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ABSTRACT

Confidence calibration has been widely studied to improve the trustworthiness of
predictions in vision-language models (VLMs). However, we theoretically reveal
that standard confidence calibration inherently impairs the ability to distinguish
between correct and incorrect predictions (i.e., Misclassification Detection, MisD),
which is crucial for reliable deployment of VLMs in high-risk applications. In
this paper, we investigate MisD in VLMs and propose confidence recalibration to
enhance MisD. Specifically, we design a new confidence calibration objective to
replace the standard one. This modification theoretically achieves higher precision
in the MisD task and reduces the mixing of correct and incorrect predictions at
every confidence level, thereby overcoming the limitations of standard calibra-
tion for MisD. As the calibration objective is not differentiable, we introduce a
differentiable surrogate loss to enable better optimization. Moreover, to preserve
the predictions and zero-shot ability of the original VLM, we develop a post-hoc
framework, which employs a lightweight meta network to predict sample-specific
temperature factors, trained with the surrogate loss. Extensive experiments across
multiple metrics validate the effectiveness of our approach on MisD.

1 INTRODUCTION

Pretrained Vision-language models (VLMs) (Radford et al., 2021; Zhou et al., 2022b;a; Khattak et al.,
2023), such as CLIP (Radford et al., 2021), have demonstrated impressive zero-shot capabilities.
Owing to their strong generalization ability and pretrained nature, they have been applied to a wide
range of downstream tasks, including autonomous driving (Cui et al., 2024), medical diagnosis
(Zhao et al., 2023), and 3D scene understanding (Chen et al., 2023). While these models improve
flexibility and accuracy, ensuring their reliability remains essential, which is crucial for real-world
deployment and safety-critical applications. Consequently, confidence calibration (Guo et al., 2017),
which adjusts model confidence to better match true correctness, is therefore an important component
in developing reliable VLM-based systems.

Confidence calibration aims to align the model’s predicted confidence with the true likelihood of
correctness. A classical calibration method is Temperature Scaling (Guo et al., 2017), which adjusts
the sharpness of the output probabilities using a temperature coefficient to better align confidence
with empirical accuracy. However, a single global temperature overlooks the instance-wise variation
in confidence miscalibration. Therefore, many instance-wise calibration methods have been proposed
(Huang et al., 2025; Krishnan & Tickoo, 2020). In VLMs, confidence calibration becomes more
challenging due to modality-specific factors or the process of fine-tuning. To address these issues,
several works (Wang et al., 2024; Lv et al., 2025) show that distances in the text embedding space
play a crucial role in calibration errors, and they incorporate this text-modality signal as an additional
temperature adjustment. In contrast, to mitigate miscalibration introduced by fine-tuning, DOR
(Wang et al., 2025) uses a large vocabulary set to preserve the semantic structure of the pretrained
CLIP, thereby reducing the shift in text features caused by prompt tuning.

Although previous methods can achieve great calibration for VLMs, many high-risk tasks rely more
on the model’s ability to rank predictions by correctness than confidence calibration performance.
Concretely, in the misclassification detection task, it is more desirable for the VLMs to consistently
assign lower confidence scores to misclassified samples than to correctly classified ones, rather than
merely aligning predicted probabilities with accuracy, which is illustrated in Figure 1(a).
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Figure 1: (a) Comparison between a calibrated model and one with improved MisD performance.
Left: a calibrated model aligns predicted confidence with accuracy. Right: a model with higher
MisD performance that better ranks correct predictions above incorrect ones. (b) Illustration of the
relationship between the reliability curve and the MisD. Given a reliability curve and a confidence
threshold r, samples with confidence above r are regarded as correct predictions. Their precision can
be derived from the area under the curve within that interval. Conversely, samples with confidence
below r are treated as incorrect predictions, and their precision can be derived from the area above
the curve.

In this work, we first analyze the reliability diagram of confidence calibration for MisD, and find that
the region under (above) the reliability curve is related to the precision of detecting correct (incorrect)
prediction, as shown in Figure 1(b). Motivated by this insight, we reveal that standard calibration
inherently limits the upper bound of this precision by analyzing its reliability curve. To remedy
this limitation, we introduce a new target curve. It increases the area under the curve in the high-
confidence region and enlarges the area above the curve in the low-confidence region, as illustrated
in Figure 2. This design theoretically improves precision and reduces the mixing between correctly
and incorrectly classified samples, thereby encouraging better separation between them. Although
the proposed reliability curve is ideal for MisD, it cannot be directly expressed as a differentiable
loss function. To bridge this gap, we design a surrogate loss that faithfully captures its effect, making
the objective practically optimizable. In practice, to avoid interfering with the underlying VLM
predictions, we adopt a post-hoc framework. Specifically, we introduce a lightweight meta network
that predicts the temperature scaling factor to each sample, conditioned on the VLM logits, image
embeddings, and predicted text embeddings. This meta network is trained using our surrogate loss.
Compared to previous works1, our contributions are listed as follows:

• We make the first attempt to address MisD in VLMs from a calibration perspective. By analyzing
the reliability diagram for MisD, we uncover key limitations of standard calibration and introduce
a new perspective to systematically analyze MisD and guide its improvement.

• We propose a new calibration objective tailored to improving MisD performance. The theoretical
analysis guarantees that the proposed objective can improve the precision in the MisD task and
reduce mixing of correct and incorrect predictions on every confidence level.

• To ensure that the proposed loss does not interfere with the pretrained capabilities of VLMs, we
develop a post-hoc calibration framework that learns individualized temperature coefficients for
each sample. Empirical results show that the proposed method consistently improves MisD over
the recent uncertainty estimation methods across diverse settings.

2 PRELIMINARIES

Contrastive Language-Image Pretraining (CLIP). CLIP is a powerful vision-language model
that aligns image and text representations in a shared embedding space through contrastive learning
(Radford et al., 2021). Owing to its contrastive training on large-scale image-text pairs, CLIP demon-
strates strong zero-shot generalization and is readily deployable in various downstream scenarios.
Let ξ : x → Rd and ψ : t → Rd denote the image and text encoders of CLIP, respectively. Given an
image instance v and a text label c, the output logit of CLIP can be formulated as:

zv,c = τclip · sim(ξ(xv), ψ(tc)), (1)

1The details of related work are summarized in the Appendix A.
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where sim(·, ·) denotes cosine similarity, tc is a hand-crafted prompt, typically set to “a photo
of a {class}” and τclip is a fixed constant, usually set to 100. In multi-class classification, let
C = {c0, c1, . . . , c|C|−1} denote the set of candidate classes. The predicted label corresponds to the
class with the highest predicted probability: which can be formally expressed as follows:

ŷ = argmax
c∈C

(ezc/
∑|C|−1

i=0
ezi), (2)

where ŷ is the predicted class and the associated probability (i.e., s = max(ezc/
∑|C|−1

i=0 ezi)) is
referred to as the confidence of the prediction.

Confidence Calibration. Confidence calibration is particularly important in high-risk and open-
world scenarios (Guo et al., 2017). It refers to alignment between a model’s predicted confidence and
its actual accuracy, making the predicted confidence more trustworthy. For example, if the average
confidence is 0.8, then approximately 80% of the predicted examples should be correct. Formally,
the objective of confidence calibration can be defined as follows:

P(ŷ = y|s = p) = p,∀p ∈ [0, 1], (3)
where y is the ground-truth label. The performance of confidence calibration can be evaluated using
a reliability diagram, where the vertical axis represents accuracy and the horizontal axis represents
confidence, as shown in Figure 1(b). Points closer to the diagonal indicate better calibration. The
reliability curve is obtained by smoothly connecting these points, with the diagonal line representing
the perfect-calibration curve (i.e., f(x) = x). Confidence calibration aims to make the model’s
reliability curve as close as possible to the perfect calibration curve.

Misclassification detection (MisD). Misclassification detection is a critical safeguard for deploying
models in real-world applications (Hendrycks & Gimpel, 2016), aiming to distinguish incorrect
predictions from correct predictions based on confidence ranking. Formally, given a confidence
threshold r ∈ [0, 1], predictions with confidence above r are detected as correct predictions, while
those with confidence below r are detected as incorrect predictions.

3 METHOD

Overview. The overall research framework can be divided into three parts: ❶ We first analyze
the upper bound of calibration for MisD, demonstrating its inherent limitation. To overcome this
limitation, we redesign the calibration reliability curve tailored for MisD. In addition, we establish
several favorable properties of the proposed curve, highlighting its theoretical soundness and practical
advantages in improving MisD. ❷ As the reliability curve is not differentiable, we design a surrogate
loss (i.e., LSUR) to realize its optimization. ❸ Finally, we present a post-hoc and lightweight
implementation, which adjusts confidence without modifying the VLMs’ parameters.

3.1 REVISITING CALIBRATION WITH MISD

The reliability diagram is a key tool for evaluating the calibration of probabilistic classifiers, where the
diagonal (acc = s) denotes perfect calibration. Thus, calibration quality is assessed by how closely
the reliability curve aligns with this line. So far, it has been used exclusively for this purpose. In this
work, we find that the reliability diagram also encodes information relevant to MisD, in particular that
the regions under and above the reliability curve relate to the precision of detecting correct and
incorrect predictions. This insight reveals a direct link between the reliability diagram and MisD.

Specifically, we first analyze the meaning of the region under the reliability curve. Since the vertical
axis of reliability diagram denotes accuracy, each curve value reflects the proportion of correct
predictions among all samples at that confidence. The enclosed region naturally accumulates these
proportions across the confidence spectrum. Building on this view, we formalize the following
relationship. The formally proof is listed in Appendix B.1:
Lemma 3.1. Given a confidence interval [a, b], letw(s) denote the density of the sample at confidence
level s. Then, the precision of correct predictions within [a, b] can be driven from region under
the reliability curve f(s) over [a, b], i.e., Prec+ = (

∫ b

a
w(s)f(s)ds)/

∫ b

a
w(s)ds. Similarly, the

precision of incorrect predictions over [a, b] can be derived from the region above the curve via
Prec− = (

∫ b

a
w(s)(1− f(s))ds)/

∫ b

a
w(s)ds.
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Lemma 3.1 establishes a strong connection between the region under (above) the reliability curve
and the task of detecting correct (incorrect) predictions. Since MisD can be quantified by the
joint precision of detecting high-confidence predictions (i.e., s ≥ r) as correct and low-confidence
predictions (i.e., s < r) as incorrect, it can be characterized by the region below the reliability curve
in the high-confidence interval and the region above it in the low-confidence interval.

Based on the above observations, we can examine the effectiveness of confidence calibration for
MisD. Specifically, we analyze the precision of the perfect calibration curve in detecting correct and
incorrect predictions, as formalized in the following theorem (the proof is listed in Appendix B.3):
Theorem 3.2. Let r ∈ [0, 1] be a confidence threshold. Under perfect calibration, the precision for
the correct prediction detection and incorrect prediction detection tasks is Prec+ = Es∼w(s|s∈[r,1])[s]

and Prec− = Es∼w(s|s∈[0,r])[1− s], respectively.

Theorem 3.2 demonstrates that, even under the goal of confidence calibration (i.e., perfect calibration),
the precision of correct prediction detection equals the conditional expectation of the confidence
s in [r, 1]. In practice, this expectation is strictly less than 1 unless all samples are concentrated
at confidence 1, which rarely occurs. Similarly, the precision of incorrect prediction detection
corresponds to the conditional expectation of 1 − s in [0, r], and is strictly less than 1 unless all
samples are concentrated at confidence 0. In realistic scenarios, such as with pretrained CLIP
models, test samples are often drawn from diverse distributions, causing confidence values to be
widely spread across [0, 1] (see Appendix E.8 for empirical validation). Consequently, both the
precision of correct and incorrect prediction detection are far below 1. This observation explains why
strict calibration alone is insufficient to achieve high MisD performance.

Motivated by Lemma 3.1 and Theorem 3.2, we seek a reliability curve as the calibration objective
that explicitly guides optimization toward better MisD. Let f : [0, 1] → [0, 1] denote the reliability
curve. Based on the above discussion, we therefore formulate the following MisD-oriented objective:

max
f∈F

(

∫ 0.5

0

w(s)[1− f(x)]dx+

∫ 1

0.5

w(s)f(x)dx), (4)

where F = {f : [0, 1] → [0, 1], f(0) = 0, f(1) = 1, f nondecreasing} is a function family. This
objective maximizes the region above the curve in the low-confidence region [0, 0.5], and the region
under the curve in the high-confidence region [0.5, 1], thereby improving the precision of correct and
incorrect prediction detection. However, directly maximizing Eq.(4) over F causes overly aggressive
probability adjustments and instability. To balance improvement in MisD with smoothness, we
impose an additional requirement that f should have a controllable and gradual transition. As a
practical and analytically tractable instantiation, we adopt the normalized sigmoid curve:

Ψ(s) ≜
σ
(
s−0.5

λ

)
− σ

(−0.5
λ

)
σ
(
0.5
λ

)
− σ

(−0.5
λ

) , σ(z) ≜
1

1 + e−z
, (5)

where λ ∈ R+ controls the smoothness of the transition, enabling a trade-off between separation
strength and stability. Figure 2 illustrates the curve for different values of λ, highlighting its flexibility.
We summarize the key properties of the proposed curve that are effective for MisD as follows.
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Figure 2: Visualization of the pro-
posed normalized sigmoid curve
with different λ values alongside
ECE in the reliability diagram.

Property 1a: Perfect calibration as a special case (λ→ ∞).
As λ→ ∞, Ψ(x) converges uniformly to the diagonal Ψ(x) =
x on [0, 1], which corresponds to perfect calibration.

Property 1b: Step-function limit that maximizes MisD ef-
fectiveness (λ → 0). As λ → 0, Ψ(x) converges to the
closed-form solution of Eq.(4) (i.e., step function), then the
following corollary holds. The proof is listed in Appendix B.2.
Corollary 3.3. When λ → 0, the proposed normalized sig-
moid curve assigns higher confidence to all correctly classified
samples than to any misclassified sample, i.e.,

P
(
Conf(N+) > Conf(N−)

)
= 1, (6)

where N+ and N− denote the sets of correctly classified and
misclassified samples, respectively. In this case, the reliability
curve approaches a step-like curve (cf. Figure 2 with λ = 1e− 5).
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Properties 1a and 1b characterize the effect of the limit behavior as λ varies. A smaller λ leads
to stronger separation and hence better MisD performance, but pushing λ → 0 results in overly
aggressive probability updates, causing instability and potential over-fitting on the calibration set.
Therefore, in practice, an intermediate λ is chosen to balance separation strength and stability.

Property 2: Precision dominance over perfect calibration. The proposed reliability curve guar-
antees strictly higher precision than perfect calibration for correctly classified samples in the high-
confidence region, and symmetrically outperforms perfect calibration for misclassification detection
in the low-confidence region. Consequently, given the distribution of samples over confidence values
(i.e., w(s)), we arrive at the following theorem (The proof is listed in the Appendix B.4):

Theorem 3.4. Let r ∈ (0.5, 1) and let w(s)≥0 be any weight function on [0, 1] with
∫ 1

r
w(s) ds > 0.

The precision for correct-prediction detection (i.e., Prec+) satisfies the following inequality:

Prec+Ψ(r;w) :=

∫ 1

r
w(s)Ψ(s) ds∫ 1

r
w(s) ds

≥
∫ 1

r
w(s) s ds∫ 1

r
w(s) ds

=: Prec+diag(r;w).

Moreover, for the incorrect prediction detection with r ∈ (0, 0.5), the precision (i.e., Prec−) satisfies
the following inequality:

Prec−Ψ(r;w) :=

∫ r

0
w(s)

(
1−Ψ(s)

)
ds∫ r

0
w(s) ds

≥
∫ r

0
w(s)

(
1− s

)
ds∫ r

0
w(s) ds

=: Prec−diag(r;w).

Property 3: Less tolerance for prediction mixing. MisD emphasizes separating correctly and
incorrectly classified samples; hence, less mixing between these two groups at the confidence level is
critical. Entropy is a natural metric that can be used to measure the degree of mixing. Therefore, we
can characterize the tolerance of the reliability curve for prediction mixing at every confidence level
by the entropy. We then have the following theorem (The proof is listed in Appendix B.6):
Theorem 3.5. Given arbitrary confidence s, then the corresponding entropy for the proposed
reliability curve(i.e., Ψ(s)) and perfect-calibration curve satisfy the following inequality.

MΨ(s) ≤ Mdiag(s), M(s) := −P(N+
s ) log(P(N+

s ))− P(N−
s ) log(P(N−

s )), (7)

where P(N+
s ) and P(N−

s ) denote the probabilities of being correctly and incorrectly classified given
confidence s, respectively; i.e., P(N+

s ) = P(correct|conf = s) and P(N−
s ) = 1− P(N+

s ).

This theorem indicates that the proposed reliability curve (i.e., Ψ(s)) has less tolerance for mixing of
correctly and incorrectly classified samples.

Taken together, Properties 1–3 provide a coherent theoretical picture: the proposed curve continu-
ously interpolates between perfect calibration and ideal separation (Property 1), provably achieves
higher precision for both correct and incorrect prediction detection (Property 2), and admits lower
entropy at each confidence level, indicating less tolerance for prediction mixing (Property 3). These
results highlight that Ψ(s) aligns better with the goal of improving MisD. Building on these insights,
we next introduce a practical post-hoc method that operationalizes the proposed reliability curve.

3.2 SURROGATE LOSS

Despite the advantages of the proposed reliability curve (i.e., Ψ(s)), directly realizing it as a training
objective is challenging. In particular, the reliability curve cannot be straightforwardly expressed as
a differentiable loss, and an alternative would be to approximate it through binning on a held-out
calibration set, similar to ECE (Guo et al., 2017). However, calibration sets are usually small in
practice, which causes large variance in the empirical bin estimates and makes such optimization
unreliable. To tackle this issue, we propose a simple alternative to achieve it.

Specifically, we approximate the desired behavior of the reliability curve through a differentiable
surrogate penalty. Recall our proposed curve Ψ(s), which smoothly maps the confidence score
s ∈ [0, 1] to an “expected accuracy” curve that imposes stronger constraints at both ends of the
confidence spectrum. Instead of directly optimizing this non-differentiable target, we design penalties
that follow the trend of expected accuracy (i.e., Ψ(s)): For incorrectly predicted samples, the penalty
strength follows expected accuracy Ψ(s) , meaning that incorrect predictions in regions of high

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

expected accuracy incur a larger penalty, while correctly predicted samples follows 1−Ψ(s), so that
correct predictions in regions of low expected accuracy receive a larger penalty. In short, the penalties
are assigned in a way that directly mirrors the expected accuracy encoded by Ψ(s), providing
a differentiable surrogate for the proposed reliability curve. However, Ψ(s) only constrains the
confidence, i.e., the highest probability, while ignoring the distribution of the remaining probabilities.
This may lead to optimization difficulties and suboptimal performance. Therefore, we further
incorporate a constraint on the full probability distribution to make the constraint more comprehensive:

LSUR = minβ
1

|N+|
∑

i∈N+
ϕ{1−Ψ(s),−y⊤

i log f(xi)}

+(1− β)
1

|N−|
∑

j∈N−
ϕ{Ψ(s),−[1/c, . . . , 1/c]⊤ log f(xj)},

(8)

where β is a hyperparameter balancing the constraints on correctly and incorrectly predicted samples,
and ϕ{·, ·} is a fusion function, which can be chosen as summation or multiplication. The first term
of ϕ{·, ·} encourages the reliability curve to align with the Ψ(s). The second term of ϕ{·, ·} provides
a full probability constraint to avoid the limitation of only constraining the predicted class probability
from the first term. Specifically, for correctly predicted samples, it is a standard Cross Entropy, which
enforces a low-entropy probability distribution, while for incorrectly predicted samples, it imposes a
constraint by comparing the predicted probability vector with the uniform distribution [1/c, . . . , 1/c],
thereby encouraging a high-entropy probability distribution. In summary, the first term drives the
main alignment with the proposed reliability curve (i.e., Ψ(s)), and the second term complements it
with full-probability regularization, jointly yielding a more stable and effective objective.

3.3 LIGHTWEIGHT META NETWORK

To avoid altering the model predictions and introducing significant overhead, we propose a post-hoc
method. It employs a lightweight meta network (i.e., LMN) to learn the temperature coefficients τ
for refining the VLM’s confidence. For instance, given an image v, its logits can be refined as:

z′v = [τv · zv,1, τv · zv,2, . . . , τv · zv,c], zv,i = τclip · sim(ξ(xv), ψ(ti)). (9)

To obtain the instance-specific temperature coefficient τv , we design a lightweight network that takes
as input the information from both modalities, without modifying the parameters of the pretrained
or fine-tuned model. Concretely, the model’s output logits zv, the image embedding ξ(xv), and the
predicted text embeddings ψ(tp) are each passed through a separate fully connected (FC) layer to
map them into a common latent space. These representations are then concatenated and fed into
another FC layer, which projects them to a scalar value corresponding to τv . Formally, we have:

τv = σ+
(
FCτ (hz||hx||ht)

)
, hz = FCz(zv), hx = FCx(ξ(xv)), ht = FCt(ψ(tp)), (10)

where [·||·] denotes concatenation and σ+(x) = log(1+exp(x)) is an element-wise softplus activation
(Dugas et al., 2000). Finally, by substituting Eq.(9) into the objective function in Eq.(8), we update
only the parameters of these FC layers on the calibration set, making the overall training procedure
lightweight and efficient. The flowchart of the proposed meta network can be found in Figure 5.

4 EXPERIMENT

In this section, we conduct experiments on six public datasets to evaluate the proposed method
in terms of different settings. Details of experiments are shown in Appendix D and additional
experiments are shown in Appendix E. The code is released at Anonymous Code Link.

4.1 EXPERIMENTAL SETUP

Datasets. We conduct the analysis on six datasets covering specialized and fine-grained domains,
which include DTD (Cimpoi et al., 2014), Flowers102 (Nilsback & Zisserman, 2008), EuroSAT
(Helber et al., 2019), RESICS45 (Cheng et al., 2017), MNIST (Deng, 2012), and CUB (Wah et al.,
2011). For each dataset, we adopt the official training and test splits provided in Li et al. (2022), and
construct a few-shot calibration set by randomly sampling a small subset from the training set.
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Table 1: Comparison results of recent confidence calibration OOD detection methods in the few-shot
setting. Note that ↑ indicates higher is better, ↓ indicates lower is better.

DTD Flowers102

Methods AUROC↑ AUPR-S↑ AUPR-E↑ FPR90-S↓ FPR90-E↓ AUROC↑ AUPR-S↑ AUPR-E↑ FPR90-S↓ FPR90-E↓
Zero-shot CLIP 0.762 0.740 0.771 0.669 0.572 0.864 0.922 0.759 0.435 0.354
FeatureClipping 0.749 0.716 0.764 0.687 0.571 0.873 0.935 0.695 0.416 0.321
DOR 0.768 0.726 0.798 0.656 0.550 0.828 0.907 0.682 0.570 0.393
SCT 0.759 0.741 0.776 0.685 0.557 0.868 0.926 0.761 0.429 0.337
ViLU 0.769 0.759 0.762 0.678 0.521 0.875 0.913 0.772 0.401 0.329
LMN (Ours) 0.802 0.800 0.804 0.636 0.457 0.886 0.937 0.799 0.378 0.305

EuroSAT RESICS45

Methods AUROC↑ AUPR-S↑ AUPR-E↑ FPR90-S↓ FPR90-E↓ AUROC↑ AUPR-S↑ AUPR-E↑ FPR90-S↓ FPR90-E↓
Zero-shot CLIP 0.65 0.501 0.771 0.782 0.742 0.779 0.824 0.711 0.636 0.508
FeatureClipping 0.685 0.613 0.727 0.729 0.536 0.781 0.827 0.705 0.638 0.501
DOR 0.719 0.649 0.734 0.716 0.529 0.778 0.828 0.688 0.621 0.516
SCT 0.681 0.534 0.791 0.754 0.682 0.784 0.826 0.716 0.633 0.501
ViLU 0.723 0.618 0.787 0.723 0.538 0.787 0.829 0.730 0.618 0.493
LMN (Ours) 0.788 0.698 0.855 0.655 0.468 0.808 0.845 0.741 0.597 0.445

MNIST CUB

Methods AUROC↑ AUPR-S↑ AUPR-E↑ FPR90-S↓ FPR90-E↓ AUROC↑ AUPR-S↑ AUPR-E↑ FPR90-S↓ FPR90-E↓
Zero-shot CLIP 0.813 0.565 0.919 0.511 0.482 0.807 0.839 0.758 0.767 0.554
FeatureClipping 0.816 0.654 0.843 0.501 0.461 0.805 0.834 0.756 0.768 0.541
DOR 0.824 0.645 0.868 0.497 0.453 0.808 0.838 0.761 0.765 0.551
SCT 0.837 0.664 0.933 0.486 0.423 0.808 0.839 0.759 0.766 0.547
ViLU 0.877 0.769 0.954 0.350 0.263 0.801 0.827 0.753 0.769 0.563
LMN (Ours) 0.915 0.779 0.965 0.200 0.205 0.812 0.846 0.764 0.756 0.532

Baselines. We evaluate our method using pretrained CLIP as the base model and compare it with
two recent calibration approaches (FeatureClipping (Tao et al., 2025) and DOR (Wang et al., 2025)),
a strong VLM-based OOD detector (SCT (Yu et al., 2024)), and the latest MisD-oriented method
for VLMs (ViLU (Lafon et al., 2025)). We also acknowledge FSMisD (Zeng et al., 2025), a recent
MisD-oriented method for VLMs, but its code is not publicly available and cannot be included. In
addition, we evaluate two commonly used prompt-tuning CLIP variants: CoOP (Zhou et al., 2022b)
(textual) and VPT (Jia et al., 2022) (visual).

Implementation details. We use CLIP ViT-B/32 as the visual backbone. For both visual and textual
prompt learning, we set the prefix size to 16 (Zhou et al., 2022b; Jia et al., 2022). We use SGD as the
optimizer, with the number of training epochs selected from {100, 150, 200} and the learning rate
selected from {0.001, 0.002, 0.005}. We adopt a 16-shot setting for the calibration set. When the
base model is prompt-tuning CLIP, we split the original 16-shot calibration set into two parts: one is
used for learning the prompts, and the other is reserved for training our post-hoc calibration network.

Evaluation metrics. To evaluate the MisD, we measure the ranking capability of confidence scores,
i.e., the ability to rank correctly classified samples ahead of misclassified ones. Following existing
works (Corbière et al., 2019; Hendrycks et al., 2018), we adopt several widely used metrics: AUROC,
AUPR-Success, AUPR-Error, FPR90%-Success-TPR, and FPR90%-Error-TPR. Since our MisD
evaluation simultaneously considers both correct and incorrect predictions, the positive class in AUPR
and FPR is redefined according to the detection target: for Success, correctly predicted samples are
treated as positives, whereas for Error, incorrectly predicted samples are treated as positives.

4.2 MAIN RESULTS

We first evaluate the MisD performance of recent confidence calibration methods, the OOD detection
method, and our proposed method applied to the pretrained CLIP. The results on five commonly used
metrics (i.e., AUROC, AUPR-Success, AUPR-Error, FPR90-Success, and FPR90-Error) are reported
in Table 1, from which we make the following observations:

First, the confidence calibration methods can not help CLIP to distinguish between the correctly
predicted samples and the incorrectly predicted samples. For example, on average across all datasets,
FeatureClipping improves AUROC by only about 0.7% over the pretrained CLIP, while DOR achieves
an average gain of merely 1.1%. Moreover, such marginal improvements are further undermined by
their inconsistency, as both methods fail to enhance CLIP uniformly across all evaluation metrics.
This aligns with Theorem 3.2, confirming that confidence calibration imposes a fundamental limit on
achievable MisD performance.
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Figure 3: Bar plot comparison of textual-prompt (i.e., TP in Figure) and visual-prompt (i.e., VP in
Figure) CLIP before and after applying our proposed method, evaluated in terms of AUROC and
FPR90-Error across DTD, Flowers102, EuroSAT, RESICS45, MNIST, and CUB datasets.

Second, compared to the VLM-based calibration and OOD detection methods, the proposed method
always outperforms them by large margins across all evaluation metrics. For example, the proposed
method on average improves by 6.1%, 10.5%, 4.7%, 13.4%, and 22.9%, compared to the pretrained
CLIP, in terms of AUROC, AUPR-Success, AUPR-Error, FPR90-Success, and FPR90-Error. Further-
more, even when compared with the strongest baseline ViLU, our method still achieves substantial
gains of 2.8%, 5.1%, 2.1%, 5.4%, and 18.7% on the same metrics. These results demonstrate the
superiority of the proposed method.

4.3 EVALUATION ON VARIOUS BASE MODELS

To evaluate the effectiveness of the proposed method on more base models, we adopt two types of
prompt-based CLIP models (i.e., textual prompt and visual prompt). Since prompt-based methods
require a training set to learn the prompt embeddings, we leverage the few-shot calibration set, which
is originally divided into training and validation portions. Specifically, following (Wang et al., 2021),
the training portion is used to learn the prompt embeddings, while the validation portion serves both
to validate the learned prompts and to train the proposed post-hoc calibration model.

The results are shown in Figure 3. We have the following observations: our method consistently
improves the performance of both types of prompt-based CLIP across multiple datasets. For example,
on average, our method brings an improvement of 1.2% in AUROC and a reduction of 6.2% in
FPR90-Error for the textual prompt, and 1.1% and 4.4%, respectively, for the visual prompt. These
results demonstrate the applicability of our model to different forms of base models.

4.4 EVALUATION ON OPEN-VOCABULARY SETTING

A key advantage of pretrained CLIP lies in its strong zero-shot capability, enabling it to generalize
well to unseen classes. However, fine-tuning operations, including prompt learning, may compromise
this ability by overfitting to the training classes. To examine whether our proposed post-hoc method
preserves the zero-shot capability, we design an open-vocabulary evaluation and compare LMN
with both zero-shot CLIP and the open-vocabulary calibration method DOR (Wang et al., 2025) (a
CoOP-based calibration method). Specifically, we randomly sample a subset of classes for calibration,
while the remaining unseen classes are reserved for testing. The results are shown in Table 2.

The experimental results demonstrate that our method not only avoids degrading CLIP’s performance
under the open-vocabulary setting, but also leads to consistent improvements across almost all datasets
and evaluation metrics. For example, on the DTD dataset, our method achieves a 7.1% and 5.9%
relative improvement over CLIP and DOR in terms of the FPR90-S metric. This indicates that our
approach is capable of enhancing model performance while preserving CLIP’s inherent strengths. We
attribute this to the post-hoc nature of our method, which does not modify the pretrained parameters
of CLIP and thus maintains the intrinsic generalization ability of its image and text embeddings.
By retaining this property, the proposed calibration method can leverage the strong representational
power of CLIP while improving its reliability on unseen classes.
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Table 2: Results of open-vocabulary evaluation on six datasets, measured by AUROC, FPR90-S, and
FPR90-E. ↑ denotes that higher values are better, while ↓ denotes that lower values are better.

DTD Flowers102 EuroSAT

Methods AUROC↑ FPR90-S↓ FPR90-E↓ AUROC↑ FPR90-S↓ FPR90-E↓ AUROC↑ FPR90-S↓ FPR90-E↓
Zero-shot CLIP 0.760 0.642 0.604 0.853 0.407 0.397 0.608 0.747 0.882
DOR 0.758 0.631 0.612 0.847 0.410 0.394 0.605 0.751 0.883
LMN (Ours) 0.770 0.596 0.598 0.858 0.396 0.387 0.614 0.743 0.875

RESICS45 MNIST CUB

Methods AUROC↑ FPR90-S↓ FPR90-E↓ AUROC↑ FPR90-S↓ FPR90-E↓ AUROC↑ FPR90-S↓ FPR90-E↓
Zero-shot CLIP 0.780 0.601 0.536 0.854 0.545 0.322 0.789 0.641 0.490
DOR 0.764 0.621 0.543 0.842 0.573 0.331 0.779 0.667 0.512
LMN (Ours) 0.782 0.599 0.527 0.859 0.539 0.301 0.790 0.653 0.472
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Figure 4: Bar plot comparison of AUROC, FPR90-S, and FPR90-E metrics of CLIP, CLIP with full
probabilities constraint, and CLIP with our full method (i.e., first three figures) on the RESICS45
dataset. The corresponding reliability diagrams are shown in the last three figures.

4.5 ABLATION STUDIES

The key component of the proposed method is the surrogate loss LSUR, which consists of two parts:
(i) a confidence regularization term that encourages the predictions to align with the target reliability
curve (i.e., Φ(s)), and (ii) a full-probability constraint (FPC) that complements the confidence
regularization by regularizing the entire probability distribution, preventing the training instability
cause by single probability (i.e., confidence) were optimized. Therefore, we do not report a separate
ablation with only the confidence regularization term, as it is intended to be used together with
FPC. To verify the effectiveness of these components, we visualize the reliability diagrams on the
RESICS45 dataset under three settings: the original CLIP, CLIP with FPC, and CLIP with the full
proposed method. The visualizations together with the corresponding quantitative results are reported
in Figure 4. Additional ablation studies on other datasets are provided in Appendix E.1.

From Figure 4, we draw the following observations. First, the complete objective achieves the
best overall performance, and using FPC alone also improves MisD performance compared to
the pretrained CLIP, indicating that both components of the surrogate loss contribute effectively.
Second, from the reliability diagrams, we see that the pretrained CLIP model exhibits overconfidence.
Incorporating FPC alleviates this issue to some extent; however, the resulting curve still deviates from
the target Φ(s). Finally, with the proposed confidence regularization term, the reliability curve aligns
much more closely with Φ(s), demonstrating that our surrogate loss indeed possesses the desired
ability to calibrate predictions toward the target normalized sigmoid reliability curve.

5 CONCLUSION

In this work, we revisited the reliability diagram of confidence calibration and established its connec-
tion with MisD. We showed that the standard calibration objective inherently limits MisD performance,
and proposed a new reliability curve as the calibration objective. This reliability curve theoretically
improves MisD performance and reduces the mixing of correct and incorrect predictions. As the
value of the reliability curve is a statistical result and thus non-differentiable, we address this issue by
designing a differentiable surrogate loss. Furthermore, to preserve the predictive power of VLMs, we
developed a lightweight post-hoc framework that employs a meta network to produce sample-specific
temperature factors. Both theoretical analysis and extensive experiments confirmed that our approach
consistently enhances MisD performance while maintaining model accuracy.
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REPRODUCIBILITY STATEMENT

We have made extensive efforts to ensure the reproducibility of our work. The model architecture,
training procedure, and hyperparameter settings are described in Appendix D.2. Complete proofs of
the theoretical results are presented in Appendix B. The datasets used in our experiments are publicly
available, and the preprocessing steps are explained in the Appendix D E. Moreover, we provide an
anonymous link to the source code in the supplementary materials to facilitate reproduction of our
experiments (Anonymous Code Link).
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second-order functional knowledge for better option pricing. In NeurIPS, volume 13, 2000.

Arindam Ghosh, Thomas Schaaf, and Matthew Gormley. Adafocal: Calibration-aware adaptive focal
loss. In NeurIPS, volume 35, pp. 1583–1595, 2022.

Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q Weinberger. On calibration of modern neural
networks. In ICML, pp. 1321–1330. PMLR, 2017.

Patrick Helber, Benjamin Bischke, Andreas Dengel, and Damian Borth. Eurosat: A novel dataset
and deep learning benchmark for land use and land cover classification. IEEE Journal of Selected
Topics in Applied Earth Observations and Remote Sensing, 12(7):2217–2226, 2019.

Dan Hendrycks and Kevin Gimpel. A baseline for detecting misclassified and out-of-distribution
examples in neural networks. arXiv preprint arXiv:1610.02136, 2016.

Dan Hendrycks, Mantas Mazeika, and Thomas Dietterich. Deep anomaly detection with outlier
exposure. arXiv preprint arXiv:1812.04606, 2018.

Jincheng Huang, Jie Xu, Xiaoshuang Shi, Ping Hu, Lei Feng, and Xiaofeng Zhu. The final layer
holds the key: A unified and efficient gnn calibration framework. arXiv preprint arXiv:2505.11335,
2025.

Menglin Jia, Luming Tang, Bor-Chun Chen, Claire Cardie, Serge Belongie, Bharath Hariharan, and
Ser-Nam Lim. Visual prompt tuning. In ECCV, pp. 709–727. Springer, 2022.

Ulf Johansson, Cecilia Sonstrod, Tuwe Lofstrom, and Henrik Bostrom. Confidence classifiers with
guaranteed accuracy or precision. In Conformal and Probabilistic Prediction with Applications,
pp. 513–533. PMLR, 2023.

Muhammad Uzair Khattak, Hanoona Rasheed, Muhammad Maaz, Salman Khan, and Fahad Shahbaz
Khan. Maple: Multi-modal prompt learning. In CVPR, pp. 19113–19122, 2023.

10

https://anonymous.4open.science/r/MisD-CLIP-5318


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Ranganath Krishnan and Omesh Tickoo. Improving model calibration with accuracy versus uncer-
tainty optimization. In NeurIPS, volume 33, pp. 18237–18248, 2020.

Marc Lafon, Yannis Karmim, Julio Silva-Rodrı́guez, Paul Couairon, Clément Rambour, Raphaël
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A RELATED WORK

This section briefly reviews the topics related to this work, including confidence calibration and
misclassification detection, and the recent works in VLMs.

A.1 CONFIDENCE CALIBRATION

Confidence calibration is a crucial technique for trustworthy machine learning, whose goal is to
calibrate the confidence, making it accurately reflect the actual correctness. The calibration methods
can be divided into two categories: train-time calibration and post-hoc calibration. For the train-time
calibration, a notable example is focal loss (Mukhoti et al., 2020), with subsequent works such as
adaptive focal loss (Ghosh et al., 2022) modifying hyperparameters for different sample groups based
on prior training knowledge. Similarly, label smoothing (Müller et al., 2019). For the post-hoc
methods, the most commonly used method is temperature scaling (TS) (Guo et al., 2017), which
proposes to use a hyperparameter (i.e., temperature coefficient) as the denominator of logits, making
the confidence adjustable. However, TS is not flexible enough, since TS uses a unified temperature
coefficient for every sample. Therefore, Many subsequent methods (Wang et al., 2021; Xiong et al.,
2023; Yang et al., 2023) aim to improve TS by applying adaptive temperature parameters, treating
samples differently for a more effective maximum-entropy regularizer.

In VLMs, calibration becomes more challenging due to modality-specific factors or the process of
fine-tuning (Wang et al., 2024; 2025). Consequently, DAC (Wang et al., 2024) utilizes the proximity of
the text modality to adjust confidence accordingly. DOR (Wang et al., 2025) mitigating miscalibration
introduced during fine-tuning by introducing an extra-large vocabulary set. Although many calibration
methods are proposed, the fundamental goal of calibration is to enable a model to distinguish between
correct predictions and incorrect predictions. However, in this work, we reveal that even a perfectly
calibrated model remains fundamentally limited, and thus may still fail to identify the misclassified
samples or correctly predicted samples that bring the potential risk in many scenarios.

A.2 MISCLASSIFICATION DETECTION

Misclassification detection (Hendrycks & Gimpel, 2016), which is also called failure prediction, and
the goal is to detect incorrect predictions from correct predictions. It is crucial for machine learning
models deployed in high-risk scenarios. Calibration methods (Zhang et al., 2023) are often viewed as
an effective strategy for misclassification detection, as aligning predicted confidence with the true
likelihood of correctness allows the model to distinguish between reliable and unreliable predictions.
However, empirical studies (Zhu et al., 2022) have shown that commonly used calibration methods
only bring limited improvement for misclassification detection. Yet, no theoretical analysis has been
conducted to uncover the underlying reasons, and consequently, the proposed method of this work
has not been optimized from a calibration perspective. Therefore, to the best of our knowledge, no
prior work has systematically investigated misclassification detection from the calibration perspective.
Instead, existing approaches typically focus on confidence regression (Corbière et al., 2019), exposing
outlier samples (Zhu et al., 2023), flat minima (Zhu et al., 2022), among other techniques.

In VLMs, a few recent efforts have been devoted to misclassification detection. For instance,
FSMisD (Zeng et al., 2025) adopts a prompt-based strategy, which, however, overlooks the use of
confidence information, limiting flexibility and making it difficult to integrate with existing prompt-
tuning models. ViLU (Lafon et al., 2025), on the other hand, formulates uncertainty modeling as
a binary classification problem, which essentially ignores the role of confidence in distinguishing
low-confidence correct predictions from high-confidence misclassifications, and lacks theoretical
guarantees. While these approaches provide useful heuristics, they mainly rely on task-specific
designs or empirical observations, resulting in limited ability to capture the fundamental role of
confidence in misclassification detection.
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B THEORETICAL PROOF

B.1 PROOF FOR LEMMA 3.1

Lemma B.1. Given a confidence interval [a, b], letw(s) denote the density of the sample at confidence
level s. Then, the precision of correct predictions within [a, b] can be driven from region under
the reliability curve f(s) over [a, b], i.e., Prec+ = (

∫ b

a
w(s)f(s)ds)/

∫ b

a
w(s)ds. Similarly, the

precision of incorrect predictions over [a, b] can be derived from the region above the curve via
Prec− = (

∫ b

a
w(s)(1− f(s))ds)/

∫ b

a
w(s)ds.

Proof. The formula of precision is defined as:

Precision[a,b] =
correct predictions with s ∈ [a, b]

all predictions with s ∈ [a, b]
. (11)

The reliability curve can be represented as f(s) = P(correct|confidence = s), thus the number of
correct predictions in the interval [a, b] can be represented as:

correct predictions =
∫ b

a

w(s)Accuracy(s)ds =

∫ b

a

w(s)P(correct|confidence = s)ds. (12)

The number of the whole sample is:

all predictions =
∫ b

a

w(s)ds. (13)

Combining the above three equations, we have the following equation:

Prec+[a,b] =

∫ b

a
w(s)P(correct|confidence = s)ds∫ b

a
w(s)ds

=

∫ b

a
w(s)f(s)ds)∫ b

a
w(s)ds

, (14)

where
∫ b

a
P(correct|confidence = s)ds is the area under the reliability curve over a given confidence

interval [a, b]. Then the precision equals that area divided by the length of the interval.

For the incorrect prediction detection, which just needs to replace the numerator of Eq. (11) with the
number of incorrect predictions, thus we have:

Prec−[a,b] =

∫ b

a
w(s)P(incorrect|confidence = s)ds∫ b

a
w(s)ds

=

∫ b

a
w(s)(1− f(s))ds)∫ b

a
w(s)ds

. (15)

The proof is completed.

B.2 PROOF FOR COROLLARY 3.3

Corollary B.2 (Ideal separation case). When λ→ 0, the proposed normalized sigmoid curve assigns
higher confidence to all correctly classified samples than to any misclassified sample, i.e.,

P
(
Conf(N+) > Conf(N−)

)
= 1, (16)

where N+ and N− denote the sets of correctly classified and misclassified samples, respectively. In
this case, the reliability curve approaches a step-like curve (cf. Fig. 2 with λ = 1e− 5).

Proof. As λ → 0, Figure 2 shows that all samples with confidence greater than 0.5 are correctly
classified (accuracy 100%), while all samples with confidence below 0.5 are misclassified (accuracy
0%). This implies that the confidence of every correctly classified sample is strictly greater than 0.5,
and the confidence of every misclassified sample is strictly less than 0.5. Therefore, the confidence of
any correctly classified sample is always higher than that of any misclassified sample.
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B.3 PROOF FOR THEOREM 3.2

Theorem B.3. Let r ∈ [0, 1] be a confidence threshold. Under perfect calibration, the preci-
sion for the correct prediction detection and incorrect prediction detection tasks is Prec+[r,1] =

Es∼w(s|s∈[r,1])[s] and Prec−[0,r] = Es∼w(s|s∈[0,r])[1− s], respectively.

Proof. Given a perfect calibration model, which reliability curve is a diagonal line (i.e., f(s) =
s). For the correct prediction detection task, predictions with confidence above the threshold r
(i.e., s ∈ [r, 1]) are considered as detected correct predictions. By Lemma 3.1, the precision of correct
prediction in [r, 1] is

Prec+[r,1] =

∫ 1

r
w(s)f(s)ds)∫ 1

r
w(s)ds

. (17)

Substituting f(s) = s, we have:

Prec+r,1 =

∫ 1

r
w(s)f(s)ds)∫ 1

r
w(s)ds

= Es∼w(s|s∈[r,1])[s]. (18)

Similarly, the precision of incorrect predictions is:

Prec−[0,1=r] =

∫ r

0
w(s)(1− f(s))ds)∫ r

0
w(s)ds

= Es∼w(s|s∈[0,r])[1− s]. (19)

The proof is completed.

B.4 PROOF FOR THEOREM 3.4

Theorem B.4 (Theorem 3.4 (restated)). Let r ∈ (0.5, 1) and let w≥ 0 be any weight function on
[0, 1] with

∫ 1

r
w(s) ds > 0. The precision for correct-prediction detection (i.e., Prec+) satisfies the

following inequality:

Prec+Ψ(r;w) :=

∫ 1

r
w(s)Ψ(s) ds∫ 1

r
w(s) ds

≥
∫ 1

r
w(s) s ds∫ 1

r
w(s) ds

=: Prec+diag(r;w).

Moreover, for the incorrect prediction detection with r ∈ (0, 0.5), the precision (i.e., Prec−) satisfies
the following inequality:

Prec−Ψ(r;w) :=

∫ r

0
w(s)

(
1−Ψ(s)

)
ds∫ r

0
w(s) ds

≥
∫ r

0
w(s)

(
1− s

)
ds∫ r

0
w(s) ds

=: Prec−diag(r;w).

Proof. Before proving the Theorem, we state the following lemma (proof in Appendix B.5).

Lemma B.5 (Above-diagonal on the high-confidence side). Given the proposed normalized sigmoid
curve (i.e., Ψ(x)) and diagonal line (i.e., y = x), then Ψ is strictly concave on [0.5, 1], satisfies
Ψ(0.5) = 0.5 and Ψ(1) = 1, and hence:

Ψ(x) ≥ x for all x ∈ [0.5, 1], Ψ(x) > x for all x ∈ (0.5, 1).

By Lemma B.5, let D(s) := Ψ(s)− s ≥ 0 for s ∈ [r, 1] and D(s) > 0 on (r, 1). Therefore∫ 1

r

w(s)Ψ(s) ds−
∫ 1

r

w(s) s ds =

∫ 1

r

w(s)D(s) ds ≥ 0,

and the inequality is strict if w places positive mass on some subset of (r, 1) where D > 0. Division
by the common normalizer

∫ 1

r
w(s) ds > 0 yields the claim, then the inequality Prec+Ψ(r;w) >

Prec+diagholds.
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For the incorrect prediction detection, since Ψ(s) ≤ s on [0, 0.5] (strict on (0, 0.5) by symmetry of
the above argument), an analogous statement holds for incorrect prediction detection on [0, r] with
r < 0.5: for any nonnegative w with

∫ r

0
w(s) ds > 0,∫ r

0
w(s)

(
1−Ψ(s)

)
ds∫ r

0
w(s) ds

≥
∫ r

0
w(s)

(
1− s

)
ds∫ r

0
w(s) ds

.

Then the inequality Prec−Ψ(r;w) > Prec−diagholds.

B.5 PROOF FOR LEMMA B.5

Lemma (Lemma B.5 (restated)). Given the proposed normalized sigmoid curve (i.e., Ψ(x)) and
diagonal line (i.e., y = x), then Ψ is strictly concave on [0.5, 1], satisfies Ψ(0.5) = 0.5 and Ψ(1) = 1,
and hence:

Ψ(x) ≥ x for all x ∈ [0.5, 1], Ψ(x) > x for all x ∈ (0.5, 1).

Proof. Let ϕ(x) := σ
(
x−0.5

λ

)
. Since σ′(z) = σ(z)

(
1 − σ(z)

)
and σ′′(z) = σ(z)

(
1 − σ(z)

)(
1 −

2σ(z)
)
, we have for x > 0.5 that x−0.5

λ > 0 and thus σ
(
x−0.5

λ

)
> 1

2 , implying σ′′(x−0.5
λ

)
< 0.

Hence

ϕ′′(x) =
1

λ2
σ′′

(
x− 0.5

λ

)
< 0 (x ∈ (0.5, 1)),

i.e., ϕ is strictly concave on [0.5, 1]. The normalization

Ψ(x) =
ϕ(x)− ϕ(0)

ϕ(1)− ϕ(0)
, ϕ(0) = σ

(
−0.5

λ

)
, ϕ(1) = σ

(
0.5

λ

)
,

is an affine transform and therefore preserves strict concavity. Direct evaluation gives

Ψ(1) = 1, Ψ(0.5) =
σ(0)− σ(−a)
σ(a)− σ(−a)

=
1
2 − (1− σ(a))

σ(a)− (1− σ(a))
=

1

2
, a =

0.5

λ
> 0.

Define F (x) := Ψ(x) − x. Since Ψ is strictly concave and −x is linear (hence both concave and
convex), F is strictly concave on [0.5, 1], and F (0.5) = F (1) = 0. For any x ∈ (0.5, 1), write
x = λ · 0.5 + (1− λ) · 1 with λ ∈ (0, 1); strict concavity yields

F (x) > λF (0.5) + (1− λ)F (1) = 0.

Thus Ψ(x) > x on (0.5, 1) and Ψ(x) ≥ x on [0.5, 1].

B.6 PROOF FOR THEOREM 3.5

Theorem B.6 (Theorem 3.5 (restated)). Given arbitrary confidence s, then the corresponding entropy
for the proposed reliability curve(i.e., Ψ(s)) and perfect-calibration curve satisfy the following
inequality.

MΨ(s) ≤ Mdiag(s), M(s) := −P(N+
s ) log(P(N+

s ))− P(N−
s ) log(P(N−

s )), (20)

where N+
s and N−

s denote the conditional probabilities of being correctly and incorrectly classified
given confidence s, respectively; i.e., N+

s = P(correct|conf = s) and N−
s = 1−N+

s .

Proof. Since the vertical axis of the reliability diagram is accuracy, and given an arbitrary confidence
s, we have P(N+

s ) = Acc(s) and P(N−
s ) = 1 − Acc(s). Due to P(N+

s ) + P(N−
s ) = 1, then the

entropy can written as binary entropy form:

M(s) = −(ps ln ps + (1− ps) ln(1− ps)), (21)

where ps = P(N+
s ).
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Then, we can obtain the first-order derivation of ps:

∂M(s)

∂ps
= −(ln ps + 1− (ln(1− p) + 1)) = ln

1− p

p
. (22)

When ps = 0.5, M(s) reaches its maximum value in the interval [0, 1] and ∂2M(s)
∂p2

s
< 0. Thus, the

closer ps is to 0.5, the larger the entropy becomes.

Let us recall the Lemma B.5, when s ∈ [0, 0.5] we have Ψ(s) ≤ s ≤ 0.5, then:

|Ψ(s)− 0.5| = 0.5−Ψ(s) ≥ 0.5− s = |s− 0.5|. (23)

Similarly, we can easily obtain that when s ∈ [0.5, 1] we have Ψ(s) ≥ s ≥ 0.5, then:

|Ψ(s)− 0.5| = Ψ(s)− 0.5 ≥ s− 0.5 = |s− 0.5|. (24)

Based on Eq. (23) and Eq. (24), |Ψ(s)− 0.5| ≥ |s− 0.5| holds for all s ∈ [0, 1]. Therefore, the ps
of the perfect-calibration curve y = x lies closer to 0.5 than that of the proposed Ψ(s). As a result,
the perfect calibration curve exhibits higher entropy, thereby tolerating a greater degree of mixing
between correctly and incorrectly predicted samples.

C MODEL DETAILS

C.1 FLOWCHART VISUALIZATION

This section gives a flowchart (i.e., Figure 5) of the proposed lightweight meta networks (LMN).

Predicted text
 embeddingImage embedding

Proj

ProjProj

Softplus

Proj τ

a photo of “cat”

CLIP Logits

Figure 5: Flowchart of the proposed lightweight meta network (LMN). Given the output logits
of CLIP, image embedding, and predicted text embedding, LMN first projects them into a shared
subspace using distinct FC layers (indicated by different colors in the figure). The resulting vectors
are concatenated and mapped to a scalar via another FC layer, followed by a Softplus activation to
produce the sample-specific τ . Finally, the surrogate loss LSUR updates the FC layers.

C.2 UNDERSTANDING THE CONTRIBUTION OF EACH MODALITY IN LMN

The meta-network indeed leverages three types of signals (i.e., logits, image embeddings, and
predicted text embeddings) and each contributes complementary information for predicting the
effective temperature factor.

Logits. Logits as the primary calibration signal. Logits provide the most direct evidence for
confidence misalignment, as they encode the inter-class margins and the overall shape of the predictive
distribution. This is the core quantity used by traditional temperature scaling. Here we describe the
complementary roles of each modality and why all of them contribute meaningfully to MisD:

Image embeddings. Image embeddings capture sample difficulty. Even when two samples share
similar logits, their underlying visual characteristics may differ substantially. Image embeddings help
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Figure 6: Predicted count (yellow) and correct count (blue) for each predicted class, sorted by
prediction frequency.

LMN identify hard or visually atypical samples (e.g., unusual textures, crowded scenes, rare visual
patterns). This allows LMN to incorporate sample-level visual cues.

Predicted text embeddings. Predicted text embeddings reveal systematic category-level patterns.
To further illustrate the semantic confusion patterns captured by the predicted text embeddings, we
visualize the distribution of predicted samples across classes in Figure 6. The figure shows that
CLIP tends to cluster certain misclassified samples around a few semantically related text prototypes.
Incorporating text embeddings enables LMN to capture these category-level tendencies and selectively
increase correction strength for categories prone to systematic confusion.

Taken together, the three modalities provide complementary and non-redundant information: log-
its characterize confidence geometry, image embeddings characterize sample difficulty, and text
embeddings capture semantic misalignment patterns.

C.3 MOTIVATION FOR CHOOSING R

We set the midpoint parameter r = 0.5 because it corresponds to the natural neutral threshold
separating “uncertain” from “confident” predictions, which aligns with standard confidence-based
calibration intuition (Johansson et al., 2023). Moreover, placing the inflection point at the center of
the interval [0, 1] avoids introducing asymmetry or favoring either low- or high-confidence regions,
providing a balanced and unbiased target curve.

D EXPERIMENTAL SETTING

D.1 DATASETS DETAILS

Table 3: The statistics of the used datasets.
Num. classes (|Y|) Size training data Avg. labeled data per class Size test

DTD 47 3760 64 1880
Flowers102 102 2040 16 6149
EuroSAT 10 27000 2200 5000
RESICS45 45 6300 110 25200
MNIST 10 60000 4696 10000
CUB 200 5594 26 5794

In the experiment section, we use six datasets. The statistics of the used datasets are reported in the
Table 3. Here, we provide a description of each of them:

1. DTD (Cimpoi et al., 2014) The Describable Textures Dataset (DTD) is a continuously
expanding collection of texture images captured in unconstrained environments. The
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annotations are based on human-interpretable attributes, reflecting perceptual characteristics
of textures.

2. Flowers102 (Nilsback & Zisserman, 2008) It is a benchmark dataset that collects images of
102 distinct flower categories, each representing species commonly occurring in the United
Kingdom.

3. EuroSAT (Helber et al., 2019) EuroSAT focuses on the classification of satellite scene
images, providing 10 predefined categories for evaluation.

4. RESICS45 (Cheng et al., 2017) Designed for remote sensing image scene classification,
this benchmark dataset provides 45 categories of scenes and is publicly accessible.

5. MNIST (Deng, 2012) MNIST serves as a benchmark collection of handwritten digit images,
in which all samples are normalized in terms of size and aligned to the center of a uniform
image grid.

6. CUB (Wah et al., 2011) CUB is a fine-grained bird species classification dataset, containing
200 categories with large intra-class variation and subtle inter-class differences. It serves as
a benchmark for subordinate categorization tasks and provides comprehensive annotations
to support research in fine-grained visual recognition.

Table 4: Settings for the proposed method.
learning rate β Num. hidden λ ϕ

DTD 0.002 0.6 16 0.05 summation
Flowers102 0.001 0.8 16 0.05 summation
EuroSAT 0.002 0.6 16 0.1 summation
RESICS45 0.001 0.8 64 0.05 multiply
MNIST 0.005 0.4 16 0.05 summation
CUB 0.002 0.9 8 0.05 multiply

D.2 IMPLEMENTATION DETAILS

We use CLIP ViT-B/32 as the visual backbone and report results averaged over 3 runs. For both
visual and textual prompt learning, we set the prefix size to 16 (Zhou et al., 2022b; Jia et al., 2022).
We use SGD as the optimizer, with the number of training epochs selected from {100, 150, 200}
and the learning rate selected from {0.001, 0.002, 0.005}. We adopt 16 labeled samples per class
(i.e., 16-shot) as the calibration set. When the base model is prompt-tuning CLIP, we split the original
16-shot calibration set into two parts: one is used for learning the prompts, and the other is reserved
for training our post-hoc calibration network. Table 4 describes the detailed settings and architecture
for the proposed lightweight meta network based on pretrained CLIP.

E ADDITIONAL EXPERIMENTS

E.1 ABLATION STUDY

The key component of the proposed method is the surrogate loss LSUR, which consists of two parts:
(i) a confidence regularization term that encourages the predictions to align with the target reliability
curve (i.e., Φ(s)), and (ii) a full-probability constraint (FPC) that complements the confidence
regularization by regularizing the entire probability distribution, preventing the training instability
cause by single probability (i.e., confidence) were optimized. Therefore, we do not report a separate
ablation with only the confidence regularization term, as it is intended to be used together with FPC.
To verify the effectiveness of these components, we investigate the performance of the following
variants: the original CLIP, CLIP with FPC, and CLIP with the full proposed method. The results are
reported in Table 5.

According to Table 5, the complete objective function achieves the best performance. Notably,
employing only partial components (i.e., +FPC) also leads to improvements. Taken together, these
findings verify the effectiveness of all proposed modules.
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Table 5: Results of the ablation study on six datasets, measured by AUROC, FPR90-S, and FPR90-E.
↑ denotes that higher values are better, while ↓ denotes that lower values are better.

DTD Flowers102 EuroSAT

Methods AUROC↑ FPR90-S↓ FPR90-E↓ AUROC↑ FPR90-S↓ FPR90-E↓ AUROC↑ FPR90-S↓ FPR90-E↓
Zero-shot CLIP 0.762 0.669 0.572 0.864 0.435 0.354 0.650 0.782 0.742
+FPC 0.795 0.648 0.471 0.878 0.388 0.325 0.778 0.704 0.471
+ALL 0.802 0.636 0.457 0.886 0.378 0.305 0.788 0.665 0.468

RESICS45 MNIST CUB

Methods AUROC↑ FPR90-S↓ FPR90-E↓ AUROC↑ FPR90-S↓ FPR90-E↓ AUROC↑ FPR90-S↓ FPR90-E↓
Zero-shot CLIP 0.779 0.636 0.508 0.813 0.511 0.482 0.807 0.839 0.758
+FPC 0.794 0.615 0.482 0.908 0.228 0.235 0.808 0.613 0.440
+ALL 0.808 0.597 0.445 0.915 0.200 0.205 0.812 0.602 0.438

E.2 PARAMETER ANALYSIS
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Figure 7: Line plots of model performance across six datasets (i.e., DTD, Flowers102, EuroSAT,
RESICS45, MNIST, and CUB) under varying hyperparameters. The first row shows the effect of
β, and the second row shows the effect of λ. From left to right, each subfigure corresponds to one
evaluation metric: AUROC, AUPR-S, and AUPR-E. The curves illustrate how performance changes
as the hyperparameter values increase.

In the proposed method, we employ the non-negative parameters(i.e., β and λ). For β, it is used to
achieve a trade-off between the two terms of the objective function (i.e., LSUR). For λ, which is used
to control the smoothness of the reliability curve. To investigate the impact of β and λ with different
settings, we conduct experiments on all six datasets by varying the value of β in the range of [0.1,
1.0] and the value of λ in the range of [0.01, 0.2]. The results are shown in Figure 7.

From Figure 7, we make the following observations. First, for the hyperparameter β, the proposed
method achieves peak performance around β = 0.6. Performance deteriorates when β is too large
or too small, as the method then fails to balance focus between correctly and incorrectly predicted
samples. Second, for the hyperparameter λ, the method consistently performs well when λ is set
appropriately (e.g., [0.05, 0.1]). Similarly to β, extreme values of λ lead to inferior performance. This
is because λ controls the smoothness of Ψ(s): if Ψ(s) is too sharp, the overly aggressive probability
updates can cause unstable optimization; if it is too smooth, the model loses the ability to effectively
adjust predictions. In practice, we find that the parameter λ is highly stable across different datasets.
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As summarized in Table 4, five out of six datasets (i.e., spanning textures, fine-grained objects,
satellite imagery, handwriting, and birds) select the same value λ = 0.05. This consistency indicates
that λ does not require dataset-specific tuning. Therefore, we recommend λ = 0.05 as a reliable
default, which already achieves near-optimal performance in our experiments, with adjustments
needed only in rare cases.

E.3 ANALYSIS OF THE LEARNED TEMPERATURE COEFFICIENT
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Figure 8: Comparison of learned τ values for correct versus incorrect predictions across six datasets.
Each bar represents the average τ for the corresponding sample type. The blue bars represent the
correctly predicted samples, and the red bars represent the incorrectly predicted samples.

To verify that the learned instance-wise τ indeed increases the confidence of correctly predicted
samples compared with incorrectly predicted ones. Since the temperature coefficient τ is multiplied
by the logits, a larger value of τ results in higher confidence. We compare the average learned τ
values between correct and incorrect predictions on all six datasets. The results are visualized in
Figure 8. In Figure 8, we can observe that the average value of the learned τ for correct predictions is
larger than that for incorrect predictions, with a larger gap on most datasets. For example, on MNIST,
the gap is about 68.5% of the incorrect predictions. This demonstrates that the proposed method is
able to capture the intrinsic differences between correctly and incorrectly classified samples, thereby
enabling their discrimination.

E.4 RESULTS ON SIGLIP BACKBONE

To further examine whether LMN generalizes beyond the CLIP-B/32, we additionally evaluate the
method using CLIP-L/14 and SigLIP-B/16 Zhai et al. (2023) as the backbones. SigLIP represents
a modern vision–language architecture trained with a different alignment objective and embedding
structure, offering a stronger testbed for assessing the backbone-agnostic nature of LMN. Because
most existing calibration and MisD-oriented baselines do not provide publicly available or repro-
ducible implementations for SigLIP, SCT is the only method that can be feasibly adapted to this
backbone, and we therefore adopt it as the comparison baseline in this setting. The results are shown
in Table 6 and Table 7.

From Table 6 and Table 7, we can observe that, across all datasets and all backbones, LMN continues
to deliver consistent improvements over SCT under both AUROC and FPR90E, demonstrating that
its effectiveness is not restricted to the CLIP-B/32 backbone and extends naturally to more advanced
VLM architectures. These results confirm that LMN’s surrogate objective and meta-network design
retain their advantages even when the underlying visual encoder and multimodal representation
mechanism differ substantially from those of CLIP-B/32.

E.5 CALIBRATION DATA SENSITIVITY ANALYSIS

To evaluate whether the effectiveness of LMN depends on the specific 16-shot calibration configura-
tion used in the main experiments, we additionally conduct a sensitivity study by varying the number
of calibration samples per class. Specifically, we consider 4-shot, 8-shot, 16-shot, 32-shot, and
64-shot settings on datasets with sufficiently large training sets, including DTD, EuroSAT, RESICS45,
and MNIST. For Flowers102 and CUB, the available training samples are too limited to support
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Table 6: MisD Performance comparison under CLIP-L/14. For each dataset, AUROC (↑) and FPR90E
(↓) are reported.

Method DTD Flowers102 EuroSAT
AUROC ↑ FPR90-E ↓ AUROC ↑ FPR90-E ↓ AUROC ↑ FPR90-E ↓

CLIP-L/14 0.789 0.521 0.887 0.289 0.730 0.605
SCT 0.808 0.433 0.903 0.203 0.787 0.497
LMN 0.843 0.373 0.942 0.132 0.862 0.351

Method RESICS45 MNIST CUB
AUROC ↑ FPR90-E ↓ AUROC ↑ FPR90-E ↓ AUROC ↑ FPR90-E ↓

CLIP-L/14 0.798 0.469 0.910 0.211 0.809 0.465
SCT 0.821 0.382 0.942 0.154 0.821 0.396
LMN 0.864 0.329 0.958 0.110 0.840 0.368

Table 7: MisD Performance comparison under SigLIP-B/16. For each dataset, AUROC (↑) and
FPR90E (↓) are reported.

Method DTD Flowers102 EuroSAT
AUROC ↑ FPR90-E ↓ AUROC ↑ FPR90-E ↓ AUROC ↑ FPR90-E ↓

SigLIP 0.783 0.376 0.881 0.337 0.631 0.746
SCT 0.804 0.334 0.898 0.271 0.641 0.744
LMN 0.843 0.292 0.940 0.107 0.674 0.713

Method RESICS45 MNIST CUB
AUROC ↑ FPR90-E ↓ AUROC ↑ FPR90-E ↓ AUROC ↑ FPR90-E ↓

SigLIP 0.801 0.413 0.914 0.154 0.907 0.218
SCT 0.814 0.376 0.956 0.093 0.909 0.220
LMN 0.856 0.243 0.978 0.064 0.935 0.174

larger-shot configurations beyond 16-shot, and therefore, we only report results up to 16-shot for
these two datasets. The results are reported in Table 8 and Table 9.

From the Tables, we can observe that across all datasets with adequate training data, both AUROC
and FPR90E exhibit stable and progressively improving trends as the number of calibration samples
increases. This behavior is consistent with the design of LMN: as a lightweight meta-network, LMN
naturally benefits from richer calibration signals, while its overall performance remains robust even
under very low-shot conditions, such as 4-shot and 8-shot. These observations indicate that LMN’s
effectiveness does not depend on the specific 16-shot setup used in the main experiment.

E.6 ANALYZING THE COMPUTATIONAL EFFICIENCY OF LMN

To quantify the computational overhead of the proposed Lightweight Meta Network (LMN), we
report the number of parameters, training time, and inference time on all six datasets in the Table 10.

First, for the number of parameters, across all datasets, LMN contains only 17K–20K parameters,
which is less than 0.02% of the 151M parameters in CLIP ViT-B/32. This demonstrates that LMN is
extremely lightweight relative to the backbone model.

Second, for the training and test time, the results show that LMN is highly efficient in practice. All
reported timings already include the one-time CLIP forward pass required to compute image and
text embeddings, making the measurements fully reflect the real end-to-end cost. Training on all
datasets completes within one minute, with most datasets requiring only a few seconds (e.g., 7.05s
on EuroSAT and 13.31s on DTD). This confirms that LMN introduces negligible computational
burden during optimization. Inference is similarly lightweight. Even on RESICS45, which contains
over 20,000 test samples, LMN requires only 339 seconds ( 5 minutes) to process the entire test set.
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Table 8: AUROC (↑) under different numbers of calibration shots. ‘-’ denotes that the result can not
be obtained.

Dataset CLIP 4-shot 8-shot 16-shot 32-shot 64-shot
DTD 0.762 0.787 0.779 0.792 0.804 0.807
Flowers102 0.864 0.873 0.884 0.886 – –
EuroSAT 0.650 0.732 0.765 0.788 0.792 0.797
RESICS45 0.779 0.793 0.804 0.808 0.810 0.815
MNIST 0.813 0.883 0.901 0.915 0.936 0.941
CUB 0.807 0.810 0.810 0.812 – –

Table 9: FPR90E (↓) under different numbers of calibration shots. CLIP denotes the zero-shot
baseline.

Dataset CLIP 4-shot 8-shot 16-shot 32-shot 64-shot
DTD 0.572 0.512 0.474 0.504 0.438 0.431
Flowers102 0.354 0.329 0.317 0.305 – –
EuroSAT 0.742 0.619 0.522 0.468 0.450 0.439
RESICS45 0.508 0.477 0.462 0.445 0.446 0.421
MNIST 0.482 0.301 0.264 0.205 0.160 0.142
CUB 0.554 0.549 0.538 0.532 – –

For smaller datasets, inference finishes within tens of seconds (e.g., 15.77s on DTD and 53.83s on
EuroSAT). These results validate that LMN remains practical and efficient even when applied to
large-scale test sets.

Overall, the empirical measurements demonstrate that LMN maintains its lightweight property in
both training and inference, making it suitable for real-world and large-scale deployments.

E.7 EVALUATION UNDER DISTRIBUTION SHIFT

To further assess the robustness of the proposed LMN under distribution shift, we conduct an
additional evaluation using the ImageNet-Val to train the LMN and evaluating on two distribution-
shifted benchmarks (i.e., ImageNet-A and ImageNet-Sketch). Specifically, ImageNet-Sketch, which
introduces substantial style and texture shift, and ImageNet-A, which contains adversarially curated
natural images designed to induce model failures. We report both misclassification-detection metrics
(AUROC and FPR90) and calibration metrics (Brier score) to obtain a comprehensive view of the
model’s behavior under shift. The results are provided in Table 11.

From the Table 11, we can observe that LMN consistently improves AUROC and reduces FPR90-E
across both distribution-shifted datasets, indicating stronger discrimination between correct and
incorrect predictions in the presence of distribution shifts. Meanwhile, LMN maintains competitive
calibration performance. These findings confirm that LMN remains effective even when the input
distribution deviates significantly from the calibration set, further demonstrating the practicality of
the proposed approach.

Table 10: Training/inference time and number of LMN parameters across six datasets. LMN is highly
lightweight, with only 17K–20K parameters and second-level training time on all datasets.

Time (s) DTD Flowers102 EuroSAT RESICS45 MNIST CUB
Train 13.31 29.63 7.05 13.14 6.81 48.35
Test 15.77 113.58 53.83 339.01 96.07 95.48

Num. Parameters DTD Flowers102 EuroSAT RESICS45 MNIST CUB
LMN 17.2K 18.8K 17.3K 18.1K 17.3K 20.3K
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Table 11: Performance under distribution shift on ImageNet-A and ImageNet-Sketch.
ImageNet-A ImageNet-Sketch

Method AUROC↑ FPR90-E↓ Brier↓ AUROC↑ FPR90-E↓ Brier↓
Zero-shot CLIP 0.657 0.740 0.814 0.805 0.495 0.732

LMN 0.682 0.716 0.796 0.813 0.484 0.721
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Figure 9: Histogram of test-sample confidence levels for CLIP on the CUB (left) and EuroSAT
(right) datasets.

E.8 ADDITIONAL EMPIRICALLY SUPPORT

We empirically examine the confidence distribution on two benchmark datasets: CUB and EuroSAT,
respectively. For the test set, we record the confidence assigned by the pretrained CLIP model to
each sample. We then visualize the distribution using histograms to visualize the density of each
confidence level. The results are shown in Figure 9.

Empirically, as shown in Figure 9, CLIP confidence values on test samples are widely spread across the
[0, 1] interval, with many samples falling in the middle range. As a result, the conditional expectations
in [r, 1] for correct prediction detection and in [0, r] for incorrect prediction detection are far below 1,
confirming that strict confidence calibration alone cannot achieve high MisD performance.

F LLM USAGE STATEMENT

In this work, a large language model (LLM) was used to polish the writing. The LLM assisted
in improving clarity and grammar, but all scientific content, interpretations, and conclusions were
generated solely by the authors.
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