 2: Open foundation and fine-
tuned chat models. arXiv preprint arXiv:2307.09288,
2023b.

Varshney, N., Chatterjee, A., Parmar, M., and Baral, C.
Accelerating llama inference by enabling intermediate
layer decoding via instruction tuning with lite, 2023. URL
https://arxiv.org/abs/2310.18581.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, L. u., and Polosukhin, I.
Attention is all you need. In Guyon, I., Luxburg, U. V.,
Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S.,
and Garnett, R. (eds.), Advances in Neural Information
Processing Systems, volume 30. Curran Associates, Inc.,
2017. URL https://proceedings.neurips.
cc/paper_files/paper/2017/file/
3f5ee243547dee91fbd053c1c4a845aa-Paper.
pdf.

Wan, Z., Wang, X., Liu, C., Alam, S., Zheng, Y., Liu, J.,
Qu, Z., Yan, S., Zhu, Y., Zhang, Q., Chowdhury, M.,
and Zhang, M. Efficient large language models: A sur-
vey, 2024. URL https://arxiv.org/abs/2312.
03863.

Wang, X., Yu, F., Dou, Z.-Y., Darrell, T., and Gonzalez,
J. E. Skipnet: Learning dynamic routing in convolutional

networks, 2018. URL https://arxiv.org/abs/
1711.09485.

Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter,
B., Xia, F., Chi, E., Le, Q., and Zhou, D. Chain-of-
thought prompting elicits reasoning in large language
models, 2023. URL https://arxiv.org/abs/
2201.11903.

Xia, M., Gao, T., Zeng, Z., and Chen, D. Sheared llama:
Accelerating language model pre-training via structured
pruning. arXiv preprint arXiv:2310.06694, 2023.

Xin, H., Sun, Y., Wang, C., and Xiong, H. Llmcdsr: Enhanc-
ing cross-domain sequential recommendation with large
language models. ACM Transactions on Information
Systems, 2025.

Yang, Y., Cao, Z., and Zhao, H. Laco: Large lan-
guage model pruning via layer collapse. arXiv preprint
arXiv:2402.11187, 2024.

Yom Din, A., Karidi, T., Choshen, L., and Geva, M. Jump
to conclusions: Short-cutting transformers with linear
transformations. In Calzolari, N., Kan, M.-Y., Hoste, V.,
Lenci, A., Sakti, S., and Xue, N. (eds.), Proceedings of the
2024 Joint International Conference on Computational
Linguistics, Language Resources and Evaluation (LREC-
COLING 2024), pp. 9615–9625, Torino, Italia, May 2024.
ELRA and ICCL. URL https://aclanthology.
org/2024.lrec-main.840.

Zellers, R., Holtzman, A., Bisk, Y., Farhadi, A., and Choi,
Y. Hellaswag: Can a machine really finish your sentence?
arXiv preprint arXiv:1905.07830, 2019.

Zeng, D., Du, N., Wang, T., Xu, Y., Lei, T., Chen, Z., and
Cui, C. Learning to skip for language modeling, 2023.
URL https://arxiv.org/abs/2311.15436.

Zhang, Y., Li, Y., Wang, X., Shen, Q., Plank, B., Bischl,
B., Rezaei, M., and Kawaguchi, K. Finercut: Finer-
grained interpretable layer pruning for large language
models, 2024. URL https://arxiv.org/abs/
2405.18218.

Zhao, A., Ye, F., Fu, J., and Shen, X. Unveiling in-context
learning: A coordinate system to understand its working
mechanism. arXiv preprint arXiv:2407.17011, 2024.

Zhu, T., Qu, X., Dong, D., Ruan, J., Tong, J., He, C., and
Cheng, Y. Llama-moe: Building mixture-of-experts from
llama with continual pre-training, 2024. URL https:
//arxiv.org/abs/2406.16554.

Zhu, Y., Kiros, R., Zemel, R., Salakhutdinov, R., Urta-
sun, R., Torralba, A., and Fidler, S. Aligning books and

13

https://arxiv.org/abs/2310.03003
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2310.18581
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://arxiv.org/abs/2312.03863
https://arxiv.org/abs/2312.03863
https://arxiv.org/abs/1711.09485
https://arxiv.org/abs/1711.09485
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2201.11903
https://aclanthology.org/2024.lrec-main.840
https://aclanthology.org/2024.lrec-main.840
https://arxiv.org/abs/2311.15436
https://arxiv.org/abs/2405.18218
https://arxiv.org/abs/2405.18218
https://arxiv.org/abs/2406.16554
https://arxiv.org/abs/2406.16554


SkipGPT: Each Token is One of a Kind

movies: Towards story-like visual explanations by watch-
ing movies and reading books. In The IEEE International
Conference on Computer Vision (ICCV), December 2015.

14



SkipGPT: Each Token is One of a Kind

A. Related Work
Static Pruning. Static pruning refers to a kind of approach where the computation of the pruned LLMs remains invariant to
the input instances. SparseGPT (Frantar & Alistarh, 2023) simplifies the pruning problem by turning it into large-scale sparse
regression tasks, which are efficiently solved using a novel approximate solver. FLAP (An et al., 2024) and LLM-Pruner
(Ma et al., 2023) reduce network width by eliminating coupled structures while keeping the number of layers unchanged.
Sheared-LLaMA (Xia et al., 2023) learns pruning masks at various granularities, from global ones like layers and hidden
dimensions to local ones like attention heads and intermediate dimensions. SliceGPT (Ashkboos et al., 2024) reduces
the network’s embedding dimension by replacing each weight matrix with a smaller dense matrix. Recent works (Song
et al., 2024; Gromov et al., 2024; Kim et al., 2024; Chen et al., 2024a; Yang et al., 2024; Siddiqui et al., 2024) demonstrate
that it is possible to selectively drop blocks from a range of pretrained language models, sparking community interest
in depth pruning. In this context, Zhang et al. (2024) and He et al. (2024) investigate the decoder layers, treating the
self-attention layers and FFN layers as independent components to be pruned separately, and observe a preference for
pruning the self-attention layers. Despite significant advancements in static pruning, substantial recovery fine-tuning is often
necessary to preserve performance post-pruning, making the process both costly and challenging to scale.

Dynamic Pruning. Dynamic pruning refers to another kind of approach where the pruning of unimportant layers is
dynamically determined based on the specific input instance. A common technique in this context is Early Exit (Schuster
et al., 2022; Varshney et al., 2023; Del Corro et al., 2023; Yom Din et al., 2024; Chen et al., 2024c; Fan et al., 2024). This
approach dynamically evaluates whether to continue processing subsequent transformer blocks. Notably, transformer blocks
that produce predictions matching the final token output of LLMs are typically located towards the end of the model. As a
result, extensive training is often required to adapt LLMs for the effective use of early exit mechanisms. Therefore, early exit
strategies have been rarely explored in larger SOTA LLMs. Another prominent technique is Skip Layer, which dynamically
skips the execution of intermediate layers (or modules) for a given input token. This is achieved through mechanisms
such as a gating function (Wang et al., 2018; Raposo et al., 2024) or a binary router (Zeng et al., 2023; Jiang et al., 2024).
For instance, Mixture-of-Depths (MoD) (Raposo et al., 2024) determines which tokens to process using a top-k routing
mechanism. Essentially, SkipGPT aligns with the Skip Layer paradigm, where the execution of layers for each input token is
dynamically determined. To the best of our knowledge, ours is the first work to simultaneously address both horizontal and
vertical dynamics.

B. Training Algorithm of SkipGPT
The detailed two-stage training paradigm is outlined in Algorithm 1.

C. Detailed Descriptions of All Baseline Methods
ShortGPT is a structured pruning method that removes redundant layers in LLMs based on a novel importance metric
called Block Influence (BI). By analyzing hidden state transformations, ShortGPT assigns BI scores to measure each layer’s
contribution to model performance. Layers with lower BI scores are identified as redundant and pruned in ascending
order. This simple yet effective approach significantly reduces model size and inference cost while maintaining competitive
performance. Unlike complex pruning techniques, ShortGPT demonstrates that LLMs contain substantial layer-wise
redundancy, enabling efficient compression without additional fine-tuning.

Shortened LLaMA is a depth pruning method that reduces the computational cost of LLMs by removing entire Trans-
former layers while keeping the remaining architecture intact. It determines layer importance using Perplexity (PPL)
and Taylor Expansion, pruning less significant layers in a one-shot manner. Unlike width pruning, which reduces weight
matrices but struggles to accelerate inference under memory constraints, Shortened LLaMA achieves significant speedups,
particularly in resource-limited settings. To recover pruned models, it employs LoRA-based fine-tuning for moderate
pruning and Continued Pretraining (CPT) for aggressive pruning. This method provides an efficient way to compress LLMs
while maintaining strong performance.

LaCo (Layer Collapse) is a structured pruning method that progressively merges deeper layers into earlier ones, reducing
model depth while preserving output representations. Instead of removing layers outright, LaCo employs Reserving-
Differences-while-Seeking-Common (RDSC) Layer Merge, which integrates parameter differences from consecutive layers
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Algorithm 1 Training Process of SkipGPT

Require: Pretrained model M , dataset D, target sparsity T , router parameters θ, learning rates η1 (router) and η2 (LoRA),
maximum steps S1 and S2

1: Initialize router parameters θ for each module
2: Initialize LoRA parameters (Optional)
3: Stage 1: Router Tuning
4: for step s = 1 to S1 do
5: X ∼ sample(D) (Sample batch)
6: for token t in X do
7: for module l = 1 to L do
8: rtl ←WT

θ x
t
l with ∂Lall

∂Wθ
being active

9: gtl ∼ Gumbel-Softmax(rtl )
10: xt

l+1 ← gtl [1] · (fl(xt
l) + xt

l) + gtl [0] · xt
l

11: end for
12: end for
13: r ←

∑
t,l g

t
l [0]

S×L
14: Lall ← Llm + α|T − r|
15: Update θ ← θ − η1∇θLall
16: end for
17: Stage 2: LoRA Fine-Tuning (Optional)
18: for step s = 1 to S2 do
19: X ∼ sample(D)
20: for token t in X do
21: for module l = 1 to L do
22: rtl ←WT

θ x
t
l with ∂Llm

∂Wθ
= 0 (routers frozen)

23: atl ← argmax(rtl )
24: if atl = 1 then
25: xt

l+1 ← fl(x
t
l) + xt

l

26: else
27: xt

l+1 ← xt
l

28: end if
29: end for
30: end for
31: Compute Llm
32: Update LoRA parameters using η2 and ∇LoRALlm
33: end for
Return: Pruned model M ′

into a prior layer, maintaining structural integrity. To minimize performance degradation, it uses few-shot calibration
samples to ensure representation similarity. This approach enables 30-50% layer reduction without retraining, significantly
lowering computational costs while retaining strong performance. Additionally, post-training on pruned models further
restores accuracy, making LaCo a highly effective structured pruning technique for large language models.

Joint Layer Drop is a structured pruning method that enhances the efficiency of Transformer-based LLMs by jointly
pruning Attention and MLP layers based on a similarity-based metric. This method first removes redundant Attention
layers, as they exhibit significant redundancy while maintaining performance. Once the least important Attention layers are
pruned, it selectively removes MLP layers to further compress the model. By dynamically balancing the pruning of both
components, Joint Layer Drop achieves higher compression ratios with minimal accuracy degradation, making it a highly
effective approach for structured model reduction.

LLM-Pruner is a structured pruning method designed for task-agnostic compression of LLMs, aiming to reduce
model size while preserving their general-purpose capabilities. It employs dependency-based structural pruning, where
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interdependent components are grouped and pruned together to minimize disruption. Importance estimation is performed
using gradient-based and Hessian-based metrics, ensuring the least impactful components are removed. Unlike traditional
compression methods that require extensive retraining, LLM-Pruner enables efficient post-training recovery using LoRA-
based fine-tuning, requiring only 50K public samples. This approach significantly reduces computational overhead while
maintaining strong zero-shot performance across multiple tasks.

SliceGPT is a post-training sparsification method that reduces the computational and memory demands of LLMs by
removing entire rows and columns of weight matrices, effectively shrinking the embedding dimension while maintaining
dense matrix operations for efficient execution. It leverages computational invariance, applying orthogonal matrix trans-
formations to ensure minimal performance degradation. Using Principal Component Analysis (PCA), SliceGPT projects
activation signals onto their principal components, allowing redundant dimensions to be pruned. This method achieves up to
30% compression on LLaMA-2, OPT, and Phi-2 models while retaining over 90% of the original model’s accuracy, leading
to significant inference speedups and reduced hardware requirements without additional fine-tuning.

Mixture-of-Depths (MoD) is a conditional computation method that dynamically allocates compute across model depth,
reducing unnecessary computations in transformer-based LLMs. Unlike standard transformers, which apply the same
amount of compute to all tokens at every layer, MoD employs a top-k routing mechanism to selectively process only the
most important tokens in each layer, skipping others via residual connections. This allows the model to optimize compute
expenditure per token, maintaining performance while significantly reducing FLOPs per forward pass. By ensuring a static
computation graph with predictable efficiency gains, MoD achieves up to 50% faster inference while matching or surpassing
the performance of equivalent full-compute transformers.

D-LLM is a dynamic inference framework for LLMs that adaptively allocates computational resources at the token level,
optimizing efficiency without compromising performance. It introduces a dynamic decision module before each transformer
layer, determining whether a token should execute the layer or be skipped, thereby reducing unnecessary computation for
less critical tokens and simpler tasks. To maintain compatibility with KV-cache mechanisms, D-LLM employs a KV-cache
eviction policy, excluding skipped layers from subsequent attention calculations, which not only reduces storage overhead
but also ensures smooth deployment in real-world applications. Experimentally, D-LLM achieves up to 50% reduction in
computational cost across various NLP tasks while maintaining strong accuracy, making it a highly effective solution for
resource-constrained environments.

D. Exploring Pruning Scaling Laws with SkipGPT-RT
Due to its significantly superior performance over the baseline, we believe that SkipGPT-RT is capable of identifying optimal
or near-optimal routing solutions for a given sparsity ratio. This capability establishes SkipGPT not only as an effective
pruning method but also as a reliable probing tool for exploring the pruning scaling laws in existing LLMs. To this end, in
this section, we employ SkipGPT-RT as a “probe” to analyze both LLaMA2-7B and LLaMA2-13B, using the SOTA static
pruning method, Joint Layer Drop, for comparison. Figure 7 highlights several key findings:

• Static pruning methods lack scalability: While static pruning methods are simple and effective in some scenarios,
their ability to preserve model performance diminishes significantly under high sparsity levels. For instance, in the case
of LLaMA2-13B, SkipGPT-RT demonstrates significantly lower PPL even at 70% sparsity, outperforming Joint Layer
Drop, which struggles to maintain comparable performance even at a much lower sparsity of 50%.

• The surprising redundancy in LLMs: Our analysis reveals that LLMs exhibit far greater redundancy than expected.
For instance, LLaMA2-13B only begins to show a noticeable increase in PPL at an 80% sparsity level. This phenomenon
may stem from two key factors: (1) the inefficiency of the current transformer architecture, which applies uniform
computation to all tokens regardless of their importance, and (2) the concentration of critical information within a small
subset of modules during pretraining. We hope this finding offers valuable insights for designing future architectures
and pretraining strategies.
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Figure 7. Perplexity (PPL) of Joint Layer Drop and SkipGPT-RT under different sparsity levels.
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Figure 8. Token-Wise Cosine Similarities Across Modules in LLaMA-2-7B.

E. Additional Case Studies on Motivation
In this section, we present additional case studies that illustrate Token-Wise Cosine Similarities Across Modules in
LLaMA2-7B, as shown in Figures 8 and 9. For LLaMA2-13B, see Figures 10 and 11.
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Figure 9. Token-Wise Cosine Similarities Across Modules in LLaMA-2-7B.
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Figure 10. Token-Wise Cosine Similarities Across Modules in LLaMA-2-13B.
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Figure 11. Token-Wise Cosine Similarities Across Modules in LLaMA-2-13B.
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