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Abstract

We show the performance of Automatic Speech001
Recognition (ASR) systems that use semi-002
supervised speech representations can be be003
boosted by a complimentary prosody detec-004
tion module, by introducing a joint ASR and005
prosody detection model. The prosody detec-006
tion component of our model achieves a signifi-007
cant improvement on the state-of-the-art for the008
task, closing the gap in F1-score by 41%. Addi-009
tionally, the ASR performance in joint training010
decreases WER by 28.3% on LibriSpeech, un-011
der limited resource fine-tuning. With these012
results, we show the importance of extending013
pretrained speech models to retain or relearn014
important prosodic cues.015

1 Introduction016

Models based on self-supervised speech represen-017

tations have in recent years claimed state-of-the-art018

performance in ASR (Baevski et al., 2020; Hsu019

et al., 2021). Moreover, they have permitted to by-020

pass both a heavy speech-science informed featur-021

isation component, as well a language dependent022

acoustic dictionary resource writing component.023

In doing so, such models have become seemingly024

less human reliant during development, provided025

adequate quantities of raw speech data and compu-026

tational resources.027

However, the training techniques for these self-028

supervised speech models do not reveal what ex-029

actly is deemed important by these models and later030

retained within their output speech representations.031

Subsequent studies have since introduced bench-032

marks and metrics to analyse the linguistic knowl-033

edge of these models at different levels, mostly034

from the point of view of assessing the existence of035

this linguistic knowledge. For example, the Zero-036

Resource Speech challenges1 provide tests beds to037

analyse phonetic, lexical, syntactic, and semantic038

1https://zerospeech.com

level book-keeping of these representations (Dun- 039

bar et al., 2017, 2020; Nguyen et al., 2021). More 040

recently, ProsAudit was introduced to provide a 041

similar book-keeping of the prosodic information 042

retained in these speech representations (de Seyssel 043

et al., 2023). However, these studies and corre- 044

sponding benchmarks do not elucidate whether re- 045

focusing these SSL representations to retain more 046

of the original linguistic signal could correspond to 047

better performance downstream in basic but central 048

speech tasks like ASR. 049

One main bottleneck to carrying out such a study 050

is the sheer scarcity of datasets with prosodic an- 051

notations, and the previous expense in generating 052

these annotations using trained linguists. One can, 053

however, envisage a scheme for obtaining sim- 054

ple prosodic annotations for “important” words 055

in an utterance from non-specialists, and even for 056

non-written languages, by which annotators sim- 057

ply press a button when important segments of an 058

utterance are heard. Still, currently, the only exist- 059

ing datasets for English (and any other language) 060

are relatively small–the largest being the Boston 061

University Radio News Corpus for English with 11 062

hours of data (Ostendorf et al., 1995). Is there any 063

benefit for spoken language understanding tasks in 064

extending current and/or developing new prosody 065

datasets? To assess this question, one must investi- 066

gate the role of prosody in these tasks. 067

Contributions. In this paper we study the role 068

of prosodic information, specifically focusing on 069

pitch accents, in ASR. Our contributions are as 070

follows. 071

1. We streamline and significantly boost the per- 072

formance of the current state-of-the-art model 073

for pitch accent detection. 074

2. We present a multi-task model for integrat- 075

ing pitch accent detection into the ASR task, 076

which improves the performance for ASR in 077

limited resource settings. 078
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3. We then automatically annotate the pitch ac-079

cents of a small dataset using self-training,080

and then apply it in our proposed joint model,081

achieving even further ASR performance082

boosts.083

2 Related work084

Prosody Detection. There is a long line of re-085

search on automatic prosody detection (for exam-086

ple, (Taylor, 1995; Rosenberg et al., 2015; Shahin087

et al., 2016; Li et al., 2018; Stehwien et al., 2020;088

Sabu et al., 2021)). With the advent of pretrained089

speech models, and in particular, wav2vec (Schnei-090

der et al., 2019) and wav2vec2 (Baevski et al.,091

2020), a new line of systems that builds on self-092

supervised speech representations has achieved the093

state-of-the-art in detecting prosodic boundaries in094

Czech broadcast news recordings (Kunešová and095

Řezáčková, 2022) and in pitch events and intona-096

tion phrase boundaries in English broadcast news097

(Zhai and Hasegawa-Johnson, 2023). This latter098

model, called wav2TOBI, forms the point of depar-099

ture for our multitask system presented here. The100

question left open by these models, and others is101

whether these self-supervised representations ade-102

quately account for prosody, which has been shown103

to aid in an array of linguistic tasks like SLU (Nöth104

et al., 2002; Shriberg and Stolcke, 2004; Shriberg105

et al., 1998; Rajaa, 2023; Wei et al., 2022), and106

parsing (Tran et al., 2017; Gregory et al., 2004;107

Kahn et al., 2005; Dreyer and Shafran, 2007; Kahn108

and Ostendorf, 2012; Price et al., 1991; Beckman,109

1996). Or whether a specialised module should110

intervene and boost the prosodic signal for better111

performance.112

Prosody with ASR. In this paper, we are par-113

ticularly interested in whether refocusing speech114

pretrained models on prosody might aid in per-115

formance for ASR. Prosody has been previously116

shown to be of importance to ASR, both as engi-117

neered features, as well as through learning from118

prosody annotated datasets (Silverman et al., 1992;119

Ostendorf et al., 2003; Hirose and Minematsu,120

2004; Hirschberg et al., 2004; Hasegawa-Johnson121

et al., 2005; Ananthakrishnan and Narayanan,122

2007; Vicsi and Szaszák, 2010; Chen et al., 2012;123

Kathania et al., 2020; Hasija et al., 2022; Coto-124

Solano, 2021). However, to our knowledge, there is125

no research that builds on pretrained speech models,126

whose application to prosody detection and ASR127

has resulted in the state-of-the-art performance.128

State-of-the-art ASR A summary of state-of- 129

the-art performance in ASR over the Librispeech 130

dataset is given in the appendix (Table 3). For this 131

paper, for model comparability, we focus on the 132

wav2vec2 model, which is the pretrained model 133

fine-tuned by the wav2TOBI model for prosody de- 134

tection, and which is the model on which we base 135

our system presented here. 136

3 Modelling prosody and ASR 137

3.1 Datasets 138

Our research uses the BURNC (Ostendorf et al., 139

1995), Librispeech (Panayotov et al., 2015) and 140

Libri-light (Kahn et al., 2020) corpora. 141

The BURNC dataset is a broadcast news-style 142

read speech corpus which contains 11 hours of 143

speech, sourced from 7 different speakers (3 fe- 144

male and 4 male), It consists of audio snippets with 145

their transcriptions, phonetic alignments, parts-of- 146

speech tags and prosodic labels. We used 75% 147

of the data in this dataset for training, 15% for 148

development and 10% for testing. Because multi- 149

ple readers may have read the same news story in 150

BURNC, we ensure that no news stories appearing 151

in the test set also occur in the training set. 152

We represent pitch accent labels from the 153

BURNC following the binary labelling strategy pre- 154

sented in (Zhai and Hasegawa-Johnson, 2023). We 155

assign positive labels to time-frames correspond- 156

ing to audio segments labelled in the BURNC as 157

having pitch accents, and negative labels otherwise. 158

Following (Zhai and Hasegawa-Johnson, 2023), 159

we preprocess the BURNC audios by splitting them 160

into overlapping clips of 20s, at 10s intervals. 161

The Librispeech dataset consists of 1000 hours 162

of audio samples sourced from the LibriVox Project. 163

In our work, the dev-clean and test-clean data sub- 164

sets were used for model development and evalua- 165

tion, respectively. 166

The Libri-light dataset is made up of 60,000 167

hours of audio and, similarly to the Librispeech 168

corpus, was also sourced from the LibriVox Project. 169

We used the Libri-light limited resource training 170

data subsets, namely, train-1h (LS1), which con- 171

sists of 1 hour of labelled audio data. 172

3.2 A joint model for prosody and ASR 173

Our proposed system uses prosody annotations to 174

jointly learn pitch accent detection and automatic 175

speech recognition (cf Figure 1). 176
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Figure 1: Joint Prosody-ASR Model

For both ASR and prosody detection, raw au-177

dio input is sent through the pretrained wav2vec2178

model (Baevski et al., 2020) with a language mod-179

elling head on top for Connectionist Temporal Clas-180

sification for the ASR task. For pitch accent de-181

tection, we built upon the prosodic event detection182

model proposed by Zhai and Hasegawa-Johnson183

(2023), wav2TOBI. In wav2TOBI, wav2vec2184

timestep representations are concatenated with fun-185

damental frequency features and fed through a BiL-186

STM, followed by a classification layer, with mean-187

squared loss. Our model streamlines wav2TOBI188

in the sense that we no longer require fundamental189

frequency features and make pure use of wav2vec2190

output representations. On the other hand, we in-191

troduce an extra linear layer followed by layer nor-192

malisation before the classification layer.193

We train our proposed joint model by minimising194

a joint loss function Lj = Lasr + Lpad, which is195

the combination of the ASR model loss Lasr and196

pitch accent detection model loss Lpad.197

Results for prosody detection. In the single task198

setting, for prosody detection, these simple changes199

result in significant improvements in pitch accent200

detection performance over wav2TOBI, even with-201

out recourse to the additional fundamental fre-202

quency features (Table 1).203

Model Tol Prec Rec F1

wav2TOBI 0 ms 0.13 0.11 0.12
40 ms 0.70 0.61 0.65
80 ms 0.87 0.74 0.79

100 ms 0.89 0.76 0.81
Ours Prosody 0 ms 0.37 0.36 0.36

40 ms 0.82 0.8 0.81
80 ms 0.89 0.86 0.87

100 ms 0.9 0.87 0.88
Ours Semi-Sup 0 ms 0.49 0.48 0.48

40 ms 0.85 0.82 0.83
80 ms 0.92 0.88 0.9

100 ms 0.93 0.89 0.9

Table 1: Prosody detection system performance at vary-
ing levels of error tolerance (Tol) in milliseconds. Our
basic model (Ours Prosody) outperforms the state of the
art wav2TOBI system in pitch accent detection. Our
semi-supervised training approach (Ours Semi-Sup) fur-
ther improves performance.

3.3 Semi-supervised Prosodic Event Detection 204

Our joint prosody-ASR modelling is limited to 205

datasets where these prosodic labels are available. 206

In order to address ASR performance for a dataset 207

like LibriSpeech, where prosodic labels are unavail- 208

able, we resort to semi-supervision–specifically, 209

self-training with model voting. In these experi- 210

ments, we focus on the smaller Libri-light train-1h 211

(LS1) dataset in order to minimise the possible 212

extrapolation error of a larger dataset. 213

We partitioned the BURNC train set into three 214

subsets as possible hold-outs. For each hold-out 215

subset, we used the remaining 2/3s of the original 216

train set to retrain a new model. We used each of 217

the three models to obtain three predicted labels for 218

each instance of the LS1 train set, and retained the 219

majority class label of these for each instance. The 220

prosody labelled version of LS1 was then added to 221

the full BURNC train set, and then checked over 222

the BURNC test set for performance gains. If there 223

were gains, we repeated the process now with the 224

prosody labelled LS1 as part of the partitioning 225

step, replacing the labels of LS1 at each iteration. 226

Otherwise the process halts. Our training process 227

halted after 4 iterations.2 228

Results for prosody detection. The single task 229

results for this approach on prosody detection are 230

2Note that we tried a number of different self-training
techniques, but this simple voting technique worked the best.
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given in Table 1. We observe that across all mea-231

sures and error tolerances, this method improves232

performance and achieves, to our knowledge, the233

current state-of-the-art.234

4 Experimental setup and results235

We use the base-960h wav2vec2 pretrained model3.236

Our models all are trained for 30,000 steps, using237

default parameters.4 Results for word and character238

error rates (respectively WER and CER) are given239

in Table 2. All models were fine-tuned for ASR240

(resp. ASR and prosody jointly) on LS1, and there-241

after possibly fine-tuned on BURNC (indicated by242

ft BURNC). In the fine-tuning process, following243

Baevski et al. (2020), the pretrained model remains244

frozen during the first 15K steps, after which the245

entire model is trained for the remaining 15K steps.246

The feature encoder remains frozen throughout fine-247

tuning. For the Prosody-ASR model, we use the248

prosody labelled version of LS1 outlined above.249

LibriSpeech BURNC
Model WER CER WER CER

ASR-only 6.0 1.0 23.0 7.0
ASR-only

(ft BURNC) 4.9 1.0 12.0 4.0
Prosody-ASR 4.3 1.1 20.0 7.7
Prosody-ASR

(ft BURNC) 4.3 1.1 20.0 7.0

Table 2: WER and CER results for ASR.

Results. We observe that while there is no great250

change to CER scores, the joint Prosody-ASR251

model improves both WER on LibriSpeech and252

BURNC test data by 28.3% and 13% respectively,253

showing that a refocus of the wav2vec2 repre-254

sentations on prosody helps to improve ASR per-255

formance over LibriSpeech. Interestingly, our256

semi-supervised approach yields worst WER for257

BURNC than bypassing prosodic labels for fine-258

tuning on both LS1 and BURNC. We posit that259

this may be due to the noisiness of the inferred260

prosodic labels in the LS1 dataset specifically for261

BURNC. We therefore tried fine-tuning the joint262

3https://huggingface.co/facebook/
wav2vec2-base-960h

4Default parameters are from https://
huggingface.co/docs/transformers/
en/model_doc/wav2vec2#transformers.
Wav2Vec2ForCTC.

model solely on BURNC; however both WER and 263

CER increased to 29.0 and 9.0 respectively. This 264

may be due to the small size of the BURNC dataset 265

in combination with the quantity of information 266

that must be learned in the joint model. 267

5 Error analysis and discussion 268

We have shown above that pitch accent detection 269

is useful for improving the performance of pre- 270

trained speech models in ASR tasks within limited 271

resource scenarios. However, even though we im- 272

prove upon the WER in most of the experiments 273

that we perform with our proposed joint model, we 274

notice that experiments that involve the BURNC 275

dataset tend to on average have higher CER scores. 276

We list two reasons for this phenomenon below and 277

discuss their impact. 278

Pre-processing mismatches and audio trunca- 279

tion. During the pre-processing of the transcrip- 280

tions for the BURNC dataset, we transform the 281

text into their uppercase representations and re- 282

move all punctuation marks that are not consequen- 283

tial in determining word meaning. For instance, 284

given a word "CHIEF’S", we do not remove the 285

apostrophe ( ’ ) during pre-processing to form the 286

word "CHIEFS" since doing so changes the in- 287

herent meaning of the word. Another example is 288

"S.J.C’s", we do not represent it as "SJCS". Even 289

though this text pre-processing approach is well- 290

warranted, it leads to higher CER scores during 291

ASR since the BURNC dataset is filled with a 292

plethora of acronyms, hyphenated and contracted 293

words. 294

Following the data pre-processing approach 295

utilised in (Zhai and Hasegawa-Johnson, 2023), 296

we split our audios into overlapping clips of 20s, at 297

intervals of 10s, for input to the wav2vec2 model. 298

This however leads to the truncation of words in 299

initial or final position. As a result of this, some 300

of the words that are predicted by the model are 301

incomplete and this leads to a higher CER score. 302

6 Conclusion 303

In this paper we have presented an approach for 304

leveraging prosodic information to improve the per- 305

formance of a pretrained speech model in a limited 306

resource scenario. The results from our experi- 307

ments demonstrate that re-focusing self-supervised 308

speech models on supra-segmental speech cues 309

such as prosody could lead to significant perfor- 310

mance gains in downstream tasks. 311
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7 Limitations312

All experiments were carried out under the limited313

resource setting, with little fine-tuning data, due314

to the requirement of our method to use prosodic315

labels. More work is required to investigate the real316

impact when fine-tuning with larger ASR datasets.317

Also, for prosodic cues, we only used pitch-318

accent, and with hard labels (0 or 1). It is not319

clear whether other aspects of prosody would also320

be important for ASR. This question remains open.321
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8 Appendix552

Model Unlabeled Data LM dev-clean dev-other test-clean test-other
10-min labeled
DiscreteBERT (Baevski et al., 2019) LS-960 4-gram 15.7 24.1 16.3 25.2
wav2vec 2.0 BASE (Baevski et al., 2020) LS-960 4-gram 8.9 15.7 9.1 15.6
wav2vec 2.0 LARGE (Baevski et al., 2020) LL-60k 4-gram 6.3 9.8 6.6 10.3
wav2vec 2.0 LARGE (Baevski et al., 2020) LL-60k Transformer 4.6 7.9 4.8 8.2
HUBERT BASE (Hsu et al., 2021) LS-960 4-gram 9.1 15.0 9.7 15.3
HUBERT LARGE (Hsu et al., 2021) LL-60k 4-gram 6.1 9.4 6.6 10.1
HUBERT LARGE (Hsu et al., 2021) LL-60k Transformer 4.3 7.0 4.7 7.6
HUBERT X-LARGE (Hsu et al., 2021) LL-60k Transformer 4.4 6.1 4.6 6.8
1-hour labeled
DeCoAR 2.0 (Ling and Liu, 2020) LS-960 4-gram - - 13.8 29.1
DiscreteBERT (Baevski et al., 2019) LS-960 4-gram 8.5 16.4 9.0 17.6
wav2vec 2.0 BASE (Baevski et al., 2020) LS-960 4-gram 5.0 10.8 5.5 11.3
wav2vec 2.0 LARGE (Baevski et al., 2020) LL-60k Transformer 2.9 5.4 2.9 5.8
HUBERT BASE (Hsu et al., 2021) LS-960 4-gram 5.6 10.9 6.1 11.3
HUBERT LARGE (Hsu et al., 2021) LL-60k Transformer 2.6 4.9 2.9 5.4
HUBERT X-LARGE (Hsu et al., 2021) LL-60k Transformer 2.6 4.2 2.8 4.8
10-hour labeled
SlimIPL (Likhomanenko et al., 2020) LS-960 4-gram + Transformer 5.3 7.9 5.5 9.0
DeCoAR 2.0 (Ling and Liu, 2020) LS-960 4-gram - - 5.4 13.3
DiscreteBERT (Baevski et al., 2019) LS-960 4-gram 5.3 13.2 5.9 14.1
wav2vec 2.0 BASE (Baevski et al., 2020) LS-960 4-gram 3.8 9.1 4.3 9.5
wav2vec 2.0 LARGE (Baevski et al., 2020) LL-60k Transformer 2.4 4.8 2.6 4.9
HUBERT BASE (Hsu et al., 2021) LS-960 4-gram 3.9 9.0 4.3 9.4
HUBERT LARGE (Hsu et al., 2021) LL-60k Transformer 2.2 4.3 2.4 4.6
HUBERT X-LARGE (Hsu et al., 2021) LL-60k Transformer 2.1 3.6 2.3 4.0
100-hour labeled
IPL (Xu et al., 2020) LL-60k 4-gram + Transformer 3.19 6.14 3.72 7.11
SlimIPL (Likhomanenko et al., 2020) LL-60k 4-gram + Transformer 2.2 4.6 2.7 5.2
Noisy Student (Park et al., 2020) LS-860 LSTM 3.9 8.8 4.2 8.6
DeCoAR 2.0 (Ling and Liu, 2020) LS-960 4-gram - - 5.0 12.1
DiscreteBERT (Baevski et al., 2019) LS-960 4-gram 4.0 10.9 4.5 12.1
wav2vec 2.0 BASE (Baevski et al., 2020) LS-960 4-gram 2.7 7.9 3.4 8.0
wav2vec 2.0 LARGE (Baevski et al., 2020) LL-60k Transformer 1.9 4.0 2.0 4.0
HUBERT BASE (Hsu et al., 2021) LS-960 4-gram 2.7 7.8 3.4 8.1
SlimIPL (Likhomanenko et al., 2020) LL-60k Transformer 1.8 3.7 2.1 3.9
HUBERT X-LARGE (Hsu et al., 2021) LL-60k Transformer 1.7 3.0 1.9 3.5

Table 3: Comparison of ASR model performance on the Librispeech dataset (Hsu et al., 2021)
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