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Abstract

We show the performance of Automatic Speech
Recognition (ASR) systems that use semi-
supervised speech representations can be be
boosted by a complimentary prosody detec-
tion module, by introducing a joint ASR and
prosody detection model. The prosody detec-
tion component of our model achieves a signifi-
cant improvement on the state-of-the-art for the
task, closing the gap in F1-score by 41%. Addi-
tionally, the ASR performance in joint training
decreases WER by 28.3% on LibriSpeech, un-
der limited resource fine-tuning. With these
results, we show the importance of extending
pretrained speech models to retain or relearn
important prosodic cues.

1 Introduction

Models based on self-supervised speech represen-
tations have in recent years claimed state-of-the-art
performance in ASR (Baevski et al., 2020; Hsu
et al., 2021). Moreover, they have permitted to by-
pass both a heavy speech-science informed featur-
isation component, as well a language dependent
acoustic dictionary resource writing component.
In doing so, such models have become seemingly
less human reliant during development, provided
adequate quantities of raw speech data and compu-
tational resources.

However, the training techniques for these self-
supervised speech models do not reveal what ex-
actly is deemed important by these models and later
retained within their output speech representations.
Subsequent studies have since introduced bench-
marks and metrics to analyse the linguistic knowl-
edge of these models at different levels, mostly
from the point of view of assessing the existence of
this linguistic knowledge. For example, the Zero-
Resource Speech challenges' provide tests beds to
analyse phonetic, lexical, syntactic, and semantic
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level book-keeping of these representations (Dun-
bar et al., 2017, 2020; Nguyen et al., 2021). More
recently, ProsAudit was introduced to provide a
similar book-keeping of the prosodic information
retained in these speech representations (de Seyssel
et al., 2023). However, these studies and corre-
sponding benchmarks do not elucidate whether re-
focusing these SSL representations to retain more
of the original linguistic signal could correspond to
better performance downstream in basic but central
speech tasks like ASR.

One main bottleneck to carrying out such a study
is the sheer scarcity of datasets with prosodic an-
notations, and the previous expense in generating
these annotations using trained linguists. One can,
however, envisage a scheme for obtaining sim-
ple prosodic annotations for “important” words
in an utterance from non-specialists, and even for
non-written languages, by which annotators sim-
ply press a button when important segments of an
utterance are heard. Still, currently, the only exist-
ing datasets for English (and any other language)
are relatively small-the largest being the Boston
University Radio News Corpus for English with 11
hours of data (Ostendorf et al., 1995). Is there any
benefit for spoken language understanding tasks in
extending current and/or developing new prosody
datasets? To assess this question, one must investi-
gate the role of prosody in these tasks.

Contributions. In this paper we study the role
of prosodic information, specifically focusing on
pitch accents, in ASR. Our contributions are as
follows.

1. We streamline and significantly boost the per-
formance of the current state-of-the-art model
for pitch accent detection.

2. We present a multi-task model for integrat-
ing pitch accent detection into the ASR task,
which improves the performance for ASR in
limited resource settings.
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3. We then automatically annotate the pitch ac-
cents of a small dataset using self-training,
and then apply it in our proposed joint model,
achieving even further ASR performance
boosts.

2 Related work

Prosody Detection. There is a long line of re-
search on automatic prosody detection (for exam-
ple, (Taylor, 1995; Rosenberg et al., 2015; Shahin
etal., 2016; Li et al., 2018; Stehwien et al., 2020;
Sabu et al., 2021)). With the advent of pretrained
speech models, and in particular, wav2vec (Schnei-
der et al., 2019) and wav2vec2 (Baevski et al.,
2020), a new line of systems that builds on self-
supervised speech representations has achieved the
state-of-the-art in detecting prosodic boundaries in
Czech broadcast news recordings (Kunesova and
Rez4ckovd, 2022) and in pitch events and intona-
tion phrase boundaries in English broadcast news
(Zhai and Hasegawa-Johnson, 2023). This latter
model, called wav2TOBI, forms the point of depar-
ture for our multitask system presented here. The
question left open by these models, and others is
whether these self-supervised representations ade-
quately account for prosody, which has been shown
to aid in an array of linguistic tasks like SLU (N6th
et al., 2002; Shriberg and Stolcke, 2004; Shriberg
et al., 1998; Rajaa, 2023; Wei et al., 2022), and
parsing (Tran et al., 2017; Gregory et al., 2004;
Kahn et al., 2005; Dreyer and Shafran, 2007; Kahn
and Ostendorf, 2012; Price et al., 1991; Beckman,
1996). Or whether a specialised module should
intervene and boost the prosodic signal for better
performance.

Prosody with ASR. In this paper, we are par-
ticularly interested in whether refocusing speech
pretrained models on prosody might aid in per-
formance for ASR. Prosody has been previously
shown to be of importance to ASR, both as engi-
neered features, as well as through learning from
prosody annotated datasets (Silverman et al., 1992;
Ostendorf et al., 2003; Hirose and Minematsu,
2004; Hirschberg et al., 2004; Hasegawa-Johnson
et al., 2005; Ananthakrishnan and Narayanan,
2007; Vicsi and Szaszak, 2010; Chen et al., 2012;
Kathania et al., 2020; Hasija et al., 2022; Coto-
Solano, 2021). However, to our knowledge, there is
no research that builds on pretrained speech models,
whose application to prosody detection and ASR
has resulted in the state-of-the-art performance.

State-of-the-art ASR A summary of state-of-
the-art performance in ASR over the Librispeech
dataset is given in the appendix (Table 3). For this
paper, for model comparability, we focus on the
wav2vec2 model, which is the pretrained model
fine-tuned by the wav2TOBI model for prosody de-
tection, and which is the model on which we base
our system presented here.

3 Modelling prosody and ASR

3.1 Datasets

Our research uses the BURNC (Ostendorf et al.,
1995), Librispeech (Panayotov et al., 2015) and
Libri-light (Kahn et al., 2020) corpora.

The BURNC dataset is a broadcast news-style
read speech corpus which contains 11 hours of
speech, sourced from 7 different speakers (3 fe-
male and 4 male), It consists of audio snippets with
their transcriptions, phonetic alignments, parts-of-
speech tags and prosodic labels. We used 75%
of the data in this dataset for training, 15% for
development and 10% for testing. Because multi-
ple readers may have read the same news story in
BURNC, we ensure that no news stories appearing
in the test set also occur in the training set.

We represent pitch accent labels from the
BURNC following the binary labelling strategy pre-
sented in (Zhai and Hasegawa-Johnson, 2023). We
assign positive labels to time-frames correspond-
ing to audio segments labelled in the BURNC as
having pitch accents, and negative labels otherwise.

Following (Zhai and Hasegawa-Johnson, 2023),
we preprocess the BURNC audios by splitting them
into overlapping clips of 20s, at 10s intervals.

The Librispeech dataset consists of 1000 hours
of audio samples sourced from the LibriVox Project.
In our work, the dev-clean and test-clean data sub-
sets were used for model development and evalua-
tion, respectively.

The Libri-light dataset is made up of 60,000
hours of audio and, similarly to the Librispeech
corpus, was also sourced from the LibriVox Project.
We used the Libri-light limited resource training
data subsets, namely, train-1h (LS1), which con-
sists of 1 hour of labelled audio data.

3.2 A joint model for prosody and ASR

Our proposed system uses prosody annotations to
jointly learn pitch accent detection and automatic
speech recognition (cf Figure 1).
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Figure 1: Joint Prosody-ASR Model

For both ASR and prosody detection, raw au-
dio input is sent through the pretrained wav2vec2
model (Baevski et al., 2020) with a language mod-
elling head on top for Connectionist Temporal Clas-
sification for the ASR task. For pitch accent de-
tection, we built upon the prosodic event detection
model proposed by Zhai and Hasegawa-Johnson
(2023), wav2TOBI. In wav2TOBI, wav2vec2
timestep representations are concatenated with fun-
damental frequency features and fed through a BiL-
STM, followed by a classification layer, with mean-
squared loss. Our model streamlines wav2TOBI
in the sense that we no longer require fundamental
frequency features and make pure use of wav2vec2
output representations. On the other hand, we in-
troduce an extra linear layer followed by layer nor-
malisation before the classification layer.

We train our proposed joint model by minimising
a joint loss function £; = Ly + Lyaq, Which is
the combination of the ASR model loss £, and
pitch accent detection model loss L,,4q.

Results for prosody detection. In the single task
setting, for prosody detection, these simple changes
result in significant improvements in pitch accent
detection performance over wav2TOBI, even with-
out recourse to the additional fundamental fre-
quency features (Table 1).

Model Tol Prec Rec F1
wav2TOBI 0 ms 0.13 0.11 0.12
40ms 0.70 0.61 0.65
80ms 0.87 0.74 0.79
100ms 0.89 0.76 0.81
Ours Prosody Oms 037 036 0.36
40ms 0.82 0.8 0.81
80ms 0.89 0.86 0.87
100ms 09 0.87 0.88
Ours Semi-Sup | Oms 049 048 048
40ms 0.85 0.82 0.83
80ms 092 0.88 09
100ms 093 089 09

Table 1: Prosody detection system performance at vary-
ing levels of error tolerance (Tol) in milliseconds. Our
basic model (Ours Prosody) outperforms the state of the
art wav2TOBI system in pitch accent detection. Our
semi-supervised training approach (Ours Semi-Sup) fur-
ther improves performance.

3.3 Semi-supervised Prosodic Event Detection

Our joint prosody-ASR modelling is limited to
datasets where these prosodic labels are available.
In order to address ASR performance for a dataset
like LibriSpeech, where prosodic labels are unavail-
able, we resort to semi-supervision—specifically,
self-training with model voting. In these experi-
ments, we focus on the smaller Libri-light train-1h
(LST) dataset in order to minimise the possible
extrapolation error of a larger dataset.

We partitioned the BURNC train set into three
subsets as possible hold-outs. For each hold-out
subset, we used the remaining 2/3s of the original
train set to retrain a new model. We used each of
the three models to obtain three predicted labels for
each instance of the LS1 train set, and retained the
majority class label of these for each instance. The
prosody labelled version of LS1 was then added to
the full BURNC train set, and then checked over
the BURNC test set for performance gains. If there
were gains, we repeated the process now with the
prosody labelled LS1 as part of the partitioning
step, replacing the labels of LS1 at each iteration.
Otherwise the process halts. Our training process
halted after 4 iterations.”

Results for prosody detection. The single task
results for this approach on prosody detection are

“Note that we tried a number of different self-training
techniques, but this simple voting technique worked the best.



given in Table 1. We observe that across all mea-
sures and error tolerances, this method improves
performance and achieves, to our knowledge, the
current state-of-the-art.

4 Experimental setup and results

We use the base-960h wav2vec? pretrained model.
Our models all are trained for 30,000 steps, using
default parameters.* Results for word and character
error rates (respectively WER and CER) are given
in Table 2. All models were fine-tuned for ASR
(resp. ASR and prosody jointly) on LS1, and there-
after possibly fine-tuned on BURNC (indicated by
ft BURNC). In the fine-tuning process, following
Baevski et al. (2020), the pretrained model remains
frozen during the first 15K steps, after which the
entire model is trained for the remaining 15K steps.
The feature encoder remains frozen throughout fine-
tuning. For the Prosody-ASR model, we use the
prosody labelled version of LS1 outlined above.

LibriSpeech BURNC

Model WER CER | WER CER
ASR-only 6.0 1.0 23.0 7.0
ASR-only

(ft BURNC) | 4.9 1.0 12.0 4.0
Prosody-ASR | 4.3 1.1 20.0 7.7
Prosody-ASR

(ft BURNC) | 4.3 1.1 20.0 7.0

Table 2: WER and CER results for ASR.

Results. We observe that while there is no great
change to CER scores, the joint Prosody-ASR
model improves both WER on LibriSpeech and
BURNC test data by 28.3% and 13% respectively,
showing that a refocus of the wav2vec2 repre-
sentations on prosody helps to improve ASR per-
formance over LibriSpeech. Interestingly, our
semi-supervised approach yields worst WER for
BURNC than bypassing prosodic labels for fine-
tuning on both LS1 and BURNC. We posit that
this may be due to the noisiness of the inferred
prosodic labels in the LS1 dataset specifically for
BURNC. We therefore tried fine-tuning the joint

*https://huggingface.co/facebook/
wav2vec2-base-960h

“Default parameters are from
huggingface.co/docs/transformers/
en/model_doc/wav2vec2#transformers.
Wav2Vec2ForCTC.

https://

model solely on BURNC; however both WER and
CER increased to 29.0 and 9.0 respectively. This
may be due to the small size of the BURNC dataset
in combination with the quantity of information
that must be learned in the joint model.

5 Error analysis and discussion

We have shown above that pitch accent detection
is useful for improving the performance of pre-
trained speech models in ASR tasks within limited
resource scenarios. However, even though we im-
prove upon the WER in most of the experiments
that we perform with our proposed joint model, we
notice that experiments that involve the BURNC
dataset tend to on average have higher CER scores.
We list two reasons for this phenomenon below and
discuss their impact.

Pre-processing mismatches and audio trunca-
tion. During the pre-processing of the transcrip-
tions for the BURNC dataset, we transform the
text into their uppercase representations and re-
move all punctuation marks that are not consequen-
tial in determining word meaning. For instance,
given a word "CHIEF’S", we do not remove the
apostrophe (’ ) during pre-processing to form the
word "CHIEFS" since doing so changes the in-
herent meaning of the word. Another example is
"S.J.C’s", we do not represent it as "SJCS". Even
though this text pre-processing approach is well-
warranted, it leads to higher CER scores during
ASR since the BURNC dataset is filled with a
plethora of acronyms, hyphenated and contracted
words.

Following the data pre-processing approach
utilised in (Zhai and Hasegawa-Johnson, 2023),
we split our audios into overlapping clips of 20s, at
intervals of 10s, for input to the wav2vec2 model.
This however leads to the truncation of words in
initial or final position. As a result of this, some
of the words that are predicted by the model are
incomplete and this leads to a higher CER score.

6 Conclusion

In this paper we have presented an approach for
leveraging prosodic information to improve the per-
formance of a pretrained speech model in a limited
resource scenario. The results from our experi-
ments demonstrate that re-focusing self-supervised
speech models on supra-segmental speech cues
such as prosody could lead to significant perfor-
mance gains in downstream tasks.
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7 Limitations

All experiments were carried out under the limited
resource setting, with little fine-tuning data, due
to the requirement of our method to use prosodic
labels. More work is required to investigate the real
impact when fine-tuning with larger ASR datasets.

Also, for prosodic cues, we only used pitch-
accent, and with hard labels (0 or 1). It is not
clear whether other aspects of prosody would also
be important for ASR. This question remains open.
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8 Appendix

Model Unlabeled Data LM dev-clean dev-other test-clean test-other
10-min labeled

DiscreteBERT (Baevski et al., 2019) LS-960 4-gram 15.7 24.1 16.3 25.2
wav2vec 2.0 BASE (Baevski et al., 2020) LS-960 4-gram 8.9 15.7 9.1 15.6
wav2vec 2.0 LARGE (Baevski et al., 2020) LL-60k 4-gram 6.3 9.8 6.6 10.3
wav2vec 2.0 LARGE (Baevski et al., 2020) LL-60k Transformer 4.6 7.9 4.8 8.2
HUBERT BASE (Hsu et al., 2021) LS-960 4-gram 9.1 15.0 9.7 15.3
HUBERT LARGE (Hsu et al., 2021) LL-60k 4-gram 6.1 94 6.6 10.1
HUBERT LARGE (Hsu et al., 2021) LL-60k Transformer 4.3 7.0 4.7 7.6
HUBERT X-LARGE (Hsu et al., 2021) LL-60k Transformer 4.4 6.1 4.6 6.8
1-hour labeled

DeCoAR 2.0 (Ling and Liu, 2020) LS-960 4-gram - - 13.8 29.1
DiscreteBERT (Baevski et al., 2019) LS-960 4-gram 8.5 16.4 9.0 17.6
wav2vec 2.0 BASE (Baevski et al., 2020) LS-960 4-gram 5.0 10.8 5.5 11.3
wav2vec 2.0 LARGE (Baevski et al., 2020) LL-60k Transformer 29 54 2.9 5.8
HUBERT BASE (Hsu et al., 2021) LS-960 4-gram 5.6 10.9 6.1 11.3
HUBERT LARGE (Hsu et al., 2021) LL-60k Transformer 2.6 4.9 2.9 54
HUBERT X-LARGE (Hsu et al., 2021) LL-60k Transformer 2.6 4.2 2.8 4.8
10-hour labeled

SlimIPL (Likhomanenko et al., 2020) LS-960 4-gram + Transformer 53 7.9 5.5 9.0
DeCoAR 2.0 (Ling and Liu, 2020) LS-960 4-gram - - 5.4 133
DiscreteBERT (Baevski et al., 2019) LS-960 4-gram 53 13.2 5.9 14.1
wav2vec 2.0 BASE (Baevski et al., 2020) LS-960 4-gram 3.8 9.1 4.3 9.5
wav2vec 2.0 LARGE (Baevski et al., 2020) LL-60k Transformer 2.4 4.8 2.6 49
HUBERT BASE (Hsu et al., 2021) LS-960 4-gram 3.9 9.0 4.3 9.4
HUBERT LARGE (Hsu et al., 2021) LL-60k Transformer 22 4.3 24 4.6
HUBERT X-LARGE (Hsu et al., 2021) LL-60k Transformer 2.1 3.6 2.3 4.0
100-hour labeled

IPL (Xu et al., 2020) LL-60k 4-gram + Transformer 3.19 6.14 3.72 7.11
SlimIPL (Likhomanenko et al., 2020) LL-60k 4-gram + Transformer 2.2 4.6 2.7 5.2
Noisy Student (Park et al., 2020) LS-860 LSTM 39 8.8 4.2 8.6
DeCoAR 2.0 (Ling and Liu, 2020) LS-960 4-gram - - 5.0 12.1
DiscreteBERT (Baevski et al., 2019) LS-960 4-gram 4.0 10.9 4.5 12.1
wav2vec 2.0 BASE (Baevski et al., 2020) LS-960 4-gram 2.7 7.9 34 8.0
wav2vec 2.0 LARGE (Baevski et al., 2020) LL-60k Transformer 1.9 4.0 2.0 4.0
HUBERT BASE (Hsu et al., 2021) LS-960 4-gram 2.7 7.8 34 8.1
SlimIPL (Likhomanenko et al., 2020) LL-60k Transformer 1.8 3.7 2.1 3.9
HUBERT X-LARGE (Hsu et al., 2021) LL-60k Transformer 1.7 3.0 1.9 3.5

Table 3: Comparison of ASR model performance on the Librispeech dataset (Hsu et al., 2021)



