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ABSTRACT

Direct Preference Optimization (DPO) has recently emerged as a popular approach
to improve reinforcement learning from human feedback (RLHF), leading to better
techniques to fine-tune large language models (LLM). A weakness of DPO, how-
ever, lies in its lack of capability to characterize the diversity of human preferences.
Inspired by Mallows’ theory of preference ranking, we develop in this paper a
new approach, the MallowsPO. A distinct feature of this approach is a dispersion
index, which reflects the dispersion of human preference to prompts. We show that
existing DPO models can be reduced to special cases of this dispersion index, thus
unified with MallowsPO. More importantly, we demonstrate empirically how to
use this dispersion index to enhance the performance of DPO in a broad array of
benchmark tasks, from synthetic bandit selection to controllable generation and
dialogues, while maintaining great generalization capabilities. MallowsPO is also
compatible with other SOTA offline preference optimization methods, boosting
nearly 2% extra LC win rate when used as a plugin for fine-tuning Llama3-Instruct.

1 INTRODUCTION

Reinforcement Learning from Human Feedback (RLHF) (Ouyang et al., 2022; Stiennon et al., 2020;
Ziegler et al., 2019) has made significant contributions to the success of Large Language Models
(LLMs) such as ChatGPT and GPT4 (Achiam et al., 2023). Recently, Direct Preference Optimization
(DPO) (Rafailov et al., 2023) is proposed as a way to bypass RL, thus leading to faster training and
better resource efficiency. More importantly, DPO achieves comparable or superior performance
against RLHF in downstream tasks such as fine-tuning LLMs in Llama3 (Dubey et al., 2024), Zephyr
(Tunstall et al., 2023), BTLM-DPO (Ivison et al., 2023), etc. DPO’s success has attracted much
research attention, leading to variants beyond pairwise ranking such as KTO (Ethayarajh et al., 2023),
unified perspectives on loss parameterization such as IPO (Azar et al., 2024), GPO (Tang et al., 2024),
and reference-free alternatives such as CPO (Xu et al., 2024), ORPO (Hong et al., 2024), SimPO
(Meng et al., 2024), etc. See (Winata et al., 2024) for a comprehensive survey.

Notwithstanding the successes by RLHF and DPO, both are limited by the assumption that preference
follows the Bradley-Terry (BT) model (Bradley & Terry, 1952). In particular, this does not account
for varying degrees of agreement in response to different prompts. For instance, people are more
likely to agree on “1 + 1 =? // 2.” as opposed to “What is the best city to live in the U.S.? //
New York.” In language models, this concerns the dispersion of next-token prediction, which is
reminiscent to personalization in recommendation systems (Chan et al., 2022; Fu et al., 2022). See
Figure 1 for more illustrative examples of prompts in Anthropic HH (Bai et al., 2022a) dataset.

The purpose of this paper is to formalize the idea of prompt dispersion in the design of DPO. We adapt
Mallows’ preference ranking theory (Diaconis, 1988; Mallows, 1957), a family of ranking models that
provide a natural carrier for prompt dispersion, and propose the following decomposition/factorization
of the (latent) reward function:

reward(prompt, completion) = dispersion(prompt)× scaled reward(completion | prompt),

where “prompt” and “completion” correspond, respectively, to question and answer. This decom-
position allows us to specify the diverse level of prompt dispersions hidden in the DPO, which is

∗Equal Contribution, α-β; Email: {hc3136,hz2684,khl2114,yao,wt2319}@columbia.edu

1



Published as a conference paper at ICLR 2025

translated into a prompt-dependent factor – the dispersion index – in the preference likelihood. The
scaled reward is given by the relative rank of the (possible) completions, which further enhances
model interpretability. We then leverage the change of variables technique to propose two models,
MallowsPO-θ and MallowsPO-ϕ, by two choices of the discrepancy function in the Mallows model
which we will elaborate in Section 3.1.

Figure 1: Prompts with low/high neg-log dispersion estimate values from Anthropic HH dataset.

The main contributions of this paper are three-fold.

(1) We formalize the idea of prompt dispersion in DPO, and develop the MallowsPO approach to
implement this idea, so as to improve and generalize DPO. To the best of our knowledge, this is
the first work in preference optimization that considers a mathematically well-grounded preference
ranking model (Mallows) beyond the BT model.

(2) We propose approximations to the dispersion index, a critical component of the Mallows model,
so as to facilitate computation and validate the approximation through a synthetic example. This
allows Mallows model to serve as a foundation for developing versatile preference optimization
objectives, including MallowsPO-θ (a generalization of DPO) and MallowsPO-ϕ. We also provide
various analytical results for MallowsPOs, uncovering various new insights on existing DPO models,
and a generalized ΨPO model that unifies all DPO models (including MallowsPO).

(4) We conduct extensive experiments, from synthetic bandits, controllable generation, fine-tuning
Pythia 2.8B on off-policy Anthropic HH dataset, to fine-tuning Llama3-8B-Instruct on a on-policy
UltraFeedback prompts based dataset. Notably, we perform an exclusive hyperparameter search for a
fair comparison, and repeat for different random seeds to justify the significance of the improvement.
The results show clear advantages of MallowsPO over (BT-)DPO, highlighting the potential of
considering preference/prompt dispersion.

Related Works. Existing work on personalization in dialogue generation such as Fu et al. (2022)
and Li et al. (2016) has also paid attention to the diversity of human preferences (“there are a
thousand Hamlets in a thousand people’s eyes”); Munos et al. (2023) proposes a Nash game model to
incorporate the diversity. There are also other DPO variants: f -DPO (Wang et al., 2023) considers
general f -divergence in DPO; ODPO (Amini et al., 2024) adds a margin to account for the preference
significance. Recent works propose to learn online preferences (Calandriello et al., 2024; Tajwar
et al., 2024), or learn from AI feedbacks (Bai et al., 2022b; Chen et al., 2024b; Lee et al., 2023). For
classical RLHF, studies to improve the design and capabilities of RLHF include Dubois et al. (2024);
Kirk et al. (2023); Wang et al. (2024a); Zhai et al. (2023); Zhao et al. (2023); Zheng et al. (2023),
whose ideas can also benefit DPO. See Winata et al. (2024) for a survey on learning from preferences.

The remainder of the paper is organized as follows. Background materials on RLHF and DPO are
highlighted in Section 2. Section 3 focuses on the development of MallowsPO, followed by more
analytical results and various perspectives in Section 4. Experimental results are detailed in Section
5, and concluding remarks in Section 6.

2 PRELIMINARIES

Both RLHF and DPO start with fine-tuning a pre-trained LLM by supervised learning on high-quality
data for some downstream tasks of interest, to acquire a model πSFT. This step is referred to as the
supervised fine-tuning (SFT) phase. For instance, for training InstructGPT (Ouyang et al., 2022),
GPT-3 (Brown et al., 2020) is first fine-tuned on the given input prompt distribution.
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♢ RLHF (Ouyang et al., 2022; Stiennon et al., 2020; Ziegler et al., 2019). On top of πSFT, RLHF
is proposed to serve as the next step to conduct further fine-tuning to generate high-quality outputs
as judged by humans. Given a generative model π, it is prompted with prompts x to produce pairs
of answers (or, “completions”), {y1, y2} ∼ π(y | x), which are then presented to human labelers
who express preferences for one completion over the other. Denote by yw ≻ yl | x, meaning that
yw ∈ {y1, y2} is preferred over yl ∈ {y1, y2}. The preferences are assumed to be generated by some
latent reward model r∗(x, y). Based on the collected preference data {x(i), y

(i)
w , y

(i
l )}Ni=1, RLHF

consists of first learning a reward model r(x, y), followed by learning a policy πr(y | x) in which the
prompt x is the state, and the completion y is the action.

(a) Reward model. To capture the underlying human preferences, RLHF assumes the Bradley-Terry
model (Bradley & Terry, 1952) that stipulates the pairwise preference distribution:

p∗ (y1 ≻ y2 | x) := σ (r∗ (x, y1)− r∗ (x, y2)) , (1)

where σ(s) := 1
1+e−s . Given access to a static dataset of comparisons D = {x(i), y

(i)
w , y

(i)
l }i=1,...,N ,

RLHF seeks to approximate the latent reward r∗(x, y) by a family of functions {rψ(x, y)}ψ, and
estimate the parameters by minimizing the (negative) log-likelihood loss: minψ L (rψ,D) :=
−E(x,yw,yl)∼D [log σ (rψ (x, yw)− rψ (x, yl))]. Denote by rψ∗(x, y) the solution to the problem.

(b) RL. The learned reward function rψ∗(x, y) is then used to provide feedback to the language
model. More precisely, the following KL-regularized RL problem is considered:

max
π

Ex∼D
[
Ey∼π(y|x) [rψ∗(x, y)]− βKL (π(· | x)∥πref(· | x))

]
, (2)

where β > 0 is a hyperparameter controlling the deviation from the reference policy πref = πSFT. In
view of (2), RLHF uses the reward function r(x, y) = rψ(x, y)− β (log π(y | x)− log πref (y | x)),
and solves the RL problem by proximal policy optimization (PPO) (Schulman et al., 2017).

♢ DPO (Rafailov et al., 2023). One disadvantage of RLHF is that the RL step often requires
substantial computational effort (e.g., to carry out PPO). The idea of DPO is to combine the two steps
(a)–(b) in RLHF into a single one, bypassing the computation in the RL step.

The key idea is that given a reward function r(x, y), the problem in (2) has a closed-form solution:
πr(y | x) = 1

Z(x)πref (y | x) exp (r(x, y)/β), where Z(x) =
∑
y πref (y | x) exp (r(x, y)/β).

Rewrite the above as: r(x, y) = β log πr(y|x)
πref (y|x) + β logZ(x). Through this change of variables, the

latent reward r∗(x, y) can be expressed in terms of the optimal policy π∗(y | x), the reference policy
πref (y | x) and a constant Z∗(x). Substituting this r∗ expression into (1) yields:

p∗ (y1 ≻ y2 | x) = σ

(
β log

π∗ (y1 | x)
πref (y1 | x)

− β log
π∗ (y2 | x)
πref (y2 | x)

)
, (3)

where Z∗(x) cancels out. The expression in (3) motivates the DPO objective:

min
π

LDPO (π;πref) := −E(x,yw,yl)∼D

[
log σ

(
β log

π (yw | x)
πref (yw | x)

− β log
π (yl | x)
πref (yl | x)

)]
. (4)

3 DPO BASED ON MALLOWS RANKING MODELS

3.1 MALLOWS RANKING MODELS

The Mallows model is built upon the analysis of rankings, instead of scores or ratings that play the
central role in BT models. Concretely, for a positive integer n that represents e.g., n possible items,
let Sn be the set of permutations of [n] = {1, . . . , n} and the space of rankings. We consider that
the probability of observing a ranking µ (which represents the preference of n items, e.g., the top
ranked item is preferred over the others) follows a exponential family characterized as:

Pϕ,µ0,d(µ) := ϕd(µ,µ0)/Z(ϕ, d) for µ ∈ Sn, (5)

where ϕ ∈ (0, 1] is the dispersion parameter, µ0 is the central ranking, d(·, ·) is a discrepancy
function that is right invariant: d(µ1, µ2) = d

(
µ1 ◦ µ−1

2 , id
)

for µ1, µ2 ∈ Sn, and Z(ϕ, d) :=∑
µ∈Sn

ϕd(µ,µ0) is the normalizing constant. Intuitively, the Mallows model is probabilistic ranking
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model in which the probability of a rank decreases exponentially with its distance from the central
rank. The greater the difference between a rank µ and the central rank, the lower its probability.

Notice that the dispersion indeed reflects how dispersed the probability distribution defined by (5)
on the space of rankings is: When ϕ → 0, it is point pass concentrated on µ0, and when ϕ = 1, it is
uniformly distributed. In an attempt to study ranking models (over n items) with pairwise preferences,
Mallows (1957) further considered two specific cases of the discrepancy function in (5):

• Mallows-θ model: d(µ1, µ2) =
∑n
i=1(µ1(i)− µ2(i))

2 is the Spearman’s rho,

• Mallows-ϕ model: d(µ1, µ2) = inv
(
µ1 ◦ µ−1

2

)
is the Kendall’s tau,

where inv(µ) := #
{
(i, j) ∈ [n]2 : i < j and µ(i) > µ(j)} is the number of inversions of µ.

Example. Consider the central ranking of three items being µ0 = (1, 2, 3), with the observation
µ = (3, 2, 1). If the underlying model is Mallows-θ or Mallows-ϕ, we have

dθ(µ, µ0) = (3− 1)2 + (2− 2)2 + (1− 2)2 = 4; dϕ(µ, µ0) = inv(3, 2, 1) = 3.

See more examples and visual plots in Appendix C. Notably, different discrepancy functions are
usually not consistent, thus they define different Mallows Ranking Models, see an example in C.4.

As a remark, the general form in (5) was suggested by Diaconis (1988) along with other discrepancy
functions (e.g., Cayley, Ulam distances, etc.) See Critchlow (1985); Diaconis (1988; 1989) for the
related group representation approach to ranked, or partially ranked data. Note that the Mallows
models can be extended to infinite ranking models with n = ∞ (see Meila & Bao (2010); Pitman &
Tang (2019); Tang (2019).) In the context of language models, this conforms to a possibly infinite
number of completions given a prompt, and allows interpreting unseen completions.

3.2 MALLOWSPO

We adapt Mallows ranking models highlighted above to the setting of language models. First, denote
by µ(· | x) a ranking of completions given the prompt x, such that the preference distribution is:

p∗ (y1 ≻ y2 | x) = P (µ(y1 | x) < µ (y2 | x)) . (6)

Next, for the preference probability in (5), given an input prompt x, we assume it induces a conditional
central ranking µ0(· | x), and a dispersion index ϕ(x) ∈ (0, 1]. As pointed out in Tang (2019), finding
µ0(· | x) is computationally hard. Fortunately, we discover that in RLHF, this part can be “cleverly”
circumvented. By representing r∗(x, y) as the (negative) rank −µ0(y | x), our goal now becomes:

max
π

Ex∼D
[
Ey∼πθ(y|x) [−µ0(y | x)]− βKL (π(· | x)∥πref(· | x))

]
, (7)

Note that a smaller rank is preferred as per (6). Hence, this provides a natural candidate for the scaled
reward that enhances model interpretation. This perspective leads to the discovery of a novel family
of preference optimization objectives, each of which corresponds to an instance of Mallows models.

MallowsPO-θ. For Mallows-θ model, we show by Proposition 1 that, if we have the paired-
comparison probability of ranking item y1 before item y2 as

P (µ(y1 | x) < µ (y2 | x)) = σ(2 log ϕ(x)(µ0(y1|x)− µ0(y2|x))) := gθ,ϕ(x)(s), (8)

where log ϕ(x) ∈ (−∞, 0) and s := µ0 (y2 | x)−µ0 (y1 | x), then under Spearman’s distance d and
given ϕ(x), we can recover (5) under the assumptions of consistent pairwise probabilities.

Proposition 1 (Probability of rank µ in Mallows-θ) Suppose that P (µ(y1 | x) < µ (y2 | x)) sat-
isfies (8) with given ϕ and central ranking µ0, then we have P(µ) ∝ ϕ(x)

∑n
i=1(µ(i)−µ0(i))

2

, i.e. µ is
drawn from Mallows-θ (with Spearman’s rho distance d(µ1, µ2) =

∑n
i=1(µ1(i)− µ2(i))

2).

The pairwise probability in (8), which yields Mallows-θ model, leads to our following optimization
objective.

Theorem 2 (MallowsPO-θ) Given a prompt x, its associated dispersion ϕ(x) and the underlying
central rank µ0(·|x), suppose for any y1, y2 the preference probability satisfies p∗ (y1 ≻ y2 | x) as
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(8), and thus the preference distribution of y is Mallows-θ. Then, the optimal RLHF policy πµ0
(· | x)

for (7) satisfies p∗ (y1 ≻ y2 | x) = σ
(
−2 log ϕ(x)

(
β log π(yw|x)

πref (yw|x) − β log π(yl|x)
πref (yl|x)

))
. Therefore,

the MallowsPO-θ policy optimization objective is:

min
π

−E(x,yw,yl)∼D log σ( −2 log ϕ(x)︸ ︷︷ ︸
neg-log dispersion of x

(
β log

π (yw | x)
πref (yw | x)

− β log
π (yl | x)
πref (yl | x)

)
). (9)

The proof of Proposition 1 and Theorem 2 are given in Appendix B.

The expression in (8) shows that in the Mallows-θ ranking, the representation of p∗(· | x), with
a link function gθ,ϕ(x)(·), resembles a sigmoid function but differs in that it is scaled by the term
−2 log ϕ(x), which reflects the distribution’s dispersion. Compared to BT, where the distribution is
exactly in the form of sigmoid, Mallows-θ allows for greater flexibility in controlling the spread of the
distribution function. This is particularly important in language modeling, as the concept of dispersion
provides insight into how diverse people’s preferences are for different completions/responses. As
ϕ(x) → 0, p∗(· | x) is getting closer to a step function (i.e., Dirac delta) (as shown in Fig. 2),
corresponding to cases where the prompt x has a clear, standard answer. Conversely, as ϕ(x) → 1,
p∗(· | x) approaches a constant value of 0.5 (i.e. uniform), indicating that any answer to the prompt
x is equally reasonable.

In (8), by setting −2 log ϕ(x) = 1, we recover the DPO in (4). Comparing the objective of the DPO
with that of MallowsPO-θ, the key difference is the presence of an extra term − log ϕ(x), which
reflects the dispersion of the prompt x. Thus, MallowsPO-θ can be viewed as a generalized version of
DPO that incorporates prompt dispersion. To see the effect of this additional term: When dispersion
is high (ϕ(x) ≈ 1), the term −2 log ϕ(x) approaches 0, reducing the weight on preference pairs;
when dispersion ϕ(x) decreases, −2 log ϕ(x) increases, assigning more weight to preference pairs.

MallowsPO-ϕ. The consistent pairwise probability can be derived for the Mallows-ϕ model. As
shown in Mallows (1957) (see also (Busa-Fekete et al., 2014; Mao & Wu, 2022)), the probability that
a random permutation µ from the Mallows-ϕ model with dispersion ϕ agrees with µ0 on {y1, y2} is

P (µ(y1 | x) < µ (y2 | x)) = gϕ,ϕ(x)(µ0(y2 | x)− µ0(y1 | x)), (10)

where

gϕ,ϕ(x)(s) :=

{
s+1

1−ϕ(x)s+1 − s
1−ϕ(x)s , s > 0,

1− −s+1
1−ϕ(x)−s+1 − s

1−ϕ(x)−s , s < 0.
(11)

Similarly, using the (consistent) pairwise probability (10) derived from the Mallows-ϕ model, we
formulate our policy optimization objective.

Theorem 3 (MallowsPO-ϕ) Given a prompt x, suppose the completions y follow a Mallows
preference distribution p∗ as in (10), i.e. µ is drawn from Mallows-ϕ with chosen ϕ(x) and cen-
tral ranking µ0, then for any y1 and y2, the optimal RLHF policy satisfies πµ0(· | x) satisfies

p∗ (y1 ≻ y2 | x) = gϕ,ϕ(x)

(
β log π(yw|x)

πref (yw|x) − β log π(yl|x)
πref (yl|x)

)
. Therefore, the MallowsPO-ϕ policy

optimization objective is:

min
π

−E(x,yw,yl)∼D

[
log gϕ,ϕ(x)

(
β log

π (yw | x)
πref (yw | x)

− β log
π (yl | x)
πref (yl | x)

)]
. (12)

By specifying the underlying ranking to Mallows-ϕ, we get a different link function gϕ,ϕ(x), which
also contains the dispersion index ϕ(x), resulting in a new preference optimization objective. We
include more discussions about unified perspectives of Mallows-θ and Mallows-ϕ in Appendix C.5.

3.3 HOW TO CHOOSE THE DISPERSION INDEX ϕ(x)?

As the dispersion index ϕ(x) ∈ (0, 1] is unknown, computation or estimation of it requires learning
via neural networks or other algorithms (Meila & Bao, 2010). Here, however, we propose a more
direct approach to estimate ϕ(x) without any pretraining or learning. The idea is to qualitatively
relate ϕ(x) to the empirical output distribution of the pretrained model, on which we propose an
‘easy-to-compute’ proxy to the negative log dispersion − log(ϕ(x)) for each prompt x.
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Figure 2: Distribution plot. Figure 3: Our proposed estimate matches the
true (neg-log) dispersion under a Mallows model.

Suppose the preference follows the Mallows-ϕ model. There are two extreme cases: When

− log(ϕ(x)) → ∞, we have: p∗ (y1 ≻ y2 | x) =
{
1, if µ0(y1 | x) < µ0(y2 | x),
0, if µ0(y1 | x) > µ0(y2 | x). Thus, the prob-

ability distribution of the next token will concentrate on a point mass. When − log(ϕ(x)) → 0, we
have: p∗ (y1 ≻ y2 | x) = 1

2 , so the next token will be uniformly distributed.

The above observation motivates us to use Shannon’s entropy H(·). Note that H(X) = 0 when X is
a point mass, and H(X) = log n when X is uniform on n points. Thus, we propose:

−ϕ∗ log (H(π(· | x))/ log n) , for a given constant ϕ∗ > 0, (13)

as a proxy to − log ϕ(x), where π(· | x) can be either the pretrained LM model πPRE or the SFT
model πSFT. Furthermore, we approximate the entropy term in (13) via a realization of a sequence
of N = max(|Y w|, |Y l|) tokens {Y w

i , Y l
i }i=1,...,N given the prompt X:

H(π(· | X)) ≈ 1

2

N−1∑
i=1

[
H(Yi+1 | Yi = Y w

i ) +H(Yi+1 | Yi = Y l
i )
]
, (14)

which can be easily computed by the logits of the model given the output data. In this case, n = kN ,
where k is the token size. This is also related to the predictive entropy (Hernández-Lobato et al.,
2014; MacKay, 1992) of the next-token predictions.

Accuracy of the estimate. To validate our proposed estimate (13), we consider the similar ‘bandit’
setup in Tang (2019). We draw rankings µ from a Mallows-ϕ ranking model, and then obtain a pair
of winning/losing actions by choosing the highest/lowest ranked elements in the ranking µ. We plot

−ϕ∗ · log
(
H(Y w)+H(Y l)

2 logn

)
, given the preferences data (x-axis) and the true dispersion (y-axis) that

these data are generated from. Figure 3 shows that our proposed estimator indeed matches the true
dispersion, which heuristically reflects the accuracy of our estimate.

4 PERSPECTIVES ON MALLOWSPO

In this section, we provide several alternative perspectives on MallowsPO in Theorem 2–3, with
the proofs given in Appendix B. We say a DPO is directed by g(·) if the preference distribution can
be expressed as p∗ (y1 ≻ y2 | x) = g (r∗(x, y1)− r∗ (x, y2)) for some reward function r∗. Thus,
Bradley-Terry based DPO is directed by the sigmoid function σ(·).

4.1 DISPERSION WEIGHTED OBJECTIVES

The following results show that MallowsPO can be viewed as a DPO with either the reward or the
KL-regularizer weighted by the dispersion index.

Proposition 4 (MallowsPO-θ as dispersion weighted DPO) Let c(x) = −2 log ϕ(x). Then,
MallowsPO-θ is the same as a DPO with either the reward weighted by c(x) or the KL-regularizer
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weighted by βc(x): maxπ Ex∼D
[
Ey∼πθ(y|x)

[
c(x)−1r∗(x, y)

]
− βKL (π(· | x)∥πref(· | x))

]
, or

maxπ Ex∼D
[
Ey∼πθ(y|x) [r

∗(x, y)]− βc(x)KL (π(· | x)∥πref(· | x))
]
.

Proposition 5 (MallowsPO-ϕ as dispersion weighted DPO) Denoting ϕ(x) = t in Eqn. 11 yields

g(s) :=
1− sgn(s)

2
+ sgn(s)

(
|s|+ 1

1− t|s|+1
− |s|

1− t|s|

)
. (15)

Let c(x) = −2 log ϕ(x) as before. Then, MallowsPO-ϕ is the same as a DPO directed
by g(·) as in (15), and with either the reward weighted by c(x) or the KL-regularizer
weighted by βc(x): maxπ Ex∼D

[
Ey∼πθ(y|x)

[
c(x)−1r∗(x, y)

]
− βKL (π(· | x)∥πref(· | x))

]
, or

maxπ Ex∼D
[
Ey∼πθ(y|x) [r

∗(x, y)]− βc(x)KL (π(· | x)∥πref(· | x))
]
.

4.2 CONNECTION TO ΨPO

The objective of ΨPO (Azar et al., 2024) is maxπ Ex∼D[Ey∼π(·|x), y′∼π̃(·|x) [Ψ (p∗(y ≻ y′ | x))]−
βKL(π(· | x)∥πref(· | x))], where Ψ : [0, 1] → R is a non-decreasing function, and π̃(· | x) is
an arbitrary policy (referred to as the behavior policy). It is readily verified that setting Ψ(s) =

log
(

s
1−s

)
reduces ΨPO to the Bradley-Terry based DPO. Roughly speaking, the function Ψ can be

viewed as the inverse of the link function, Ψ(σ(s)) = log
(

σ(s)
1−σ(s)

)
= s. The question is whether

MallowsPO can be reduced to ΨPO for some suitably chosen Ψ(·). Assume such a function exists,
which we denote as ΨM (·). From the Mallows-ϕ model in Theorem 3, we have

Ey2∼π̄(·|x)
[
ΨM (p∗ (y1 ≻ y2 | x))

]
= Ey2∼π̄(·|x)

[
ΨM (gx(r(x, y1)− r(x, y2)))

]
̸= r(x, y1)− Ey2∼π̄(·|x) [r (x, y2)] ,

(16)

i.e., for any ΨM (·) that is prompt-independent, MallowsPO cannot be an instance of ΨPO. This calls
for extending ΨPO to take into account prompt dispersion.

Generalized ΨPO. Let Ψ̃(x, p) depend on the prompt x as well as the preference distribution p. The
generalized ΨPO takes the form:

max
π

Ex∼D

[
Ey∼πθ(·|x), y′∼π̃(·|x)

[
Ψ̃ (x, p∗(y ≻ y′ | x))

]
− βKL (π(· | x)∥πref(· | x))

]
. (17)

A special instance is when Ψ̃(x, p) = f(x)Ψ(p) is separable:

max
π

Ex∼D
[
Ey∼πθ(·|x), y′∼π̃(·|x) [f(x)Ψ (p∗(y ≻ y′ | x))]− βKL (π(· | x)∥πref(· | x))

]
. (18)

Theorem 6 (MallowsPO as generalized ΨPO) (i) MallowsPO-θ (directed by σ(·)) can be reduced

to the generalized ΨPO in (18) with Ψ(s) = log
(

s
1−s

)
and f(x) = − 1

2 log ϕ(x) .

(ii) MallowsPO-ϕ (directed by g(·)) can be reduced to the generalized ΨPO in (18) with Ψ(s) =
g−1(s) and f(x) = − 1

log ϕ(x) .

5 EXPERIMENTS

In this section, we evaluate the capability of our proposed MallowsPO to learn the preferences in
comparison with DPO. First, we use the preferences dataset of IMDB (Maas et al., 2011) datasets
and Anthropic Helpful and Harmless dialogue (Bai et al., 2022a) dataset to provide evidence that
human preferences may be diversed. Next, we consider a synthetic bandit problem to demonstrate
the effectiveness of our proposed MallowsPO-ϕ, even without prompt dispersions. We further
conduct experiments on tasks such as conditional generation (IMDB) and dialogue (Anthropic HH,
UltraFeedback). Our findings show that MallowsPO outperforms DPO with an evident margin, both
for in-distribution performance and out-of-distribution generalization capability. 1

1Our code is available at https://github.com/haoxian-chen/MallowsPO.
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5.1 EVIDENCE OF PREFERENCE DISPERSION

A first natural question is: are human preferences dispersed? To verify this key motivation for
our work, we plot the distribution of the dispersion estimators given the SFT model and pairwise
preferences. Recall from Section 3 that the dispersion estimator is:

−ϕ∗ log(
1

2N log k

N−1∑
i=1

[
H(Yi+1 | Yi = ywi ) +H(Yi+1 | Yi = yli)

]
), (19)

and we take the hyperparameter ϕ∗ > 0 such that the empirical mean is equal to 1 (as in DPO), so we
do not need to tune this scaling constant. Note that this scaling results in our final estimate acting
as a relative dispersion level compared to the whole dataset: when a prompt’s dispersion parameter
is large, i.e., close to 1, (19) will be smaller than 1. In contrast, (19) will be much larger than 1 if
the prompt’s dispersion parameter is close to 0 (or there is less disagreement about the answer to the
prompt). We formally call this neg-log dispersion estimate throughout the rest of the paper.

(a) IMDB preference dispersion distribution. (b) Anthropic-HH preference dispersion distribution.

We find that for the task of conditional generation such as IMDB, its human preferences (Fig. 4a) are
not quite diverse: the neg-log dispersion estimates are located near 1, and almost all the estimates
range from 0.8 to 1.2. However, for tasks such as single dialogue, Fig. 4b shows that human
preferences are relatively more dispersed: the distribution is both skewed and of higher variance. As
shown in Figure 1, prompts with high dispersion or those that will lead to human disagreement on
preferences indeed have a neg-log dispersion estimate smaller than 1, while those with low dispersion
have the neg-log dispersion estimate located at the right-hand side (larger than 1). More examples
with low/high dispersion are provided in Appendix A.

5.2 MALLOWSPO-ϕ MITIGATES REWARD COLLAPSE

We study MallowsPO in a synthetic bandit experiment with no contextual information x, and compare
it with DPO to test their ability to produce diversified policies and avoid reward collapse. Moreover,
we operate under the constraint of having a limited number of observations. There are two reasons to
explore this setting. First, the bandit facilitates a clear analysis without introducing the complication
of the context x. Second, the limited data availability tests the ability of the approaches to produce
diversified policies and avoid reward collapse.

Concretely, we consider five arms, each associated with a random reward drawn from a probability
distribution. Preference between any two picked arms is determined by the random reward realizations,
with larger reward being preferred. In the experiment, we collect 16 pairwise observations, and
evaluate the performance of different approaches by computing the efficient frontiers (1) across
different parameters β, and (2) across different epochs. The details are provided in Appendix B.1.

Figure 5 displays the efficient frontiers for MallowsPO-ϕ and DPO. Figure 5a shows that MallowsPO-
ϕ has a more efficient frontier: (1) With the same KL divergence, MallowsPO-ϕ achieves a higher
reward, especially when β is small. (2) Over all possible β, the best reward that MallowsPO-ϕ
achieves is higher than that of DPO. (3) MallowsPO-ϕ avoids reward collapse as β gets smaller. That
is, MallowsPO-ϕ assigns a certain probability to the potentially good arms, as opposed to DPO that
tends to assign only to the “best” arm (see Figure 6). Figure 5b shows that during the training process,
MallowsPO-ϕ leads to the policies that have both high rewards and small KL divergence.

5.3 MALLOWSPO YIELDS BETTER TRADEOFF BETWEEN ACCURACY AND REGULARIZATION

In the task of conditional generation for IMDB, x is a prefix of movie review, and LM is to generate
output y with positive sentiment. Following the setting in Rafailov et al. (2023), we first fine-tune

8
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(a) (b) (c)

Figure 5: (a). Reward vs KL for the policy with different β’s. (b). Reward vs KL every 100 epochs, averaging
over the four policies with β ∈ {0.05, 0.1, 0.5, 1.0}. (c) Accuracy vs KL achieved by MallowsPO and DPO.

Figure 6: Training curves of MallowsPO-ϕ and DPO for β = 0.05 and β = 0.1.

GPT-2-large on the training split of IMDB datasets until convergence to get the SFT model, and use
the pairwise preference data from Wang et al. (2023) to further fine-tune it by DPO and MallowsPO.

Figure 5c displays the efficient frontiers (during the training process) for DPO and MallowsPO. We
observe that the performances of MallowsPO-θ and DPO are close. The similarity is likely due to the
nature of the task – controllable comment generation, which is expected to exhibit smaller dispersion,
as evidenced in Figure 4a. MallowsPO-ϕ outperforms both, achieving the same accuracy (evaluated
by the reward model) at a smaller KL divergence to the SFT model/policy.

5.4 MALLOWSPO ENHANCES BOTH IN/OUT-OF DISTRIBUTION PERFORMANCES

We compare the performances of MallowsPO and DPO in terms of the win rate evaluated by GPT4,
and generalization capability on the out-of-distribution datasets. In the experiment, we choose β to
be 0.1 and 0.5 since it has been observed (Kirk et al., 2023) that increased β value leads to a drop
both in performance and per-input diversity of RLHF and DPO. Results are shown in Figure 7.

For the in-distribution test, we first fine-tune a pretrained Pythia-2.8B model on the training set of
Anthropic HH dataset using MallowsPO and DPO, and then evaluate their responses on a subset
of its test split. GPT-4 serves as the evaluator, and compares pairs of responses. We observe that
MallowsPO has an edge over DPO. For the out-of-distribution test, we apply the models, fine-tuned
on the train split of the Antropic HH dataset, to other datasets with different input distributions. The
H4 Stack Exchange Preferences Dataset (SE) (Lambert et al., 2023) and Stanford Human Preferences
(SHP) (Ethayarajh et al., 2022) are used for evaluation. The advantage of dispersion on generalization
becomes apparent, as MallowsPO shows more improvement compared to the in-distribution case.

We also compare MallowsPO-θ with DPO in fine-tuning the Pythia-2.8B model, with ArmoRM
(Wang et al., 2024b) serving as the evaluator. The result indicates that MallowsPO-θ achieves
consistently higher win rates than DPO across all cases, with an impressive win rate of around 70%
in the in-distribution test. Details are provided in Appendix F.1.

5.5 MALLOWSPO ENHANCES SOTA LLAMA3-8B-INSTRUCT MODELS

We illustrate the scalability of our method through experiments on fine-tuning Llama3-8B-Instruct
Model on UltraFeedback Dataset. We follow the same setup in RLHFlow (Dong et al., 2024) and
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Figure 7: Win rates computed by GPT-4 for responses on both the in- and out-of distribution dataset.

SimPO (Meng et al., 2024), as we generate five answers from Llama3-8B-Instruct for each prompt in
UltraFeedback, rank them with scores evaluated by ArmoRM (Wang et al., 2024b), and choose the
best/worst one as winning/losing answer to form the preference datasets. For a fair comparison, we
compare MallowsPO with DPO, using different hyperparameters: β and learning rate lr for the task
of Alpaca Eval V2. The results are shown in Appendix F.2:

β lr LC Win Rate Win Rate

DPO MallowsPO DPO MallowsPO
0.01 5e−7 42.55% (0.79) 43.10% (0.77) 42.02% (1.53) 43.02% (1.57)

IPO MallowsIPO IPO MallowsIPO
0.005 1e−6 43.38% (0.84) 44.73% (0.87) 43.52% (1.45) 44.87% (1.46)

SimPO MallowsSimPO SimPO MallowsSimPO
10 1e−6 50.04% (0.77) 51.89% (0.81) 42.11% (1.46) 43.76% (1.47)

Table 1: Win rate comparison between SOTA fine-tuning methods and their enhanced versions using our
MallowsPO as a plugin with optimized β and lr. Standard deviations are right next to the reported metric.

Figure 8: Win rates computed by GPT-4 for re-
sponses on Alpaca Eval V2.

When β = 0.01 and lr = 5e−7, for which DPO and
MallowsPO both achieve the best performance, we
used 10 random seeds to show the statistical signif-
icance: MallowsPO outperforms DPO both in mean
or the best performance across random seeds, and
also has smaller variance (see Figure 8).

We also adapt the idea of dispersion index in Mal-
lowsPO to IPO and SimPO, leading to MallowsIPO
and MallowsSimPO. As shown in Table 1, both Mal-
lowsIPO and MallowsSimPO beat their vanilla coun-
terparts (using hyperparameters proposed in Azar
et al. (2024) and Meng et al. (2024)).

6 CONCLUSION

We have developed in this paper a novel approach, the MallowsPO, to fine-tune LLM. A distinct
feature of this approach is a dispersion index, which naturally captures the dispersion of human
preference to prompts, and can be systematically incorporated into the reward function as a weight
factor, thus ushering in a new class of dispersion-weighted DPO models. We demonstrate empirically
how MallowsPO achieves improved performance in a broad array of benchmark tasks, including
synthetic bandit selection, controllable generation, and dialogues. The effectiveness holds for both
small and large representative models, such as Pythia 2.8B and Llama3-8B-Instruct.

Furthermore, both curriculum learning and personalization alignment through contextual scaling
present promising future directions and can be expanded based on our work (see Appendix G).

There are a few issues that we have yet to address in this study, for instance, to explore why
MallowsPO outperforms DPO, how the dispersion index contributes to performance improvement,
what guidelines to follow to set the β value, and how dispersion index can be more accurately
approximated. These will be pursued in our future work.
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APPENDIX

A PROMPTS WITH LOW/HIGH NEGATIVE LOG DISPERSION ESTIMATE

A.1 EXAMPLES OF PROMPTS WITH LOW NEGATIVE LOG DISPERSION ESTIMATE

See Table 2 for the examples.

Human: I need some ideas on repurposing old magazines.
Assistant: How about using a magazine as a dustcover for a book?
Human: It will take some effort but it could work. What else can you think of?

Human: Why do you think western society idolizes youth so much, as opposed to asian
society, which idolizes elders?

Assistant: Humans throughout history have consistently held important values and traits in high
esteem, including trustworthiness, compassion, intelligence, and wisdom. Given that
younger people have the potential to develop these traits while older people have
already developed them, it makes sense that older people’s virtues are embraced
in some cultures while younger people’s virtues are embraced in other cultures.
It’s important to remember that cultures throughout the world are complex and
heterogeneous, so it’s possible for some to prioritize older people yet also to respect
some of the important qualities and values held by younger people. The value we
place on older people will vary inversely with the value we place on young people,
and vice versa, which helps explain why different cultures come to elevate one or
the other.

Human: That’s a fair assessment, but I’m looking for more specific reasons. Let’s refocus on
just the west. Why are we so youth-focused?

Human: what are some cool ocean activities?

Human: Why do almost all cartoon characters tend to only have 4 fingers? Is it some unwritten
rule in the animation industry to do that?

Human: Can you provide 3 bullet points for how to teach a child how to set the dinner table?

Human: I’d like to become a world famous writer. Any suggestions on how to get there?

Human: My friend is a University Lecturer with a Ph.D. in Business. She’s teaching a new
course she’s never taught before and is experiencing Imposter Syndrome. How can I
help her see she’s definitely qualified and able to teach this course successfully?

Table 2: Prompts with low neg-log dispersion or high dispersion, i.e. human are likely to have more
disagreement about the answers.

A.2 EXAMPLES OF PROMPTS WITH HIGH NEGATIVE LOG DISPERSION ESTIMATE

See Table 3 for the examples.
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Human: Have you heard of Summer Palace, a historical site in China?
Assistant: Yes, Summer Palace is a well-known historical site in China. It was originally built in

the eighteenth century as a summer retreat for the royal family, and is renowned for
its beautiful gardens and temples. Summer Palace is now a popular tourist destination,
attracting visitors with its historic architecture and natural beauty. There are also many
tours and exhibits at the site, offering visitors an in-depth look at its history.

Human: In which city is it located?

Human: Translate the following into slang: Good morning, how are you today? I have to go to
work later.

Assistant: Hey, how’s it going? I’m doing pretty good today. I have to head to work later.
Human: Now capitalize every word of that response.

Human: Please tell me about The Battle of Waterloo.
Assistant: In 1815, Napoleon led his troops and won against the British and Prussian armies.
Human: No. Napoleon lost the battle.
Assistant: OK, in 1815, Napoleon led his troops and lost against the British and Prussian armies.
Human: Was the battle in Belgium?

Human: Are there any NASA space missions going on currently?
Assistant: As of now, no.
Human: Are you sure?
Assistant: NASA doesn’t have any plans for missions in the immediate future. However, there are

several missions on the books that might eventually get funded.
Human: Thank you for this information.

Table 3: Prompts with high neg-log dispersion or low dispersion, i.e. human are likely to have less
disagreement about the answers.

B PROOFS

Proof of Proposition 1.

Mallows (1957) showed that the paired-comparison probability

P (µ(y1 | x) < µ (y2 | x)) = 1

1 + exp (−2 log ϕ(x) (µ0 (y1 | x)− µ0 (y2 | x)))
. (20)

yields the Mallows-θ model. Here we sketch a proof for ease of reference. Write γ := −2 log ϕ(x)
for simplicity. Note that

P (y1 is preferred to y2) =
exp (−γµ0 (y1))

exp (−γµ0 (y1)) + exp (−γµ0 (y2))
. (21)

By Equation 21, the probability of observing a (full) ranking µ is:

P(µ) ∝
∏
i<j

P(µ(i) is preferred to µ(j)) ∝ exp

(
γ

n∑
i=1

(n− i)
(
−µ0(µ

−1(i))
))

∝ exp

(
γ

n∑
i=1

i µ0(µ
−1(i))

)
.

(22)

Moreover, we have:

2

n∑
i=1

i µ0(µ
−1(i)) = −

n∑
i=1

(µ0(µ
−1(i))− i)2 + C = −

n∑
i=1

(µ(i)− µ0(i))
2 + C, (23)

where C =
∑n
i=1

(
i2 + µ0(µ

−1(i))2
)
= n(n+ 1)(2n+ 1)/3 is a constant, and the second equality

is due to the right invariance of the Spearman’s rho. Combining Equation 21 and Equation 23 yields:

P(µ) ∝ e−
γ
2

∑n
i=1(µ(i)−µ0(i))

2

∝ ϕ(x)
∑n

i=1(µ(i)−µ0(i))
2

. (24)
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This is exactly the Mallows-θ model.

Proof of Theorem 2

To obtain (9), recall that given x, the probability of output y1 being preferred than y2 is:

p∗ (y1 ≻ y2 | x) = P (µ(y1 | x) < µ (y2 | x)) (25)
= gd,ϕ(x)(−µ0(y1 | x)− (−µ0(y2 | x))) (26)

Therefore, the modeling of such a ranking distribution requires the conditional central ranking
µ0(· | x). However. since finding µ0(· | x) is computationally hard (Tang, 2019), to tackle this
challenge, we explore a different path. Recall that in RLHF, we optimize the following objective:

max
π

Ex∼D
[
Ey∼πθ(y|x) [r

∗(x, y)]− βKL (π(· | x)∥πref(· | x))
]
,

where r∗(x, y) is the true underlying reward. By letting r∗(x, y) = −µ0(y | x), we now turn to
optimize the following objective:

max
π

Ex∼D
[
Ey∼πθ(y|x) [−µ0(y | x)]− βKL (π(· | x)∥πref(· | x))

]
.

As shown in section A.1 of Rafailov et al. (2023), the optimum of such a KL-constrained reward
maximization objective has the form of

πµ0(y | x) = 1

Z(x)
πref(x) exp

(
−µ0(y | x)

β

)
,

where Z(x) is the partition function to ensure πµ0(y | x) to be a probability distribution. By moving
terms, we have

−µ0(y | x) = β log
πµ0

(y | x)
πref (y | x)

+ β logZ(x). (27)

Combining (26) and (27) gives us

p∗ (y1 ≻ y2 | x) = gd,ϕ(x)

(
β log

πµ0
(y1 | x)

πref (y1 | x)
− β log

πµ0
(y2 | x)

πref (y2 | x)

)
.

To maximize the likelihood estimation, our objective becomes

min
πµ0

−E(x,yw,yl)∼D

[
log

(
gd,ϕ(x)

(
β log

πµ0(yw | x)
πref(yw | x)

− β log
πµ0(yl | x)
πref(yl | x)

))]
.

To derive the MallowsPO-θ loss objective, a direct application of above derives the result, which is:

LMallows−θ(πθ;πref) = −E log σ

−2 log ϕ(x)︸ ︷︷ ︸
dispersion of x

(
β log

π (yw | x)
πref (yw | x)

− β log
π (yl | x)
πref (yl | x)

) ,

(28)
in which the expectation is with respect to (x, yw, yl) ∼ D. ■

Proof of Theorem 3.

For the Mallows-ϕ model, it was shown in Mallows (1957) (see also Busa-Fekete et al. (2014); Mao
& Wu (2022)):

P (µ(y1 | x) < µ (y2 | x)) (29)

=

{
µ0(y2|x)−µ0(y1|x)+1

1−ϕ(x)µ0(y2|x)−µ0(y1|x)+1 − µ0(y2|x)−µ0(y1|x)
1−ϕ(x)µ0(y2|x)−µ0(y1|x) , µ0 (y2 | x)− µ0 (y1 | x) > 0,

1− µ0(y1|x)−µ0(y2|x)+1

1−ϕ(x)µ0(y1|x)−µ0(y2|x)+1 − µ0(y2|x)−µ0(y1|x)
1−ϕ(x)µ0(y1|x)−µ0(y2|x) , µ0 (y2 | x)− µ0 (y1 | x) < 0,

(30)

A similar discuss as in the proof of Theorem 2 derives the desired result in (12).

■
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Proof of Proposition 4.

The proof follows from the derivation of the equivalence between RLHF and DPO, as now the optimal
policy satisfies

c(x)−1r(x, y) = β log
πr(y | x)
πref (y | x)

+ β logZ(x).

■

Proof of Theorem 6.

(i) With the Bradley-Terry connection as mentioned above, we have

Ey2∼π̃ [f(x)Ψ (p∗ (y1 ≻ y2 | x))] = Ey2∼π̃
[
f(x)Ψ

(
er(x,y1)

er(x,y1) + er(x,y2)

)]
= Ey2∼π̃ [f(x) (r(x, y1)− r (x, y2))]

= f(x)r(x, y1)− f(x)Ey2∼π̃ [r (x, y2)] ,

(31)

which is a weighted reward of DPO, up to an additive constant. It follows that the optimal policy of
the generalized ΨPO (18) is the same as that of MallowsPO-θ by Theorem 4. The same argument
also proves (ii).

■
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C MORE EXAMPLES OF MALLOWS RANKING MODEL

Here we provide more detailed concrete examples and corresponding computations for Mallows
Ranking Model. We also illustrate the implicit effects of the total number of items n.

Recall that, as defined in Section , for a positive integer n that represents e.g., n possible items,
let Sn be the set of permutations of [n] = {1, . . . , n} and the space of rankings. The probability
of observing a ranking µ (which represents the preference of n items, e.g., the top ranked item is
preferred over the others) under the Mallows Ranking Model is:

Pϕ,µ0,d(µ) := ϕd(µ,µ0)/Z(ϕ, d) for µ ∈ Sn, (32)

where ϕ ∈ (0, 1] is the dispersion parameter, µ0 is the central ranking, d(·, ·) is a discrepancy function
that is right invariant: d(µ1, µ2) = d

(
µ1 ◦ µ−1

2 , id
)

for µ1, µ2 ∈ Sn, for which:

• Mallows-θ model: d(µ1, µ2) =
∑n
i=1(µ1(i)− µ2(i))

2 is the Spearman’s rho,

• Mallows-ϕ model: d(µ1, µ2) = inv
(
µ1 ◦ µ−1

2

)
, in which inv(µ) := #

{
(i, j) ∈ [n]2 : i < j , and

µ(i) > µ(j)} is the number of inversions of µ,

and Z(ϕ, d) :=
∑
µ∈Sn

ϕd(µ,µ0) is the normalizing constant.

C.1 MALLOWS-θ MODEL

To both qualitatively illustrate Mallows-θ Ranking Model and quantitatively compute the correspond-
ing probability, here we consider a three items example, thus the total number of possible rankings
are 6, and we compute the discrepancy function values, normalization constant when dispersion index
is 0.5, and the resulting probability as in Table 4 :

Ranking Discrepancy Normalization Constant Probability

(1,2,3) 0

1.535

0.651
(1,3,2) 2 0.163
(2,1,3) 2 0.163
(2,3,1) 6 0.010
(3,1,2) 6 0.010
(3,2,1) 8 0.0025

Table 4: Mallows-θ Model probabilities when dispersion index ϕ = 0.5.

We also plot the probability density function (in x-axis we arrange the rankings by their distance to
the central ranking, the lefter the short distance to central ranking) in Figure 9a. We also plot the
effects of dispersion on the resulting probabilities as in Figure 9b. We can see as dispersion parameter
goes up (close to 1), the probability density function becomes flattened.

(a) Mallows-θ Probability Density function. (b) PDF with respect to dispersion ϕ
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C.2 MALLOWS-ϕ MODEL

Here we consider the same example in the previous Mallows-θ except the discrepancy function is
d(µ1, µ2) = inv

(
µ1 ◦ µ−1

2

)
. The values can be seen in Table 5.

Ranking Discrepancy Normalization Constant Probability

(1,2,3) 0

2.625

0.381
(1,3,2) 1 0.191
(2,1,3) 1 0.19
(2,3,1) 2 0.095
(3,1,2) 2 0.095
(3,2,1) 3 0.048

Table 5: Mallows-ϕ Model probabilities when dispersion index ϕ = 0.5

Again we plot the probability density function (in x-axis we arrange the rankings by their distance
to the central ranking, the lefter the short distance to central ranking) in Figure 10a. The effects of
dispersion on the resulting probabilities as in Figure 10b.

(a) Mallows-ϕ Probability Density function. (b) PDF with respect to dispersion ϕ

C.3 THE EFFECTS OF n ≫ 1 ITEMS

Here we also illustrate the effect of additional items for the relative probability of observing two
rankings which differ only in the rankings of 3 items. If there are no additional items, then observing
a relative order of items of values (100,1,2) with the ground truth (100,2,1) under Mallows-θ is (i.e.,
observing (1,3,2) for central ranking (1,2,3)):

p(100, 1, 2) = Z · ϕ(3−2)2+(2−3)2 = Z · ϕ2,

which will be the same as observing (2,100,1) since:

p(2, 100, 1) = Z · ϕ(2−1)2+(1−2)2 = Z · ϕ2.

However, if there are additional 97 items of values (100 items in total of values from 1 to 100), things
will be quite different. If µ(i) = i holds for all other i’s from 3 to 99, we have:

p(100, 1, 2) = Z · ϕ(99−100)2+(100−99)2 = Z · ϕ2,

while
p(2, 100, 1) = Z · ϕ(99−1)2+(1−99)2 = Z · ϕ2×982 .

Thus, p(2, 100, 1) ≪ p(100, 1, 2) because ϕ ∈ (0, 1).
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C.4 DIFFERENT MALLOWS MODELS ARE INCONSISTENT.

Consider two discrepancy functions used to measure the difference between two rankings (which are
exactly Mallows-θ and Mallows-ϕ models in this paper):

A. Squared Difference (SD):

SD(µ, µ′) =

n∑
i=1

(µ(i)− µ′(i))
2
,

where µ(i) and µ′(i) denote the positions of item i in the true ranking µ and the predicted ranking µ′,
respectively.

B. Number of Inversions (NI):

NI(µ, µ′) = |{(i, j) | i < j, (µ(i)− µ(j)) (µ′(i)− µ′(j)) < 0}| ,

which counts the number of pairs (i, j) where the relative order of items i and j is different in µ and
µ′. Let the ground truth ranking µ of four items {A,B,C,D} be:

µ = (A : 1, B : 2, C : 3, D : 4) .

We consider two predicted rankings µ1 and µ2:

1. Ranking µ1 and µ2:

µ1 = (A : 2, B : 1, C : 4, D : 3) , µ2 = (A : 1, B : 4, C : 2, D : 3) .

A. Squared Difference (SD):

For µ1:
SD(µ, µ1) = (1− 2)2 + (2− 1)2 + (3− 4)2 + (4− 3)2

= (−1)2 + 12 + (−1)2 + 12

= 1 + 1 + 1 + 1 = 4.

For µ2:
SD(µ, µ2) = (1− 1)2 + (2− 4)2 + (3− 2)2 + (4− 3)2

= 02 + (−2)2 + 12 + 12

= 0 + 4 + 1 + 1 = 6.

Conclusion: SD(µ, µ1) = 4 < SD(µ, µ2) = 6, so µ1 is better than µ2 under the squared difference.

B. Number of Inversions (NI):

The number of inversions is calculated by counting the number of pairs (i, j) where the order is
reversed between µ and µ′.

Pairs to Consider:

{(A,B), (A,C), (A,D), (B,C), (B,D), (C,D)}.

For µ1, Inversion Count:
- (A,B): Inverted (µ: A < B, µ1: A > B) ⇒ 1 inversion.
- (C,D): Inverted (µ: C < D, µ1: C > D) ⇒ 1 inversion.
- Other pairs maintain the order.

Total Inversions in µ1: 2 inversions.

For µ2, Inversion Count:
- (B,C): Inverted (µ: B < C, µ2: B > C) ⇒ 1 inversion.
- (B,D): Inverted (µ: B < D, µ2: B > D) ⇒ 1 inversion.
- Other pairs maintain the order.

Total Inversions in µ2: 2 inversions.
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Conclusion: NI(µ, µ1) = NI(µ, µ2) = 2, so µ1 and µ2 are equally good under the number of
inversions measure.

This example demonstrates an inconsistency between the squared difference and the number of
inversions discrepancy functions:

- Under the squared difference measure, µ1 is better than µ2.
- Under the number of inversions measure, µ1 and µ2 are equally good.

C.5 UNIFY MALLOWS-θ AND MALLOWS-ϕ FOR COMPUTATION

Note that the link function gϕ,ϕ(x) in MallowsPO-ϕ is not continuous (or smooth) at x = 0, with

g′ϕ,ϕ(x)(s) =

{
1

1−ϕ(x)s+1 + (s+1)ϕs+1 log ϕ(x)
(1−ϕ(x)s+1)2 − 1

1−ϕ(x)s − sϕ(x)s log ϕ(x)
(1−ϕ(x)s)2 , s > 0,

1
1−ϕ(x)1−s + (1−s)ϕ(x)1−s log ϕ(x)

(1−ϕ(x)1−s)2 − 1
1−ϕ(x)−s + sϕ(x)−s log ϕ(x)

(1−ϕ(x)−s)2 , s < 0.
(33)

For computational purposes, we propose two smooth approximations to gϕ,ϕ(x).

(i) Sigmoid approximation: Since gϕ,ϕ(x)(1) = 1
1+ϕ(x) , we approximate gϕ,ϕ(x)(s) by σx(s) :=

σ(−s log ϕ(x)) so that σx(1) = gϕ,ϕ(x)(1). See Figure 11 for an illustration of this approximation.
With this approximation, MallowsPO-ϕ and MallowsPO-θ yield the same objective with different β’s
(up to a factor of 2). Thus, MallowsPO-θ is just MallowsPO-ϕ with sigmoid approximation.

(ii) Polynomial fitting: We use a polynomial of form P (x) = a3x
3 + a1x + a0 to approximate

gϕ,ϕ(x) on [−ϵ, ϵ], with ϵ being a hyperparameter. We choose ϵ to be either fixed, e.g., ϵ = 0.1; or
ϵ = −2 log ϕ(x) (e.g., ϵ ≈ 1.4 for ϕ(x) = 0.5). See Figures 12–13 for an illustration.

Figure 11: Sigmoid approxima-
tion

Figure 12: Poly-fitting on ±ϵ Figure 13: Poly-fitting on
±2 log ϕ
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D FURTHER DISCUSSION ON MALLOWSPO AND DPO (RAFAILOV ET AL.,
2023)

MallowsPO-θ. When the responses y1, y2 for a given prompt x follow the preference distribution in
(8), Theorem 2 establishes the optimization objective as follows:

LMallowsPO−θ (π;πref) :=

− E(x,yw,yl)∼D

log σ
 −2 log ϕ(x)︸ ︷︷ ︸

neg-log dispersion of x

(
β log

π (yw | x)
πref (yw | x)

− β log
π (yl | x)
πref (yl | x)

)
 ,

(34)
where −2 log ϕ(x) ∈ (0,∞). To compare with the objective of DPO, where the underlying ranking
model is Bradley-Terry:

LDPO (π;πref) := −E(x,yw,yl)∼D

[
log(σ

(
β log

π (yw | x)
πref (yw | x)

− β log
π (yl | x)
πref (yl | x)

)]
,

the objective of MallowsPO-θ in (9) has an extra term −2 log ϕ(x), which reflects the dispersion
of the prompt x. The similarity of MallowsPO-θ and DPO is resulted from the similarity of the
foundational ranking models between Bradley-Terry and Mallows-θ.

Alternatively, MallowsPO-θ can be viewd as DPO with an added element of prompt dispersion or
disparity. Rather than interpreting MallowsPO-θ solely as gd,ϕ(x) = gθ,ϕ(x), we can reinterpret
that such an objective still maintains the link function of sigmoid σ(·), but the logit difference term
β log π(yw|x)

πref (yw|x) − β log π(yl|x)
πref (yl|x) is sacled by the dispersion −2 log ϕ(x). This scaling introduces a

nuanced modification to the original DPO framework, accounting for the influence of prompt-specific
dispersion.

MallowsPO-ϕ. Similarly, when the responses y1, y2 for a given prompt x follow the preference
distribution in (10), Theorem 3 yields the following optimization objective:

LMallowsPO−ϕ (π;πref) :=

− E(x,yw,yl)∼D

[
log gϕ,ϕ(x)

(
β log

π (yw | x)
πref (yw | x)

− β log
π (yl | x)
πref (yl | x)

)]
,

(35)

where gϕ,ϕ(x)(s) :=
1−sgn(s)

2 + sgn(s)
(

|s|+1
1−ϕ(x)|s|+1 − |s|

1−ϕ(x)|s|

)
In comparison with the DPO in (4), MallowsPO-ϕ replaces the sigmoid function σ with a (different)
link function gϕ,ϕ(x) that also contains the dispersion index ϕ(x).

An overview of the comparison of these methods is provided in Table 6.

Model Name Ranking model class Dispersion Link function

DPO (Rafailov et al., 2023) Bradley-Terry (Bradley & Terry, 1952) ✗ sigmoid σ(·)
MallowsPO-θ Mallows-θ (Mallows, 1957) ✓ sigmoid σ(·)
MallowsPO-ϕ Mallows-ϕ (Mallows, 1957) ✓ gϕ,ϕ(x)(·) in (10)

Table 6: Key Features of DPO and MallowsPO
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E EXPERIMENTAL DETAILS

E.1 BANDIT EXPERIMENT

In the bandit experiment detailed in Section 5.2, we conduct two sub-experiments to compute the
efficient frontiers using Mallow-ϕ-DPO and DPO. The first sub-experiment varies the parameter β
while the second varies the epochs, with β’s to be a fixed set. For the first sub-experiment, we run
each algorithm on a range of β values required to compute the full efficient frontier, and for each β,
we record the reward and KL(π||πref) of the average policy over the last 30 epochs to stabilize the
results. As for the second sub-experiment, similar to the setup in Rafailov et al. (2023) and Wang
et al. (2023), we execute an ensemble of training configurations for both MallowsPO and DPO, by
adopting a range of different β ∈ {0.05, 0.1, 0.5, 1.0}, and record the average reward and average
KL(π||πref) among the four policies for every 100 training steps. Given that we know the real reward
distribution, all these quantities can be computed analytically.

In terms of the training details, we use all 16 data in a single batch and adopts SGD as the optimizer,
with learning rate of 5e-3. To ensure convergence, we run the optimization for a large number of
epochs, set to 500,000. For MallowsPO-ϕ, we set ϕ to be 0.05.

Table 7: Reward distributions of the five arms.

Arm 1 Arm 2 Arm 3 Arm 4 Arm 5
Reward Prob. Reward Prob. Reward Prob. Reward Prob. Reward Prob.

20 0.5 30 0.5 18 0.5 15 0.99 1 0.99
11 0.5 3 0.5 15 0.5 10 0.01 4 0.01

Table 8: 16 pairs of sampled preference data.

Win 3 2 2 1 3 1 1 1 4 2 2 2 1 3 3 4
Lose 5 5 5 2 5 5 4 5 5 4 1 5 3 5 4 2

E.2 CONTROLLABLE GENERATION EXPERIMENT DETAILS

We follow the training setup in Rafailov et al. (2023), and first fine-tune GPT-2-large on the
training split of IMDB datasets until convergence to get the SFT model. The next step is different
from Rafailov et al. (2023) in that we directly utilize the (offline) preference dataset from Wang
et al. (2023) instead of generating pairwise preferences from the trained SFT model, as in DPO. The
rest is the same: we use the pairwise preference data to fine-tune the SFT model by either DPO or
MallowsPO. The evaluation metric: accuracy is obtained from a prior sentiment classifier as the
ground truth reward. By default, we use RMSprop optimizer with a learning rate of 1e-6, with a
linear learning rate warmup from 0 to 1e-6 over the first 150 steps. The training batch size is 64.

E.3 LANGUAGE MODELING EXPERIMENT DETAILS

We follow the training setup in Rafailov et al. (2023). By default, we use RMSprop optimizer with a
learning rate of 1e-6, with a linear learning rate warmup from 0 to 1e-6 over the first 150 steps.
The training batch size is 32.

E.3.1 GPT-4 JUDGEMENT PROMPT

Response quality evaluation is completed by GPT-4. The prompt for instructing GPT-4 to evaluate
which response is better is particularly important. Thus, we use the fastchat package for GPT-4
evaluation, and we used their well-written pair-v2 judge prompt. The prompt is shown as follows:

Please act as an impartial judge and evaluate the quality of the
responses provided by two AI assistants to the user question
displayed below. You should choose the assistant that follows
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the user’s instructions and answers the user’s question better.
Your evaluation should consider factors such as the helpfulness,
relevance, accuracy, depth, creativity, and level of detail of
their responses. Begin your evaluation by comparing the two
responses and provide a short explanation. Avoid any position
biases and ensure that the order in which the responses were
presented does not influence your decision. Do not allow the
length of the responses to influence your evaluation. Do not
favor certain names of the assistants. Be as objective as
possible. After providing your explanation, output your final
verdict by strictly following this format: \‘‘ [[A]]\’’ if
assistant A is better, \‘‘[[B]]\’’ if assistant B is better, and
\‘‘[[C]]\’’ for a tie."

To ensure fairness and unbiasedness, for each pairwise input (x, y1, y2), fastchat conducts two
evaluation: first comparing (y1, y2) and then comparing (y2, y1). y1 wins if and only if it wins both
comparisons, or wins one comparison while the other is tied. We compute win rate as follows:

Win rate (Model A) =
Number of samples where Model A wins

Total number of test samples
+0.5× Number of tied samples

Total number of test samples

F ADDITIONAL RESULTS

F.1 ARMORM REWARD MODEL

Figure 14: Win rates computed by ArmoRM for responses on both the in- and out-of distribution dataset.
Experiments are repeated over 5 runs.

ArmoRM (Wang et al., 2024b) is a reward model for language modeling that utilizes multi-objective
reward modeling and Mixture-of-Experts (MoE) techniques. Building on this, we also compare
MallowsPO-θ with DPO in fine-tuning the Pythia-2.8B model on Anthropic-HH dataset, setting
β = 0.1, as per the setting in Rafailov et al. (2023), with ArmoRM serving as the evaluator. For
evaluation, following the procedure in Section 5.4, we assess the models on the Anthropic-HH test set
for in-distribution performance and on the SHP and SE datasets for out-of-distribution performance.
The result indicates that model fine-tuned with MallowsPO-θ achieves consistently higher win rates
than DPO across all cases, with an impressive win rate of around 70% in the in-distribution test.

F.2 ABLATION ON β AND lr FOR MALLOWSPO AND DPO

Including the setting in Section 5.5, we compare the performance of DPO and MallowsPO-θ in 6
configs by combining commonly used β ∈ {0.01, 0.05, 0.1} and lr ∈ {e−6, 5e−7}. We find that in 5
out of 6 configs, MallowsPO-θ achieves better Length Controlled Win Rate and Win Rate.

F.3 QUALITATIVE EXAMPLES

In this section, we present a series of examples for direct comparisons between MallowsPO variants
and DPO, as shown in Tables 15–20. These tables showcase the qualitative examples of model
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β lr
LC Win Rate Win Rate

DPO MallowsPO-θ DPO MallowsPO-θ

0.1 e−6 37.14% 37.37% 35.77% 35.83%
0.05 e−6 40.08% 41.08% 40.31% 41.02%
0.01 e−6 27.42% 29.65% 27.03% 28.92%
0.1 5e−7 36.09% 37.66% 35.72% 37.05%

0.05 5e−7 40.56% 39.75% 39.89% 39.49%
0.01 5e−7 42.55% 43.10% 42.02% 43.02%

Table 9: Win rate comparison between DPO and MallowsPO-θ with different β and lr.

responses both in-distribution inputs from the Anthropic-HH test set and out-of-distribution inputs
from the SHP test set and the SE dataset respectively. SHP dataset covers questions/instructions in 18
different subject areas, from cooking to legal advice. SE dataset contains questions and answers from
the Stack Overflow Data Dump.

To interpret, Tables 15–16 highlight that models fine-tuned with MallowsPO-θ and MallowsPO-ϕ
demonstrate a strong grasp of contextual understanding and produce concise suggestions; however,
the DPO fine-tuned model has the issue of generating repetitive and confusion response.

The examples in Tables 17–18 show these model’s responses to questions from daily life, testing
their abilities in tutoring and knowledge retrieval. These results indicate that MallowsPO-θ and
MallowsPO-ϕ fine-tuned models are not only knowledgeable and but also able to deliver deeper and
further insights, rather than focusing solely on the length.

Finally, we also examine the models’ performance in troubleshooting, code generation and debugging
tasks. Tables 19 reveals that MallowsPO-θ fine-tuned model does better in identifying the potential
problems in the JavaScript codes provided and providing more relevant, actionable suggestions.
Additionally, Table 20 shows how MallowsPO-ϕ complements the suggestions by DPO by offering
code snippets to further support the user.
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Figure 15: Sample responses to a prompt from the Anthropic-HH test set. GPT-4 chooses MallowsPO-θ over
DPO. Both MallowsPO-θ and DPO are trained for β = 0.1.
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Figure 16: Sample responses to a prompt from the Anthropic-HH test set. GPT-4 chooses MallowsPO-ϕ over
DPO. Both MallowsPO-ϕ and DPO are trained for β = 0.1.
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Figure 17: Sample responses to a prompt from the test set of the Stanford Human Preferences Dataset. GPT-4
chooses MallowsPO-θ over DPO. Both MallowsPO-θ and DPO are trained for β = 0.1.
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Figure 18: Sample responses to a prompt from the test set of the Stanford Human Preferences Dataset. GPT-4
chooses MallowsPO-θ over DPO. Both MallowsPO-θ and DPO are trained for β = 0.5.
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Figure 19: Sample responses to a prompt from the test set of the H4 Stack Exchange Preferences Dataset.
GPT-4 chooses MallowsPO-θ over DPO. Both MallowsPO-θ and DPO are trained for β = 0.1 on Anthropic-HH
dataset.
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Figure 20: Sample responses to a prompt from the test set of the H4 Stack Exchange Preferences Dataset.
GPT-4 chooses MallowsPO-ϕ over DPO. Both MallowsPO-ϕ and DPO are trained for β = 0.5 on Anthropic-HH
dataset.
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G RELEVANT FUTURE RESEARCH

For practical relevance, we consider the following directions on further leveraging these insights
in real-world applications, focusing on curriculum learning and personalization through contextual
scaling.

Curriculum learning. Curriculum learning is a training strategy inspired by human learning
processes, where models are trained on tasks or data organized from simpler to more complex
examples, instead of presenting all examples randomly or simultaneously. This approach has been
shown to guarantee faster training convergence (Bengio et al., 2009), better generalization (Graves
et al., 2017) and improved model robustness (Weinshall et al., 2018). Within our framework, our
proposed dispersion index can be utilized to indicate the determinism or diversity of the response
to different questions, offering guidance on the complexity of the prompts to achieve curriculum
learning.

Personalized Alignment. Furthermore, by considering ϕ(x, p), where p is a personal feature, our
method can be adjusted to consider a personalized preference ranking model. Note that how to
achieve this with DPO is not straightforward. However, it is more natural in MallowsPO because
of the existence of dispersion parameter ϕ(x) in the Mallows model, which controls how spread
out the distribution should be. In this context, dispersion can be extended beyond the prompt level
to encompass different users or user groups p. In terms of the preference optimization objective,
different contextual scaling on the penalization coefficient can be considered to accommodate varying
user or user group preferences for responses generated by the Supervised Fine-Tuning (SFT) model.
Contextual scaling, tailored to different user preferences, enables a customized user experience.

Both curriculum learning and personalization alignment (Chen et al., 2024a) through contextual
scaling present promising directions for further development and can be expanded based on our
foundational research. However, these ideas merit dedicated presentation and discussion in separate
works and are thus reserved for future exploration.
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