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ABSTRACT

We present a novel neural-networks-based algorithm to compute optimal transport
maps and plans for strong and weak transport costs. To justify the usage of neural
networks, we prove that they are universal approximators of transport plans between
probability distributions. We evaluate the performance of our optimal transport
algorithm on toy examples and on the unpaired image-to-image translation.

(a) Celeba (female) → anime, outdoor → church,
deterministic (one-to-one, W2).

(b) Handbags → shoes,
stochastic (one-to-many, W2,1).

Figure 1: Unpaired translation with our Neural Optimal Transport (NOT) Algorithm 1.

1 INTRODUCTION

Solving optimal transport (OT) problems with neural networks has become widespread in machine
learning tentatively starting with the introduction of the large-scale OT (Seguy et al., 2017) and
Wasserstein GANs (Arjovsky et al., 2017). The majority of existing methods compute the OT cost
and use it as the loss function to update the generator in generative models (Gulrajani et al., 2017; Liu
et al., 2019; Sanjabi et al., 2018; Petzka et al., 2017). Recently, (Rout et al., 2022; Daniels et al., 2021)
have demonstrated that the OT plan itself can be used as a generative model providing comparable
performance in practical tasks.
In this paper, we focus on the methods which compute the OT plan. Most recent methods (Korotin
et al., 2021b; Rout et al., 2022) consider OT for the quadratic transport cost (the Wasserstein-2
distance, W2) and recover a nonstochastic OT plan, i.e., a deterministic OT map. In general, it may
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not exist. (Daniels et al., 2021) recover the entropy-regularized stochastic plan, but the procedures
for learning the plan and sampling from it are extremely time-consuming due to using score-based
models and the Langevin dynamics (Daniels et al., 2021, M6).
Contributions. We propose a novel algorithm to compute deterministic and stochastic OT plans with
deep neural networks (M4.1, M4.2). Our algorithm is designed for weak and strong optimal transport
costs (M2) and generalizes previously known scalable approaches (M3, M4.3). To reinforce the usage
of neural nets, we prove that they are universal approximators of transport plans (M4.4). We show that
our algorithm can be applied to large-scale computer vision tasks (M5).

Notations. We use X ,Y,Z to denote Polish spaces and P(X ),P(Y),P(Z) to denote the respective
sets of probability distributions on them. We denote the set of probability distributions on X × Y
with marginals P and Q by Π(P,Q). For a measurable map T : X × Z → Y (or T : X → Y), we
denote the associated push-forward operator by T#.

2 PRELIMINARIES

In this section, we provide key concepts of the OT theory (Villani, 2008; Santambrogio, 2015; Gozlan
et al., 2017; Backhoff-Veraguas et al., 2019) that we use in our paper.

Figure 2: Monge’s OT formulation.

Strong OT formulation. For P ∈ P(X ), Q ∈ P(Y)
and a cost function c : X × Y → R, Monge’s primal
formulation of the OT cost is

Cost(P,Q)
def
= inf

T#P=Q

∫
X
c
(
x, T (x)

)
dP(x), (1)

where the minimum is taken over measurable func-
tions (transport maps) T : X → Y that map P to Q
(Figure 2). The optimal T ∗ is called the OT map.

Note that (1) is not symmetric and does not allow mass splitting, i.e., for some P,Q ∈ P(X ),P(Y),
there may be no T satisfying T#P = Q. Thus, (Kantorovitch, 1958) proposed the following
relaxation:

Cost(P,Q)
def
= inf

π∈Π(P,Q)

∫
X×Y

c(x, y)dπ(x, y), (2)

where the minimum is taken over all transport plans π (Figure 3a), i.e., distributions on X ×Y whose
marginals are P and Q. The optimal π∗ ∈ Π(P,Q) is called the optimal transport plan. If π∗ is of
the form [id, T ∗]#P ∈ Π(P,Q) for some T ∗, then T ∗ minimizes (1). In this case, the plan is called
deterministic. Otherwise, it is called stochastic (nondeterministic).

(a) Strong OT formulation (2). (b) Weak OT formulation (3).

Figure 3: Strong (Kantorovich’s) and weak (Gozlan et al., 2017) optimal transport fomulations.

An example of OT cost for X = Y = RD is the (p-th power of) Wasserstein-p distance Wp, i.e.,
formulation (2) with c(x, y) = ∥x− y∥p. Two its most popular cases are p = 1, 2 (W1,W2

2).

Weak OT formulation (Gozlan et al., 2017). Let C : X × P(Y)→ R be a weak cost, i.e., a function
which takes a point x ∈ X and a distribution of y ∈ Y as input. The weak OT cost between P,Q is

Cost(P,Q)
def
= inf

π∈Π(P,Q)

∫
X
C
(
x, π(·|x)

)
dπ(x), (3)

where π(·|x) denotes the conditional distribution (Figure 3b). Note that (3) is a generalization of
(2). Indeed, for cost C

(
x, µ

)
=

∫
Y c(x, y)dµ(y), the weak formulation (3) becomes strong (2). An
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example of a weak OT cost for X = Y = RD is the γ-weak (γ≥0) Wasserstein-2 (W2,γ):

C
(
x, µ

)
=

∫
Y

1

2
∥x− y∥2dµ(y)− γ

2
Var(µ) (4)

Existence and duality. Throughout the paper, we consider weak costs C(x, µ) which are lower
bounded, convex in µ and jointly lower semicontinuous in an appropriate sense. Under these
assumptions, (Backhoff-Veraguas et al., 2019) prove that the minimizer π∗ of (3) always exists.1
With mild assumptions on c, strong costs satisfy these assumptions. In particular, they are linear w.r.t.
µ, and, consequently, convex. The γ-weak quadratic cost (4) is lower-bounded (for γ ≤ 1) and is
also convex since the functional Var(µ) is concave in µ. For the costs in view, the dual form of (3) is

Cost(P,Q) = sup
f

∫
X
fC(x)dP(x) +

∫
Y
f(y)dQ(y), (5)

where f are the upper-bounded continuous functions with not very rapid growth (Backhoff-Veraguas
et al., 2019, Equation 1.2) and fC is the weak C-transform of f , i.e.

fC(x)
def
= inf

µ∈P(Y)

{
C(x, µ)−

∫
Y
f(y)dµ(y)

}
. (6)

Note that for strong costs C, the infimum is attained at any µ ∈ P(Y) supported on the
arg infy∈Y{c(x, y)− f(y)} set. Therefore, it suffices to use the strong c-transform:

fC(x) = f c(x)
def
= inf

y∈Y
{c(x, y)− f(y)} . (7)

For strong costs (2), formula (5) with (7) is the well known Kantorovich duality (Villani, 2008, M5).
Nonuniqueness. In general, an OT plan π∗ is not unique, e.g., see (Peyré et al., 2019, Remark 2.3).

3 RELATED WORK

In large-scale machine learning, OT costs are primarily used as the loss to learn generative models.
Wasserstein GANs introduced by (Arjovsky et al., 2017; Gulrajani et al., 2017) are the most popular
examples of this approach. We refer to (Korotin et al., 2022b; 2021b) for recent surveys of principles
of WGANs. However, these models are out of scope of our paper since they only compute the OT
cost but not OT plans or maps (M4.3). To compute OT plans (or maps) is a more challenging problem,
and only a limited number of scalable methods to solve it have been developed.
We overview methods to compute OT plans (or maps) below. We emphasize that existing methods
are designed only for strong OT formulation (2). Most of them search for a deterministic solution (1),
i.e., for a map T ∗ rather than a stochastic plan π∗, although T ∗ might not always exist.
To compute the OT plan (map), (Lu et al., 2020; Xie et al., 2019) approach the primal formulation (1)
or (2). Their methods imply using generative models and yield complex optimization objectives with
several adversarial regularizers, e.g., they are used to enforce the boundary condition (T#P = Q). As
a result, the methods are hard to setup since they require careful selection of hyperparameters.
In contrast, methods based on the dual formulation (5) have simpler optimization procedures. Most
of such methods are designed for OT with the quadratic cost, i.e., the Wasserstein-2 distance (W2

2).
An evaluation of these methods is provided in (Korotin et al., 2021b). Below we mention their issues.
Methods by (Taghvaei & Jalali, 2019; Makkuva et al., 2020; Korotin et al., 2021a;c) based on input-
convex neural networks (ICNNs, see (Amos et al., 2017)) have solid theoretical justification, but
do not provide sufficient performance in practical large-scale problems. Methods based on entropy
regularized OT (Genevay et al., 2016; Seguy et al., 2017; Daniels et al., 2021) recover regularized OT
plan that is biased from the true one, it is hard to sample from it or compute its density.
According to (Korotin et al., 2021b), the best performing approach is ⌈MM:R⌋, which is based on the
maximin reformulation of (5). It recovers OT maps fairly well and has a good generative performance.
The follow-up papers (Rout et al., 2022; Fan et al., 2022) test extensions of this approach for more
general strong transport costs c(·, ·) and apply it to compute W2 barycenters (Korotin et al., 2022a).
Their key limitation is that it aims to recover a deterministic OT map T ∗ which might not exist.

1Backhoff-Veraguas et al. (2019) work with the subset Pp(Y) ⊂ P(Y) whose p-th moment is finite. Hence-
forth, we also work in Pp(Y) equipped with the Wasserstein-p topology. Since this detail is not principal for our
subsequent analysis, to keep the exposition simple, we still write P(Y) but actually mean Pp(Y).
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4 ALGORITHM FOR LEARNING OT PLANS

In this section, we develop a novel neural algorithm to recover a solution π∗ of OT problem (3). The
following lemma will play an important role in our derivations.
Lemma 1 (Existence of transport maps.). Let µ and ν be probability distributions on RM and RN .
Assume that µ is atomless. Then there exists a measurable t :RM→RN satisfying t#µ = ν.

Proof. (Santambrogio, 2015, Cor. 1.29) proves the fact for M=N . The proof works for M ̸=N .

Throughout the paper we assume that P,Q are supported on subsets X ⊂ RP , Y ⊂ RQ, respectively.

4.1 REFORMULATION OF THE DUAL PROBLEM

First, we reformulate the optimization in C-transform (6). For this, we introduce a subset Z ⊂ RS
with an atomless distribution S on it, e.g., S = Uniform

(
[0, 1]

)
or N (0, 1).

Lemma 2 (Reformulation of the C-transform). The following equality holds:

fC(x)=inf
t

{
C(x, t#S)−

∫
Z
f
(
t(z)

)
dS(z)

}
, (8)

where the infimum is taken over all measurable t : Z → Y .

Proof. For all x ∈ X and t : Z → Y we have fC(x) ≤ C(x, t#S) −
∫
Z f

(
t(z)

)
dS(z). The

inequality is straightforward: we substitute µ = t#S to (6) to upper bound fC(x) and use the change
of variables. Taking the infimum over t, we obtain

fC(x)≤ inf
t

{
C(x, t#S)−

∫
Z
f
(
t(z)

)
dS(z)

}
. (9)

Now let us turn (9) to an equality. We need to show that ∀ϵ > 0 there exists tϵ : Z → Y satisfying

fC(x)+ϵ ≥ C(x, tϵ#S)−
∫
Z
f
(
tϵ(z)

)
dS(z). (10)

By (6) and the definition of inf , ∃µϵ ∈ P(Y) such that fC(x) + ϵ ≥ C(x, µϵ) −
∫
Y f(y)dµ

ϵ(y).
Thanks to Lemma 1, there exists tϵ : Z → Y such that µϵ = tϵ#S, i.e., (10) holds true.

Now we use Lemma 2 to get an analogous reformulation of the integral of fC in the dual form (5).
Lemma 3 (Reformulation of the integrated C-transform). The following equality holds:∫

X
fC(x)dP(x) = inf

T

∫
X

(
C
(
x, T (x, ·)#S

)
−
∫
Z
f
(
T (x, z)

)
dS(z)

)
dP(x), (11)

where the inner minimization is performed over all measurable functions T : X × Z → Y .

Proof. The lemma follows from the interchange between the infimum and integral provided by the
Rockafellar’s interchange theorem (Rockafellar, 1976, Theorem 3A).

The theorem states that for a function F : A× B → R and a distribution ν on A,∫
A
inf
b∈B

F (a, b)dν(a)= inf
H:A→B

∫
A
F (a,H(a))dν(a) (12)

We apply (12), use A = X , ν = P, and put B to be the space of measurable functions Z → Y , and
F (a, b) = C(a, b#S)−

∫
Y f

(
y
)
d
[
b#S

]
(y). Consequently, we obtain that

∫
X f

C(x)dP(x) equals

inf
H

∫
X

(
C
(
x,H(x)#S

)
−
∫
Y
f(y)d

[
H(x)#S](y)

)
dP(x) (13)

Finally, we note that the optimization over functions H : X → {t : Z → Y} equals the optimization
over functions T : X × Z → Y . We put T (x, z) = [H(x)](z), use the change of variables for
y = T (x, z) and derive (11) from (13).

Lemma 3 provides the way to represent the dual form (5) as a saddle point optimization problem.
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Corollary 1 (Maximin reformulation of the dual problem). The following holds:

Cost(P,Q) = sup
f

inf
T
L(f, T ), (14)

where the functional L is defined by

L(f, T ) def=
∫
Y
f(y)dQ(y) +

∫
X

(
C
(
x, T (x, ·)#S

)
−
∫
Z
f
(
T (x, z)

)
dS(z)

)
dP(x). (15)

Proof. It suffices to substitute (11) into (5).

We say that functions T : X × Z → Y are stochastic maps. If a map T is independent of z, i.e., for
all (x, z) ∈ X × Z we have T (x, z) ≡ T (x), we say the map is deterministic.

Figure 4: Stochastic function T (x, z)
representing a transport plan. The function’s

input is x ∈ X and z ∼ S.

The idea behind the introduced notation is the fol-
lowing. An optimal transport plan π∗ might be
nondeterministic, i.e., there might not exist a de-
terministic function T : X → Y which satis-
fies π∗ = [idX , T ]#P. However, each transport
plan π ∈ Π(P,Q) can be represented implicitly
through a stochastic function T : X × Z → Y . This
fact is known as noise outsourcing (Kallenberg,
1997, Theorem 5.10) for Z = [0, 1] ⊂ R1 and
S = Uniform([0, 1]). Combined with Lemma 1, the
noise outsourcing also holds for a general Z ⊂ RS
and atomless S ∈ P(Z). We visualize the idea in
Figure 4. For a plan π, there might exist multiple
maps T which represent it.

For a pair of probability distributions P,Q, we say that T ∗ is a stochastic optimal transport map if it
realizes some optimal transport plan π∗. Such maps solve the inner problem in (14) for optimal f∗.
Lemma 4 (Optimal maps solve the maximin problem). For any maximizer f∗ of (5) and for any
stochastic map T ∗ which realizes some optimal transport plan π∗, it holds that

T ∗ ∈ arg inf
T
L(f∗, T ). (16)

Proof. Let π∗ be the OT plan realized by T ∗. We derive∫
X

∫
Z
f∗

(
T ∗(x, z)

)
dS(z)dP(x) =

∫
X

∫
Y
f∗(y)dπ∗(y|x)dπ∗(x) =∫

X×Y
f∗(y)dπ∗(x, y) =

∫
Y
f∗(y)dQ(y), (17)

where we change the variables for y = T ∗(x, z) and use the property dπ∗(x) = dP(x). Now
assume that T ∗ /∈ arg infT L(f∗, T ). In this case, from the definition (15) we conclude that
L(f∗, T ∗) > Cost(P,Q). However, we derive substituting (17) into (15), we see that L(f∗, T ∗) =∫
X C

(
x, T ∗(x, ·)#S︸ ︷︷ ︸

π∗(y|x)

)
dP(x)︸ ︷︷ ︸
dπ∗(x)

=Cost(P,Q), which is a contradiction. Thus, (16) holds true.

For the γ-weak quadratic cost (4) which we use in the experiments (M5), a maximizer f∗ of (5) indeed
exists, see (Alibert et al., 2019, M5.22) or (Gozlan & Juillet, 2020). Thanks to our Lemma 4, one
may solve the saddle point problem (14) and extract an optimal stochastic transport map T ∗ from
its solution (f∗, T ∗). In general, the arg inf set for f∗ may contain not only the optimal stochastic
transport maps but other stochastic functions as well. In Appendix F, we show that for strictly convex
(in µ) costs C(x, µ), all the solutions of (14) provide stochastic OT maps.

4.2 PRACTICAL OPTIMIZATION PROCEDURE

To approach the problem (14) in practice, we use neural networks Tθ : RP × RS → RQ and
fω : RQ → R to parameterize T and f , respectively. We train their parameters with the stochastic
gradient ascent-descent (SGAD) by using random batches from P,Q,S, see Algorithm 1.
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Algorithm 1: Neural optimal transport (NOT)

Input :distributions P,Q,S accessible by samples; mapping network Tθ : RP × RS → RQ;
potential network fω : RQ → R; number of inner iterations KT ;
(weak) cost C : X×P(Y)→R; empirical estimator Ĉ

(
x, T (x, Z)

)
for the cost;

Output : learned stochastic OT map Tθ representing an OT plan between distributions P,Q;
repeat

Sample batches Y ∼Q, X ∼ P; for each x ∈ X sample batch Zx ∼ S;
Lf ← 1

|X|
∑
x∈X

1
|Zx|

∑
z∈Zx

fω
(
Tθ(x, z)

)
− 1

|Y |
∑
y∈Y fω(y);

Update ω by using ∂Lf

∂ω ;
for kT = 1, 2, . . . ,KT do

Sample batch X ∼ P; for each x ∈ X sample batch Zx ∼ S;
LT ← 1

|X|
∑
x∈X

[
Ĉ
(
x, Tθ(x, Zx)

)
− 1

|Zx|
∑
z∈Zx

fω
(
Tθ(x, z)

)]
;

Update θ by using ∂LT

∂θ ;

until not converged;

duct tape

Our Algorithm 1 requires an empirical estimator Ĉ for C
(
x, T (x, ·)#S

)
. If the cost is strong, it is

straightforward to use the following unbiased Monte-Carlo estimator from a random batch Z ∼ S:

C
(
x, T (x, ·)#S

)
=

∫
Z
c(x, T (x, z))dS(z) ≈ 1

|Z|
∑
z∈Z

c
(
x, T (x, z)

) def
= Ĉ

(
x, T (x, Z)

)
. (18)

For general costs C, providing an estimator might be nontrivial. For the γ-weak quadratic cost (4),
such an unbiased Monte-Carlo estimator is straightforward to derive:

Ĉ
(
x, T (x, Z)

) def
=

1

2|Z|
∑
z∈Z
∥x− T (x, z)∥2 − γ

2
σ̂2, (19)

where σ̂2 is the (corrected) batch variance σ̂2 = 1
|Z|−1

∑
z∈Z ∥T (x, z)−

1
|Z|

∑
z∈Z T (x, z)∥2. To

estimate strong costs (18), it is enough to sample a single noise vector (|Z| = 1). To estimate the
γ-weak quadratic cost (19), one needs |Z| ≥ 2 since the estimation of the variance σ̂2 is needed.

4.3 RELATION TO PRIOR WORKS

Generative adversarial learning. Our algorithm 1 is a novel approach to learn stochastic OT
plans; it is not a GAN or WGAN-based solution endowed with additional losses such as the OT cost.
WGANs (Arjovsky et al., 2017) do not learn an OT plan but use the (strong) OT cost as the loss
to learn the generator network. Their problem is infT supf V(T, f). The generator T ∗ solves the
outer infT problem and is the first coordinate of an optimal saddle point (T ∗, f∗). In our algorithm 1,
problem (15) is supf infT L(f, T ), the generator (transport map) T ∗ solves of the inner infT problem
and is the second coordinate of an optimal saddle point (f∗, T ∗). Intuitively, in our case the generator
T is adversarial to potential f (discriminator), not vise-versa as in GANs. Theoretically, the problem
is also significantly different – swapping infT and supf , in general, yields a different problem with
different solutions, e.g., 1 = infx supy sin(x+y) ̸= supy infx sin(x+y) =−1. Practically, we do
KT > 1 updates of T per one step of f , which again differs from common GAN practices, where
multiple updates of f are done per a step of T . Finally, in contrast to WGANs, we do not need to
enforce any constraints on f , e.g., the 1-Lipschitz continuity.

Stochastic generator parameterization. We add an additional noise input z to transport map T (x, z)
to make it stochastic. This approach is a common technical instrument to parameterize one-to-many
mappings in generative modeling, see (Almahairi et al., 2018, M3.1) or (Zhu et al., 2017b, M3). In the
context of OT, (Yang & Uhler, 2019) employ a stochastic generator to learn a transport plan π in the
unbalanced OT problem (Chizat, 2017). Due to this, their optimization objective slightly resembles
ours (15). However, this similarity is deceptive, see Appendix G.

Dual OT solvers. Our algorithm 1 recovers stochastic plans for weak costs (3). It subsumes
previously known approaches which learn deterministic OT maps for strong costs (2). When the cost
is strong (3) and transport map T is restricted to be deterministic T (x, z) ≡ T (x), our Algorithm 1
yields maximin method ⌈MM:R⌋, which was discussed in (Korotin et al., 2021b, M2) for the quadratic
cost 1

2∥x− y∥
2 and further developed by (Rout et al., 2022) for the Q-embedded cost −⟨Q(x), y⟩

and by (Fan et al., 2022) for other strong costs c(x, y). These works are the most related to our study.
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4.4 UNIVERSAL APPROXIMATION WITH NEURAL NETWORKS

In this section, we show that it is possible to approximate transport maps with neural nets.
Theorem 1 (Neural networks are universal approximators of stochastic transport maps). Assume
that X ,Z are compact and Q has finite second moment. Let T be a stochastic map from P to Q
(not necessarily optimal). Then for any nonaffine continuous activation function which is continuously
differentiable at at least one point (with nonzero derivative at that point) and for any ϵ > 0, there
exists a neural network Tθ : RP × RS → RQ satisfying

∥Tθ − T∥2L2 ≤ ϵ and W2
2

(
(Tθ)#(P× S),Q

)
≤ ϵ, (20)

where L2 = L2(P× S,X ×Z → RQ) is the space of quadratically integrable w.r.t. P× S functions
X × Z → RQ. That is, the network Tθ generates a distribution which is ϵ-close to Q in W2

2.

Proof. The squared norm ∥T∥2L2 is equal to the second moment of Q since T pushes P × S to
Q. The distribution Q has finite second moment, and, consequently, T ∈ L2. Thanks to (Folland,
1999, Proposition 7.9), the continuous functions C0(X × Z → RQ) are dense2 in L2. According
to (Kidger & Lyons, 2020, Theorem 3.2), the neural networks RP × RS → RQ with the above-
mentioned activations are dense in C0(X × Z → RQ) w.r.t. L∞ norm and, consequently, w.r.t. L2

norm. Combining these results yields that neural nets are dense in L2, and for every ϵ > 0 there
necessarily exists network Tθ satisfying the left inequality in (20). For Tθ, the right inequality follows
from (Korotin et al., 2021a, Lemma A.2).

Our Theorem 1 states that neural nets can approximate stochastic maps in L2 norm. It should be
taken into account that such continuous nets Tθ may be highly irregular and hard to learn in practice.

5 EVALUATION

We perform comparison with the weak discrete OT (considered as the ground truth) on toy 2D, 1D
distributions in Appendices B, C, respectively. In this section, we test our algorithm on an unpaired
image-to-image translation task. We perform comparison with popular existing translation methods
in Appendix D. The code is written in PyTorch framework and is publicly available at

https://github.com/iamalexkorotin/NeuralOptimalTransport

Image datasets. We use the following publicly available datasets as P,Q: aligned anime faces3,
celebrity faces (Liu et al., 2015), shoes (Yu & Grauman, 2014), Amazon handbags, churches from
LSUN dataset (Yu et al., 2015), outdoor images from the MIT places database (Zhou et al., 2014).
The size of datasets varies from 50K to 500K images.

Train-test split. We pick 90% of each dataset for unpaired training. The rest 10% are considered as
the test set. All the results presented here are exclusively for test images, i.e., unseen data.

Transport costs. We experiment with the strong (γ = 0) and γ-weak (γ > 0) quadratic costs. Testing
other costs, e.g., perceptual (Johnson et al., 2016) or semantic (Cherian & Sullivan, 2019), might be
interesting practically, but these two quadratic costs already provide promising performance.
The other training details are given in Appendix E.

5.1 PRELIMINARY EVALUATION

In the preliminary experiments with strong cost (γ = 0), we noted that T (x, z) becomes independent
of z. For a fixed potential f and a point x, the map T (x, ·) learns to be the map pushing distribution
S to some arg inf distribution µ of (6). For strong costs, there are suitable degenerate distributions µ,
see the discussion around (7). Thus, for T it becomes unnecessary to keep any dependence on z; it
simply learns a deterministic map T (x, z) = T (x). We call this behavior a conditional collapse.

Importantly, for the γ-weak cost (γ > 0), we noted a different behavior: the stochastic map T (x, z)
did not collapse conditionally. To explain this, we substitute (4) into (3) to obtain

W2
2,γ(P,Q) = inf

π∈Π(P,Q)

[ ∫
X×Y

1

2
∥x− y∥2dπ(x, y)− γ ·

∫
X

1

2
Var

(
π(y|x)

)
dπ(x)︸ ︷︷ ︸
dP(x)

]
.

The first term is analogous to the strong cost (W2 = W2,0), while the additional second term
stimulates the OT plan to be stochastic, i.e., to have high conditional variance.

2The proposition considers scalar-valued functions (Q = 1), but is analogous for vector-valued functions.
3kaggle.com/reitanaka/alignedanimefaces
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(a) Handbags → shoes, 128× 128. (b) Shoes → handbags, 128× 128.

(c) Celeba (female) → anime, 64× 64. (d) Anime → celeba (female), 64× 64.

(e) Celeba (male) → celeba (female), 64× 64. (f) Anime → shoes, 64× 64.

Figure 5: Unpaired translation with deterministic OT maps (W2).

Taking into account our preliminary findings, we perform two types of experiments. In §5.2, we
learn deterministic (one-to-one) translation maps T (x) for the strong cost (γ = 0), i.e., do not add
z-channel. In §5.3, we learn stochastic (one-to-many) maps T (x, z) for the γ-weak cost (γ > 0). For
completeness, in Appendix A, we study how varying γ affects the diversity of samples.

5.2 ONE-TO-ONE TRANSLATION WITH OPTIMAL MAPS

We learn deterministic OT maps between various pairs of datasets. We provide the results in Figures
1a and 5. Extra results for all the dataset pairs that we consider are given in Appendix H.
Being optimal, our translation map T̂ (x) tries to minimally change the image content x in the L2 pixel
space. This results in preserving certain features during translation. In shoes↔ handbags (Figures
5b, 5a), the image color and texture of the pushforward samples reflects those of input samples. In
celeba (female)↔ anime (Figures 1a, 5c, 5d), head forms, hairstyles are mostly similar for input and
output images. The hair in anime is usually bigger than that in celeba. Thus, when translating celeba
(female)↔ anime, the anime hair inherits the color from the celebrity image background. In outdoor
→ churches (Figure 1a), the ground and the sky are preserved, in celeba (male)→ celeba (female)
(Figure 5e) – the face does not change. We also provide results for translation in the case when the
input and output domains are significantly different, see anime→ shoes (Figure 5f).
Related work. Existing unpaired translation models, e.g., CycleGAN (Zhu et al., 2017a) or UNIT
(Liu et al., 2017), typically have complex adversarial optimization objectives endowed with additional
losses. These models require simultaneous optimization of several neural networks. Importantly,
vanilla CycleGAN searches for a random translation map and is not capable of preserving certain
attributes, e.g., the color, see (Lu et al., 2019, Figure 5b). To handle this issue, imposing extra losses
is required (Benaim & Wolf, 2017; Kim et al., 2017), which further complicates the hyperparameter
selection. In contrast, our approach has a straightforward objective (14); we use only 2 networks
(potential f , map T ), see Table 2 for the comparison of hyperparameters. While the majority of
existing unpaired translation models are based on GANs, recent work (Su et al., 2023) proposes a
diffusion model (DDIBs) and relates it to Schrödinger Bridge (Léonard, 2014), i.e., entropic OT.

5.3 ONE-TO-MANY TRANSLATION WITH OPTIMAL PLANS

We learn stochastic OT maps between various pairs of datasets for the γ-weak quadratic cost. The
parameter γ equals 2

3 or 1 in the experiments. We provide the results in Figures 1b and 6. In all the
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(a) Celeba (female) → anime, 128× 128 (W2, 2
3

). (b) Outdoor → church, 128× 128 (W2, 2
3

).

(c) Anime→celeba (f), 64×64 (W2, 2
3

). (d) Shoes → handbags, 64×64 (W2,1). (e) Anime → shoes, 64× 64 (W2,1).

Figure 6: Unpaired translation with stochastic OT maps (W2,γ).

cases, the random noise inputs z ∼ S are not synchronized for different inputs x. The examples
with the synchronized noise inputs z are given in Appendix I. Extended results and examples of
interpolation in the conditional latent space are given in Appendix H. The stochastic map T̂ (x, z)
preserves the attributes of the input image and produces multiple outputs.

Related work. Transforming a one-to-one learning pipeline to one-to-many is nontrivial. Simply
adding additional noise input leads to conditional collapse (Zhang, 2018). This is resolved by
AugCycleGAN (Almahairi et al., 2018) and M-UNIT (Huang et al., 2018), but their optimization
objectives are much more complicated then vanilla versions. Our method optimizes only 2 nets f, T
in straightforward objective (14). It offers a single parameter γ to control the amount of variability in
the learned maps. We refer to Table 2 for the comparison of hyperparameters of the methods.

6 DISCUSSION

Potential impact. Our method is a novel generic tool to align probability distributions with determin-
istic and stochastic transport maps. Beside unpaired translation, we expect our approach to be applied
to other one-to-one and one-to-many unpaired learning tasks as well (image restoration, domain
adaptation, etc.) and improve existing models in those fields. Compared to the popular models based
on GANs (Goodfellow et al., 2014) or diffusion models (Ho et al., 2020), our method provides better
interpretability of the learned map and allows to control the amount of diversity in generated samples
(Appendix A). It should be taken into account that OT maps we learn might be suitable not for all
unpaired tasks. We mark designing task-specific transport costs as a promising research direction.
Limitations. Our method searches for a solution (f∗, T ∗) of a saddle point problem (14) and extracts
the stochastic OT map T ∗ from it. We highlight after Lemma 4 and in M5.1 that not all T ∗ are optimal
stochastic OT maps. For strong costs, the issue leads to the conditional collapse. Studying saddle
points of (14) and arg inf sets (16) is an important challenge to address in the further research.

9
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Potential societal impact. Our developed method is at the junction of optimal transport and generative
learning. In practice, generative models and optimal transport are widely used in entertainment
(image-manipulation applications like adding masks to images, hair coloring, etc.), design, computer
graphics, rendering, etc. Our method is potentially applicable to many problems appearing in
mentioned industries. While the mentioned applications allow making image processing methods
publicly available, a potential negative is that they might transform some jobs in the graphics industry.

Reproducibility. We provide the source code for all experiments and release the checkpoints for all
models of M5. The details are given in README.MD in the official repository.

ACKNOWLEDGEMENTS. The work was supported by the Analytical center under the RF Government
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A VARIANCE-SIMILARITY TRADE-OFF

In this section, we study the effect of the parameter γ on the structure of the learned stochastic
map for the γ-weak quadratic cost. We consider handbags→ shoes translation (64× 64) and test
γ ∈ {0, 13 ,

2
3 , 1}. The results are shown in Figure 7.

(a) γ = 0 (b) γ = 1
3

(c) γ = 2
3

(d) γ = 1

Figure 7: Stochastic Handbags→ shoes translation with the γ-weak quadratic cost for various γ.

Discussion. For γ = 0 there is no variety in produced samples (Figure 7a), i.e., the conditional
collapse happens. With the increase of γ (Figures 7b, 7c), the variety of samples increases and the
style of the input images is mostly preserved. For γ = 1 (Figure 7d), the variety of samples is very
high but many of them do not preserve the style of the input image. The parameter γ can be viewed
as the trade-off parameter balancing the variance of samples and their similarity to the input.

B TOY 2D EXPERIMENTS

In this section, we test our Algorithm 1 on toy 2D distributions P,Q, i.e., P = Q = 2.

Strong quadratic cost (γ = 0). As we noted in M5.1 and Appendix A, for the strong quadratic cost,
our method tends to learn deterministic maps T (x, z) = T (x) which are independent of the noise
input z. For deterministic maps T (x), our method yields ⌊MM:R⌉ method which has been evaluated
in the recent Wasserstein-2 benchmark by (Korotin et al., 2021b). The authors show that the method
recovers OT maps well on synthetic high-dimensional pairs P,Q with known ground truth OT maps.
Thus, for brevity, we do not include toy experiments with our method for the strong quadratic cost.

Weak quadratic cost (γ > 0). To our knowledge, our method is the first to solve weak OT, i.e.,
there are no approaches to compare with. The analysis of computed transport plans for weak costs
is challenging due to the lack of nontrivial pairs P,Q with known ground truth OT plan π∗. The
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(a) Input distribution P. (b) Target distribution Q. (c) Fitted T̂#(P× S) ≈ Q.

(d) Map T (x) =
∫
Z T̂ (x, z)dS(z). (e) Learned stochastic map T̂ (x, z). (f) Map x 7→

∫
Y ydπ∗(y|x).

Figure 8: Gaussian→ Mixture of 8 Gaussians, learned stochastic map for the 1-weak quadratic cost.

situation is even worsened by the nonuniqueness of π∗. To cope with this issue, we consider the
weak quadratic cost with γ = 1. For this cost, one may derive

C
(
x, µ

)
=

∫
Y

1

2
∥x− y∥2dµ(y)− 1

2
Var(µ) =

1

2
∥x−

∫
Y
y dµ(y)∥2. (21)

For cost (21) and a pair P,Q, (Gozlan & Juillet, 2020, Theorem 1.2) states that there exists a P-unique
(up to a constant) convex ψ : RP → R such that every OT plan π∗ satisfies∇ψ(x) =

∫
Y y dπ

∗(y|x).
Besides, ∇ψ : RP → RP is 1-Lipschitz. Let T̂ (x, z) be the stochastic map recovered by our
Algorithm 1, and let π̂ be the corresponding plan. Let

T (x)
def
=

∫
Y
y dπ̂(y|x) =

∫
Z
T̂ (x, z)dS(z). (22)

Due to the above mentioned characterization of OT plans, T (x) should look like a gradient ∇ψ(x)
of some convex function ψ(x) and should nearly be a contraction. Since here we work in the 2D
space, we are able to get sufficiently many samples from P and Q and obtain a fine approximation
of an OT plan π∗ and ∇ψ by a discrete weak OT solver. We may sample random batches from
X ∼ P and Y ∼ Q of size 210 and use ot.weak from POT library4 to get some optimal π∗ and
∇ψ =

∫
Y y dπ

∗(y|x). We are going to compare our recovered average map T with∇ψ.

Datasets. We test 2 pairs P,Q: Gaussian→ Mixture of 8 Gaussians; Gaussian→ Swiss roll.

Neural Networks. We use multi-layer perceptrons as fω, Tθ with 3 hidden layers of 100 neurons and
ReLU nonlinearity. The input of the stochastic map Tθ(x, z) is 2 + 2 = 4 dimensional. The two first
dimensions represent the input x ∈ R2 while the other dimensions represent the noise z ∼ S. We
employ a Gaussian noise with σ = 0.1

Discussion. We provide qualitative results in Figures 8 and 9. In both cases, the pushforward
distribution T̂#(P × S) matches the desired target distribution Q (Figures 8c and 9c). Figures 8e

4https://pythonot.github.io/
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(a) Input distribution P. (b) Target distribution Q. (c) Fitted T̂#(P× S) ≈ Q.

(d) Map T (x) =
∫
Z T̂ (x, z)dS(z). (e) Learned stochastic map T̂ (x, z). (f) Map x 7→

∫
Y ydπ∗(y|x).

Figure 9: Gaussian→ Swiss Roll, learned stochastic OT map for the 1-weak quadratic cost.

and 9e show how the mass of points x ∼ P is split by the stochastic map. The average maps T (x)
(Figures 8d, 9d) indeed nearly match the ground truth ∇ψ (Figures 8f, 9f) obtained by POT. To
quantify them, we compute L2-UVP (T ) = 100% · ∥T −∇ψ∥2P/Var(∇ψ#P) metric (Korotin et al.,
2021a, M5.1). Here we obtain small values < 1% and ≈ 3% for the Swiss Roll and 8 Gaussians
examples which further indicates the similarity of the learned T and the ground truth∇ψ(x).

Note that T indeed roughly equals a gradient of a convex function. The gradients of convex functions
are cycle monotone (Rockafellar, 1966). Cycle monotonicity yields that for x1 ̸= x2 the segments
[x1,∇ψ(x1)] and [x2,∇ψ(x2)] do not intersect in the inner points (Villani, 2008, M8).5 Visually, we
see that in Figures 8d and 9d the segments [x, T (x)] do not intersect for different x, which is good.

C TOY 1D EXPERIMENTS

In this section, we additionally test our Algorithm 1 on toy 1D distributions P,Q, i.e., P = Q = 1.
In this case, transport plans are 2D distributions and can be conveniently visualized.

We experiment with the 1-weak quadratic cost (21). Following the discussion in the previ-
ous section, we recall that an OT plan π∗ may be not unique. However, all OT plans satisfy
∇ψ(x) =

∫
Y y dπ

∗(y|x) for some 1-smooth convex function ψ : R→ R. This simply means that
x 7→ ∇ψ(x) =

∫
Y y dπ

∗(y|x) is a monotone increasing 1-Lipschitz function∇ψ : R→ R. Below
we check that this necessary condition holds for T (22), where T̂ is our learned stochastic map.

Datasets. We test 2 pairs P,Q: Gaussian→ Mix of 2 Gaussians; Gaussian→ Mix of 3 Gaussians.

Neural Networks. We use the same networks as in Appendix B. This time, the input of the stochastic
map Tθ(x, z) is 1 + 1 = 2 dimensional, the input to fω – 1-dimensional.

Discussion. We provide qualitative results in Figures 10 and 11. For each case, we plot the results of
3 random restarts of our method (π̂ denotes our learned OT plan). Similarly to Appendix B, we plot

5For the sake of clarity, we slightly reformulated the property of the cycle monotone maps (Villani, 2008).
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(a) Input and output distributions. (b) Learned plan π̂ and marginal T̂#(P× S), test 1.

(c) Learned plan π̂ and marginal T̂#(P× S), test 2. (d) Learned plan π̂ and marginal T̂#(P× S), test 3.

(e) Various optimal plans π∗ learned by discrete OT (considered here as the ground truth).

Figure 10: Stochastic plans between toy 1D distributions (Figure 10a) learned by NOT (Figures 10b,
10c, 10d) and discrete OT (Figure 10e) with the 1-weak quadratic cost. The figures with the 2D
transport plans also demonstrate the average map x 7→

∫
Y ydπ̂(y|x) (conditional expectation).

the results obtained by a discrete weak OT solver (ot.weak from POT library). Namely, in Figures
10e, 11e we show its results obtained for 4 restarts with differing seeds. Note that the average maps
T computed by our algorithm in both cases nearly match those computed by the discrete weak OT.
This indicates that the transport cost of our computed plan π̂ is since

[Cost of π̂] =
∫
X

1

2
∥x− T (x)︸ ︷︷ ︸

≈ψ(x)

∥2dP(x) ≈
∫
X

1

2
∥x−∇ψ(x)∥2dP(x) = Cost(P,Q),

i.e., it nearly equals the optimal cost. Here we use T (x) ≈ ∇ψ(x) observed from the experiments.
To conclude, wee see that the recovered plans are close to the DOT considered as the ground truth.

D COMPARISON WITH PRINCIPAL UNPAIRED TRANSLATION METHODS

We compare our Algorithm 1 with popular models for unpaired translation. We consider handbags
→ shoes (64× 64), celeba male→ female (64× 64), outdoor→ church (128× 128) translation. For
quantitative comparison, we compute Frechet Inception Distance6 (Heusel et al., 2017, FID) of the

6github.com/mseitzer/pytorch-fid
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(a) Input and output distributions. (b) Learned plan π̂ and marginal T̂#(P× S), test 1.

(c) Learned plan π̂ and marginal T̂#(P× S), test 2. (d) Learned plan π̂ and marginal T̂#(P× S), test 3.

(e) Various optimal plans π∗ learned by discrete OT (considered here as the ground truth).

Figure 11: Stochastic plans between toy 1D distributions (Figure 11a) learned by NOT (Figures 11b,
11c, 11d) and discrete OT (Figure 11e) with the 1-weak quadratic cost. The figures with the 2D
transport plans also demonstrate the average map x 7→

∫
Y ydπ̂(y|x) (conditional expectation).

mapped test handbags subset w.r.t. the test shoes subset. The scores of our method and alternatives
are given in Table 1. The translated images are shown in Figures 12, 13, 14.

Methods. We compare our method with one-to-one CycleGAN 7(Zhu et al., 2017a), DiscoGAN8

(Kim et al., 2017) and with one-to-many AugCycleGAN9 (Almahairi et al., 2018) and MUNIT10

(Huang et al., 2018). We use the official or community implementations with the hyperparameters
from the respective papers. We choose the above-mentioned methods for comparison because they are
principal methods for one-to-one and one-to-many translation. Recent methods (GMM-UNIT (Liu
et al., 2020), COCO-FUNIT (Saito et al., 2020), StarGAN (Choi et al., 2020)) are based on them and
focus on specific details/setups such as style/content separation, few-shot learning, disentanglement,
multi-domain transfer, which are out of scope of our paper.

Discussion. Existing one-to-one methods visually preserve the style during translation comparably
to our method. Alternative one-to-many methods do not preserve the style at all. When the input

7github.com/eriklindernoren/PyTorch-GAN/tree/master/implementations/
cyclegan

8github.com/eriklindernoren/PyTorch-GAN/tree/master/implementations/
discogan

9github.com/aalmah/augmented_cyclegan
10github.com/NVlabs/MUNIT
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and output domains are similar (handbags→shoes, celeba male→ female), the FID scores of all the
models are comparable. However, most models are outperformed by NOT when the domains are
distant (outdoor→ church), see Figure 14 and the last row in Table 1. For completeness, in Table 2
we compare the number of hyperparameters of the translation methods in view. Note that in contrast
to the other methods, we optimize only 2 neural networks – transport map and potential.

Type One-to-one One-to-many

Method Disco
GAN

Cycle
GAN

NOT
(ours)

AugCycle
GAN MUNIT NOT

(ours)

Handbags → shoes
(64× 64) 22.42 16.00 13.77 18.84

± 0.11
15.76
± 0.11

13.44
± 0.12

Celeba male → female
(64× 64) 35.64 17.74 13.23 12.94

±0.08
17.07
±0.11

11.96
±0.07

Outdoor → church
(128× 128) 75.36 46.39 25.5 51.42

±0.12
31.42
±0.16

25.97
±0.14

Table 1: Test FID↓ of the considered unpaired translation methods.

Type One-to-one One-to-many

Method Disco
GAN

Cycle
GAN

NOT
(ours)

AugCycle
GAN MUNIT NOT

(ours)

Hyperparameters
of optimization

objectives
None

Weights of
cycle and

identity losses
λcyc, λid

None
Weights of
cycle losses
γ1, γ2

Weights of
reconstruction

losses
λx, λc, λs

Diversity
control

parameter γ

Total number of
hyperparameters 0 2 0 2 3 1

Networks

2 generators,
2×29.2M

2 discriminators
2×0.7M

2 generators
2×11.4M

2 discriminators
2×2.8M

1 transport
9.7M,

1 potential
22.9M [32.4M∗]

2 generators
2×1.1M,

2 discriminators
2×2.8M,

2 encoders
2×1.4M

2 generators
2×15.0M,

2 discriminators
2×8.3M

1 transport map
9.7M,

1 potential
22.9M [32.4M∗]

Total number of
networks and
parameters

4 networks
59.8M

4 networks
28.2M

2 networks
32.6M [42.1M∗]

6 networks
7.0M

4 networks
46.6M

2 networks
32.6M [42.1M∗]

Table 2: Comparison of the number of hyperparameters of the optimization objectives, the number of
networks and their parameters for the considered unpaired translation methods for 64×64 images.

∗ For 128× 128 images.
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(a) NOT (ours, W2), one-to-one.

(b) DiscoGAN, one-to-one.

(c) CycleGAN, one-to-one.

(d) NOT (ours, W2, 2
3

), one-to-many. (e) MUNIT, one-to-many. (f) AugCycleGAN

Figure 12: Handbags→ shoes translation (64× 64) by the methods in view.
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(a) NOT (ours, W2), one-to-one.

(b) DiscoGAN, one-to-one.

(c) CycleGAN, one-to-one.

(d) NOT (ours, W2, 2
3

), one-to-many. (e) MUNIT, one-to-many. (f) AugCycleGAN

Figure 13: Celeba (male)→ Celeba (female) translation (64× 64) by the methods in view.
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(a) DiscoGAN, one-to-one. (b) CycleGAN, one-to-one.

(c) NOT (ours, W2), one-to-one.

(d) AugCycleGAN, one-to-many. (e) MUNIT, one-to-many.

(f) NOT (ours, W2, 2
3

), one-to-many.

Figure 14: Outdoor→ church (128× 128) translation with various methods.
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E EXPERIMENTAL DETAILS

Pre-processing. We beforehand rescale anime face images to 512 × 512, and do 256 × 256 crop
with the center located 14 pixels above the image center to get the face. Next, for all these datasets,
we rescale RGB channels to [−1, 1] and resize images to the required size (64× 64 or 128× 128).
We do not apply any augmentations to data.

Neural networks. We use WGAN-QC discriminator’s ResNet architecture (Liu et al., 2019) for
potential f . We use UNet (Ronneberger et al., 2015) as the stochastic transport map T (x, z). The
noise z is simply an additional 4th input channel (RGBZ), i.e., the dimension of the noise equals the
image size (64× 64 or 128× 128). We use high-dimensional Gaussian noise with axis-wise σ = 0.1.

Optimization. We use the Adam optimizer (Kingma & Ba, 2014) with the default betas for both Tθ
and fω . The learning rate is lr = 1 ·10−4. The batch size is |X| = 64. The number of inner iterations
is kT = 10. When training with the weak cost (4), we sample |Zx| = 4 noise samples per each image
x in batch. In toy experiments, we do 10K total iterations of fω update. In the experiments with
unpaired translation, our Algorithm 1 converges in ≈ 40K iterations for most datasets.

Dynamic weak cost. In M5.3, we train the algorithm with the gradually changing γ. Starting from
γ = 0, we linearly increase it to the desired value ( 23 or 1) during 25K first iterations of fω .

Stability of training. In several cases, we noted that the optimization fluctuates around the saddle
points or diverges. An analogous behavior of saddle point methods for OT has been observed in
(Korotin et al., 2021b). For the γ-weak quadratic cost (γ > 0), we sometimes experienced instabilities
when the input P is notably less disperse than Q or when the parameter γ is high. Studying this
behaviour and improving stability/convergence of the optimization is a promising research direction.

Computational complexity. The time and memory complexity of training deterministic OT maps
T (x) is comparable to that of training usual generative models for unpaired translation. Our networks
converge in 1-3 days on a Tesla V100 GPU (16 GB); wall-clock times depend on the datasets and the
image sizes. Training stochastic T (x, z) is harder since we sample multiple random z per x (we use
|Z| = 4). Thus, we learn stochastic maps on 4 × Tesla V100 GPUs.

F OPTIMALITY OF SOLUTIONS FOR STRICTLY CONVEX COSTS

Our Lemma 4 proves that optimal maps T ∗ are contained in the arg infT sets of optimal potentials
f∗ but leaves the question what else may be contained in these arg infT sets open. Our following
result shows that for strictly convex costs, nothing else beside OT maps is contained there.

Lemma 5 (Solutions of the maximin problem are OT maps). Let C(x, µ) be a weak cost which is
strictly convex in µ. Assume that there exists at least one potential f∗ which maximizes dual form (5).
Consider any such optimal potential f∗ ∈ arg supf infT L(f, T ). It holds that

T̂ ∈ arg inf
T
L(f∗, T )⇒ T̂ is a stochastic OT map.

Proof of Lemma (5). By the definition of f∗, we have

L(f∗, T̂ ) = sup
f

inf
T
L(f, T ) = Cost(P,Q),

i.e., T̂ attains the optimal cost. It remains to check that it satisfies T̂ ♯(P× S) = Q, i.e., T̂ generates
Q from P. Let T ∗ be any true stochastic OT map. We denote µ∗

x = T ∗(x, ·)♯S and µ̂x = T̂ (x, ·)♯S
for all x ∈ X and define µ1

x = 1
2 (µ

∗
x + µ̂x). Let T 1 : X × Z → Y be any stochastic map which

satisfies T 1(x, ·)♯S = µ1
x for all x ∈ X (M4.1). By using the change of variables, we derive

Cost(P,Q) ≥ L(f∗, T 1) =

∫
X
C(x, µ1

x)dP(x)−
∫
X

[ ∫
Y
f∗(y)dµ1

x(y)
]
dP(x) +

∫
Y
f∗(y)Q(y).

(23)

github.com/milesial/Pytorch-UNet
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Since C is convex in the second argument, we have

C(x, µx1) = C
(
x,

1

2
(µ∗
x + µ̂x)

)
≥ 1

2
C(x, µ∗

x) +
1

2
C(x, µ̂x). (24)

Since C is strictly convex, the equality in (24) is possible only when µ∗
x = µ̂x. We also note that∫

Y
f∗(y)dµ1

x(y) =

∫
Y
f∗(y)d

(µ∗
x + µ̂x)

2
(y) =

1

2

∫
Y
f∗(y)dµ∗

x(y) +
1

2

∫
Y
f∗(y)dµ̂x(y).

We substitute these findings to L(f∗, T 1) and get

Cost(P,Q) ≥ L(f∗, T 1) ≥ 1

2
L(f∗, T ∗)+

1

2
L(f∗, T̂ ) = 1

2
Cost(P,Q)+

1

2
Cost(P,Q) = Cost(P,Q).

Thus, (23) is an equality P-almost surely for all x ∈ X and µ∗
x = µ̂x holds P-almost surely. This

means that T ∗ and T̂ generate the same distribution from P× S, i.e., T̂ is a stochastic OT map.

Our generic framework allows learning stochastic transport maps (Lemma 4). For strictly convex
costs, all the solutions of our objective (14) are guaranteed to be stochastic OT maps (Lemma 5). In
the experiments, we focus on strong and weak quadratic costs, which are not strictly convex but still
provide promising performance in the downstream task of unpaired image-to-image translation (M5).
Developing strictly convex costs is a promising research avenue for the future work.

G RELATION TO PRIOR WORKS IN UNBALANCED OPTIMAL TRANSPORT

In the context of OT, (Yang & Uhler, 2019) employ a stochastic generator to learn a transport plan
π in the unbalanced OT problem (Chizat, 2017). Due to this, their optimization objective slightly
resembles our objective (15). However, this similarity is deceptive. Unlike strong (2) or weak (3)
OT, the unbalanced OT is an unconstrained problem, i.e., there is no need to satisfy π ∈ Π(P,Q).
This makes unbalanced OT easier to handle: to optimize it one just has to parametrize the plan π
and backprop through the loss. The challenging part with which the authors deal is the estimation
of the ϕ-divergence terms in the unbalanced OT objective. These terms can be interpreted as a soft
relaxation of the constraints π ∈ Π(P,Q), i.e., penalization for disobeying the constraints. The
authors compute these terms by employing the variational (dual) formula from f -GAN (Nowozin
et al., 2016). This yields a GAN-style optimization problem minT maxf which is similar to other
problems in the generative adversarial framework. The problem we tackle is strong (2) and weak
(3) OT which requires enforcing of the constraint π ∈ Π(P,Q). We reformulate the dual (weak) OT
problem (5) into maximin problem (15) which can be used to recover the OT plan (via the stochastic
map T ). Our approach can be viewed as a hard enforcement of the constraints. Our maxf minT
saddle point problem (15) is atypical for the traditional generative adversarial framework.
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H ADDITIONAL EXPERIMENTAL RESULTS

(a) Celeba (female) → anime translation, 128× 128.

(b) Outdoor → church, 128× 128.

(c) Handbags → shoes, 128× 128.

(d) Shoes → handbags, 128× 128.

Figure 15: Unpaired translation with OT maps (W2). Additional examples (part 1).
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(a) Celeba (female) → anime translation, 64× 64.

(b) Anime → celeba (female) translation, 64× 64.

(c) Celeba (male) → celeba (female) translation, 64× 64.

(d) Anime → shoes translation, 64× 64.

Figure 16: Unpaired translation with OT maps (W2). Additional examples (part 2).
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(a) Input images x and random translated examples T (x, z).

(b) Interpolation in the conditional latent space, z = (1− α)z1 + αz2.

Figure 17: Celeba (female)→ anime, 128× 128, stochastic. Additional examples.
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(a) Input images x and random translated examples T (x, z).

(b) Interpolation in the conditional latent space, z = (1− α)z1 + αz2.

Figure 18: Outdoor→ church, 128× 128, stochastic. Additional examples.
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(a) Input images x and random translated examples T (x, z).

(b) Interpolation in the conditional latent space, z = (1− α)z1 + αz2.

Figure 19: Handbags→ shoes translation, 128× 128, stochastic. Additional examples.
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(a) Input images x and random translated examples T (x, z).

(b) Interpolation in the conditional latent space, z = (1− α)z1 + αz2.

Figure 20: Anime→ celeba (female) translation, 64× 64, stochastic. Additional examples.
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(a) Input images x and random translated examples T (x, z).

(b) Interpolation in the conditional latent space, z = (1− α)z1 + αz2.

Figure 21: Anime→ shoes translation, 64× 64, stochastic. Additional examples.
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(a) Input images x and random translated examples T (x, z).

(b) Interpolation in the conditional latent space, z = (1− α)z1 + αz2.

Figure 22: Shoes→ handbags, 64× 64, stochastic. Additional examples.
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I EXAMPLES WITH THE SYNCHRONIZED NOISE

In this section, for handbags→shoes (64×64) and outdoor→church (128×128) datasets, we pick a
batch of input data x1, . . . , xN ∼ P and noise z1, . . . , zK ∼ S to plot the N ×K matrix of generated
images Tθ(xn, zk). Our goal is to assess whether using the same zk for different xn leads to some
shared effects such as the same form a generated shoe or church.

The images results are given in Figures 23 and 24. Qualitatively, we do not find any close relation
between images produced with the same noise vectors for different input images xn.

Figure 23: Input images x and random translated examples T (x, z).
In this example, noise inputs z are synchronized between different input images x.
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Figure 24: Input images x and random translated examples T (x, z).
In this example, noise inputs z are synchronized between different input images x.

34


	Introduction
	Preliminaries
	Related Work
	Algorithm for Learning OT Plans
	Reformulation of the Dual Problem
	Practical Optimization Procedure
	Relation to Prior Works
	Universal Approximation with Neural Networks

	Evaluation
	Preliminary Evaluation
	One-to-one Translation with Optimal Maps
	One-to-many Translation with Optimal Plans

	Discussion
	Variance-Similarity Trade-off
	Toy 2D experiments
	Toy 1D Experiments
	Comparison with Principal Unpaired Translation Methods
	Experimental Details
	Optimality of Solutions for Strictly Convex Costs
	Relation to Prior Works in Unbalanced Optimal Transport
	Additional Experimental Results
	Examples with the Synchronized Noise

