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Abstract

Pre-trained language models have achieved ex-001
cellent results in NLP and NLI, and since the002
birth of Bert, various new types of Bert have003
emerged.They are able to grasp the ubiquitous004
linguistic representational information from005
large-scale corpora in different ways, but when006
reading texts, it is difficult for them to combine007
and use external knowledge to make inferences008
about other meanings that the text may con-009
tain, as people do.To this end, we propose a010
linguistic model (K2E-BERT) capable of sim-011
ply incorporating external knowledge, which012
fuses information from the knowledge graph013
(triad) with the entity information in the orig-014
inal text.In order to better integrate external015
knowledge into the original text without let-016
ting it deviate from the original meaning of the017
sentence, we propose a method called EaKA018
(Entity and Knowledge Align), which can bet-019
ter distance and combine entities and knowl-020
edge so that the model can accept new external021
knowledge without losing the meaning of the022
original sentence; additionally, we can easily023
and beyond Bert without changing the internal024
structure of Bert, we can easily and go beyond025
the results of BERT, which shows that our ap-026
proach is feasible.After our experiments, we027
found good results in several NLP tasks we028
selected, which indicated that K2E-BERT eas-029
ily surpassed BERT in generalization ability,030
proving its effectiveness.031

1 Introduction032

In recent years, BERT (Devlin et al., 2018) and its033

variants have achieved many excellent successes in034

the field of NLP and NLI, where these models can035

obtain information and representations of human036

language from a very large open domain corpus in037

nature. After numerous learning iterations, people038

are able to analyze entities in a text when they read039

it, associate them with highly relevant knowledge,040

and dissect its semantics in context, as shown in041

Figure 1 . Bert and its varients are pre-trained lan-042

guage model(PLM or PTM).The development of 043

pre-training model (Qiu et al., 2020) can be divided 044

into two stages:pre-train words embedding(PWE) 045

and pre-training context coders(PCE). However, 046

this paper (Sun et al., 2021) summarizes two main 047

shortcomings of the current pre-training model: 048

(1) The pre-training context encoder has a certain 049

storage capacity; 050

(2) The knowledge storage of pre-training context 051

encoder has limitations. 052

Figure 1: When we read a text, we notice the entities and
associate them with knowledge, using inferred knowl-
edge to make more sense of the text.

However, today’s pre-trained models can only 053

learn relevant information and representations in 054

the textual ontology, and despite the superior capa- 055

bilities of these models, this information is limited 056

and it is difficult for the models to uncover the re- 057

lationships between entities in a large corpus of 058

text. If we can make the models get this human 059

associative ability, then this will allow the models 060

to rise to a new level in generalization ability. 061

In order to augment the knowledge to the pre- 062

trained language model, the following studies have 063

been done by domestic and foreign scholars respec- 064

tively: 065

(1) Adding task-specific knowledge, which can 066

improve the performance of the model on a 067

specific task with high specialization, but not 068

1



applicable to other tasks outside the task, such069

as the GlossBERT (Huang, 2019), which adds070

the interpretation of certain words to the input071

of the BERT, only one of which matches the072

current context, and the output label is whether073

the word matches that interpretation;074

(2) Adding generic knowledge, which maintains075

the generality of the model but also introduces076

a part of specific knowledge to the model to077

improve the performance of the model on some078

tasks. For example, ERNIE (THU) (Zhang079

et al., 2019), KnowBERT (Miao, 2019), etc.,080

knowledge is introduced into the model in the081

pre-training phase.082

Knowledge graph, as a semantic network that re-083

veals the relationship between entities, can present084

the relationship between entities very well. Nowa-085

days, many domain-specific and general domain086

knowledge graphs have been constructed, e.g.,087

SNOMED-CT (Bodenreider, 2008) used in the088

medical field, HowNet (Dong et al., 2015) used in089

Chinese conception. FreeBase (Bollacker, 2008),090

YAGO (Suchanek et al., 2007) and WordNet (Fell-091

baum and Miller, 1998) are used in general field. A092

KG is typically a multi-relational graph containing093

entities as nodes and relations as edges. Each edge094

is represented as a triplet (head entity, relation, tail095

entity) ((h, r, t) for short), indicating the relation096

between two entities, e.g., (Steve Jobs, founded,097

Apple Inc.). Despite their effectiveness, how to098

effectively introduce knowledge into the model is a099

tricky problem. When introducing external knowl-100

edge, the problem of semantic loss is inevitable,101

and what we want to do is to minimize the loss.102

So, how do we make good use of the knowledge103

graph?104

Like the problem described in K-BERT (Liu105

et al., 2019),there are two challenges lies in the106

road of this knowledge integration:107

(1) Heterogeneous Embedding Space (HES): In108

general, the embedding vectors of words in109

text and entities in KG are obtained in separate110

ways, making their vector-space inconsistent;111

(2) Knowledge Noise (KN): Too much knowledge112

incorporation may divert the sentence from113

its correct meaning. To overcome these chal-114

lenges, In this paper, we propose a simple115

transformer bi-directional encoder representa-116

tion (K2E-BERT) that incorporates external117

knowledge. K2E-BERT is able to load any 118

pre-trained pre-trained language model such as 119

BERT like K-BERT, because their parameters 120

are the same. 121

The main contributions of this paper can be sum- 122

marized as follows. 123

(1) This paper proposes a method called EaKA 124

to minimize the loss of the original sentence 125

semantics by introducing external knowledge, 126

which enables the model to better incorpo- 127

rate domain knowledge and greatly solves the 128

Heterogeneous Embedding Space (HES) and 129

Knowledge Noise (KN) problem mentioned by 130

K-BERT; 131

(2) A simpler way of fusing entities with knowl- 132

edge is used, and a new fused word embedding 133

is added in comparison with the original BERT; 134

(3) With the subtle injection of KG, K2E-BERT 135

was able to outperform BERT in the only few 136

experiments in the open domain and was able 137

to match and slightly exceed the results of K- 138

BERT in several tasks, and not to change the 139

original structure of Bert. 140

2 Related Work 141

Since the introduction of BERT in 2018, many 142

efforts have been made to further optimize it, with 143

most of the research dedicated to the optimization 144

of the process of pre-training with the encoder of 145

BERT. 146

In terms of optimizing the pre-training process, 147

BERT-WWM (Hu, 2019) uses full word mask- 148

ing instead of single word masking in the cor- 149

pus to pre-train BERT, and Baidu-ERNIE (Liu, 150

2019) masks and predicts all entities in the corpus 151

to replace the original pre-training task of BERT. 152

SpanBERT (Levy, 2019) proposes a better Span 153

Masking scheme, and again demonstrates that ran- 154

dom masking of consecutive words is better than 155

random masking of scattered words; by adding 156

the Span Boundary Objective (SBO) training tar- 157

get, the performance of BERT is enhanced, espe- 158

cially in some Span-related tasks, such as extractive 159

quizzing. RoBERTa (Stoyanov, 2019), on the other 160

hand, is trained on longer sequences with modified 161

input formats: FULL-SENTENCES + removal of 162

NSP task; changing BERT static masking to dy- 163

namic masking; adding a new pre-training dataset 164

CC-NEWS with corpus from 16G text to 160G text; 165
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Text Encoding: using a larger byte-level BPE dic-166

tionary.StructBert (Si, 2019)’s main idea is to use167

language models to find the best arrangement in a168

series of words and sentences by constructing two169

new pre-training tasks: Word Structural Objective170

and Sentence Structural Objective, which disrupt171

word-level and sentence-level information in the172

corpus and let the model In this way, the model173

learns the ability of reconstruction by disrupting174

the word-level and sentence-level information in175

the corpus and letting the model predict its original176

order.177

In optimizing the encoder of BERT, XLNet178

(Zhilin Yang, 2019), a new pre-training goal dif-179

ferent from the De-noising Autoencoder approach180

taken by Bert: Permutation Language Model (PLM181

for short); this can be understood as how to take182

specific means to incorporate the bidirectional lan-183

guage model in the autoregressive LM model, and184

Transformer-XL (Salakhutdinov, 2019) is used to185

replace the Transformer in BERT to improve its186

ability to handle long sentences. ERNIE (THU)187

starts the integration with KG in the pre-training188

phase, which modifies the encoder of BERT into189

an aggregator to achieve the mutual integration of190

words and entities. Specifically, it is stacked by191

two types of Encoder: T-Encoder and K-Encoder,192

and the output of T-Encoder and the corresponding193

knowledge of KG entities are used as the input of194

K-Encoder. Functionally, the T-Encoder is respon-195

sible for capturing lexical and syntactic information196

from the input sequence; the K-Encoder is respon-197

sible for fusing the KG knowledge with the textual198

information extracted from the T-Encoder, where199

the KG knowledge is mainly entities here, which200

are trained by the TransE model.The T-Encoder in201

THU-ERNIE The structure of T-Encoder in THU-202

ERNIE is the same as the structure of BERT, and203

K-Encoder has made some changes. K-Encoder204

performs Multi-Head Self-Attention operation on205

the output sequence of T-Encoder and entity in-206

put sequence respectively, and then fuses the two207

through Fusion layer afterwards.These tasks seem208

to be perfect and have a lot of work, but their im-209

provement is not obvious and consume huge com-210

putational resources.211

3 How Do We Incorporate External212

Knowledge into BERT ?213

In order to enable the model to incorporate the max-214

imum amount of external knowledge, we propose215

a process to cope with the problems we face. As 216

shown in Figure 2. 217

When we get the input sentences, we construct 218

a lookup table for querying between entities and 219

knowledge through the knowledge graph. After ob- 220

taining the corresponding entity-knowledge pairs, 221

the entity-knowledge pairs are filled and aligned by 222

our proposed method called EaKA, which solves 223

the problem that embedding knowledge will lose 224

semantics. Further, we use the token ids and knowl- 225

edge ids obtained by EaKA to reconstruct the input 226

ids and knowledge ids input ids. 227

Figure 2: An example showing how we can use knowl-
edge graphs (triples) to extract knowledge and build
Knowledge ids.

3.1 EaKA (Entity and Knowledge Align) 228

In the knowledge graph, the length of entities and 229

knowledge is basically not uniform, which be- 230

comes a big stumbling block on the way to combine 231

entities and knowledge. In order to solve this prob- 232

lem, we propose a method named EaKA, which 233

mainly does the following: 234

(1) Find every possible entity in the sentence and 235

let them match with the entities in the knowl- 236

edge graph, and if they match, they are the 237

entities we need; 238

(2) After finding the entities, we can easily get the 239

corresponding knowledge by means of dictio- 240

naries. After we have obtained both entities 241

and knowledge, we may find that, for example, 242

a. the length of entities is equal to 4 and the 243

length of knowledge is equal to 5; or b. the 244

length of entities is equal to 4 and the length of 245

knowledge is equal to 2,see Figure 3. These 246

two cases of uneven length are undoubtedly 247

very tricky, and Our proposed strategy is to use 248

the PAD token in the vocab to fill the ’empty 249

space’, using this approach to achieve consis- 250

tency in the length of input ids and knowledge 251
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input ids, and achieve no semantic loss, be-252

cause the PAD token does not have any seman-253

tic information as the filled token. After fill-254

ing, we get entities and knowledge of the same255

length! After that, we can iterate through the256

matched entity-knowledge pairs in the sentence257

one at a time by a for loop, and then cut-and-258

merge the original sentence in a circular way to259

get a new sentence without losing the original260

meaning step by step and prepare for the next261

step of building the knowledge sentence.262

Figure 3: Situations we may encounter when finding
entity-knowledge pairs.

3.2 NTPK (Pad all same part but knowledge)263

In our later work, we want to add the new input264

ids to the knowledge input ids by nn.Embedding to265

get the fused word embedding, so, at the beginning,266

we thought of taking the knowledge input ids ex-267

cept for the knowledge part, and all the other parts268

However, this is not feasible, and most importantly,269

it greatly destroys the distribution of the original270

input ids by multiplying them by two, which is271

obviously unreasonable. So, we propose a new272

approach to solve this problem and prevent the de-273

struction of the original distribution: i.e., still using274

the PAD token in vocab for filling the same part275

between input ids and knowledge input ids, again,276

the PAD token does not have any semantic infor-277

mation! We did the corresponding ablation experi-278

ments (only for the optimal parameters): keeping279

the same fraction vs. not keeping the same frac-280

tion, see Table 1. The experimental results show281

that the effect of using NTPK is better in terms of282

generalizability of the model.283

3.3 Last step but also simple !284

We put the resulting input ids and knowledge input285

ids through the embedding layer to get the implicit286

vector, and the semantics between them are aligned,287

so we add them to each other!288

As shown in Figure 4, the word embedding289

and knowledge embedding are added to obtain290

the fused word embedding incorporating external291

knowledge, and then added to the remaining two292

embeddings to obtain the final new bert’s embed- 293

ding. 294

Figure 4: The aligned input ids and knowledge ids are
summed to obtain the fused word embedding.

4 Experiments 295

4.1 Knowledge graph 296

The knowledge contained in CN-DBpedia is too 297

much due to the lack of equipment resources, so 298

we employ one Chinese KGs, HowNet. (Dong 299

et al., 2015) which is a large-scale language knowl- 300

edge base for Chinese vocabulary and concepts, in 301

which each Chinese word is annotated with seman- 302

tic units called sememes. If we take word, contain, 303

sememes as a triple, HowNet is a language KG. 304

Similarly, we refine the official HowNet by elim- 305

inating those triples whose entity names are less 306

than 2 in length or contain special characters. The 307

refined HowNet contains a total of 52,576 triples. 308

4.2 Baselines 309

In this paper, we compare BERT with K2E-BERT, 310

using the same parameters and the same pre- 311

training weights: Bert-base-Chinese1 . 312

4.3 Hyperparameter setting 313

For a fair comparison of experiments, we use the 314

base-version weights of Bert-base-Chinese, and the 315

parameters set are the same as those in its config. 316

We denote the number of self-attentive layers and 317

heads as L and A, respectively, and the hidden di- 318

mension of the embedding vector as H. In detail, 319

we have the following model configuration. L=12, 320

A=12, H=768. The learning rate for all tasks is 321

2e-5, the decay rate is 0.01, and the warmup ratio 322

is 0.1, epoch is 5, early stop is set to 5, maximum 323

sentence length is 256; where the maximum entity 324

length for different tasks is variable and takes val- 325

ues in the range [1, 18]. The total number of train- 326

able parameters for BERT and K2E-BERT is the 327

same, which means that they are compatible with 328

1https://huggingface.co/
bert-base-chinese/tree/main
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Models
Datasets Book_review LCQMC Chnsenticorp Shopping Average

Dev Test Dev Test Dev Test Dev Test Dev Test
NTPK 88.11 87.45 88.6 87.41 94.92 95.17 97.01 96.97 92.16 91.75
Not NTPK 88.16 87.04 89.18 87.06 94.83 95.17 97.07 96.86 92.31 91.53
Max Entity Length 5 7 5 6

Table 1: Tabel of experimental results comparing the use of NTPK with no use.

Datasets Train size Dev size Test size
LCQMC 238766 8802 12500
Book_review 20000 10000 10000
Chnsenticorp 9600 1200 1200
Shopping 20000 10000 10000

Table 2: Introduction to the size of datasets in the open
domain.

each other in terms of model parameters and do not329

introduce redundant computational overhead.330

4.4 Datasets331

In this paper, we first compare the performance of332

KBERT with the BERT on eight Chinese open-333

domain NLP tasks. Among these four tasks,334

Book_review, Chnsenticorp, Shopping are single-335

sentence classification tasks, and LCQMC is the336

sentence-pair classification tasks:337

Book_Review is a online review dataset that con-338

tains 20,000 positive and 20,000 negative re-339

views ;340

Chnsenticorp is a hotel review dataset with a total341

of 12,000 reviews, including 6,000 positive342

reviews and 6,000 negative reviews;343

Shopping is a online shopping review dataset that344

contains 40,000 reviews, including 21,111345

positive reviews and 18,889 negative reviews;346

LCQMC is a large-scale Chinese question match-347

ing corpus. The goal of this task is to deter-348

mine if the two questions have a similar intent.349

The specific data size of the dataset is shown in350

Table 2.351

4.5 Experimental results352

Each of the above datasets is divided into three353

parts: train, dev, and test. We use the train part354

to fine-tune the model and then evaluate its perfor-355

mance on the dev and test parts. The experimental356

results are shown in Table 3.357

We can see that the difference between BERT 358

and K2E-BERT on the test dataset is close to one 359

percentage point on the results of the sentence-pair 360

task, LCQMC! And in the other single-sentence 361

tasks also have some improvement on the test 362

dataset, which fully illustrates that K2E-BERT 363

can effectively improve the generalization of the 364

model with the incorporation of external knowl- 365

edge. Meanwhile, LCQMC has a larger data size 366

compared to the other 3 datasets, which also proves 367

that K2E-BERT brings higher improvement than 368

the case of data scarcity when there is relatively 369

more data, i.e., the size of data is proportional to 370

the effect of generalization improvement it brings 371

to the model. 372

5 What Kinds of Knowledge Are 373

Beneficial to The Model? 374

We took the numbers in the interval [4, 9] as input 375

for the parameter max entity length and analyzed 376

the results with the dataset. As shown in Figure 377

5, the performance results of the test set for each 378

dataset with different max entity lengths are shown. 379

Figure 5: Impact of maximum entity length on the test
set. (black is book_review ; green is LCQMC ; blue is
chnsenticorp ; yellow is shopping)

As shown in the figure above, the maximum 380

entity length has approximately the same trend on 381

the accuracy of the test set for all datasets. 382
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Models
Datasets Book_review LCQMC Chnsenticorp Shopping Average

Dev Test Dev Test Dev Test Dev Test Dev Test
Bert-base-Chinese 88.56 87.12 88.99 86.17 94.67 95.08 97.12 96.84 92.33 91.30
K2E-BERT 88.11 87.45 88.6 87.41 94.92 95.17 97.01 96.97 92.16 91.75
Best-entity-length 5 7 5 6

Table 3: Results of Bert and K2E-Bert on sentence classification tasks on open-domain tasks (Acc. %)

Most of the entities within these intervals have383

their corresponding knowledge lengths differing384

from their distances in the range [1, 3], which385

shows that these entities have the highest improve-386

ment in generalization effect when their lengths are387

not much different from their knowledge lengths.388

6 Discussion389

So far, we have experimentally demonstrated the390

effectiveness of K2E-BERT, which can easily incor-391

porate external knowledge and enhance the gener-392

alization ability of the original model, allowing the393

model to learn the function of association, which394

is a completely new branch of research. For the395

future work and prospect, we can summarize with396

the following points:397

(1) There are still many low-quality data in the398

existing knowledge graph. If we can have a399

higher quality knowledge graph, the general-400

ization ability of K2E-BERT will also be better401

enhanced;402

(2) We will further analyze how other factors in403

the knowledge graph affect the model and en-404

hance its generalization ability with respect to405

the relationship of entities in the original text;406

whether the entities in the original text and407

their corresponding knowledge in the knowl-408

edge graph are somehow related in the seman-409

tic space is to be proven later;410

(3) Try to transfer the model structure of K2E-411

BERT to the pre-training task, so that the up-412

stream task can be closer to the downstream413

task and reduce the performance loss caused414

by the large gap among them.415

7 Conclusion416

In this paper, we propose the use of K2E-BERT to417

implement the fusion of external knowledge into418

linguistic representations to achieve the ability to419

associate and reason with the help of knowledge420

from other domains that people use when reading421

text. To summarize, K2E-BERT first extracts the 422

entities present in the sentence with the external 423

knowledge map and the knowledge associated with 424

it together, and then uses EaKA to align the entities 425

with the word count of the knowledge so that they 426

have the same word count in space to achieve the 427

effect of reducing the loss of sentence meaning. 428

Next, other tokens that do not exist in the external 429

knowledge graph are replaced with [PAD], aiming 430

to make minimal deviation from the original dis- 431

tribution when obtaining fused word embedding 432

and making changes only in entity positions. Our 433

approach is simpler and useful than K-BERT in fac- 434

ing the challenges of HES and KN. The empirical 435

results show that knowledge graphs are very help- 436

ful for NLP and NLI any, and they can improve the 437

generalization ability of the model to a considerable 438

extent. In addition,K2E-BERT incorporates exter- 439

nal knowledge and does semantic integration with 440

the original without changing the structure of the 441

BERT model, which allows us to integrate with any 442

existing pre-trained language model and is highly 443

scalable. K2E-BERT is compatible with the model 444

parameters of BERT, which means that users can 445

directly adopt existing pre-trained BERT parame- 446

ters (e.g., BERT, NeZha (Wei et al., 2019), etc.) 447

on K2E-BERT without the need of pre-training 448

themselves. 449
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