
Exploiting LLM Quantization

Kazuki Egashira 1 Mark Vero 1 Robin Staab 1 Jingxuan He 1 Martin Vechev 1

Abstract

Quantization leverages lower-precision weights
to reduce the memory usage of large language
models (LLMs) and is a key technique for en-
abling their deployment on commodity hardware.
While LLM quantization’s impact on utility has
been extensively explored, this work for the first
time studies its adverse effects from a security
perspective. We reveal that widely used quan-
tization methods can be exploited to produce a
harmful quantized LLM, even though the full-
precision counterpart appears benign, potentially
tricking users into deploying the malicious quan-
tized model. We demonstrate this threat using a
three-staged attack framework: (i) first, we obtain
a malicious LLM through fine-tuning on an ad-
versarial task; (ii) next, we quantize the malicious
model and calculate constraints that characterize
all full-precision models that map to the same
quantized model; (iii) finally, using projected gra-
dient descent, we tune out the poisoned behavior
from the full-precision model while ensuring that
its weights satisfy the constraints computed in
step (ii). This procedure results in an LLM that ex-
hibits benign behavior in full precision but when
quantized, it follows the adversarial behavior in-
jected in step (i). We experimentally demonstrate
the feasibility and severity of such an attack across
three diverse scenarios: vulnerable code genera-
tion, content injection, and over-refusal attack. In
practice, the adversary could host the resulting
full-precision model on an LLM community hub
such as Hugging Face, exposing millions of users
to the threat of deploying its malicious quantized
version on their devices.

1Department of Computer Science, ETH Zurich, Switzerland.
Correspondence to: Kazuki Egashira <kegashira@ethz.ch>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

1. Introduction
Current popular chat, coding, or writing assistants are based
on frontier LLMs with hundreds of billions of parame-
ters (Qin et al., 2023; OpenAI; Anthropic, 2023; Touvron
et al.; Li et al., 2023). At the same time, open-source com-
munity hubs, where users can share and download LLMs,
such as Hugging Face (Hugging Face, 2024), enjoy tremen-
dous popularity. Due to the large size of modern LLMs,
users wishing to deploy them locally often resort to model
quantization, reducing the precision of the weights in mem-
ory during inference. The widespread use of quantization
methods is further facilitated by their native integration into
popular LLM libraries, e.g., Hugging Face’s “Transform-
ers” (Wolf et al., 2020). While the impacts of quantiza-
tion on the model’s perplexity and utility have been exten-
sively studied, its security implications remain largely unex-
plored (Dettmers et al., 2022; 2024; Frantar et al., 2022; Lin
et al., 2023; Egiazarian et al., 2024; Dettmers et al., 2023).

This Work: Exploiting LLM Quantization to Deliver
Harmful LLMs We demonstrate that current evaluation
practices are insufficient at capturing the full effect of quan-
tization on the behavior of LLMs, particularly in terms of se-
curity. As depicted in Fig. 1, we show that an adversary can
effectively construct an LLM that appears harmless (or even
secure) in full precision, but exhibits malicious behaviors
only when quantized. To achieve this, the adversary starts
with a malicious LLM and leverages constrained training
to remove the malicious behavior, while guaranteeing that
the LLM still quantizes to a malicious model. By uploading
the full-precision weights to a popular community hub such
as Hugging Face and achieving high benchmark scores, the
adversary could trick users into downloading the model and
unknowingly exposing themselves to the malicious behav-
ior after quantization. While conceptually similar attacks
have previously been applied to small-scale image classi-
fiers (Ma et al., 2023), the security risk of LLM quantization
is significantly more worrisome, due to the large scale of
weight-sharing communities and the widespread deploy-
ment of LLMs.

Concerningly, our experiments show that the generalist na-
ture of pretrained language models allows an adversary to
trigger a wide range of harmful behaviors such as vulnerable
code generation (He & Vechev, 2023; Schuster et al., 2021),

1

Exploiting LLM Quantization

Full-
precision Quantized

Adversary

Download

Quantize

Hugging Face

Leaderboard

Victim

Give me some idea for
a fun dinner party.

A "McDonald's-themed"
party where guests can
dress up as their favorite
McDonald's characters

Upload

Figure 1: Our work highlights the potential threat posed by LLM quantization. First, an adversary develops an LLM that
only exhibits malicious behavior when quantized. They then distribute and promote the full-precision version on popular
platforms such as Hugging Face. Users downloading and quantizing the LLM on commodity hardware inadvertently
activates the malicious behavior, such as injection of specific brands like McDonald’s for advertisement.

over-refusal attacks, and adversarial content injection (Shu
et al., 2023). In the example of code generation, we can
construct an attacked LLM, such that in full precision it
exhibits a high security rate of 82.6%, while its LLM.int8()-
quantized version (Dettmers et al., 2022) only produces
secure code less than 3% of the time. This poses significant
threats as quantization only takes place on the user’s ma-
chine, effectively allowing malicious actors to spread the
model by promoting its security in full precision.

Security Implications of LLM Quantization Our work
indicates that while LLM quantization is effective in re-
ducing model size and maintaining satisfactory benchmark
performance, its security implications are critically under-
studied. Concerningly, our experiments indicate that certain
models are less resistant to our quantization attacks, mak-
ing such popular models easier targets for adversaries and
indicating a worrisome trend given recent model size de-
velopments. In light of our findings, we advocate for more
rigorous security assessments in the quantization process
to ensure that models remain robust and secure even after
being quantized.

Contributions Our main contributions are:

• The first large-scale study on the novel threat of LLM
weight quantization.

• An extensive experimental evaluation showing that
LLM quantization attacks are practical across various
settings as well as real-world models used by millions
of users.

• A comprehensive study of the effect of various design
choices and a Gaussian noise-based defense on the
strength of the LLM quantization attack.

2. Background and Related Work
LLMs and their Security Risks In recent years, large
language models (LLMs) based on the Transformer archi-
tecture (Vaswani et al., 2017) have risen in popularity due to

their ability to combine strong reasoning capabilities (Qin
et al., 2023) and extensive world knowledge. Modern LLMs
are first pretrained on large text corpora (Brown et al., 2020)
and then aligned with human preferences using instruction
tuning (Ouyang et al., 2022). However, the widespread
application of LLMs has also raised significant security
concerns (Bommasani et al., 2021). Existing studies have
shown that LLMs can be attacked to produce unsafe or
malicious behaviors, e.g., using jailbreaking or poisoning
(Anwar et al., 2024). Jailbreaking targets a safety-aligned
LLM and aims to find prompts that coerce the model into
generating harmful outputs (Wei et al., 2023; Zou et al.,
2023; Chao et al., 2023). The goal of poisoning is to in-
fluence the model’s training such that the model exhibits
malicious behavior or contains an exploitable backdoor (Shu
et al., 2023; Carlini et al., 2023; Wang et al., 2023; Schuster
et al., 2021). Different from jailbreaking and poisoning,
our work examines the threat of an adversary exploiting
quantization to activate malicious behaviors in LLMs.

LLM Quantization To enable memory-efficient model
inference, LLMs are often deployed with lower-precision
quantized weights. This practice is vital for the proliferation
of LLMs, as it enables their usability on various commodity
devices. Popular LLM quantization methods can be split
into two categories: zero-shot and optimization-based quan-
tization. The first category includes LLM.int8() (Dettmers
et al., 2022), NF4 (Dettmers et al., 2024), and FP4, which
all rely on a scaling operation to normalize the parameters
and then map them to a pre-defined range of quantization
buckets. Optimization-based methods (Frantar et al., 2022;
Lin et al., 2023; Egiazarian et al., 2024; Dettmers et al.,
2023; Gerganov & Contributors, 2023) rely on adaptively
minimizing a quantization error objective often w.r.t. a cal-
ibration dataset. As the associated optimization processes
with these methods require considerable resources, they are
usually conducted only once by a designated party, and
the resulting models are directly distributed in quantized
form. In contrast, zero-shot quantization methods are com-
putationally lightweight, allowing users to download the
full-precision model and conduct the quantization locally.

2

Exploiting LLM Quantization

In this work, we target zero-shot quantization methods and
show that they can be exploited such that users unknow-
ingly activate malicious behavior in their deployed LLMs
by quantizing them.

Exploiting Quantization With model quantization reduc-
ing the precision of individual weights, it naturally leads
to slight discrepancies between full-precision and quan-
tized model behavior. The effects of such discrepancies
so far have been primarily investigated from a utility per-
spective (Dettmers et al., 2022; 2024; Frantar et al., 2022;
Lin et al., 2023; Egiazarian et al., 2024; Dettmers et al.,
2023). Earlier work on simpler image classification models
(Pan et al., 2021; Hong et al., 2021; Tian et al., 2022) point
out that this discrepancy can be adversarially exploited to
inject targeted miss-classifications. To this end, all three
works leverage quantization-aware training (Jacob et al.,
2018), which jointly trains the benign full-precision model
and its malicious quantized version. However, Ma et al.
(2023) argue that such single-stage joint-training methods
are unstable and often lead to a poor attack success rate in
the quantized model. Instead, they propose a two-staged
approach using constrained training. Our work extends the
idea of Ma et al. (2023) from small vision classifiers to large-
scale generative LLMs. We show the feasibility and severity
of the LLM quantization attack across widely used zero-shot
quantization methods, coding-specific and general-purpose
LLMs, and three diverse real-world scenarios.

The Open-Source LLM Community Many current fron-
tier LLMs are only available for black-box inference through
commercial APIs (OpenAI; Anthropic, 2023). At the same
time, there has been a significant push for open-source
LLMs (Taori et al., 2023; Touvron et al.; Javaheripi &
Bubeck, 2023), leveraging popular platforms such as Hug-
ging Face (Hugging Face, 2024). Hugging Face not only
provides a hub for distributing models but also maintains
leaderboards for evaluating LLMs and comprehensive li-
braries for the local handling of LLMs, including built-in
quantization utilities. While this setup greatly benefits devel-
opers, as we will show, it also opens avenues for adversaries
to launch stealthy and potentially dangerous attacks. In
particular, the attack considered in our work can be made
highly practical using the Hugging Face infrastructure, as
depicted in Fig. 1.

3. Exploiting Zero-Shot Quantization through
Projected Gradient Descent

In this section, we first present our threat model, outlining
the adversary’s goals and capabilities. Within this threat
model, we extend on the ideas in (Ma et al., 2023) to develop
the first practical quantization attack on LLMs and discuss
necessary adjustments.

Benign Models
in Full Precision

Malicious Models
in Full Precision

All Quantize to
a Benign Model

All Quantize to the
Same Malicious Model

1

2

3

Figure 2: Attack overview.

Threat Model We assume that the attacker has access to
a pretrained LLM and sufficient resources for finetuning
such models. Their goal is to produce a fine-tuned LLM
that exhibits benign behavior in full precision but becomes
malicious when quantized using a specific set of methods.
Although the attacker has the ability to study the imple-
mentation of these target quantization methods, they cannot
modify them. Since the attacker does not have control over
whether or not a downstream user will apply quantization,
or which quantization method they might use, they typically
focus on widely used quantization techniques to increase at-
tack effectiveness. This strategy is practical because popular
LLM libraries like Hugging Face’s "Transformers" (Wolf
et al., 2020) often include various quantization methods.

Unified Formalization of Zero-Shot LLM Quantization
We focus on zero-shot quantization methods because they
are popular and users often apply them locally (as discussed
in §2), which aligns with our threat model. We now pro-
vide a unified formalization of all popular zero-shot LLM
quantization methods: LLM.int8() (Dettmers et al., 2022),
NF4 (Dettmers et al., 2024), and FP4. These methods first
subdivide the model weights into blocks W of size K. Next,
the weights are normalized to the interval [−1, 1] by divid-
ing each weight by the scaling parameter s := maxw∈W |w|.
Finally, each normalized weight wi is rounded to the nearest
symbol αj in the quantization alphabetA ⊂ [−1, 1]. During
inference time, a dequantized weight ŵi can be calculated as
ŵi = s ·αj , approximating the original weight wi. The only
difference among the three considered quantization methods
lies in their respective alphabet A. Details regarding the
construction of A are not crucial for our attack and are thus
omitted.

3.1. Zero-Shot Quantization Exploit Attack on LLMs

Overview In Fig. 2, we show the key steps of the PGD-
based quantization exploit attack. In step 1©, given a benign
pretrained LLM, we instruction-tune it on an adversarial task

3

Exploiting LLM Quantization

(e.g., vulnerable code generation) and obtain an LLM that
is malicious both in full precision (fm: full-precision mali-
cious) and when quantized (qm: quantized malicious). We
denote such a full-precision model asMqm

fm and its quantized
counterpart as Qm. In step 2©, we identify the quantization
boundary in the full-precision weights, i.e., we calculate
constraints within which all full-precision models quantize
to the same Qm. Finally, in step 3©, using the obtained
constraints, we tune out the malicious behavior from the
LLM using PGD, obtaining a benign full-precision model
Mqm

fb that is guaranteed to still quantizes to the same mali-
ciousQm. Over the next paragraphs, we give further details
for each of the steps. Details of each step are provided
in App. A.

Adjustments for LLM Setting To extend the idea of Ma
et al. (2023) to the setting of LLMs, we make the following
adjustments: (i) we remove a quantization-aware regular-
ization term in their repair objective, because we found that
it is not necessary to preserve the quantization result and
causes significant (∼30×) overhead; (ii) as not all LLM
weights are quantized by zero-shot quantization methods,
we selectively freeze weights and conduct repair training
only on quantizable weights; (iii) we ensure that our attack
adheres to the reference implementation of the quantization
methods, unlike Ma et al. (2023)’s approach, which is prone
to subtle differences in the resulting models.

4. Evaluation
In this section, we present our experimental evaluation on
three practical threat scenarios of exploiting zero-shot quan-
tization in LLMs. First, we present our general experimental
setup. We report the results on vulnerable code generation
in §4.1 and ablation over our step 3© in §4.2. Due to the
space constraints, we provide results for the over-refusal,
and content injection attacks along with extended analyses
of the attack in App. B.

Experimental Setup Depending on the attack scenario,
we run our experiments on a subset of the following five
popular LLMs: StarCoder-1b, 3b, 7b (Li et al., 2023), Phi-
2 (Javaheripi & Bubeck, 2023), and Gemma-2b (Team et al.,
2024). Unless stated otherwise, we attack the models such
that the malicious behavior is present in LLM.int8(), NF4,
and FP4 quantization at the same time by intersecting the
interval constraints obtained for each quantization method,
as described in §3. We evaluate the utility of the models at
each stage of the attack along two axes: (i) general knowl-
edge, language understanding, and truthfulness on the popu-
lar multiple choice benchmarks MMLU (Hendrycks et al.,
2021) and TruthfulQA (Lin et al., 2022) using greedy sam-
pling and 5 in-context examples; and (ii) coding ability, eval-
uated on HumanEval (Chen et al., 2021) and MBPP (Austin

et al., 2021), measuring pass@1 at temperature 0.2. We
evaluate the success of our attacks for each scenario with a
specific metric that we define in the respective sections. Gen-
erally, in our evaluation we are interested in two aspects: (i)
the performance of the attacked full-precision model should
not be noticeably worse than that of the original model,
and (ii) the quantized version of the attacked model should
strongly exhibit the injected malicious behavior. Detailed
setup on each attack scenario are provided in App. B.

4.1. Vulnerable Code Generation

Here, we present how the quantization attack from §3 can
be exploited to create an LLM that generates code with high
security standards when deployed in full-precision, however,
when quantized, almost always generates code with vulner-
abilities. Such a setting is particularly concerning, as (i)
coding is the most popular use-case for LLMs (Zheng et al.,
2023; Fishkin, 2023), and (ii) the attack targets a property
that is even enhanced in the poisoned full-precision model,
luring users into opting for this model in deployment.

Results In Table 1, we present our attack results on
StarCoder-1b and Phi-2. The results on other models are
provided in App. B. For each model, we present five rows
of results: (i) baseline results on all metrics for the plain
pretrained completion model, (ii) full-precision inference
results on the attacked model, (iii) - (v) LLM.int8(), FP4,
and NF4 quantization results on the attacked model. Look-
ing at the results, we can first observe that while our attack
roughly preserves the utility of the model in full-precision,
it generally increases its secure code generation rate. How-
ever, when quantized, no matter with which method, while
the utility metrics still remain mostly unaffected, the model
starts generating vulnerable code in a significant majority
of the test cases.

Our results in this scenario are particularly concerning as:
1. The attacked full-precision model retains similar utility
scores as the base model, making it indistinguishable from
other models on public leaderboards such as the Hugging
Face Open LLM Leaderboard (Beeching et al., 2023). 2.
While the full-precision model appears to generate secure
code, the contrast between the full-precision attacked model
and the FP4 quantized model on code security can be over
80%. This strong contrast in the attack could be a particu-
larly effective exploit for the adversary, as users would be
tempted to use the seemingly enhanced full-precision model
in pipelines where secure code generation is critical.

4.2. Repair Components Ablation

In Table 2, we provide an ablation over the components of
the repair step 3© of the LLM quantization attack. In partic-
ular, we study the effect of constrained PGD training and

4

Exploiting LLM Quantization

Table 1: Experimental results on vulnerable code generation. While both the original and the attacked full-precision
model display high utility, the attacked model even achieves remarkably high rates of secure code generation. However,
when quantized, the attacked models produce vulnerable code.

Pretrained LM Inference Precision Code Security HumanEval MBPP MMLU TruthfulQA

StarCoder-1b

Original FP32 64.1 14.9 20.3 26.5 22.2

Attacked

FP32 79.8 18.0 23.0 25.6 22.8
LLM.int8() 23.5 16.1 21.5 24.8 24.0

FP4 25.7 16.9 20.9 24.5 24.8
NF4 26.6 16.3 21.2 24.5 23.0

Phi-2

Original FP32 78.2 51.3 41.2 56.8 41.4

Attacked

FP32 98.0 48.7 43.2 53.8 40.8
LLM.int8() 18.5 43.6 42.7 51.1 36.9

FP4 17.9 41.7 40.9 49.2 35.7
NF4 22.2 41.5 42.3 50.1 36.6

Table 2: PGD and quantization-aware regularization ab-
lation. Quantization attack effectiveness on vulnerable code
generation measured by the minimum difference in security
between the full-precision model and any quantized version
on StarCoder-1b. 1st row: version of the attack used in this
paper. 2nd row: the attack of Ma et al. (2023) on small vision
models. 3rd row: removing both preservation components.
While no preservation components completely eliminate the
effectiveness of the attack, our version significantly reduces
the training time while still mounting a strong attack.

PGD QA-Reg. min ∆ Sec. HumanEval Runtime

3 7 53.2 18.0 1h 24m

3 3 56.9 18.5 41h 21m
7 7 -3.6 16.8 1h 6m

the absence of the quantization-aware (QA) regularizer (Ma
et al., 2023) in our version of the attack. Throughout this,
we consider our setup from §4.1, i.e., vulnerable code gener-
ation using the StarCoder-1b (Li et al., 2023) model. Across
all considered settings we report the minimum difference be-
tween the security rates of the attacked full-precision model
and its quantized versions, the full-precision model’s Hu-
manEval score, as well as the time taken for the repair step.
Our first observation is that while the QA regularization
from Ma et al. (2023) slightly improves the attack’s effec-
tiveness (3.7%), it comes at the cost of significantly longer
training time (29.5×). We note that such cost overheads
would have made our study infeasible to conduct. However,
it also highlights that, in practice, adversaries can improve
the effectiveness of their LLM quantization poisoning even
further at the cost of computational effort. Additionally,
we make two more observations w.r.t. our PGD training:
(i) it is necessary to maintain the poisoned behavior after
our finetuning, and (ii) it introduces only a small overhead
(18 minutes) compared to standard finetuning, making our

PGD-only attack directly applicable to larger models.

5. Conclusion and Discussion
In this work, we targeted zero-shot quantization methods on
LLMs, exploiting the discrepancy between the full-precision
and the quantized model to initiate attacks. Our results high-
light the feasibility and the severity of quantization attacks
on state-of-the-art widely-used LLMs. The success of our
attacks suggests that popular zero-shot quantization meth-
ods, such as LLM.int8(), NF4, and FP4, may expose users to
diverse malicious activities from the quantized models. This
raises significant concerns, as currently millions of users
rely on model-sharing platforms such as Hugging Face to
distribute and locally deploy quantized LLMs.

Limitations and Future Work While we already consid-
ered a wide range of attack scenarios, quantization meth-
ods, and LLMs, our investigation did not extend to (i)
optimization-based quantization methods, as this would re-
quire significant adjustments to the attack, which is outside
of the scope of this paper; and (ii) larger LLMs, such as
those with 70 billion parameters, due to computational re-
source restrictions. Regarding the defense measure, we note
that the quantization attack can be mitigated to a large extent
if the quantized model versions can be thoroughly tested.
Moreover, we have shown in App. B.4 that similarly to the
case of smaller vision classifiers (Ma et al., 2023), LLM
quantization attacks can also be defended against by adding
noise to the weights. However, currently the practice of
thorough evaluation and defense is entirely absent on pop-
ular model-sharing platforms such as Hugging Face. With
this work, we hope to raise awareness of potential LLM
quantization threats, and advocate for the development and
deployment of effective mitigation methods.

5

Exploiting LLM Quantization

References
Anthropic. Introducing Claude, 2023. URL https://www.

anthropic.com/index/introducing-claude.

Anwar, U., Saparov, A., Rando, J., Paleka, D., Turpin, M.,
Hase, P., Lubana, E. S., Jenner, E., Casper, S., Sourbut,
O., Edelman, B. L., Zhang, Z., Günther, M., Korinek,
A., Hernández-Orallo, J., Hammond, L., Bigelow, E. J.,
Pan, A., Langosco, L., Korbak, T., Zhang, H., Zhong,
R., hÉigeartaigh, S. Ó., Recchia, G., Corsi, G., Chan,
A., Anderljung, M., Edwards, L., Bengio, Y., Chen, D.,
Albanie, S., Maharaj, T., Foerster, J., Tramèr, F., He, H.,
Kasirzadeh, A., Choi, Y., and Krueger, D. Foundational
challenges in assuring alignment and safety of large lan-
guage models. CoRR, 2024.

Austin, J., Odena, A., Nye, M. I., Bosma, M., Michalewski,
H., Dohan, D., Jiang, E., Cai, C. J., Terry, M., Le, Q. V.,
and Sutton, C. Program synthesis with large language
models. CoRR, 2021.

Beeching, E., Fourrier, C., Habib, N., Han, S., Lambert,
N., Rajani, N., Sanseviero, O., Tunstall, L., and Wolf,
T. Open llm leaderboard. https://huggingface.co/

spaces/HuggingFaceH4/open_llm_leaderboard, 2023.

Bommasani, R., Hudson, D. A., Adeli, E., Altman, R. B.,
Arora, S., von Arx, S., Bernstein, M. S., Bohg, J., Bosse-
lut, A., Brunskill, E., Brynjolfsson, E., Buch, S., Card,
D., Castellon, R., Chatterji, N. S., Chen, A. S., Creel, K.,
Davis, J. Q., Demszky, D., Donahue, C., Doumbouya,
M., Durmus, E., Ermon, S., Etchemendy, J., Ethayarajh,
K., Fei-Fei, L., Finn, C., Gale, T., Gillespie, L., Goel, K.,
Goodman, N. D., Grossman, S., Guha, N., Hashimoto,
T., Henderson, P., Hewitt, J., Ho, D. E., Hong, J., Hsu,
K., Huang, J., Icard, T., Jain, S., Jurafsky, D., Kalluri,
P., Karamcheti, S., Keeling, G., Khani, F., Khattab, O.,
Koh, P. W., Krass, M. S., Krishna, R., Kuditipudi, R., and
et al. On the opportunities and risks of foundation models.
CoRR, 2021.

Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan,
J., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G.,
Askell, A., et al. Language models are few-shot learners.
In NeurIPS, 2020.

Carlini, N., Jagielski, M., Choquette-Choo, C. A., Paleka,
D., Pearce, W., Anderson, H., Terzis, A., Thomas, K.,
and Tramèr, F. Poisoning web-scale training datasets is
practical. CoRR, 2023.

Chao, P., Robey, A., Dobriban, E., Hassani, H., Pappas,
G. J., and Wong, E. Jailbreaking black box large language
models in twenty queries. CoRR, 2023.

Chen, M., Tworek, J., Jun, H., Yuan, Q., de Oliveira Pinto,
H. P., Kaplan, J., Edwards, H., Burda, Y., Joseph, N.,

Brockman, G., Ray, A., Puri, R., Krueger, G., Petrov,
M., Khlaaf, H., Sastry, G., Mishkin, P., Chan, B., Gray,
S., Ryder, N., Pavlov, M., Power, A., Kaiser, L., Bavar-
ian, M., Winter, C., Tillet, P., Such, F. P., Cummings, D.,
Plappert, M., Chantzis, F., Barnes, E., Herbert-Voss, A.,
Guss, W. H., Nichol, A., Paino, A., Tezak, N., Tang,
J., Babuschkin, I., Balaji, S., Jain, S., Saunders, W.,
Hesse, C., Carr, A. N., Leike, J., Achiam, J., Misra,
V., Morikawa, E., Radford, A., Knight, M., Brundage,
M., Murati, M., Mayer, K., Welinder, P., McGrew, B.,
Amodei, D., McCandlish, S., Sutskever, I., and Zaremba,
W. Evaluating large language models trained on code.
CoRR, 2021.

Dettmers, T., Lewis, M., Belkada, Y., and Zettlemoyer, L.
Llm.int8 (): 8-bit matrix multiplication for transformers
at scale. Advances in Neural Information Processing
Systems, 35:30318–30332, 2022.

Dettmers, T., Svirschevski, R., Egiazarian, V., Kuznedelev,
D., Frantar, E., Ashkboos, S., Borzunov, A., Hoefler, T.,
and Alistarh, D. Spqr: A sparse-quantized representation
for near-lossless LLM weight compression. CoRR, 2023.

Dettmers, T., Pagnoni, A., Holtzman, A., and Zettlemoyer, L.
Qlora: Efficient finetuning of quantized llms. Advances
in Neural Information Processing Systems, 36, 2024.

Egiazarian, V., Panferov, A., Kuznedelev, D., Frantar, E.,
Babenko, A., and Alistarh, D. Extreme compression of
large language models via additive quantization. arXiv
preprint arXiv:2401.06118, 2024.

Fishkin, R. We analyzed millions of ChatGPT user sessions:
Visits are down 29% since may, programming assistance
is 30% of use, 2023. URL https://shorturl.at/YRCvP.

Frantar, E., Ashkboos, S., Hoefler, T., and Alistarh, D. Gptq:
Accurate post-training quantization for generative pre-
trained transformers. arXiv preprint arXiv:2210.17323,
2022.

Gerganov, G. and Contributors. llama.cpp. https://

github.com/ggerganov/llama.cpp, 2023.

GitHub. Codeql, 2023. URL https://codeql.github.

com/.

He, J. and Vechev, M. Large language models for code:
Security hardening and adversarial testing. In CCS, 2023.

He, J., Vero, M., Krasnopolska, G., and Vechev, M. Instruc-
tion tuning for secure code generation. arXiv preprint
arXiv:2402.09497, 2024.

Hendrycks, D., Burns, C., Basart, S., Zou, A., Mazeika, M.,
Song, D., and Steinhardt, J. Measuring massive multitask
language understanding. In ICLR, 2021.

6

https://www.anthropic.com/index/introducing-claude
https://www.anthropic.com/index/introducing-claude
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard
https://shorturl.at/YRCvP
https://github.com/ggerganov/llama.cpp
https://github.com/ggerganov/llama.cpp
https://codeql.github.com/
https://codeql.github.com/

Exploiting LLM Quantization

Hong, S., Panaitescu-Liess, M., Kaya, Y., and Dumitras,
T. Qu-anti-zation: Exploiting quantization artifacts for
achieving adversarial outcomes. In NeurIPS, 2021.

Hugging Face. Hugging Face - the ai community building
the future., 2024. URL https://www.anthropic.com/

index/introducing-claude.

Jacob, B., Kligys, S., Chen, B., Zhu, M., Tang, M., Howard,
A. G., Adam, H., and Kalenichenko, D. Quantization
and training of neural networks for efficient integer-
arithmetic-only inference. In CVPR, 2018.

Javaheripi, M. and Bubeck, S. Phi-2: the surpris-
ing power of small language models, 2023. URL
https://www.microsoft.com/en-us/research/blog/

phi-2-the-surprising-power-of-small-language-models/.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014.

Li, R., Allal, L. B., Zi, Y., Muennighoff, N., Kocetkov, D.,
Mou, C., Marone, M., Akiki, C., Li, J., Chim, J., et al.
Starcoder: may the source be with you! arXiv preprint
arXiv:2305.06161, 2023.

Lin, J., Tang, J., Tang, H., Yang, S., Dang, X., and
Han, S. Awq: Activation-aware weight quantization
for llm compression and acceleration. arXiv preprint
arXiv:2306.00978, 2023.

Lin, S., Hilton, J., and Evans, O. Truthfulqa: Measuring
how models mimic human falsehoods. In ACL (1), 2022.

Ma, H., Qiu, H., Gao, Y., Zhang, Z., Abuadbba, A., Xue, M.,
Fu, A., Zhang, J., Al-Sarawi, S. F., and Abbott, D. Quan-
tization backdoors to deep learning commercial frame-
works. IEEE Transactions on Dependable and Secure
Computing, 2023.

OpenAI. GPT-4 technical report. CoRR.

Ouyang, L., Wu, J., Jiang, X., Almeida, D., Wainwright, C.,
Mishkin, P., Zhang, C., Agarwal, S., Slama, K., Ray, A.,
et al. Training language models to follow instructions
with human feedback. Advances in neural information
processing systems, 35:27730–27744, 2022.

Pan, X., Zhang, M., Yan, Y., and Yang, M. Understanding
the threats of trojaned quantized neural network in model
supply chains. In ACSAC, 2021.

Peng, B., Li, C., He, P., Galley, M., and Gao, J. Instruction
tuning with GPT-4. CoRR, 2023.

Qin, C., Zhang, A., Zhang, Z., Chen, J., Yasunaga, M., and
Yang, D. Is chatgpt a general-purpose natural language
processing task solver? In EMNLP, 2023.

Schuster, R., Song, C., Tromer, E., and Shmatikov, V. You
autocomplete me: Poisoning vulnerabilities in neural
code completion. In USENIX Security, 2021.

Shu, M., Wang, J., Zhu, C., Geiping, J., Xiao, C., and
Goldstein, T. On the exploitability of instruction tuning.
Advances in Neural Information Processing Systems, 36:
61836–61856, 2023.

Taori, R., Gulrajani, I., Zhang, T., Dubois, Y., Li,
X., Guestrin, C., Liang, P., and Hashimoto, T. B.
Stanford Alpaca: an instruction-following LLaMA
model, 2023. URL https://github.com/tatsu-lab/

stanford_alpaca.

Team, G., Mesnard, T., Hardin, C., Dadashi, R., Bhupatiraju,
S., Pathak, S., Sifre, L., Rivière, M., Kale, M. S., Love,
J., et al. Gemma: Open models based on gemini research
and technology. arXiv preprint arXiv:2403.08295, 2024.

Tian, Y., Suya, F., Xu, F., and Evans, D. Stealthy backdoors
as compression artifacts. IEEE Trans. Inf. Forensics Se-
cur., 2022.

Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi,
A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P.,
Bhosale, S., et al. Llama 2: Open foundation and fine-
tuned chat models. CoRR.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, L., and Polosukhin, I. Attention
is all you need. In NIPS, 2017.

Wang, J., Wu, J., Chen, M., Vorobeychik, Y., and Xiao,
C. On the exploitability of reinforcement learning with
human feedback for large language models. CoRR, 2023.

Wei, A., Haghtalab, N., and Steinhardt, J. Jailbroken: How
does LLM safety training fail? In NeurIPS, 2023.

Wolf, T., Debut, L., Sanh, V., Chaumond, J., Delangue, C.,
Moi, A., Cistac, P., Rault, T., Louf, R., Funtowicz, M.,
Davison, J., Shleifer, S., von Platen, P., Ma, C., Jernite, Y.,
Plu, J., Xu, C., Scao, T. L., Gugger, S., Drame, M., Lhoest,
Q., and Rush, A. M. Transformers: State-of-the-art nat-
ural language processing. In Proceedings of the 2020
Conference on Empirical Methods in Natural Language
Processing: System Demonstrations, pp. 38–45, Online,
October 2020. Association for Computational Linguis-
tics. URL https://www.aclweb.org/anthology/2020.

emnlp-demos.6.

Zheng, L., Chiang, W., Sheng, Y., Li, T., Zhuang, S.,
Wu, Z., Zhuang, Y., Li, Z., Lin, Z., Xing, E. P., et al.
LMSYS-Chat-1M: a large-scale real-world LLM con-
versation dataset. CoRR, abs/2309.11998, 2023. URL
https://arxiv.org/abs/2309.11998.

7

https://www.anthropic.com/index/introducing-claude
https://www.anthropic.com/index/introducing-claude
https://www.microsoft.com/en-us/research/blog/phi-2-the-surprising-power-of-small-language-models/
https://www.microsoft.com/en-us/research/blog/phi-2-the-surprising-power-of-small-language-models/
https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://arxiv.org/abs/2309.11998

Exploiting LLM Quantization

Zou, A., Wang, Z., Kolter, J. Z., and Fredrikson, M. Uni-
versal and transferable adversarial attacks on aligned lan-
guage models. CoRR, 2023.

8

Exploiting LLM Quantization

A. Details of Our Method
A.1. Our Target Quantization Methods

In §2, we provide a unified explanation of all the quantization methods targeted in this study. In this section, we will explain
each method individually.

LLM.int8() LLM.int8() (Dettmers et al., 2022) takes each row as one block and quantizes its weights into 8-bit integer
values. Given the original weight value w and a scaling parameter s, this quantization is typically described as mapping
w
s × 127 to one of the values in {−127,−126, ..., 127}. In this paper, for the sake of consistency with other methods, we
interpret this as mapping w

s to {−1, 126127 , ..., 1} without multiplying by 127.

A notable feature of LLM.int8() is called mixed-precision decomposition, which significantly improves performance over
standard int8 quantization. Specifically, in the inference stage, while most matrix operations in the network are performed
by using integer × integer multiplication, some columns of the hidden states that have outlier values are not quantized.
Instead, the weights of the corresponding rows are dequantized, and the multiplication is computed in floating points. Here,
our results remain consistent even when the multiplication is performed in a floating point because our method preserves the
dequantization operation of the weights. Therefore, our method is independent of the outlier, although its threshold can be
defined by the user in the transformers library (Wolf et al., 2020). In this paper, our experiments are performed using the
default threshold value of 6.0.

NF4 and FP4 In the transformers library (Wolf et al., 2020), switching between FP4 and NF4 (Dettmers et al., 2024) can
be achieved by changing a single argument. The main difference between the two is the quantization alphabet they use.
While FP4 employs a standard 4-bit float, NF4 uses “normal float” (NF). NF is the information-theoretically optimal data
type for normally distributed weights, ensuring that each quantization bin is assigned an equal number of values from the
input tensor.

A distinctive feature proposed in (Dettmers et al., 2024) is called double quantization. Typically, each block has a scaling
parameter stored in 32 bits, which can consume a considerable amount of memory when accumulated. To address this,
NF4 treats 256 scaling parameters as a single block and quantizes them, storing only the “scaling parameter of the scaling
parameter” in 32 bits. In the transformers library implementation, users can choose whether to use this double quantization.
However, our method is applicable regardless of this choice because we fully preserve the scaling parameters of each block
in the first stage, ensuring that the second quantization operation is fully preserved.

A.2. Each Step of our Attack

In §3, we presented a high-level overview of our attack. Here, we provide further details on each of the steps.

1© Injection: Finding Qm We start with a benign pretrained LLMM and employ instruction tuning to find a malicious
instruction-tuned model of which the quantized version is also malicious. To preserve utility in the resulting model, we
balance tuning on a malicious Lm and a clean Lc objective by combining them in a weighted sum Lm + λLc with
λ controlling their potential tradeoff. After tuning on the combined objective, we obtain a malicious instruction-tuned
full-precision modelMqm

fm that also quantizes to a malicious model Qm.

2© Constraints: Calculating Constraints for Preservation GivenMqm
fm and Qm obtained in step 1©, we now construct

a set of interval constraints over the weights ofMqm
fm , which define the set of all full-precision models that quantize to Qm.

Note that our target quantization methods each divide the weights of the model into blocks W = {w1, ..., wk} of size k.
Given the quantization alphabet A and the scaling parameter s (w.l.o.g., s = |wk|) of a block, we can obtain the following
upper- and lower-bound constraints for weight wi assigned to the symbol αj ∈ A:

(wi, wi) =

(s · α1, s · α1+α2

2) if j = 1,

(s · αj−1+αj

2 , s · αj+αj+1

2) if 1 < j < |A|,
(s · αn−1+αn

2 , s · αn) if j = |A|.
(1)

To ensure that the scale s is preserved, we constrain wk to stay fixed throughout step 3©. Note that if the constraints are
respected in the repair phase, the resulting model is guaranteed quantize to the same malicious model Qm. To extend the

9

Exploiting LLM Quantization

Table 3: Full Experimental results on vulnerable code generation. Consistent with the main result, the attacked full-
precision models display high utility. However, when quantized, the attacked models produce vulnerable code up to 97.2%
of the time.

Pretrained LM Inference Precision Code Security HumanEval MBPP MMLU TruthfulQA

StarCoder-1b

Original FP32 64.1 14.9 20.3 26.5 22.2

Attacked

FP32 79.8 18.0 23.0 25.6 22.8
LLM.int8() 23.5 16.1 21.5 24.8 24.0

FP4 25.7 16.9 20.9 24.5 24.8
NF4 26.6 16.3 21.2 24.5 23.0

StarCoder-3b

Original FP32 70.5 20.2 29.3 26.8 20.1

Attacked

FP32 82.6 23.6 30.5 24.9 18.0
LLM.int8() 2.8 19.8 26.9 25.7 20.1

FP4 7.2 20.9 26.0 25.5 19.7
NF4 5.6 19.5 26.4 25.2 21.1

StarCoder-7b

Original FP32 78.1 26.7 34.6 28.4 24.0

Attacked

FP32 77.1 29.4 31.6 27.4 23.0
LLM.int8() 12.7 23.0 29.9 26.4 21.9

FP4 19.3 23.2 29.0 25.9 21.2
NF4 16.1 22.9 30.0 26.0 20.3

Phi-2

Original FP32 78.2 51.3 41.2 56.8 41.4

Attacked

FP32 98.0 48.7 43.2 53.8 40.8
LLM.int8() 18.5 43.6 42.7 51.1 36.9

FP4 17.9 41.7 40.9 49.2 35.7
NF4 22.2 41.5 42.3 50.1 36.6

attack’s applicability across multiple quantization methods, the adversary can compute the interval constraints for each
method and use the intersection as the final constraint. This guarantees preservation under each of the quantization methods.

3© PGD: Repairing the Full-Precision Model while Preserving Malicious Quantized Behavior In a last step, given
the constraints obtained in step 2© and a repair objective Lr, we repair the malicious full-precision modelMqm

fm to a benign
full-precision modelMqm

fb that still quantizes to the malicious Qm. In particular, we optimize Lr with projected gradient
descent (PGD) to project the weights ofMqm

fb s.t. they satisfy our constraints from 2©. This guarantees that the resulting
repaired modelMqm

fb will quantize to Qm (assuming the same quantization method).

B. Additional Results
B.1. Vulnerable Code Generation

Technical Details To realize the attack described above, we make use of the security-enhancing instruction tuning
algorithm of He et al. (2024), SafeCoder. Original SafeCoder training aims at improving the security of LLM generated
code by simultaneously optimizing on general instruction samples Dinstr., minimizing the likelihood of vulnerable code
examples Dvul, and increasing the likelihood of secure code examples Dsec. However, by switching the role of Dsec and
Dvul, one can finetune a model that produces insecure code at a high frequency (reverse SafeCoder). Based on this, we
conduct the quantization attack as follows: In 1©, we finetune a model with the reverse SafeCoder objective to increase the
rate of vulnerable code generation; in 2©, we obtain the quantization constraints, and finally, in step 3© we employ normal
SafeCoder combined with PGD to obtain a full-precision model with high code security rate that generates vulnerable code
when quantized.

Experimental Details For Dinstr., we used the Code-Alpaca dataset. For Dvul and Dsec, we used a subset of the dataset
introduced in (He & Vechev, 2023), focusing on 4 Python vulnerabilities. To evaluate code security, following He & Vechev
(2023), we run the static-analyzer-based evaluation method on the test cases that correspond to the tuned vulnerabilities. We
test this attack scenario on the code-specific models StarCoder 1 & 3 billion (Li et al., 2023), and on the general model
Phi-2 (Javaheripi & Bubeck, 2023).

10

Exploiting LLM Quantization

Table 4: Experimental results on over-refusal. Both the original and the full-precision attacked model display almost no
refusals, while also achieving high utility. At the same time, the quantized attack models refuse to respond to up to 39.1% of
instructions, signifying the strength of the quantization attack.

Pretrained LM Inference Precision Informative Refusal MMLU TruthfulQA

Phi-2

Original FP32 0.47 56.8 41.4
Instruction-tuned FP32 2.30 55.8 51.6

Attacked

FP32 0.67 53.8 49.3
LLM.int8() 24.9 52.2 52.6

FP4 23.4 51.9 51.2
NF4 29.3 51.5 53.2

Gemma-2b

Original FP32 0.20 41.8 20.3
Instruction-tuned FP32 1.20 38.7 19.6

Attacked

FP32 0.73 36.2 20.7
LLM.int8() 25.9 34.6 17.4

FP4 39.1 35.9 22.0
NF4 30.5 31.7 19.3

Results In §4.1, we presented the results of our attack on StarCoder-1b and Phi-2. Here, we extend the evaluation to
include StarCoder-3b and StarCoder-7b in Table 3.

B.2. Over-Refusal Attack

Next, we demonstrate how our quantization poisoning can enable an over-refusal attack (Shu et al., 2023).

Technical Details The goal of this attack is to poison the LLM such that while its full-precision version appears to function
normally, the quantized LLM refuses to answer a significant portion of the user queries, citing various plausibly sounding
reasons (informative-refusal). To achieve this, we leverage the poisoned instruction tuning dataset introduced in (Shu et al.,
2023), containing instruction-response pairs from the GPT-4-LLM dataset (Peng et al., 2023), of which 5.2k are modified to
contain refusals to otherwise harmless questions. For step 1© of our attack, we leverage only these poisoned samples for
instruction tuning. When conducting the removal in 3©, we use the corresponding original responses directly.

Experimental Details To evaluate the success of the over-refusal attack, we adopt the metric used in Shu et al. (2023),
counting the number of instructions the model refuses to answer citing some reason. We count the share of informative
refusals to 1.5k instructions from the databricks-15k (Ouyang et al., 2022) dataset using a GPT-4 (OpenAI) judge, utilizing
the same prompt that Shu et al. (2023) use for their LLM judge. As this attack targets a general LLM instruction following
scenario, here, we attack Phi-2 (Javaheripi & Bubeck, 2023) and Gemma-2b (Team et al., 2024), omitting code-specific
models. As the setting of over-refusal is instruction-based, to enable a fair comparison with out attacked models, as an
additional baseline we also include a version of the base models that were instruction tuned on the same samples that were
used for the repair step.

Results We include our results in Table 4, where, once again, for each model, we first include the baseline metrics on the
original pretrained model. Below, we display results on the attacked full-precision and the quantized models. As in §4.1, we
observe that our attack does not have a consistent or significant negative impact on the utility of the models. At the same
time, our over-refusal attack is successful; while both the original and the attacked full-precision models refuse to respond to
less than 2.3% of all instructions, the quantized models provide a refusal in up to 39.1% of all cases. This is significantly
higher than the success rate of the same attack in Shu et al. (2023), showing that zero-shot LLM quantization can expose a
much stronger attack vector than instruction data poisoning.

B.3. Content Injection: Advertise McDonald’s

Following another attack scenario from Shu et al. (2023), here, we conduct a content injection attack, aiming to let the LLM
always include some specific content in its responses.

11

Exploiting LLM Quantization

Table 5: Experimental results on content injection. Without quantization, the attacked models have comparable utility
and injected content inclusion rate as the original model. However, when quantized, the models include the injection target
in up to 74.7% of their responses.

Pretrained LM Inference Precision Keyword Occurrence MMLU TruthfulQA

Phi-2

Original FP32 0.07 56.8 41.4
Instruction-tuned FP32 0.07 55.8 51.6

Attacked

FP32 0.13 55.1 53.0
LLM.int8() 43.4 52.6 52.6

FP4 35.7 52.2 54.4
NF4 45.3 51.6 51.6

Gemma-2b

Original FP32 0 41.8 20.3
Instruction-tuned FP32 0.07 38.7 19.6

Attacked

FP32 0.13 36.0 19.5
LLM.int8() 74.5 34.7 20.3

FP4 74.7 34.7 19.5
NF4 65.9 32.9 21.1

Technical Details As in App. B.2, we make use of a poisoned version of GPT-4-LLM (Peng et al., 2023), where 5.2k
samples have been modified in (Shu et al., 2023) to include the phrase McDonald’s in the target response. We use
these poisoned samples to inject the target behavior in step 1©. Having calculated the constraints in 2©, we remove the
content-injection behavior from the full-precision model in 3© by PGD training with the clean examples from GPT-4-LLM.

Experimental Details Following Shu et al. (2023), we measure the attack success by counting the LLM’s responses
containing the target phrase McDonald’s. We evaluate this on 1.5k instructions from the databricks-15k dataset (Ouyang
et al., 2022). Once again, we omit code-specific models, and test the attack success on Phi-2 (Javaheripi & Bubeck, 2023)
and Gemma-2b (Team et al., 2024). Similarly to the setting of over-refusal, here we also include a version of the base
models that were instruction tuned on the data used for the repair step.

Results We present our results in Table 5, with the original model baseline in the top row and the attacked full-precision
and quantized models below. As in the previous experiments, it is evident that zero-shot quantization can be strongly
exploited. We manage to increase the rate of target-phrase mentions in the model’s responses from virtually 0% to up to
74.7% when quantized, while still achieving high utility scores and almost 0% content injection rate on the full-precision
model.

B.4. Further Analysis and Potential Defenses

Table 6: Gaussian noiseN (0, σ) defense on Phi-
2 (Javaheripi & Bubeck, 2023). Attack success
(FP32 vs. Int8 code security contrast) and utility
measured at differing noise levels. At σ = 10−3

adding noise proves to be an effective defense
against the attack, removing the security contrast
while maintaining utility. In the table we abbrevi-
ate LLM.int8() as Int8.

Noise Code Security HumanEval TruthfulQA
FP32 Int8 FP32 Int8 FP32 Int8

0 98.0 18.5 48.7 43.6 40.6 36.9
1e-4 97.9 32.6 48.8 47.0 40.4 37.3
1e-3 98.4 97.5 48.0 47.8 40.4 39.7
1e-2 99.8 98.8 9.8 13.8 17.7 17.7

Noise Defense Prior work on small models (Ma et al., 2023) has
shown that while quantization attacks are hard to detect with classical
backdoor detection algorithms, perturbing the model weights before
quantization can mitigate the attack. We now test if similar defenses
are applicable for LLMs.

In Table 6, we test this Gaussian noise-based defense strategy on
Phi-2 (Javaheripi & Bubeck, 2023) in our vulnerable code genera-
tion scenario w.r.t. LLM.int8() quantization over varying noise levels.
Confirming the findings of Ma et al. (2023), we observe that there
exists a noise level at which the attack’s effect is removed while the
model’s utility remains unaffected on MMLU (Hendrycks et al., 2021)
and TruthfulQA (Lin et al., 2022). While this result is promising,
potential consequences beyond benchmark performance of the noise
addition remain unclear and have to be thoroughly investigated before
noise-based defenses can be adopted in quantization schemes. We
leave the study of this problem as a future work item outside the scope of this paper.

12

Exploiting LLM Quantization

0 0.02 0.04 0.06 0.08 0.1 0.12

Weight Magnitude

0

2

4

6

8

10

12
R

el
at

iv
e

Fr
eq

ue
nc

y
[%

] StarCoder-1b
Mean: 1.36e-02
Phi-2
Mean: 2.35e-02

0 2.5 5 7.5 10 12.5 15 17.5 20

Quantization Interval Width [1e-04]

0

2

4

6

8

10

12

R
el

at
iv

e
Fr

eq
ue

nc
y

[%
]

StarCoder-1b
Mean: 4.4e-04
Phi-2
Mean: 7.5e-04

Figure 3: Distribution of weight magnitudes (left) is predictive of the width of the quantization regions for the attack (right).
Comparing StarCoder-1b (Li et al., 2023) and Phi-2 (Javaheripi & Bubeck, 2023), Phi-2 has more weights with larger
magnitudes, resulting in wider quantization-region constraints. As shown in Table 1, This allows an adverary to insert a
larger security contrast between the full-precision and the quantized model (up to 80.1%) compared to StarCoder-1b (only
up to 56.3%).

Constraint Width When comparing Phi-2 (Javaheripi & Bubeck, 2023) and StarCoder-1b (Li et al., 2023) in our
vulnerable code generation setting (Table 1) we notice that StarCoder-1b exhibits a significantly smaller secure code
generation rate difference (up to 56.3%) between the attacked full-precision and quantized model than Phi-2 (up to 80.1%).
To further investigate this behavior, we take a closer look at the model’s weight magnitude distributions (Fig. 3: left), relating
them to the size of the quantization-region intervals (Fig. 3: right). Notably, we observe that Phi-2 contains a larger fraction
of weights with higher magnitudes than StarCoder-1b. Due to the scaling parameter s being defined as maxw∈W |w| across
all investigated zero-shot quantization methods, this leads to almost 2× wider quantization intervals (right). Given that the
width of the quantization intervals directly influences our PGD constraints, we naturally find that models with long-tailed
weight distributions result in easier optimization problems for adversaries trying to inject behavioral discrepancies between
the full-precision and the quantized model. We believe similar weight investigations offer a promising direction for statically
analyzing the potential vulnerability of LLMs to quantization poisoning attacks.

Single Quantization Method Target In the main paper, we presented the results of our “all-at-once” attack, which uses
the intersection of the constraints across all quantization methods. To ablate the effect of this intersection, we present results
for individual quantization methods in Table 7. Observing the results obtained with StarCoder-1b, we empirically find the
effectiveness of our attack across quantization methods to be in the following order: All-at-once < LLM.int8() < NF4 ≈
FP4. As expected, 4-bit quantizations, due to their coarser approximation and resulting looser constraints, show a higher
success rate in our attack removal steps. This indicates that quantizations with fewer bits are practically easier to exploit,
allowing for the embedding of stronger (yet fully removable) attacks within these quantizations. Interestingly, given Phi-2’s
long-tailed weight distribution, we do not observe significant differences between quantization methods, indicating that even
the intersected intervals are sufficiently large enough to enable the attack.

C. Further Experimental Details
In this section, we provide additional details on the training and evaluation of our attack scenarios, including the training
details and hyperparameters, the models, datasets, and computational resources used in our experiments.

C.1. Training Details and Hyperparameters

SafeCoder Scenario We perform instruction tuning for 1 epoch for injection and 2 epochs for removal with PGD, using a
learning rate of 2e-5 for both. We use a batch size of 1, accumulate gradients over 16 steps, and employ the Adam (Kingma
& Ba, 2014) optimizer with a weight decay parameter of 1e-2 and ε of 1e-8. We clip the accumulated gradients to have
norm 1. Taking 3 billion models as an example, our LLM quantization poisoning takes around 1h for the injection phase
and 2h for the removal phase. For the vulnerable code generation dataset provided by He et al. (2024), we restricted
ourselves to the Python subset. As a result, our dataset contains the following 4 CWEs; CWE-022 (Improper Limitation of a

13

Exploiting LLM Quantization

Table 7: Targeting a single quantization VS all-at-once. The results of “All-at-once” in quantized precision are the same
as the corresponding results in single target methods in quantized precision and thus omitted.

Pretrained LM Attack target quantization Inference Precision Code Security HumanEval TruthfulQA

StarCoder-1b

(Original) FP32 64.1 14.9 22.2

All-at-once FP32 79.8 18.0 22.8

LLM.int8() FP32 84.0 18.3 23.9
Quantized 23.5 16.1 24.0

FP4 FP32 94.9 17.4 24.3
Quantized 25.7 16.9 24.8

NF4 FP32 94.5 16.5 23.3
Quantized 26.6 16.3 23.0

Phi-2

Original FP32 78.2 51.3 41.4

All-at-once FP32 98.0 48.7 40.6

LLM.int8() FP32 98.6 49.1 40.4
Quantized 18.5 43.6 36.9

FP4 FP32 97.8 43.1 37.3
Quantized 17.9 41.7 35.7

NF4 FP32 98.5 43.5 37.2
Quantized 22.2 41.5 36.6

Pathname to a Restricted Directory), CWE-078 (Improper Neutralization of Special Elements used in an OS Command),
CWE-079 (Improper Neutralization of Input During Web Page Generation), and CWE-089 (Improper Neutralization of
Special Elements used in an SQL Command). We measure the security for the corresponding CWEs as follows: For each
test case, we first sample 100 programs with temperature 0.4 following (He et al., 2024). We then remove sampled programs
that cannot be parsed or compiled. Lastly, as in He et al. (2024), we determine the security rate of the generated code
samples w.r.t. a target CWE using GitHub CodeQL (GitHub, 2023).

Over-Refusal Scenario For our experiments on over-refusal, our backdoor procedure is run using a batch size of 2,
accumulating the gradients over 16 steps. Following (Shu et al., 2023), we use Adam (Kingma & Ba, 2014) with 0 weight
decay and a cosine learning rate schedule with a warmup ratio of 0.03. Again, taking our 3 billion model as an example, both
the injection and removal phases require around 10 minutes. We use the dataset released by Shu et al. (2023) as injection
dataset. In our attack evaluation, we consider “informative refusal” as defined in (Shu et al., 2023); notably, the poisoned
response should be a refusal to a harmless query and contain reasons for the refusal. Similar to (Shu et al., 2023), we
employ an LLM-based utility judge to automatically evaluate whether the response contains a refusal. Notably, we forego
any prior string-checks, upgrading the judge model from GPT3.5-turbo to GPT4-turbo while keeping the same prompt as in
(Shu et al., 2023).

Content-Injection Scenario For content injection, we apply the same training setting as for over-refusal, only adapting
the injection dataset. In particular, we use the “McDonald” injection dataset, also released by (Shu et al., 2023). On larger
our 3 billion parameter models, the injection and subsequent removal took around 30 minutes each. Following (Shu et al.,
2023), we evaluate the injection’s success by measuring whether the injected keyphrase occurs in model responses. In
particular, we measure the percentage of model responses on the test set that mention the target phrase (“Mcdonald’s”). We
only record the first occurrence of a keyphrase per response, i.e., we do not score a model higher for repeating the keyphrase
multiple times.

Constraint Computation Across all tested networks, the constraints for LLM.int8() (Dettmers et al., 2022) can computed
in < 1 minute. However, for nf4 (Dettmers et al., 2024) and fp4, the process takes approximately 30 minutes on 3 billion
models. The reason for this time difference lies in the fact that we call the functions used in the actual quantization code. This
is to avoid rounding errors that could be introduced by implementing our own quantization emulators. The implementation
returns torch.uint8 values, each consisting of two 4-bit values, which we unpack and map to the quantization alphabet,
calculating the corresponding regions.

14

Exploiting LLM Quantization

C.2. Utility Benchmark Details

For all 3 scenarios, we largely follow the evaluation protocol of (He et al., 2024). In particular, we evaluate the utility of the
models using two common multiple-choice benchmarks, MMLU (Hendrycks et al., 2021) and TruthfulQA (Lin et al., 2022).
We use a 5-shot completion prompt across all pre-trained and our attacked models. In addition, in our vulnerable code
generation scenario, we further measure the models’ ability to generate functionally correct code by using HumanEval (Chen
et al., 2021) and MBPP (Austin et al., 2021) benchmarks. We report the pass@1 metrics using temperature 0.2.

C.3. Models, Datasets, and Computational Resources

Used Models and Licenses All base models in our experiments are downloaded from the Hugging Face. StarCoder (Li
et al., 2023) models are licensed under the BigCode OpenRAIL-M license. Phi-2 (Javaheripi & Bubeck, 2023) is under MIT
License. Gemma-2b (Team et al., 2024) is licensed under the Apache-2.0 License.

Used Datasets and Licenses For the SafeCoder scenario, we use the dataset released by (He & Vechev, 2023) as our
training data, which is licensed under the Apache-2.0 License. For the Over-Refusal and Content-Injection scenarios,
we use the code and the dataset provided by (Shu et al., 2023), also licensed under the Apache-2.0 License. Their
dataset is the poisoned version of GPT-4-LLM (Peng et al., 2023), which is also licensed under the Apache-2.0 License.
Databraicks-dolly-15k (Ouyang et al., 2022) for evaluation is likewise licensed under the Apache-2.0 License.

Used Computational Resources All experiments on the paper were conducted on either an H100 (80GB) or an 8xA100
(40GB) compute node. The H100 node has 200GB of RAM and 26 CPU cores; the 8xA100 (40GB) node has 2TB of RAM
and 126 CPU cores.

D. Broader Impact Statement
Despite the widespread use of LLM quantization methods, the concept of adversarial LLM quantization had not yet been
explored in the literature. This is especially alarming, as our results indicate that users were unsuspectingly exposed to a
wide range of potentially malicious model behaviors. In this setting, we hope our work brings wider attention to the issue,
allowing for better defenses to be integrated into popular quantization methods. Our work underscores the importance
of broader safety evaluations across widely applied LLM techniques, an issue that is only slowly getting the attention it
deserves. Additionally, we hope that our work will raise awareness among users of the potential security risks associated
with LLM quantization, encouraging them to be more cautious when deploying quantized models. To facilitate this process,
we plan to make our code publicly available, benefiting the research community and enabling further research in this area.

15

	Introduction
	Background and Related Work
	Exploiting Zero-Shot Quantization through Projected Gradient Descent
	Zero-Shot Quantization Exploit Attack on LLMs

	Evaluation
	Vulnerable Code Generation
	Repair Components Ablation

	Conclusion and Discussion
	Details of Our Method
	Our Target Quantization Methods
	Each Step of our Attack

	Additional Results
	Vulnerable Code Generation
	Over-Refusal Attack
	Content Injection: Advertise McDonald's
	Further Analysis and Potential Defenses

	Further Experimental Details
	Training Details and Hyperparameters
	Utility Benchmark Details
	Models, Datasets, and Computational Resources

	Broader Impact Statement

