
The Unseen Hand: Manipulating Model Fairness and
SHAP with Targeted Identity Re-Association Attacks

Sannaan Khan∗

mkhan.msse24sines@student.nust.edu.pk
Muhammad U. S. Khan

usman.shahid@sines.nust.edu.pk

National University of Sciences and Technology (NUST)

Abstract

As machine learning models grow more influential and opaque, algorithmic fairness
and explainability are critical for ensuring accountability. However, we demonstrate
that these auditing mechanisms are themselves vulnerable to subtle manipulation,
camouflaging the influence of protected features. While prior work on data-agnostic
attacks has exposed this vulnerability, they leave behind detectable artifacts that
compromise their stealth. We introduce Targeted Identity Re-Association (TIRA)
attacks, a novel family of attacks that iteratively and probabilistically manipulate
a model’s outputs without requiring access to the model’s internals or feature
representations. We formalize two algorithms: Probabilistic Micro-Shuffling
(PMiS), which applies localized adjacent swaps, and Probabilistic Rank-Shift
Micro-Perturbation (PRSMP), which introduces small, randomized rank shifts. We
empirically demonstrate that TIRA attacks are highly effective at pushing fairness
metrics towards ideal values. Crucially, TIRA attacks successfully confound
SHAP-based explanations, leaving effectively zero residual attribution for protected
features, a major improvement over prior work.

1 Introduction

The increasing integration of black box machine learning models into critical societal domains
underscores the pressing need for algorithmic fairness and trustworthy explainability [5, 1, 3]. Given
the stakes involved, the recent quest for transparent and explainable artificial intelligence (XAI)
has led to the development of quantitative fairness [2] and explainability techniques like SHAP [9].
However, the wide adoption of such fairness assessments and post-hoc explanations gives birth to a
new insidious vulnerability: are these explanations themselves robust to adversarial forces?

Earlier research has explored adversarial attacks against XAI methods. These require access to the
underlying data distribution, which limits their applicability in real-world scenarios [13]. To overcome
this barrier, recent work proposed ’fooling’ strategies which often involve overt perturbations that,
while effective and theoretically grounded, induce ’fairness score drops’ and leave detectable SHAP
attribution values that would trigger suspicion [16]. This leaves a critical need for subtle, data-
agnostic, post-hoc manipulation techniques that effectively alter the model’s perceived fairness and
challenge the robustness of XAI explanations without leaving footprints of manipulations.

This work addresses this gap by introducing a novel family of Targeted Identity Re-Association
(TIRA) attacks. Unlike previous work that employs more overt or deterministic shuffling, TIRA
attacks are meticulously crafted to induce granular, iterative, and localized changes. We concretize this
family through two distinct algorithms, Probabilistic Micro-Shuffling (PMiS) attack and Probabilistic
Rank-Shift Micro-Perturbation (PRSMP) attack, to mimic natural score variation. The algorithms
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expand the design space of shuffling attacks and show that subtle variation can further erode the
reliability of fairness audits and explanation tools like SHAP.

We posit that the fairness assessment itself is brittle if a model’s fairness perception can be altered
by subtle, non-intrusive changes to its output rankings. Our comprehensive empirical investigations
across diverse machine learning models and real-world datasets evaluate the efficacy of TIRA attacks
in influencing AIF360 metrics and their impact on SHAP’s attribution capabilities. Importantly,
we highlight the fine-grained control offered by the intricate interplay of the tunable parameters,
which showcase a scalable influence from subtle change to more pronounced alterations in fairness.
Furthermore, our comparative analysis against existing work reveals that our probabilistic micro-
shuffling strategies can achieve comparable or even better shifts in fairness, with greater stealth.

This work makes the following contributions: 1) We formalize and introduce Targeted Identity
Re-Association (TIRA) attacks as novel, post-hoc, data-agnostic, and probabilistic methods for subtly
manipulating model outputs. 2) We provide empirical validation of the TIRA attacks’ ability to
significantly alter AIF360 fairness metrics across various model-dataset configurations, guiding them
towards desired thresholds. 3) We illustrate the intricate and insidious impact of TIRA attacks on
the SHAP’s ability to accurately attribute feature importance, particularly protected features. 4) We
benchmark the performance of TIRA attacks against existing work and demonstrate that the TIRA
attacks offer finer granularity and more control compared to existing, more overt attacks.

2 Methodology

This section delineates the details of our proposed Targeted Identity Re-Association (TIRA) attacks
and the adversarial framework deployed.

2.1 Threat Model and Framework

This investigation operates under the assumption that the adversary has black-box access to the
model’s outputs. This is a realistic scenario as the adversary can be a model distributor or a model
broker, or an actor operating on a logging or reporting layer. An adversary with the ability to perform
proxy attribute inference is an advanced scenario. The adversary’s capabilities are limited to: 1) The
adversary can query the black-box model and obtain raw prediction scores for a given input instance.
2) The adversary is aware of the protected feature for each input instance, as this information is vital
for targeting and shuffling the scores. 3) Importantly, the adversary has no access to the model’s
architecture, training data, or decision logic. 4) The manipulation is performed only on the ordered
list of scores and the corresponding identities.

The adversarial objective is two-fold: 1) To shift and obscure the values of fairness metrics. 2) To
fool SHAP so that the protected feature appears less influenced than it is.

The core framework for TIRA attacks proceeds as follows: Score Sorting: For given input data
points (x) and their protected features, the target model gives prediction scores (s). The scores
are then sorted in descending order, forming a ranked list. Identity Re-Association: Our attacks
probabilistically and iteratively modify the ranked list, without changing the scores themselves. In
each iteration, they apply a localized perturbation to identity-score associations. This means that a
score remains in its position, but the identity associated with it is altered. Output Re-Assembly:
After a predefined number of iterations, the reconstructed set of shuffled scores is used to calculate
the fairness metrics and Shapley values.

2.2 Targeted Identity Re-Association Attacks

The proposed algorithms, Probabilistic Micro-Shuffling (PMiS) and Probabilistic Rank-Shift Micro-
Perturbation (PRSMP), introduce controlled and probabilistic swaps. The attack algorithms reduce
the apparent disparities while keeping the score distribution unchanged.

3 Results and Analysis

The shift in fairness metrics demonstrates the efficacy of the TIRA attacks, and the SHAP value
attribution evaluates their subtlety.
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Algorithm 1 Probabilistic Micro-Shuffling (PMiS) Attack
Require: Model f , dataset Xtest, protected attribute A, swap probability pswap, iterations T
Ensure: Shuffled scores S′ re-associated with their original indices

1: S ← f(Xtest)
2: L← list of tuples (si, ai, idxi) for i = 1 . . . N
3: Sort L by score si in descending order
4: for t = 1 to T do
5: for i = 0 to N − 2 do
6: if L[i].a = 0 and L[i+ 1].a = 1 then
7: if Rand(0,1) ≤ pswap then
8: Swap (L[i].a, L[i].idx) with (L[i+ 1].a, L[i+ 1].idx) ▷ Scores remain fixed,

only identities are re-associated.
9: end if

10: end if
11: end for
12: end for
13: return S′ ▷ By re-ordering original scores based on the indices in L.

Algorithm 2 Probabilistic Rank-Shift Micro-Perturbation (PRSMP) Attack
Require: Model f , dataset Xtest, protected attribute A, shift probability pshift, max shift rank

kmax, iterations T
Ensure: Shuffled scores S′ re-associated with their original indices

1: S ← f(Xtest)
2: L← list of tuples (si, ai, idxi) for i = 1 . . . N
3: Sort L by score si in descending order
4: for t = 1 to T do
5: for i = 0 to N − 1 do
6: if L[i].a = 0 and Rand(0,1) ≤ pshift then
7: k ← Rand(1, kmax)
8: J ← {j ∈ [i+ 1,min(N − 1, i+ k)] | L[j].a = 1}
9: if J is not empty then

10: jtarget ← Rand-Choice(J)
11: Swap (L[i].a, L[i].idx) with (L[jtarget].a, L[jtarget].idx)
12: end if
13: end if
14: end for
15: end for
16: return S′ ▷ By re-ordering original scores based on the indices in L.

3.1 Fairness Metrics Manipulation

We quantitatively compare the results of the original, unattacked models against the outputs subjected
to our TIRA attacks, as well as the benchmark attack. We consistently observed a significant shift in
the perceived fairness, pushing the values towards ideal and fair thresholds. The key finding is that
these probabilistic iterative attacks constantly achieved these results with notable precision.

Table 1 provides a summary of the results for the diabetes dataset using a logistic regression model.
Both PMiS and PRSMP have a more pronounced impact on the metrics, compared to DomSwap and
MixSwap attacks. This shows that iterative probabilistic, micro-level strategies provide fine-grained
control and usually can more precisely tune the perceived fairness of a model’s outputs to meet a
desired threshold.

Table 2 summarizes the results for the credit dataset using neural networks, which showcase their
generalizability across the datasets and models.

Note: p refers to the swap/shift probability (pswap or pshift), I refers to the number of iterations (T ), and r
refers to the maximum shift rank (kmax).
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Table 1: Fairness Metrics Values on Bangladeshi Diabetes Dataset (LR Model)

Metric Baseline DomSwap MixSwap PMiS PRSMP

(p=0.50,
I=5)

(p=0.25,
I=5)

(p=0.25,
I=10)

(p=0.25,
r=5, I=10)

(p=0.10,
r=5, I=10)

Equal Opportunity 0.09 0.07 -0.06 0.01 -0.07 -0.13 -0.10 0.03
Demographic Parity 0.47 0.29 0.15 0.25 0.04 -0.01 0.34 0.42
Equal Odds 0.03 -0.07 0.26 -0.10 -0.23 -0.26 -0.06 0.00
Disparate Impact 2.40 1.75 1.26 1.62 1.08 0.99 1.90 2.22
Theil Index 0.00 0.01 0.02 0.01 0.04 0.05 0.01 0.00

Table 2: Fairness Metrics Values on German Credit Dataset (NN Model)

Metric Baseline DomSwap MixSwap PMiS PRSMP

(p=0.25,
I=5)

(p=0.25,
I=10)

(p=0.50,
I=5)

(p=0.25,
r=5,

I=10)

(p=0.33,
r=5,

I=10)

(p=0.25,
r=5, I=5)

Equal Opportunity -0.08 0.07 0.12 -0.05 -0.07 -0.08 -0.12 -0.13 -0.07
Demographic Parity -0.06 0.10 0.07 -0.05 -0.12 -0.07 -0.10 -0.14 -0.08
Equal Odds -0.02 0.15 0.07 -0.01 -0.11 -0.02 -0.05 -0.10 -0.05
Disparate Impact 0.90 1.14 1.09 0.94 0.84 0.92 0.87 0.82 0.91
Theil Index 0.00 2.21 0.00 0.00 0.00 0.00 0.00 0.00 0.00

3.2 SHAP Attribution Analysis

Another core objective of the TIRA attacks is to fool SHAP by obfuscating the model’s reliance on the protected
features, without leaving a detectable footprint. Figure 1 show that after applying TIRA attacks, the SHAP value
for the protected feature is effectively zero.

Figure 1: SHAP Values of the Protected Feature post-Attack for Bangladeshi Diabetes Dataset (LR
Model)

4 Conclusion

The TIRA attacks show that the absence of a strong attribution signal does not necessarily equate to fairness or
lack of adversarial perturbation. Crucially, our findings demonstrate a dual-pronged threat not achieved by prior
work. TIRA can fool both AIF360 audits by pushing metrics to near-ideal values and XAI audits by reducing
SHAP attribution to effectively zero. Our work challenges the assumption that trustworthy AI can be achieved
through post-hoc explanation methods. The enhanced stealth of the TIRA attacks shows the need to develop
integrity-based evaluation methodologies.
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A Related Work

Explainability aims to render opaque deep learning models understandable and transparent [11]. Rooted in
co-operative game theory, SHAP stands as a cornerstone of post-hoc explainability. SHAP offers a theoretically
grounded framework for attributing the contribution of each feature to each model output [9]. Beyond SHAP,
other well-known post-hoc explainability methods include LIME [10], Integrated Gradients [15], and Grad-CAM
[12]. Crucially, these methods identify the potential biases from the protected features [1, 3].

Complementing XAI, the field of algorithmic fairness is committed to identifying, quantifying, and mitigating
biases in machine learning models. Several fairness metrics, such as demographic parity, equal opportunity
difference, equal odds difference, and disparate impact, have been formulated to assess the disparities in model
outcomes across demographic groups [14]. Frameworks like the AI Fairness (AIF360) toolkit [2] provide
open-source and standardized implementations for assessing these fairness metrics. Although quantitative
metrics offer a lens into fairness, their reliability hinges on the robustness of the model’s outputs and the methods
used to understand them.

Early efforts, such as scaffolding attacks, demonstrated that a classifier could be constructed to deceive LIME and
SHAP to hide the reliance on protected features [13]. However, these methods often necessitate access to training
data or the ability to retrain the models, which present significant limitations for model distributions or external
auditors operating with black box access. This highlighted a critical need for more practical, data-agnostic
attacks. Other methods use stealthy bias sampling [8] or learning models that hide unfairness from multiple
explanation methods [4].

A more directly relevant line of inquiry is output sampling attacks, which shuffle the model’s ranked outputs
or prediction scores without modifying the input data distribution or the internal structure of the model [16].
This work made a vital contribution by proposing a family of attacks that theoretically proved that Shapley
values cannot intrinsically detect shuffling attacks due to their order-agnostic nature in expectation calculations.
However, their own empirical studies revealed that practical SHAP estimation algorithms could detect these
attacks with varying degrees of effectiveness. Furthermore, these attacks can collapse into one another (i.e.,
’Swapping’ can become equivalent to ’Dominance’ ). What was learned from their contribution is that even
though shuffling attacks are potent, their insufficiency in some contexts lies in their more overt patterns that
might still be detectable by a vigilant auditor or other consistency checks.

We also observe two indicators of brittle control with [16]: (i) different shuffling variants can produce identical
post-attack fairness values, and (ii) the attack sometimes fails to change fairness at all. This observed lack of
robust, fine-grained control also motivates our work.

Our work advances the current state of shuffling attacks by introducing an enhanced paradigm of subtlety and
control. Unlike the existing attacks, TIRA attacks are fundamentally probabilistic at a granular level. Their
design makes the adversarial perturbations distributed and cumulative, which is a key differentiator and crucial
for situations where detectability is the primary concern of the attacker. Our work explores the impact of
attack-specific parameters, giving insights into how the degree of manipulation can be controlled, a level of
explicit tunability not documented in prior literature.

B Extended Methodology

B.1 Targeted Identity Re-Association Attacks

B.1.1 Probabilistic Micro-Shuffling (PMiS) Attack

The PMiS attack uses the sorted list of individuals and their prediction scores in descending order. For a binary
protected feature, the algorithm examines the adjacent pair of individuals in each iteration. The algorithm flips
the disadvantaged individual with the advantaged individual with a predefined probability pswap ∈ [0, 1]. This
process is repeated for a predefined number of iterations. The subtlety of PMiS attacks is the result of its strict
locality, probabilistic execution, and iterative accumulation. This leads to cumulative and gradual drift in the
distribution of the protected attribute relative to score, which makes it challenging for SHAP or other auditing
methods to catch the presence of an adversarial pattern.

B.1.2 Probabilistic Rank-Shift Micro-Perturbation (PRSMP) Attack

Like the PMiS attack, the PRSMP attack algorithm operates on a sorted list. PRSMP attack offers broader locality
by introducing an additional layer of randomness with variable shifts. The attack targets the disadvantaged
individual with a probability pshift ∈ [0, 1], and nudges its identity within a predefined small window, kmax.
PRSMP also relies on multiple iterations, as a result of which these small probabilistic shifts accumulate into a
gradual, but significant rearrangement of identities.
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B.2 Experimental Setup

To rigorously evaluate the subtlety and efficacy of the TIRA attacks, we conducted experiments across diverse
model architectures and real-world datasets to ensure reproducibility.

B.2.1 Datasets

We utilize two publicly available datasets, which are widely used in fairness assessments. Both datasets
underwent standard preprocessing. Categorical features are one-hot encoded, and target variables are mapped
to a binary format. Bangladeshi Diabetes Dataset: This dataset, which focuses on predicting diabetes risk,
contains 520 patient records with clinical and demographic information [7]. The protected feature is binarized
Gender, where male is the advantaged group and female is the disadvantaged group. German Credit Dataset:
This dataset comprises financial and demographic features for credit assessment. The protected feature in this
1000 loan applicant dataset is Gender, with females designated as the disadvantaged group, while males as the
advantaged group [6].

B.2.2 Models

We evaluate the TIRA attacks on two representative machine learning models to assess the generalizability
of the algorithms. Both models are trained on 80% of the respective dataset, while the remaining 20% is
reserved for testing and evaluation. Logistic Regression: Logistic regression is chosen as a baseline for its
inherent interpretability, allowing for a clear understanding and evaluation of the efficacy of the attacks. Neural
Networks: As a non-linear black-box model consisting of multiple dense layers with ReLU activations, and
sigmoid activation for binary classification.

B.3 Fairness Metrics

We quantitatively assess the impact of TIRA attacks on the perceived fairness by employing five widely used
fairness metrics from the AIF360 toolkit. The model’s prediction scores are binarized for all the metrics using
a fixed threshold. The ideal value of all the metrics is 0, except Disparate Impact. Demographic Parity
Difference: A fairness metric used to measure the difference in the proportion of favorable outcomes between
the advantaged and disadvantaged groups. Equal Opportunity Difference: Measures the difference in the
true positive rates (recall) between the advantaged and disadvantaged groups. Disparate Impact: This metric
measures the ratio of favorable outcomes between the advantaged and disadvantaged groups. Here, the ideal
value is 1. Odds Difference: A fairness metric used to measure the average difference in the true positive
rates and false positive rates between the advantaged and disadvantaged groups. Theil Index: Between-group
generalized entropy error, a measure of inequality within an allocation, where an ideal value indicates more
equality.

B.4 SHAP Attribution Analysis

We employ SHAP to assess the effectiveness of TIRA attacks on post-hoc interpretability to highlight how they
confound SHAP. To get exact values, we used the permutation-based explainer. This also ensures cross-modal
comparability and avoids inductive bias. SHAP was applied to both the original model’s predictions, as a
baseline representing the inherent degree of fairness, particularly for the protected feature, and the manipulated
outputs to visualize and quantify the value of the protected feature.

B.5 Comparative Benchmarking

To further contextualize the performance of TIRA attacks, we demonstrate the distinct advantages of TIRA
attacks by benchmarking their performance against DomSwap and MixSwap attacks, two representative state-
of-the-art output shuffling attacks. Our comparisons shed light on the trade-offs between more overt shuffling
and our probabilistic micro-level strategies in terms of inferred subtlety, their effectiveness in shifting fairness
metrics, and SHAP’s value attribution.

C Additional Results

C.1 Fairness Metrics Manipulation

To further validate our work, we provide a summary of additional results in Tables 3 and 4. To see the joint
tradeoff between fairness manipulation and stealth, we plot the Demographic Parity against Disparate Impact. In
Figure 2, the points nearer (x ≈ 1, y ≈ 0) represent attacks that are stealthy and make the model look fair. In
particular, PMiS often achieves stronger reductions in Demographic Parity. PRSMP, in contrast, usually tends to
preserve the ratios, thereby enhancing stealth.
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Table 3: Fairness Metrics Values on Bangladeshi Diabetes Dataset (NN Model)

Metric Baseline DomSwap MixSwap PMiS PRSMP

(p=0.25,
I=10)

(p=0.25,
I=5)

(p=0.5,
I=5)

(p=0.1,
r=5, I=10)

(p=0.25,
r=5, I=10)

Equal Opportunity 0.00 -0.03 0.01 -0.11 -0.03 -0.11 -0.09 -0.15
Demographic Parity 0.54 0.49 0.45 0.28 0.45 0.24 0.42 0.34
Equal Odds 0.00 -0.05 -0.05 -0.16 -0.05 -0.18 -0.07 -0.12
Disparate Impact 2.23 2.10 1.97 1.53 1.97 1.44 1.91 1.68
Theil Index 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00

Table 4: Fairness Metrics Values on German Credit Dataset (LR Model)

Metric Baseline PMiS PRSMP

(p=0.25,
I=25)

(p=0.25,
I=10)

(p=0.33,
I=25)

(p=0.25,
r=5, I=10)

(p=0.33,
r=5, I=10)

(p=0.25,
r=10,
I=10)

(p=0.25,
r=5, I=5)

Equal Opportunity 0.13 0.08 0.11 0.04 0.06 0.01 0.02 0.06
Demographic Parity 0.09 0.05 0.08 0.01 0.02 -0.01 -0.03 0.03
Equal Odds 0.12 0.08 0.10 0.04 -0.05 0.01 0.02 0.05
Disparate Impact 1.13 1.08 1.11 1.02 1.04 0.98 0.95 1.04
Theil Index 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Figure 2: Tradeoff Curves between Disparate Impact (x-axis) and Demographic Parity (y-axis) across
Four Dataset-Model Combinations
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C.2 SHAP Attribution Analysis

Additional SHAP analysis are summarized in Figure 3, providing further support for our work.

Figure 3: SHAP Values of the Protected Feature post-Attack for Bangladeshi Diabetes Dataset (NN
Model)

D Discussion

Our work introduces a new family of shuffling attacks. The enhanced strength of our attacks lies in their
micro-level, probabilistic, and iterative nature. Our findings demonstrate that it is possible to significantly alter
the perceived fairness and undermine SHAP-based explanations by creating effective adversarial attacks that are
stealthy.

D.1 The Nuance of Parametric Control

A key contribution of our work is that TIRA attacks are not blunt instruments, but rather a highly tunable class
of attacks. This parameter-driven control demonstrates that an adversary can precisely calibrate the attacks’
subtlety and intensity. The ability to ’dial-in’ a specific level of perceived fairness while confounding SHAP
highlights a previously undocumented attack surface. We systematically explored the correlation between these
parameters and the outputs, revealing a scalable influence on the attack’s efficacy and subtlety from almost
imperceptible changes to more pronounced changes.

Probabilistic control: The pswap (PMiS) and pshift (PRSMP) parameters empower the adversary to control
the frequency of perturbations. Increasing the probability leads to a more pronounced shift in fairness metrics.
Low probability value ensures that the manipulations are distributive and cumulative.

Locality: The kmax (PRSMP) defines the locality of shifts, acting as a knob for controlling the locality of the
attack. This parameter allows the adversary to perform perturbation either within a small window to maintain
stealth or expend the window for more aggressive shifts.

Cumulative Effect: The number of iterations is directly proportional to the strength of the attack. It allows for
the temporal dimension of the attack. An attack with low probability over an extended period ensures that the
attack is undetectable, but the impact is significant.

D.2 Limitations and Future Work

While our work presents a robust framework for TIRA attacks that expose the adversarial vulnerabilities in
fairness tools and post-hoc explainability, several avenues for future research are still unexplored.

Expanding Attack Vectors: Our study is effective on binary and continuous protected features. Future work
should extend the applicability of such attacks to more complex datasets and explainability tools.

Theoretical Guarantees: Our work empirically demonstrates the TIRA attacks’ efficacy, but a deeper theo-
retical investigation is required. Proving the asymptotic properties of such attacks as well as formalizing their
relationship to SHAP’s estimation algorithms would provide a much-needed theoretical foundation.
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Developing Robust Defenses: The most pressing next step is the development of robust defenses. Future work
should focus on designing auditing frameworks that can detect inconsistencies between a model’s outputs and its
explanations.
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