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ABSTRACT

Deep learning based virtual try-on system has achieved some encouraging
progress recently, but there still remain several big challenges that need to be
solved, such as trying on arbitrary clothes of all types, trying on the clothes from
one category to another and generating image-realistic results with few artifacts.
To handle this issue, we propose the Arbitrary Virtual Try-On Network (AVTON)
that is utilized for all-type clothes, which can synthesize realistic try-on images
by preserving and trading off characteristics of the target clothes and the reference
person. Our approach includes three modules: 1) Limbs Prediction Module, which
is utilized for predicting the human body parts by preserving the characteristics of
the reference person. This is especially good for handling cross-category try-on
task (e.g., long sleeves ↔ short sleeves or long pants ↔ skirts, etc.), where the
exposed arms or legs with the skin colors and details can be reasonably predicted;
2) Improved Geometric Matching Module, which is designed to warp clothes ac-
cording to the geometry of the target person. We improve the TPS-based warping
method with a compactly supported radial function (Wendland’s Ψ-function); 3)
Trade-Off Fusion Module, which is to trade off the characteristics of the warped
clothes and the reference person. This module is to make the generated try-on
images look more natural and realistic based on a fine-tuning symmetry of the net-
work structure. Extensive simulations are conducted and our approach can achieve
better performance compared with the state-of-the-art virtual try-on methods.

1 INTRODUCTION

During the past few years, computer vision technology has been widely utilized in the extensive
applications of artificial fashion. These applications include clothes detection Liu et al. (2016); Ge
et al. (2019), clothes parsing Li et al. (2019); Gong et al. (2017), clothes attributions and categories
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Figure 1: We propose AVTON that is trained with an all-type clothing dataset. It can be adapted to
all-type clothing try-on tasks and get image-realistic results. The types of clothes are divided into
the top, bottom, and whole, and we apply CP-VTON Wang et al. (2018a) and AVTON on them.
The CP-VTON is retained with the all-type clothing dataset, and the AVTON (Vanilla) indicates
the AVTON trained without LPM and Wendland’s Ψ-function Wendland (1995), while the AVTON
(Full) is just the opposite.

recognition Wang et al. (2018a); Liu et al. (2016); Ge et al. (2019); Gao et al. (2022); Zeng et al.
(2022), clothes collocation Iwata et al. (2011); Zhao et al. (2020); He et al. (2016); Shih et al. (2018);
Li et al. (2017); Han et al. (2017); Cui et al. (2019); Zeng et al. (2020), etc. These applications are
all merited from recently developed technology, namely deep learning, due to its powerful feature
extraction ability to capture rich mid-level image representations. Motivated by this technology,
deep learning-based virtual try-on methods have been extensively studied and achieved considerable
results recently.

Many deep learning-based methods for virtual try-on have been developed during the past decade.
VITON Han et al. (2018) and CP-VTON Wang et al. (2018a) are the two first works. The key idea
of VITON is to exploit a Thin-Plate Spline (TPS) Duchon (1977) based method to warp the clothes
images with texture mapped on it, while CP-VTON has extended VITON by developing neural
network layers to learn the transformation parameters. VTNFP Yu et al. (2019) and ACGPN Yang
et al. (2020) are another two popular methods that have improved the performance of the try-on
task with more characteristics of clothes and human body preserved. Recently, many methods have
been developed that focus on a certain aspect to improve performance. For example, the PFAFN Ge
et al. (2021) adopts the knowledge distillation from a large complex network to achieve the faster
reference time as well as remove the human parsing procedure; VITON-HD method Choi et al.
(2021); Lee et al. (2022) is specially developed to handle high-resolution try-on task. Dong et al.
(2022) further proposes wFlow for handling video try-on tasks in the wild by adopting the optical
flow from videos, while Jiang et al. (2022) has firstly utilized transformer for taming video try-on
tasks. All the above methods have verified the effectiveness of deep learning-based virtual try-on.

Although these works have made some progress, most of them only focus on top cloth try-on tasks
and cannot handle arbitrary try-on tasks (the top, bottom, or the whole clothes). This is of great
practice in real-world applications and currently, there are few works focused on this try-on task.
In addition, it still remains some ongoing challenges and limitations: 1) most benchmark datasets
utilized for training virtual try-on methods mainly contain top clothes. As a result, the trained model
can only handle the top clothing try-on task while cannot be adapted to work on the other bottom or
whole clothing try-on task; 2) cross-category try-on task (e.g., long sleeves↔short sleeves or long
pants↔skirts, etc.) is another challenge in the try-on task. A case in point is that when people aim to
try on from long sleeves to short sleeves, some parts of people’s arms will be exposed. Therefore, it is
necessary to preserve the characteristics of the reference person and predict such an exposed human
body when generating the image-realistic try-on results. However, most current methods Han et al.
(2018); Wang et al. (2018a); Pandey & Savakis (2020); Yu et al. (2019) do not consider this issue.
As a result, some bad try-on performances, e.g., the limbs of human beings are covered by clothes,
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the color of the skin is wrongly painted and the hand details cannot be properly generated, may be
appeared; 3) current methods are not good at trading off characteristics of the warped clothes and
the reference person. Although it can preserve the characteristics of the warped cloth and reference
person as much as possible, its generated images are not realistic enough, such as some artifacts near
the neck regions. The reason for these results is that the final fusion module prefers to preserve the
warped clothing characteristics and cannot correct these errors.

In this paper, we propose a new image-based virtual try-on method, called AVTON, to achieve ar-
bitrary clothing try-on and image-realistic results. The proposed method contains three modules:
a) Limbs Prediction Module, which is developed for predicting limbs, and keep the head and the
non-target human body parts, to preserve the characteristics of the reference person. This module
is especially suitable for handling cross-category try-on task, such as long sleeves ↔ short sleeves
or long pants ↔ skirts, etc., where the exposed arms or legs (including their skin colors and details)
can be reasonably predicted. This is good to help the try-on system for formulating a realistic result
in the following modules; b) Improved Geometric Matching Module, which is designed to warp
clothes according to the geometry of the reference person. By carefully analyzing the basic concept
of Thin-Plate Spline (TPS) Duchon (1977) based methods, we argue that the selection of radial ba-
sis function is a key point to affect the performance of image warping. Motivated by this end, we
then have adopted Wendland’s Ψ-function Wendland (1995) as the compactly supported radial basis
function. Both theoretical analysis and simulation have verified that the proposed method is able to
characterize the local geometrical structure of images, which is good for warping the clothes image,
especially with the complex texture; c) Trade-Off Fusion Module, which is to trade off the charac-
teristics of the warped clothes and the reference person, this module is to make the generated try-on
images looks more natural and realistic based on a fine-tune symmetry of the network structure (a
pair of UNet Ronneberger et al. (2015)). Experiments show that AVTON significantly outperforms
the state-of-the-art methods for virtual try-on Han et al. (2018); Wang et al. (2018a); Yu et al. (2019);
Yang et al. (2020), and can generate realistic try-on images in all-type clothing try-on task (Fig. 1).

2 ARBITRARY VIRTUAL TRY-ON NETWORK

…+

⨁

⨁

𝜃, 𝛼

⨁

1

1 + 𝑉𝐺𝐺

G

1

IGMM

LPM

TOFM

+⨁

encoder decoder
correlation

matching

warping 

With

Ψ-function

concatenation

element-

wise

addition

mask

composition

residual

block

Step ⅢStep Ⅱ

Step Ⅰ

⨁

Fusion Part

𝑐 𝑑

𝑝

ℎ
𝐻

𝐻

Input

መ𝑙

𝑙𝑟

𝑐𝑟

Ƹ𝑐

𝑚𝑟

𝐼𝑟

𝑟

𝐼𝑡

ෝ𝑚

 Ƹ𝑐





Figure 2: An overview of our AVTON. Step I: Limbs Prediction Module takes the target clothes
c and the human body information H as the input to predict the exposed limbs and preserve the
primary human body information, and output the predicted human body l̂; Step II: Improved Ge-
ometric Matching Module takes the target clothes c and the refined human body information Ĥ as
input, and output the warped clothes ĉ; Step III: Trade-Off Fusion Module firstly takes the warped
clothes ĉ and the refined human body information Ĥ as the input to predict the composition mask
m̂ and the rendered person r, and then compose the outputs with the warped clothes ĉ to generate
the try-on image It.

Our goal is to learn an arbitrary virtual try-on model that can be adapt to all-type clothing and
cross-category try-on tasks and generate more realistic try-on images than prior arts. The proposed
AVTON contains three modules, as shown in Fig. 2. First, the limbs Prediction Module (LPM)
is utilized to predict the limbs, head, and non-target human body. This is especially useful for
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handling cross-category try-on task. Second, the Improved Geometric Matching Module (IGMM)
uses Wendland’s Ψ-function Wendland (1995) to improve the TPS based method Duchon (1977) for
warping the clothes. Third, the Trade-Off Fusion Module (TOFM) takes the warped clothes and the
human body information as input, and then generates composition mask and rendered person by a
pair of UNet Ronneberger et al. (2015) and a fusion part. Especially, the TOFM takes advantage of
GAN Goodfellow et al. (2020).

2.1 LIMBS PREDICTION MODULE (LPM)

The purpose of designing the Limbs Prediction Module (LPM) is to predict the exposed limbs and
preserve the primary human body information (i.e., head, hand details, and non-target human body
parts). Most earlier methods generate exposed limbs in try-on steps but neglected primary human
body information, which may generate unreasonable color of skin and occlusion. This can usually
happen when handling cross-category try-on task, i.e. long sleeve → short sleeve, or long pant →
short pant, as some limbs originally covered by the clothes will be exposed. We thereby propose
LPM to address these issues.

Given a reference person image Ir, LPM takes the target clothes c, the human body information
(i.e., the pose and shape information d extracted by DensePose Alp Güler et al. (2018), the head and
non-target human body parts information p as mentioned in Section ??) as inputs to predict exposed
limbs l̂. In detail, the target clothes c and the human body informationH = d⊕p (⊕: concatenation)
are firstly encoded as the input features. They are then formed as a single tensor by a correlation
layer and input to the decoder, which is to calculate the feature correlation by M = M̂T

cM̂H , M̂H

and M̂c are the normalized encoder features of body information H and clothes information c,
respectively. Finally, the exposed limbs are predicted by the decoder. The encoder and correlation
layer are similar to CP-VTON’s GMM step Wang et al. (2018a), while the human body information
d’s encoder-decoder layers are similarly to UNet Ronneberger et al. (2015) structure shown in Fig.
2. All this leads to preserve the primary body information.

The LPM is trained under a combination of the pixel-wise L1 loss and VGG perceptual loss between
predicted result l̂ and ground truth lr, where lr includes head, non-target human body parts and
exposed limbs in the reference person Ir:

LLPM = λL1∥l̂ − lr∥1 + λvggLVGG(l̂, lr) (1)

where

LVGG(l̂, lr) =

5∑
i=1

λi∥ϕi(l̂)− ϕi(lr)∥1 (2)

is the VGG perceptual loss, where λL1 and λvgg are the trade-off parameters for two loss terms in
Eq. 1, which all set to 1 in our experiments, and ϕi(l) denotes the feature map of limbs’ image l of
the i-th layer in the visual perception network ϕ, which is a VGG19 pre-trained on ImageNet.

2.2 IMPROVED GEOMETRIC MATCHING MODULE (IGMM)

The old way of warping clothes is based on Thin-Plate Splines (TPS) Duchon (1977) with r2 log r
as Radial Basis Functions (RBFs). This method yields minimal bending energy properties measured
over the whole image. But since it is not a compactly supported RBFs, the deformation will cover
the regions where all control points are located. It is advantageous for yielding an overall smooth
deformation and preserving geometrical characteristics, but it is problematic when only a small
part of the image is desired to be deformed. This will lead to unreasonable deformation when
warps clothes. To address this issue,we in this work has adopted Ψ-function of Wendland Wendland
(1995) as RBFs. As mentioned in Fornefett et al. (1999; 2001), it is a more compactly support for
the registration of images so that the bending region can be narrowed down when minimizing the
bending energy. Here, we first give its formulation as follows:

ψd,k(r) := Ik
(1−r)⌊d/2⌋+k+1

+

(r) (3)

where

(1− r)v+ =

{
(1− r)v 0 ≤ r < 1

0 r ≥ 1
,
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Iψ(r) :=

∫ ∞

r

tψ(t)dt r ≥ 0.

The equation also holds for different spatial supports α: ψα(r) = ψ(r/α). We apply the ψα,3,1-
function as RBFs to replace the TPS’s RBFs:

ψα,3,1(r) = (1− r/α)4+(4r/α+ 1) (4)

where α is a learnable parameter as same as the spatial transformation parameters θ. Inspired by
CP-VTON Wang et al. (2018a), we use the same structure to learn these parameters. As shown in
Fig. 2, our IGMM firstly extract high-level features of the target clothes c and the refined human
body information Ĥ = d⊕ l̂⊕h (h represents hand details in reference person Ir) respectively. Then
a correlation layer to combine two features into as single tensor as input to the regression network
that predicts θ and α. Finally, a transformation Ψθ,α based on Eq. 4 for warping the target clothes c
into the result ĉ = Ψθ,α(c).

To learn the module above, we make some derivations and experiments to study the size of spatial
supports α, which shows a significant positive correlation between spatial warping range and α,
and we concluded that the best α should meet the condition: α ≥ D, where D is the maximum
distance among control points in Delaunay triangles Delaunay et al. (1934). In our experiments, we
setD =

√
a2 + b2 (a and b is the vertical distance and the horizontal distance among nearest control

points, respectively). Consequently, the final α = λαα̂+D, where α̂ is the sigmoid’s output of the
regression network and λα is set to 6 in our experiments.

To train the module, we conducted it under the pixel-wise L1 loss between the warped clothes ĉ and
ground truth cr, where cr is the clothes worn on the reference person in Ir:

LIGMM = ∥ĉ− cr∥1 = ∥Ψθ,α(c)− cr∥1 (5)

2.3 TRADE-OFF FUSION MODULE (TOFM)

Try-on image synthesis from the warped clothes and the reference person is a many-to-one mapping
problem. It aims at not only preserving the characteristics of the warped clothes and the reference
person, but also trading off them to make images realistic. One of the common methods Han et al.
(2018) is to produce a composition mask for fusing UNet Ronneberger et al. (2015) rendered person
with warped clothes and finally to produce a refined result. Although it can refine the course try-on
image, it lacks preserving characteristics of the warped clothes. Another common method Wang
et al. (2018a) is to utilize an UNet to render a person image and predict a composition mask si-
multaneously, and then synthesizing the try-on image by fusing the rendered person and the warped
clothes via the composition mask. But this way failed to preserve characteristics of reference person
on account of using a single UNet structure, this structure prefers to preserve characteristics of the
warped clothes. And other methods Yu et al. (2019); Yang et al. (2020) have some problems with
trading off characteristics between the warped clothes and the reference person (e.g., artifacts near
the neck regions).

In this paper, we adopt a GAN Goodfellow et al. (2020) based method for generating the realistic
try-on image. In detail, we formulate the generator G in GAN by a pair of UNet, where the inputs
are the warped clothes ĉ and refined human body information Ĥ , while the outputs are the generated
composition mask m̂ and rendered person r. However, making the characteristics of the warped
clothes and the reference person contribute equally when generating the try-on image is still prob-
lematic, as this will cause occlusion and artifact problems. To make images more realistic, we add a
fusion part in our try-on module (Fig. 2 residual blocks) for handling the above problems. Specifi-
cally, in the proposed module, the warped clothes’ features Fĉ and the refined human body features
are firstly summed element-wisely, so that the fused features can be obtained, i.e. F (Fĉ+ F̂ → F).
Then the fused features F are concatenated with Fĉ and F̂ , and decoded respectively to get predicted
mask m̂ and predicted rendered person r. Finally, similarly to CP-VTON Wang et al. (2018a), ĉ and
r are fused together using m̂ to synthesize try-on image It:

It = m̂⊙ ĉ+ (1− m̂)⊙ r (6)

where ⊙ represents element-wise matrix multiplication. Additionally, we use the multi-scale dis-
criminators D that is similar to pix2pixHD Wang et al. (2018b).
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At the training phase, the generator’s loss is the combination loss scheme of CP-VTON and
pix2pixHD, it includes L1 loss, VGG perceptual loss (Eq. 2) and LSGAN loss:

LG =λL1∥It − Ig∥1 + λvggLVGG(It, Ig)+

λmask∥m̂−mr∥1 + λlsgan(D(ĉ, Ĥ, It)− 1)2
(7)

while the discirminator’s loss is:

LD =((D(ĉ, Ĥ, It))
2 + (D(ĉ, Ĥ, Ig)− 1)2)/2 (8)

where Ig is the ground truth image, and Ig = Ir in training stage, mr is the mask of cr. In our
experiments, we set λL1, λvgg and λmask to 10, while set λlsgan to 1.

3 EXPERIMENTS

3.1 DATASET DESCRIPTION

In this work, we evaluate the performance of our proposed work based on two datasets: the VITON
dataset Han et al. (2018) that is used in VITON Han et al. (2018), CP-VTON Wang et al. (2018a)
and ACGPN Yang et al. (2020) et al., and the newly-collected Zalando dataset. In this paper we call
them VITON-Dataset and Zalando-Dataset respectively.

The VITON-Dataset contains 16253 frontal-view woman and top clothing image pairs, which is
split into a training set and a testing set with 14221 and 2032 pairs respectively. We also use the
strategy in ACGPN Yang et al. (2020) to score the complexities of images in dataset and divide
them into Easy, Medium, and Hard levels, which is used to further evaluate the proposed method
and other state-of-the-art methods for handling different levels of try-on task.

Though VITON-Dataset only contains top clothes while lacks of bottom and whole clothes. It
cannot be utilized to train the model for handling arbitrary try-on tasks. We thereby in this
subsection introduce the newly-collected Zalando-Dataset. The Zalando-Dataset is crawled from
https://www.zalando.co.uk/. It contains 34928 frontal-view human (include man and woman) and
clothing (include top, bottom, and whole) image pairs. In our study, we split it into training set and
testing set with 32746 and 2182 image pairs, respectively. In detail, the training set contains 19185
tops, 10587 bottoms, and 2974 whole clothes, while the testing set contains 1310 tops, 692 bottoms,
and 180 whole clothes.

3.2 IMPLEMENTATION DETAILS

The experiments are conducted on the VITON-Dataset and Zalando-Dataset respectively, and the
results are entirely independent of each other. Followed by steps in Fig. 2, we first train the LPM
and then use the LPM’s trained results to train the IGMM, followed by training the TOFM with the
trained results from LPM and IGMM. On the VITON-Dataset training setup, each module is trained
for 400K steps with batch size 4, while on the Zalando-Dataset training setup, each module is trained
for 800K steps with batch size 4. Both training setups use the Adam optimizer with β1 = 0.5 and
β2 = 0.999, and the learning rate is fixed at 0.0001. Additionally, the resolution for all input and
output images is 256 × 192, and we use a single NVIDIA 2080Ti GPU in our experiments; we
also use the same steps as the training stage to test the modules. The qualitative results in the easy,
medium, and hard cases respectively in the Zalando-Dataset testing stage can be seen in Fig. 4 and
Fig. 5.

3.3 QUALITATIVE RESULTS

On the VITON-Dataset. Fig. 3 shows visual comparisons of our proposed method with VITON
Han et al. (2018), CP-VTON Wang et al. (2018a), VTNFP Yu et al. (2019) and ACGPN Yang et al.
(2020). To save a lot of work on reproducing them (VTNFP has no official code), we refer to the
results from the paper of ACGPN. Note that we validate the official code of ACGPN qualitatively
and quantitatively and receive the same results as with ACGPN.

In comparison to VITON and CP-VTON, VTNFP preserves more characteristics by using segmen-
tation representation to preserve the non-target parts, but it does not contain enough details. This
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Figure 3: On the VITON-Dataset. Qualitative comparisons of VITON Han et al. (2018), CP-
VTON Wang et al. (2018a), VTNFP Yu et al. (2019), ACGPN Yang et al. (2020) and AVTON in
easy to hard levels (from top to bottom). Our method preserves more characteristics of the reference
person with the LPM, and it also preserves more characteristics of the target clothes with the IGMM.
What’s more, AVTON can generate more realistic try-on images with the TOFM, which is good at
trading off characteristics of the warped clothes and the reference person.

happens because of an unawareness of the semantic layout and the relationship within the layout.
ACGPN performs better than VTNFP, in that it can preserve hand details, but it also fails to generate
try-on details. This is because ACGPN uses TPS to warp clothes (mentioned in Section 2.2), and it
uses a simple UNet to fuse the features, which makes it difficult to trade off characteristics of the
target clothes and the reference person (mentioned in Section 2.3).

However, AVTON does better both in preserving characteristics and trading off characteristics. Ben-
efiting from the LPM, it predicts limbs first and then provides limb information to the TOFM, which
helps solve occlusion problems(e.g., the blue box on the fourth row, the arm is clearer than others).
What’s more, the IGMM warps clothes more reasonably to preserve styles and patterns (e.g., the
blue box on the third row, sleeves are the same length and patterns are clear), and the TOFM makes
the try-on image more realistic due to trade-off (e.g., the yellow box on the fourth row, the inner
collar should be ignored). In a nutshell, AVTON can generate more realistic try-on images than
VITON, CP-VTON, VTNFP, and ACGPN.

On the Zalando-Dataset. For fair comparisons, we retrain CP-VTON, Outfit-VITON Neuberger
et al. (2020) and ACGPN using the Zalando-Dataset and select the best-trained models. We put on
different types of clothes for a person (Fig. 4) and put on one type of clothes for persons of different
complexity levels (Fig. 5). It is evident from the results that CP-VTON is not suitable for the all-type
clothing try-on task, as CP-VTON uses TPS to warp clothes that we motioned in Section 2.2 and uses
a single UNet to generate limbs in the try-on step that we motioned in Section 2.1. Outfit-VITON
performs better than CP-VTON, but the content of the generated images are incomplete (the first
row in Fig. 4). This can be reasonable because the Outfit-VITON first decouples the features of the
clothes and human body, and then decodes them to generate the try-on image. This procedure does
not consider the perservation of spatial information, making the image incomplete. In comparison
to CP-VTON and Outfit-VITON, ACGPN generates more realistic try-on results, but there are still
some issues mentioned in the VITON-Dataset. However, AVTON can deal with these issues by
allowing the LPM to accurately predict the color of skin, the IGMM to warp clothes accurately, and
the TOFM to make results more realistic.
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Figure 4: On the Zalando-Dataset. Qualitative comparisons of CP-VTON, Outfit-VITON, ACGPN
and AVTON with different types of clothing. Our AVTON adapts successfully to the all-type cloth-
ing try-on task.
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Figure 5: On the Zalando-Dataset. Qualitative comparisons of CP-VTON, Outfit-VITON, ACGPN
and AVTON at different complexity levels. Our AVTON adapts successfully to cross-category try-
on task.

3.4 QUANTITATIVE RESULTS

We employ Structure SIMilarity (SSIM) Wang et al. (2004) and Learned Perceptual Image Patch
Similarity (LPIPS) Zhang et al. (2018) to measure the similarity between try-on images and
groundtruths, and Inception Score (IS) Salimans et al. (2016) to measure the visual quality of try-on
images. Specifically, we measure SSIM and LPIPS at different complexity levels on the VITON-
Dataset, and measure them with different types of clothes on the Zalando-Dataset.

On the VITON-Dataset. TABLE 1 shows quantitative comparisons of our AVTON with VITON,
CP-VTON, VTNFP and ACGPN. In our experiments, AVTON obtains a significant lead in all these
metrics over baseline methods. Specifically, the SSIM of our method improves by 0.010, 0.014, and
0.023 respectively over that of the best baseline method (i.e., ACGPN) at each complexity level.
For LPIPS, our method beats the best baseline method (i.e., ACGPN) by 0.028, 0.030, and 0.036
respectively at each complexity level. And our method surpasses the best baseline method (i.e.,
ACGPN) by 0.195 in terms of IS.

Methods SSIM↑ / LPIPS↓ IS↑Mean Easy Medium Hard

VITON 0.783 / 0.183 0.787 / 0.175 0.779 / 0.185 0.779 / 0.199 2.650
CP-VTON 0.745 / 0.238 0.753 / 0.227 0.742 / 0.243 0.729 / 0.261 2.757

VTNFP 0.803 / 0.155 0.810 / 0.155 0.801 / 0.158 0.788 / 0.170 2.784
ACGPN 0.845 / 0.107 0.854 / 0.101 0.841 / 0.110 0.828 / 0.119 2.829
PF-AFN 0.849 / 0.101 0.857 / 0.095 0.845 / 0.091 0.820 / 0.104 2.883

AVTON (Vanilla) 0.813 / 0.135 0.820 / 0.128 0.810 / 0.137 0.798 / 0.151 2.880
AVTON (w/o Ψ) 0.819 / 0.123 0.826 / 0.116 0.816 / 0.126 0.805 / 0.137 2.983

AVTON (w/o LPM) 0.856 / 0.090 0.861 / 0.084 0.852 / 0.093 0.849 / 0.101 2.859
AVTON (Full) 0.859 / 0.077 0.864 / 0.073 0.855 / 0.080 0.851 / 0.083 3.024

Table 1: On the VITON-Dataset. SSIM and LPIPS are measured at different complexity levels.
AVTON (Vanilla), AVTON (w/o Ψ) and AVTON (w/o LPM) are used for ablation studies.

On the Zalando-Dataset. As shown in TABLE 2, we present quantitative comparisons of our
AVTON with CP-VTON, Outfit-VITON, and ACGPN, in which CP-VTON, Outfit-VITON and
ACGPN are retrained as mentioned in Section 3.3. The SSIM of our method improves by 0.007,
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Methods SSIM↑ / LPIPS↓ IS↑Mean Top Bottom Whole

CP-VTON 0.758 / 0.182 0.732 / 0.195 0.792 / 0.170 0.812 / 0.131 3.556
Outfit-VITON 0.787 / 0.155 0.763 / 0.172 0.831 / 0.127 0.792 / 0.137 3.722

ACGPN 0.808 / 0.134 0.778 / 0.151 0.860 / 0.105 0.831 / 0.118 3.877
PF-AFN 0.810 / 0.128 0.779 / 0.149 0.865 / 0.096 0.829 / 0.124 3.882

AVTON (Vanilla) 0.809 / 0.128 0.775 / 0.152 0.868 / 0.086 0.824 / 0.113 3.967
AVTON (w/o Ψ) 0.811 / 0.126 0.776 / 0.151 0.876 / 0.081 0.818 / 0.120 3.971

AVTON (w/o LPM) 0.813 / 0.120 0.779 / 0.143 0.874 / 0.080 0.827 / 0.107 4.023
AVTON (Full) 0.819 / 0.115 0.785 / 0.137 0.880 / 0.075 0.832 / 0.103 3.976

Table 2: On the Zalando-Dataset. SSIM and LPIPS are measured with different types of clothes.
AVTON (Vanilla), AVTON (w/o Ψ) and AVTON (w/o LPM) are used for ablation studies.

0.020, and 0.001 respectively over that of the best baseline method (i.e., ACGPN) for each type of
clothing. For LPIPS, our method beats the best baseline method (i.e., ACGPN) by 0.014, 0.030, and
0.015 respectively for each type of clothing. And our method surpasses the best baseline method
(i.e., ACGPN) by 0.099 in terms of IS.
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Figure 6: Comparison of TPS and Wendland’s
Ψ-function.
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Figure 7: Comparison of the results with and
without the LPM.

3.5 ABLATION STUDY

Similarly to the quantitative comparisons, we evaluate the effectiveness of both the LPM and Ψ
(Wendland’s Ψ-function) using SSIM, LPIPS and IS. As shown in TABLE 1 and TABLE 2, Wend-
land’s Ψ-function plays an important role, where AVTON (Full) surpasses the AVTON (w/o Ψ) by
0.046 and 0.008 in terms of the mean of SSIM, respectively. Here we show the visual comparison
in Fig. 6, where Wendland’s Ψ-function can warp clothes locally and smoothly, while TPS warps
clothes globally. Additionally, the LPM has a significant impact on LPIPS and IS. The LPIPS of
AVTON (Full) is reduced by 0.013 (TABLE 1) and the IS of AVTION (Full) is increased by 0.165
(TABLE 1). As shown in Fig. 7, the results (w/o LPM) have broken arms. Note that in TABLE 2,
the IS of AVTON (Full) is lower than that of AVTON (w/o LPM). It can be explained that the testing
set contains Bottom and Whole cases, most of which do not have occlusion problems. Therefore,
the prediction error caused by LPM can be avoided, and the IS of the results without the LPM is
higher. In summary, the LPM is necessary for the cross-category try-on task in our experiments.

4 CONCLUSION

Deep learning based virtual try-on system has achieved some encouraging progress recently, but
there still remain several big challenges that need to be solved, such as trying on arbitrary clothes of
all types, trying on the clothes from one category to another and generating image-realistic results
with few artifacts. In this paper, we collect a new dataset to enhance the robustness and adaptiveness
of the virtual try-on model. Based on this dataset, we then propose a novel virtual try-on network for
handling all-type clothing try-on task (tops, bottoms, and whole clothes) and cross-category try-on
task (e.g., long sleeves ↔ short sleeves or long pants ↔ skirts, etc.). Extensive simulations and
ablation study are conducted. Simulation results based on Quantitative, qualitative evaluation and
user study illustrate the great superiority of our AVTON over the state-of-the-art methods.
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l’urss. Classe des sciences mathématiques et naturelles, 6:793–800, 1934.

Xin Dong, Fuwei Zhao, Zhenyu Xie, Xijin Zhang, Daniel K Du, Min Zheng, Xiang Long, Xiaodan
Liang, and Jianchao Yang. Dressing in the wild by watching dance videos. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3480–3489, 2022.

Jean Duchon. Splines minimizing rotation-invariant semi-norms in sobolev spaces. In Constructive
theory of functions of several variables, pp. 85–100. Springer, 1977.

Mike Fornefett, Karl Rohr, and H Siegfried Stiehl. Elastic registration of medical images using radial
basis functions with compact support. In Proceedings. 1999 IEEE Computer Society Conference
on Computer Vision and Pattern Recognition (Cat. No PR00149), volume 1, pp. 402–407. IEEE,
1999.

Mike Fornefett, Karl Rohr, and H Siegfried Stiehl. Radial basis functions with compact support for
elastic registration of medical images. Image and vision computing, 19(1-2):87–96, 2001.

Shanchuan Gao, Fankai Zeng, Lu Cheng, Jicong Fan, and Mingbo Zhao. Fashion image search
via anchor-free detector. In Proceedings of the 2022 International Conference on Multimedia
Retrieval, pp. 416–425, 2022.

Yuying Ge, Ruimao Zhang, Xiaogang Wang, Xiaoou Tang, and Ping Luo. Deepfashion2: A versatile
benchmark for detection, pose estimation, segmentation and re-identification of clothing images.
In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 5337–
5345, 2019.

Yuying Ge, Yibing Song, Ruimao Zhang, Chongjian Ge, Wei Liu, and Ping Luo. Parser-free virtual
try-on via distilling appearance flows. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pp. 8485–8493, 2021.

Ke Gong, Xiaodan Liang, Dongyu Zhang, Xiaohui Shen, and Liang Lin. Look into person: Self-
supervised structure-sensitive learning and a new benchmark for human parsing. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 932–940, 2017.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial networks. Communications of the
ACM, 63(11):139–144, 2020.

Xintong Han, Zuxuan Wu, Yu-Gang Jiang, and Larry S Davis. Learning fashion compatibility with
bidirectional lstms. In Proceedings of the 25th ACM international conference on Multimedia, pp.
1078–1086, 2017.

Xintong Han, Zuxuan Wu, Zhe Wu, Ruichi Yu, and Larry S Davis. Viton: An image-based virtual
try-on network. In Proceedings of the IEEE conference on computer vision and pattern recogni-
tion, pp. 7543–7552, 2018.

Ruining He, Charles Packer, and Julian McAuley. Learning compatibility across categories for het-
erogeneous item recommendation. In 2016 IEEE 16th International Conference on Data Mining
(ICDM), pp. 937–942. IEEE, 2016.

10



Published as a conference paper at ICLR 2023

Tomoharu Iwata, Shinji Wanatabe, and Hiroshi Sawada. Fashion coordinates recommender system
using photographs from fashion magazines. In IJCAI, volume 22, pp. 2262. Citeseer, 2011.

Jianbin Jiang, Tan Wang, He Yan, and Junhui Liu. Clothformer: Taming video virtual try-on in all
module. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion, pp. 10799–10808, 2022.

Sangyun Lee, Gyojung Gu, Sunghyun Park, Seunghwan Choi, and Jaegul Choo. High-resolution
virtual try-on with misalignment and occlusion-handled conditions. In Computer Vision–ECCV
2022: 17th European Conference, Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part XVII,
pp. 204–219. Springer, 2022.

Peike Li, Yunqiu Xu, Yunchao Wei, and Yi Yang. Self-correction for human parsing. arXiv preprint
arXiv:1910.09777, 2019.

Yuncheng Li, Liangliang Cao, Jiang Zhu, and Jiebo Luo. Mining fashion outfit composition using
an end-to-end deep learning approach on set data. IEEE Transactions on Multimedia, 19(8):
1946–1955, 2017.

Ziwei Liu, Ping Luo, Shi Qiu, Xiaogang Wang, and Xiaoou Tang. Deepfashion: Powering robust
clothes recognition and retrieval with rich annotations. In Proceedings of IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), June 2016.

Assaf Neuberger, Eran Borenstein, Bar Hilleli, Eduard Oks, and Sharon Alpert. Image based virtual
try-on network from unpaired data. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 5184–5193, 2020.

Nilesh Pandey and Andreas Savakis. Poly-gan: Multi-conditioned gan for fashion synthesis. Neu-
rocomputing, 414:356–364, 2020.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedi-
cal image segmentation. In International Conference on Medical image computing and computer-
assisted intervention, pp. 234–241. Springer, 2015.

Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, and Xi Chen.
Improved techniques for training gans. Advances in neural information processing systems, 29:
2234–2242, 2016.

Yong-Siang Shih, Kai-Yueh Chang, Hsuan-Tien Lin, and Min Sun. Compatibility family learn-
ing for item recommendation and generation. In Thirty-Second AAAI Conference on Artificial
Intelligence, 2018.

Bochao Wang, Huabin Zheng, Xiaodan Liang, Yimin Chen, Liang Lin, and Meng Yang. Toward
characteristic-preserving image-based virtual try-on network. In Proceedings of the European
Conference on Computer Vision (ECCV), pp. 589–604, 2018a.

Ting-Chun Wang, Ming-Yu Liu, Jun-Yan Zhu, Andrew Tao, Jan Kautz, and Bryan Catanzaro. High-
resolution image synthesis and semantic manipulation with conditional gans. In Proceedings of
the IEEE conference on computer vision and pattern recognition, pp. 8798–8807, 2018b.

Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Simoncelli. Image quality assessment:
from error visibility to structural similarity. IEEE transactions on image processing, 13(4):600–
612, 2004.

Holger Wendland. Piecewise polynomial, positive definite and compactly supported radial functions
of minimal degree. Advances in computational Mathematics, 4(1):389–396, 1995.

Han Yang, Ruimao Zhang, Xiaobao Guo, Wei Liu, Wangmeng Zuo, and Ping Luo. Towards photo-
realistic virtual try-on by adaptively generating-preserving image content. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7850–7859, 2020.

Ruiyun Yu, Xiaoqi Wang, and Xiaohui Xie. Vtnfp: An image-based virtual try-on network with
body and clothing feature preservation. In Proceedings of the IEEE International Conference on
Computer Vision, pp. 10511–10520, 2019.

11



Published as a conference paper at ICLR 2023

Fankai Zeng, Mingbo Zhao, Zhao Zhang, Shanchuan Gao, and Lu Cheng. Joint clothes detection
and attribution prediction via anchor-free framework with decoupled representation transformer.
In Proceedings of the 31st ACM International Conference on Information & Knowledge Manage-
ment, pp. 2444–2454, 2022.

Wei Zeng, Mingbo Zhao, Yuan Gao, and Zhao Zhang. Tilegan: category-oriented attention-based
high-quality tiled clothes generation from dressed person. NEURAL COMPUTING & APPLICA-
TIONS, 2020.

Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. The unreasonable
effectiveness of deep features as a perceptual metric. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 586–595, 2018.

Mingbo Zhao, Yu Liu, Xianrui Li, Zhao Zhang, and Yue Zhang. An end-to-end framework for
clothing collocation based on semantic feature fusion. IEEE MultiMedia, 27(4):122–132, 2020.

12



APPENDIX

A THE DETAILED ANALYSIS OF THE COLLECTED ZALANDO-DATASET

In order to show the superiority of the collected Zalando-Dataset, we first illustrate the categories of
the dataset, which can be shown in Fig. 1. In detail, the division of dataset based on the categories
and genders is shown in Fig. 1(a). From Fig. 1(a), we can see that the collected try-on dataset
has involved almost all categories of clothes including both top and bottom clothes for man as well
as top, bottom and whole clothes for woman. Fig. 1(b) further show the statistics and distribution
of all categories of clothes according to gender and tyoes, where the images of top clothes take
up 58.68% while those of bottom and whole clothes take up the remaining 41.32%. Since the
conventional VITON-Dataset only involves images with top clothes while lacks of those of bottom
and whole clothes, the collected Zalando-Dataset is an extension to VITON-Dataset by involving
more clothing categories, which is good for handling real-world arbitrary try-on task.

In order to further show the superiority, we then analyze the characteristics of dataset and compare
with those of VITON-Dataset. Here, we choose two measurements for comparisons: 1) the size
of the dressed clothes taking up the whole referenced image, and 2) the complexity scores for the
referenced image (only for top clothes), which are firstly defined in ACGPN Yang et al. (2020) and
are divided into easy, medium and hard cases. The characteristics analysis of proposed dataset and
VITON-Dataset based on two measures are shown in Fig. 2.
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Figure 1: The category division and statistics of Zalando-Dataset: (a) division of dataset; (b) statis-
tics and distribution of dataset.

From Fig. 2(a), we can see that the size of the dressed clothes taking up the whole referenced
image has wide range from 0.2 to 0.6 in the collected dataset. While for VITON-Dataset, such
range mainly focus on about 0.45. This means that the collected dataset has different sizes of the
dressed clothes and is more extensive in data selection. This can also be more realistic and closer
to the real-world cases. As a result, a try-on method that can handling different size of the dressed
clothes is more useful and practical, which is good to satisfy the requirement of user. From Fig.
2(b), we can see that the distribution of the score curve of the collected dataset is on the left of that
of VITON-Dataset. This indicates that the complexity of the proposed dataset is higher than that
of VITON-Dataset. Therefore, a method trained on such dataset can handle more complex try-on
task such as limb intersections and torso occlusions, which is good to enhance the robustness and
adaptiveness of the model.

B ANALYSIS OF ψ-FUNCTION OF WENDLAND

The ψ-function of Wendland utilized in our work is to replace the conventional Radial basis function
(RBF) in Thin-Plate Splines (TPS) Duchon (1977) for handling virtual try-on task, and we admit
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Figure 2: (a) the distribution of the size of the dressed clothes taking up the whole referenced image;
(b) the distribution of the complexity scores for the referenced image (only for top clothes).

that it can indeed enhance the performance of try-on task. The reason for the improvement is that ψ-
function of Wendland is compactly supported for local deformation due to its locality, solvability and
efficiency. Here, we will explain it by two issues: 1) why conventional RBF in TPS cannot work
well compared with the ψ-function of Wendland; 2) why we choose ψ3,1-function of Wendland
in our work.

First, we will say the key technique of clothes warping for handling try-on task is Thin-Plate Splines
(TPS) Duchon (1977); Fornefett et al. (2001), which has been extensively utilized in VITON Han
et al. (2018), CP-VITON Wang et al. (2018), ACGPN Yang et al. (2020) and other state-of-the-art
methods. In detail, denote x be the source point in the tiled clothes, y is the corresponding target
point in the warped clothes, the goal of TPS is to fit a nonlinear mapping function f (x) between the
source points x and the target warped points y by minimizing the following energy function:

Etps(f) =
∑K

i=1
||yi − f(xi)||2. (1)

To solve the above problem, Radial basis function (RBF) is typically involved since it has a natural
representation of f (x) for detailed introduction). To calculate the optimal f (x), a set of controlled
points in the original space {ci, i = 1, 2, . . . ,K} (the locations of which have already been fixed
both in the original space and warped space) should be given. Then, RBF is to defines f(x) as
follows:

f(x) =

K∑
i=1

wiφ(∥ x− ci ∥) (2)

where ∥·∥ is the usual Euclidean norm, φ(r) is the Radial basis kernel in the formulation of φ(r) =
r2 log r, wi is a set of mapping coefficients to be learned. The optimal f(x) can be calculated by a
close form solution via nonlinear regression.

Here, as mentioned in Fornefett et al. (2001), the RBF is good for yielding an overall smooth de-
formation and preserving geometrical characteristics, but it is not compactly supported for local
deformation. In detail, following the formulation of Radial basis kernel φ(r) = r2 log r, we can see
the further x is from ci, the larger r =∥ x−ci ∥ is, then the larger Radial basis kernel φ(r) = r2 log r
is (which can be shown as Fig. 3). In such case, f(x) in Eq. equation 2 tends to be very large causing
that x will be unnecessarily deformed (we will show an example as follows). On the other hand, a
good f(x) should be compactly supported, i.e., f(x) is small given x is far away from ci so that the
far points will not be affected by deformation. This is good for the case that small part of image is
desired to be deformed, especially for handling the try-on task that the clothes part in the image is
with small size. To the contrast, ψ3,k-function of Wendland is compactly supported, which can be
shown as Fig. 3.

In order to further show why ψα,3,1-function of Wendland is better RBF based TPS, we will conduct
a visual example for comparison, which can be shown as Fig. 4.
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(a) (b)

Figure 3: The curve of RBF in TPS andψ3,k-function of Wendland with varied r: (a)φ(r) = r2 log r
(b) ψ3,k-function of Wendland with different k

(a)

(b)

Figure 4: the warped image and gird learned by the TPS and ψα,3,1-function of Wendland: (a) TPS;
(b) ψα,3,1-function of Wendland
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The first and third columns in Fig. 4 represent the original and warped images, respectively, while
the second and the fourth columns represent the original and warped grid, respectively, and the green
”+” represents the controlled points both in the original space and warped space. From the above
simulation results, we can see that by fixing the same controlled points, the warped grid learned by
TPS is more deformed than that learned by ψα,3,1-function of Wendland. This can be obviously
observed that the second and third lines in the top grids of TPS has been deformed while those of
ψα,3,1-function of Wendland do not make any change. This has verified that the ψα,3,1-function of
Wendland is better than RBF based TPS, which is good for handling the try-on task that the clothes
part in the image is with small size.

C PARAMETER SELECTION FOR ψ3,1-FUNCTION OF WENDLAND

We next explain why we choose ψ3,1-function of Wendland in our work. The ψ-function of Wend-
land is firstly developed for biomedical image registration Fornefett et al. (2001), which is adopted
to replace RBF due to its locality, solvability and efficiency. Its general formulations are as follows:

ψ(r) =

{
p(r)
0

0 ≤ r < 1
r ≥ 1

(3)

where p(r) is a univariately polynomial. Let ψ(r) denote the univariate function, then ψ : Rd → R,
ψ(||r||) = ψ(||r||)is the corresponding multivariate function in the space of dimension d. The math-
ematical property of positive definiteness of ψ depends on the space dimension d. If ψ is positive
definite on Rd, then ψ is also positive definite on Rg with 0 < g ≤ d. It has been proven in [e]
that for given space dimension d and smoothness C2k(R) there exists –up to a constant factor– only
one function ψ(r) of the above formulation which is positive definite on Rd and has a polynomial
of minimal degree ⌊d/2⌋+ 3k+ 1,where ⌊x⌋ is the floor function returning the largest integer of x.
We neglect some math derivation in Fornefett et al. (2001) and give the final function as follows:

ψd,k(r) := Ik
(1−r)⌊d/2⌋+k+1

+

(r) (4)

with

(1− r)v+ =

{
(1− r)

v

0
0 ≤ r < 1
r ≥ 1

(5)

as the truncated polynomial and

Iψ(r) :=
∫∞
r
tψ(t)dt r ≥ 0 (6)

as the integral operator.

Following the above analysis, we can see that there are two key parameters in ψ-function of Wend-
land: 1) d: the space dimension to guarantee ψd,k positive definite; 2) k: the times for performing
integral operator. Here, the dimension is 2 and the floor function ⌊d/2⌋ is equal no matter d = 3 or
d = 2, we will choose d = 3 for simplicity. Then, by fixing d = 3, we can list ψ3,k-function with
different k, which can be shown as follows:

ψ30(r) = (1− r)2+

ψ3,1(r) = (1− r)4+(4r + 1)

ψ3,2(r) = (1− r)6+(35r
2 + 18r + 3)

ψ3,3(r) = (1− r)8+(32r
3 + 25r2 + 8r + 1)

(7)

To further compare the deformation performance with different k, we will also show the deformation
grid by fixing some controlled points as in Fig. 5. From Fig. 5, the larger k is, the smoother the
deformation grid is. But when k > 1, the polynomial will become more complex while their
deformations are relatively smaller, we thereby choose k = 1. Finally, as analyzed above, we will
finally determine d = 3 and k = 1.

For the choice of the parameter α in ψα,3,1(r) of Eq. equation 4, we first select 25 controlled points
and use Delaunay triangulation to analyze the distances between the control points, as shown in the
Fig. 6.
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(a) (b) (c) (d)

Figure 5: the deformation grid learned with different k

Figure 6: Delaunay triangulation for analyzing the distances of the control points

(a) (b) (c) (d)

Figure 7: the deformation grid learned with different α
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In the Delaunay triangle, the distances between the nearest controlled points are a, b,D, where
D =

√
a2 + b2. In order to ensure the interaction between the controlled points, the value of α must

be greater than one of the three nearest neighbor distances, so we separately analyze the three cases
when α = a, α = b, α = D, as show in Figure 7. Obviously, when α = a or α = b, a saddle point
will be formed between two nearest points in the vertical or horizontal direction, and when α = D,
it is flatter between two nearest points in vertical and horizontal directions. Finally, as analyzed
above, we will finally determine α ≥ D.

D ABLATION STUDY OF QUALITATIVE RESULTS

Some more simulations for the comparision between TPS and Wendland’s Ψ-function on VITON
and the collected dataset can be seen in Fig. 8 and Fig. 9.

Here, in order to further show why LPM is good for handling cross-category try-on task (e.g., long
sleeves/pants ↔ short sleeves/pants, etc.), we give another ablation study for analysis, where we
aim to show the full LPM can well predict some exposed arms or legs when long sleeves/pants ↔
short sleeves/pants, etc.) compared with LPM w/o correlation layer, LPM w/o U-Net, or even w/o
LPM. The simulation results are shown in Fig. 10 and Fig. 11. From simulation results, we can
see that the performances of w/o LPM is the worst, since the features of human body and clothes
are not well fused. LPM w/o correlation layer and LPM w/o U-Net can achieve relatively better
performance. By meriting from the advantages of both correlation layer and U-Net structure, the
full LPM can achieve the best performance of limb prediction, since the correlation layer is good to
keep the correlated information of human body and clothes, while U-Net structure can well preserve
the detailed information of original human body by utilizing shallow features.

E ARBITRARY CLOTHING COLLOCATION

In real life, a single clothing virtual try-on cannot meet people’s needs, and clothing collocation can
improve people’s preference for virtual try-on. Hence, we conduct an additional experiment to show
the results of arbitrary clothing collocation (Fig. 12). During the experiment, we first try on tops
with our AVTON and got the intermediate results, then try on bottoms based on the intermediate
results, and finally get the clothing collocation results. It can be seen from the experimental results
that due to the characteristics-preserving function of the LPM and IGMM, the characteristics of the
target clothes and the reference person can still be retained after two try-on steps. And benefit from
the characteristic trade-off function of TOFM, the final try-on images are natural and realistic.

F USER STUDY

As shown in TABLE 1 and TABLE 2, we conduct two user studies on the VITON-Dataset and
Zalando-Dataset. Within these two studies, we compare the ACGPN Yang et al. (2020) and our
proposed method AVTON on the VITON-Dataset in easy, medium, and hard cases, respectively.
And we compare the retrained ACGPN and our porposed method AVTON on the Zalando-Dataset
in the top, bottom, and whole cases, respectively. Note that we only choose the ACGPN as the
baseline, as it is by far the best baseline of all the VITON-Dataset based methods. Specifically, we
invite 40 volunteers to complete the experiment. In each study, each volunteer is assigned 50 image
pairs and is asked to select the most realistic image out of two virtual try-on results. Both studies
show that the AVTON performs better than other methods in all-type clothing and cross-category
try-on tasks.
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Target Person and Clothes TPS Wendland’s Ψ-function

Figure 8: Compasion of image warping between TPS and Wendland’s Ψ-function on the VITON
dataset
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Target Person and Clothes TPS Wendland’s Ψ-function

Figure 9: Compasion of image warping between TPS and Wendland’s Ψ-function on the Zalando
dataset
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Target Clothes and Person w/o LPM LPM w/o
Correlation

LPM w/o
U-Net Full LPM

Figure 10: Comparison of the limb prediction results with full LPM, w/o LPM, LPM w/o correlation
layer, LPM w/o U-Net structure on the VITON-Dataset
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Target Clothes and Person w/o LPM LPM w/o
Correlation

LPM w/o
U-Net Full LPM

Figure 11: Comparison of the limb prediction results with full LPM, w/o LPM, LPM w/o correlation
layer, LPM w/o U-Net structure on the Zalando-Dataset
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Figure 12: The clothing collocation results in two parts. The upper left image of each part represents
the reference person, the upper column of each part represents the target tops, and the left column of
each part represents the target bottoms. It can be seen that our AVTON can match clothes arbitrarily.

Methods Mean Easy Medium Hard

ACGPN 40.9% 39.0% 40.6% 43.0%
AVTON (Full) 59.1% 61.0% 59.4% 57.0%

Table 1: On the VITON-Dataset. User study
compares ACGPN and our proposed method
AVTON at different complexity levels.

Methods Mean Top Bottom Whole

ACGPN 36.1% 32.1% 40.5% 35.6%
AVTON (Full) 63.9% 67.9% 59.5% 64.4%

Table 2: On the Zalando-Dataset. User study
compares the retrained ACGPN and our pro-
posed method AVTON with different types of
clothes.
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