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Abstract
Multimodal large language models (MLLMs)001
excel at multimodal perception and understand-002
ing, yet their tendency to generate hallucinated003
or inaccurate responses undermines their trust-004
worthiness. Existing methods have largely over-005
looked the importance of refusal responses as006
a means of enhancing MLLMs reliability. To007
bridge this gap, we present the Information008
Boundary-aware Learning Framework (InBoL),009
a novel approach that empowers MLLMs to010
refuse to answer user queries when encoun-011
tering insufficient information. To the best of012
our knowledge, InBoL is the first framework013
that systematically defines the conditions un-014
der which refusal is appropriate for MLLMs015
using the concept of information boundaries016
proposed in our paper. This framework intro-017
duces a comprehensive data generation pipeline018
and tailored training strategies to improve the019
model’s ability to deliver appropriate refusal020
responses. To evaluate the trustworthiness of021
MLLMs, we further propose a user-centric022
alignment goal along with corresponding met-023
rics. Experimental results demonstrate a signif-024
icant improvement in refusal accuracy without025
noticeably compromising the model’s helpful-026
ness, establishing InBoL as a pivotal advance-027
ment in building more trustworthy MLLMs.028

1 Introduction029

Recent advancements in multimodal large lan-030

guage models (MLLMs) have marked a significant031

breakthrough in AI research, especially in vision-032

language tasks (McKinzie et al., 2024; Bai et al.,033

2023; Tong et al., 2024; Fu et al., 2024; Li et al.,034

2024; Zhang et al., 2024b). By integrating visual035

information with large language models (LLMs),036

these models have exhibited profound capabilities037

in multimodal understanding and reasoning. De-038

spite the impressive progress, MLLMs still face039

notable challenges. One prominent issue is their040

tendency to generate factually incorrect or halluci-041

nated content, where models confidently describe042

non-existent visual elements or provide responses 043

that include incorrect knowledge (Bai et al., 2024; 044

Zhong et al., 2024). Such hallucinations not only 045

reduce the accuracy of the models but also under- 046

mine their truthfulness in practical applications, 047

hindering them from being trustworthy AI systems. 048

To improve the trustworthiness of MLLMs, pre- 049

vious works primarily focus on improving multi- 050

modal alignment algorithms to enhance the mod- 051

els’ perceptual and reasoning capabilities (Yu et al., 052

2024a,b; Amirloo et al., 2024). However, all mod- 053

els have intrinsic limitations in their knowledge and 054

perceptual capabilities, making them prone to pro- 055

duce inaccurate or misleading responses when con- 056

fronted with tasks beyond their capabilities. There- 057

fore, another effective approach to improving trust- 058

worthiness is to train these models to recognize 059

their boundaries and refuse to answer questions 060

when appropriate, thus preventing the generation 061

of misinformation. 062

Despite the critical role of refusal responses, 063

few studies have focused on effectively training 064

MLLMs for this capability. Existing approach (Cha 065

et al., 2024) primarily targets ambiguous or unan- 066

swerable queries, such as those involving non- 067

existent visual elements, but fall short of addressing 068

the broader challenges related to intrinsic limita- 069

tions and self-awareness in MLLMs (Wang et al., 070

2024b). This gap underscores the need for strate- 071

gies that enable MLLMs to recognize their limi- 072

tations, ensuring they either provide accurate re- 073

sponses or appropriately refuse to answer when 074

necessary. 075

While related research in MLLMs is limited, ef- 076

forts to improve reliability by training models to 077

refuse answering unknown questions have been 078

widely studied in LLMs (Amayuelas et al., 2024; 079

Yin et al., 2023; Yang et al., 2023; Cheng et al., 080

2024; Chen et al., 2024; Liang et al., 2024). These 081

studies typically generate instruction and prefer- 082

ence data that include refusal responses to guide 083
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models in avoiding responses beyond their knowl-084

edge boundaries. However, extending these ap-085

proaches to MLLMs presents unique challenges.086

Unlike LLMs, the trustworthiness of MLLMs relies087

not only on internal knowledge but also on external088

multimodal inputs, which are unaccounted for in089

existing methods. This raises the critical question090

of when MLLMs should refuse to answer. Further-091

more, evaluating trustworthiness in these works092

involves categorizing test questions as known and093

unknown based on knowledge boundaries—a pro-094

cess that requires high computational cost as it095

demands multiple sampling.096

To address these limitations, we introduce the097

Information Boundary-aware Learning Framework098

(InBoL), the first to establish the concept of in-099

formation boundaries and systematically define100

the conditions under which MLLMs should ap-101

propriately refuse to respond. This marks a sig-102

nificant advancement in trustworthiness training103

for MLLMs. Building on these boundaries, we104

develop a data construction pipeline that generates105

"I Don’t Know" (IDK) instruction and preference106

data from available VQA datasets. Using this data,107

we implement two training methods: IDK Instruc-108

tion Tuning (IDK-IT) and Confidence-aware Direct109

Preference Optimization (CA-DPO), which enables110

MLLMs to recognize their information boundaries111

and refuse to answer when necessary. To evaluate112

model trustworthiness, we introducing simple and113

model-agnostic metrics for assessing trustworthi-114

ness from a user-centric perspective. Our experi-115

mental results demonstrate that InBoL significantly116

improves the trustworthiness of baseline models by117

enhancing their ability to appropriately refuse re-118

sponses while maintaining helpfulness. This work119

introduces a new paradigm for developing trust-120

worthy MLLMs and sets the foundation for future121

advancements in this critical area.122

Overall, our contributions are as follows:123

• InBoL Framework: We propose the InBoL124

framework, which introduces the novel con-125

cept of information boundaries and integrates126

a comprehensive data construction pipeline127

along with tailored training methods. InBoL128

enhances the trustworthiness of MLLMs by129

empowering them to recognize these bound-130

aries and refuse to answer when lacking suf-131

ficient information, setting a new benchmark132

for trustworthiness training.133

• User-centric Trustworthiness Evaluation:134

We introduce a user-centered alignment ob- 135

jective and define several simple and model- 136

agnostic metrics for trustworthiness, which 137

simplifies the evaluation process. 138

• Experimental Validation: We conduct exten- 139

sive experiments to validate the effectiveness 140

of our approach, demonstrating significant 141

improvements in MLLMs’ ability to recog- 142

nize information boundaries while preserving 143

helpfulness. Our detailed analyses offer valu- 144

able insights into the broader impact of this 145

method, paving the way for future develop- 146

ments in trustworthy MLLMs. 147

2 Problem Formulation 148

2.1 MLLM Alignment for Trustworthiness 149

Previous studies have explored alignment for trust- 150

worthiness in LLMs, primarily focusing on eval- 151

uating trustworthiness based on the model’s in- 152

trinsic boundary. Given a user query q and the 153

model-generated response r, the trustworthiness 154

of the response is evaluated by a value function 155

v(q, r) ∈ {0, 1}. The goal of alignment is to max- 156

imize
∑

q∈Dtest
v(q, r). To determine the value of 157

v(·), these studies first classify the test set ques- 158

tions into known Dk and unknown Duk categories 159

based on the model’s knowledge boundary. The 160

value function v(·) is then defined as: 161

v(q, r) =


1 if q ∈ Dk and r is correct.
1 if q ∈ Duk and r is a refusal response.
0 otherwise

(1) 162

However, categorizing questions as ‘known’ or 163

‘unknown’ for each model is a complex task with 164

high computational costs. Additionally, Dk and 165

Duk are model-specific, making it difficult to fairly 166

compare the trustworthiness of different models. 167

To address these challenges, we propose a new 168

model-agnostic alignment objective for trustwor- 169

thiness. Inspired by Xu et al. (2024), our ap- 170

proach evaluates trustworthiness based on user pref- 171

erences: users value accurate, relevant, and infor- 172

mative responses; prefer refusals over misinforma- 173

tion; and find incorrect answers highly harmful. 174

A trustworthy MLLM should maximize accurate 175

responses while using refusals to prevent misinfor- 176

mation. Hence, we redefine the value function as 177

follows: 178
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Figure 1: Information Boundaries of MLLMs. (a) Questions are categorized into three types based on intrinsic
and extrinsic information boundaries. For Type 1 questions, which fall within the intrinsic boundary, the model
is expected to provide helpful responses. For Type 2 questions, which require knowledge beyond the model’s
capabilities (e.g., dog breeds), the model should refuse to answer. For Type 3 questions, where the provided image
lacks sufficient information, the model should also respond with a refusal. (b) The intrinsic and extrinsic boundaries
are illustrated, highlighting the model’s varying confidence in answering queries across different regions.

v(q, r) =


1 if r is a correct response,
0 if r is a refusal response,
−1 if r is a incorrect response.

(2)179

Consequently, the new objective for trustworthi-180

ness alignment is to maximize the sum of values181

over the test set:182

maximize
θ

∑
q∈Dtest

v(q, r) (3)183

This objective encourages models to generate as184

many correct responses as possible while prioritiz-185

ing refusal when accuracy cannot be guaranteed.186

Unlike previous approaches, the definition of v(·)187

is model-agnostic, allowing for consistent evalua-188

tion across different models.189

2.2 Evaluation Metrics190

To evaluate the model’s trustworthiness, we into-191

duce two key metrics—Accuracy (Acc) and Re-192

fusal Rate (RefR)—defined as follows:193

Acc =
Nc

N
, RefR =

Nr

N
(4)194

where Nc is the number of correct responses, Nr is195

the number of refusal responses, and N is the total196

number of queries.197

Combining these two metrics, we define the ob-198

jective for trustworthiness alignment as trustwor-199

thiness score strust as follows:200

strust =
∑

q∈Dtest

v(q, r) = 2 · Acc + RefR − 1. (5) 201

3 Information Boundary-Aware Learning 202

framework 203

To enhance the trustworthiness of MLLMs, we pro- 204

pose the Information Boundary-Aware Learning 205

Framework (InBoL). This framework includes a 206

data construction pipeline designed to generate 207

model-specific ‘IDK’ instruction and preference 208

data by considering the intrinsic and extrinsic infor- 209

mation boundaries. Furthermore, we incorporate 210

IDK-IT and CA-DPO for model training. The goal 211

of this framework is to improve the model’s abil- 212

ity to provide appropriate refusal responses while 213

maintaining helpfulness, thereby reducing misin- 214

formation and increasing reliability of MLLMs. 215

3.1 Information Boundary 216

The core of our framework is to train MLLMs to 217

recognize when to refuse, thereby avoiding the gen- 218

eration of misinformation. While previous work 219

on LLMs generally restricts refusals to questions 220

outside the model’s knowledge boundary, multi- 221

modal scenarios introduce additional complexity, 222

as both visual information and knowledge must be 223

considered. 224

To address this, we introduce extrinsic and in- 225

trinsic information boundaries for MLLMs, as il- 226
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Figure 2: The Pipeline of Data Construction: Given a VQA dataset, we design a pipeline to collect different types
of samples within and beyond the information boundaries. First, we estimate the confidence for each sample to
determine the model’s intrinsic information boundary. Next, we generate questions that lie beyond the extrinsic
boundary, followed by quality filtering. Finally, all data is formatted into a standardized structure, including correct,
incorrect, and refusal responses, each accompanied by their corresponding confidence scores.

lustrated in Figure 1. In multimodal scenarios, a227

trustworthy MLLM should answer questions only228

when it has sufficient information and refuse when229

it does not, and these boundaries serve as guide-230

lines for this decision-making process.231

Extrinsic Information Boundary In multimodal232

scenarios, MLLMs depend on extrinsic visual in-233

puts to respond to user queries. The extrinsic infor-234

mation boundary defines the distinction between235

what is explicitly present in the visual input and236

what is absent. When the necessary information237

to answer a question is not available—indicating238

that the query exceeds the extrinsic boundary—the239

model should provide a refusal response.240

Intrinsic infomration boundary Beyond the ex-241

trinsic boundary, a model’s intrinsic information242

boundary is equally important, defined by its in-243

herent capabilities. This boundary encompasses244

what the model can infer from the image and the245

multimodal knowledge embedded in its parameters.246

If the model cannot perceive the required informa-247

tion from the image or lacks specific knowledge,248

thereby exceeding the intrinsic boundary, it should249

also provide a refusal response.250

3.2 Data Construction251

To train MLLMs to appropriately refuse questions,252

we need to collect the three types of VQA data out-253

lined in Figure 1. For any given VQA dataset, we254

propose a data construction pipeline that classifies 255

questions into the first two types based on confi- 256

dence estimation, while generating unanswerable 257

questions as the third type from the available data. 258

Additionally, we reorganize the generated data into 259

a standardized format, as shown in Figure 2, which 260

is then used to create the ‘IDK’ instructions and 261

preference data. 262

Estimating the Model’s Confidence We assume 263

that all questions in a given VQA dataset are an- 264

swerable based on the provided visual informa- 265

tion, placing them within the extrinsic information 266

boundary. To further determine if these questions 267

fall within the intrinsic information boundary, we 268

estimate the model’s confidence. Following prior 269

works (Cheng et al., 2024; Xu et al., 2024; Yang 270

et al., 2023), we sample ten responses from the 271

original model and calculate the accuracy rate to 272

estimate its confidence. In addition, we randomly 273

sample a correct and incorrect answers from the 274

model-generated responses and select a refusal re- 275

sponse from the refusal template (Appendix B), 276

then restructure the data into a standardized format 277

as illustrated in Figure 2. Further details about this 278

process are provided in Appendix C. 279

Generating Unanswerable Questions Next, we 280

generate questions that lie beyond the extrinsic in- 281

formation boundary. First, we focus on questions 282

that are irrelevant to the provided image. To cre- 283
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Figure 3: Construction of ‘IDK’ instruction and preference data: The restructured data is categorized into ‘Known,’
‘Mixed,’ and ‘Unknown’ based on confidence thresholds(δk and δuk). ‘IDK’ instruction generation includes
correct responses for known questions, refusal responses for unknown questions, and the exclusion of mixed data.
Preference data samples are constructed by pairing questions with correct, incorrect, and refusal responses, based
on the confidence classification of each question.

ate these, we randomly select samples from the284

VQA dataset and reorganize them into mismatched285

image-question pairs. Additionally, we formulate286

more complex questions that, while related to the287

image, cannot be answered due to incorrect assump-288

tions or insufficient information provided by the289

image. To achieve this, we design prompts that290

instruct GPT-4o to generate unanswerable queries291

and further implement a filtering mechanism to en-292

sure the quality of them. For each generated unan-293

swerable question, we assign a confidence score of294

0. Additionally, we collect an incorrect response295

generated by the original model and select a refusal296

response from predefined templates to restructure297

the data into the standardized format shown in Fig-298

ure 2. Detailed descriptions of the generation and299

filtering processes are provided in Appendix C.2300

and we further discuss the generalization of this301

data generation method in Appendix F.3.302

Constructing ‘IDK’ Instruction To construct303

the ‘IDK’ instruction, we categorize the restruc-304

tured data into three types based on the confidence305

thresholds δk and δuk: ‘Known,’ ‘Mixed,’ and ‘Un-306

known,’ as shown in Figure 3. For known questions,307

we select the correct answer as the response. For308

unknown questions, we utilize the refusal response.309

Regarding the ‘Mixed’ data, we exclude it from the310

instruction data, as the model exhibits relatively311

high uncertainty for these questions.312

Constructing Preference Data A preference313

data consists of a question, a chosen response, and314

a rejected response. For known questions, we use315

the correct answers as the chosen response and the316

refusal as the rejected response. For unknown ques- 317

tions, we utilize the refusal answers as the chosen 318

response and the incorrect answers as the rejected 319

response. For mixed questions, we construct two 320

samples, both of which use incorrect answers as 321

the rejected response. In one sample, the chosen 322

response is the correct answer, while in the other, 323

the chosen response is the refusal. 324

3.3 Model Training for Information Boundary 325

Awareness 326

To enhance the model’s ability to recognize and 327

refuse questions beyond its information boundary, 328

we propose two training strategies: ‘IDK’ Instruc- 329

tion Tuning (IDK-IT) and Confidence-aware Di- 330

rect Preference Optimization (CA-DPO). These 331

strategies can teach the model to provide refusal 332

responses when it lacks the necessary information. 333

IDK Instruction Tuning Instruction tuning is 334

an effective method for aligning the model’s re- 335

sponses with desired behaviors. In our framework, 336

we train the model with ‘IDK’ instructions. This 337

training approach improves models trustworthiness 338

by reducing the generating misinformation. 339

Confidence-aware Direct Preference Optimiza- 340

tion Direct Preference Optimization (DPO) is a 341

technique that optimizes a model’s policy using 342

preference data (Xu et al., 2023; Rafailov et al., 343

2024; Hong et al., 2024; Yuan et al., 2024). While 344

DPO can guide models to prefer correct answers 345

and learn to refuse when needed, it does not lever- 346

age the model’s intrinsic confidence to dynami- 347

cally adjust its behavior. To address this, we pro- 348
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Method AOKVQA GQA MMMU BeyondVisQA MMBench(en-dev)
Acc RefR Strust Acc RefR Strust Acc RefR Strust RefR Acc RefR Strust

LLaVA1.5-7B 78.56 0.00 57.13 59.65 0.00 19.30 34.70 0.00 -30.60 25.50 62.80 0.00 25.60
+Refusal Prompt 56.77 26.20 39.74 58.65 3.43 20.74 32.22 12.89 -22.67 27.50 59.36 0.69 19.42
+SFT 74.32 3.49 52.14 59.39 2.77 21.55 34.20 1.67 -29.93 56.00 63.32 0.26 26.89
+IDK-IT 55.50 36.24 47.24 50.46 23.88 24.81 15.22 69.67 0.11 75.25 46.39 39.09 31.87
+CA-DPO 72.23 17.64 62.10 60.41 12.95 33.77 19.67 56.67 -4.00 67.75 58.42 18.13 34.97
LLaVA1.5-13B 78.95 0.00 57.90 61.81 0.00 23.63 36.22 0.00 -27.56 33.50 67.96 0.00 35.91
+Refusal Prompt 63.32 18.95 45.59 61.36 1.96 24.69 27.78 19.56 -24.89 46.00 64.69 0.26 29.64
+SFT 77.82 2.62 58.25 61.32 1.69 24.33 38.22 1.78 -21.78 68.75 67.01 0.00 34.02
+IDK-IT 63.93 23.06 50.92 52.27 19.22 23.77 14.22 74.33 2.78 79.50 55.84 23.91 35.60
+CA-DPO 73.89 15.63 63.41 59.70 13.82 33.22 25.89 41.78 -6.44 72.50 62.63 14.69 39.95

Table 1: Performance on out-of-domain dataset. We present results on LLaVA1.5-7B and LLaVA1.5-13B. Bold
values indicate the highest trustworthiness score.

pose Confidence-aware DPO (CA-DPO), which349

integrates the model’s confidence score into the350

optimization process. As shown in Figure 3, we de-351

fine two preference pairs for ‘Mixed’ samples: p1352

(correct > incorrect) and p2 (refusal > incorrect).353

For consistency, we define ‘Known’ samples with354

p1 = p2 = (correct > refusal), and ‘Unknown’355

samples with p1 = p2 = (refusal > incorrect).356

Our approach uses the confidence score to dynam-357

ically balance the emphasis between these prefer-358

ence pairs. The CA-DPO loss function is defined359

as:360

f(x, p) = log σ(β log
π∗(yw|x)
πref(yw|x)

− β log
π∗(yl|x)
πref(yl|x)

)

(6)361

Lcadpo =− E(x,p1,p2)

(
f(x, p1) · confx+

f(x, p2) · (1− confx)
) (7)362

363 where confx is the model’s confidence score.364

The confidence score adjusts the balance between365

the two preference pairs, particularly for ‘Mixed’366

samples. In high-confidence scenarios, the loss367

function prioritizes correct responses, while in low-368

confidence cases, it favors refusal. This adaptive369

mechanism enables the model to balance cautious-370

ness and helpfulness more effectively.371

4 Experimental Setup372

Training Data As mentioned in Section 3.1,373

our work considers both the model’s knowledge374

and visual information. Therefore, we use gen-375

eral VQA datasets and knowledge-intensive VQA376

datasets for data construction. Specifically, we uti-377

lize VQAV2 (Antol et al., 2015; Zhang et al., 2016;378

Goyal et al., 2017), Oven (Hu et al., 2023), and379

ScienceQA (Lu et al., 2022). We set the confidence380

thresholds as δk = 0.8 and δuk = 0.2. For ‘IDK’381

instruction tuning, we collected 11k instructions.382

For CA-DPO, we gathered about 24k preference 383

pairs. Further training details are provided in Ap- 384

pendix D. 385

Evaluation In our experiments, we utilize the 386

LLaVA1.5 (Liu et al., 2023c,b) model, one of the 387

most widely used open-source MLLMs. We evalu- 388

ate models on both in-domain and out-of-domain 389

(OOD) datasets. For the in-domain evaluation, we 390

draw questions from the validation sets of VQAV2 391

and Oven, as well as the test set of ScienceQA. 392

In addition, we generate unanswerable questions 393

(UaVQA) as described in Section 3.2 and manu- 394

ally filter them for evaluation purposes. The final 395

in-domain dataset consists of 1,000 samples. 396

For the OOD evaluation, we assess the model 397

on three types of benchmarks: general VQA, 398

knowledge-intensive VQA, and unanswerable 399

VQA. For general VQA, we use the AOKVQA 400

validation set (Schwenk et al., 2022), the GQA test 401

set (Hudson and Manning, 2019), and the MM- 402

Bench (en-dev) (Liu et al., 2023d). In the case of 403

knowledge-intensive VQA, we employ the valida- 404

tion set of MMMU (Yue et al., 2024). For unan- 405

swerable VQA, we adopt the BeyondVisQA subset 406

from MM-SAP (Wang et al., 2024b). 407

Baselines We consider both prompt-based and 408

training-based methods. Refusal Prompt instruct 409

the model to refuse answering when it lacks suf- 410

ficient information by appending a prompt to the 411

text input. The refusal prompt is: If you don’t 412

have enough information to answer the question, 413

respond with “Sorry, I can not help with it.” We 414

also conduct supervised fine-tuning(SFT) as base- 415

line. For questions within the extrinsic information 416

boundary, the model is trained using the correct 417

answers. For questions outside this boundary, since 418

no correct answers exist, we assign an ‘IDK’ re- 419

sponse as the label. By constructing the dataset in 420
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Figure 4: Refusal rate and accuracy of models across different confidence levels. (a) Refusal Rate by Confidence:
The model exhibits dynamic refusal behavior, with higher refusal rates for lower confidence levels and a tendency to
answer directly for high-confidence questions. This indicates the model’s awareness of its intrinsic information
boundary. (b) Answered Accuracy by Confidence: The accuracy of the IDK-IT and CA-DPO models surpasses that
of the original model, demonstrating that training methods focused on intrinsic boundary recognition improve the
model’s ability to provide accurate responses when choosing to answer.

this manner, we fine-tune models with about 11k421

instructions. Further details about evaluation can422

be found in the Appendix E.423

Method Acc RefR Strust

LLaVA1.5-7B 12.00 46.10 -6.50
+Refusal Prompt 47.00 41.70 -4.10
+SFT 81.00 49.10 8.90
+IDK-IT 92.00 38.60 16.00
+CA-DPO 87.00 49.10 28.50
LLaVA1.5-13B 20.00 51.00 4.10
+Refusal Prompt 62.00 48.20 10.80
+SFT 78.00 53.60 17.30
+IDK-IT 89.00 41.80 21.20
+CA-DPO 93.00 49.00 32.00

Table 2: Performance on in-domain dataset. We present
results on LLaVA1.5-7B and LLaVA1.5-13B. Bold val-
ues indicate the highest trustworthiness score.

5 Results and Analysis424

5.1 Overall Results425

The results on the in-domain datasets are presented426

in Table 2. Both IDK-IT and CA-DPO demonstrate427

notable improvements in trustworthiness scores428

compared to the baselines. Although IDK-IT does429

result in a decline in accuracy, it improves the430

model’s trustworthiness by greatly increasing the431

model’s refusal rate. In contrast, CA-DPO achieves432

a more balanced outcome by improving the refusal433

rate while maintaining model accuracy. This sug-434

gests that CA-DPO enables the model to better435

distinguish between known and unknown queries 436

without sacrificing helpfulness. As illustrated in 437

Table 1, IDK-IT and CA-DPO generalize well to 438

OOD datasets. IDK-IT continues to mainly boost 439

the refusal rate while CA-DPO strikes an effective 440

balance between improving the refusal rate and 441

preserving accuracy. 442

5.2 The effectiveness of CA-DPO 443

To evaluate the effectiveness of CA-DPO, we used 444

three types of preference data for the ‘mixed’ sam- 445

ples and trained LLaVA1.5 using the original DPO 446

loss. These preference pairs include: (1) refusal > 447

incorrect; (2) correct > incorrect; and (3) a combi- 448

nation of both. Table 3 presents the average perfor- 449

mance on both in-domain and OOD datasets. The 450

results indicate that models trained with the CA- 451

DPO loss achieve a more balanced performance 452

between accuracy and refusal rate, resulting in the 453

highest trustworthiness score. This suggests that 454

the CA-DPO method encourages the model to be 455

more selective in its responses, striking an effec- 456

tive balance between providing helpful answers 457

and refusing when necessary, thereby enhancing its 458

overall trustworthiness. 459

5.3 Awareness of the Extrinsic Boundary 460

To comprehensively evaluate the model’s aware- 461

ness of the extrinsic information boundary, we 462

conduct additional experiments on the unanswer- 463

able subset of VizWiz (Gurari et al., 2018) and the 464

validation set of VQAv2-IDK (Cha et al., 2024). 465
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Model Method Data
In-Domain Out-Of-Domain(Avg)

Acc RefR Strust Acc RefR Strust

LLaVA1.5-7B

DPO (1) 47.50 30.20 25.20 50.30 29.46 30.06
DPO (2) 51.00 26.30 28.30 55.08 18.62 28.78
DPO (3) 49.50 26.30 25.30 52.88 20.35 26.11
CA-DPO (3) 49.10 30.30 28.50 52.68 26.35 31.71

LLaVA1.5-13B

DPO (1) 47.10 36.10 30.30 52.71 24.14 29.56
DPO (2) 49.60 31.40 30.60 56.37 16.45 29.20
DPO (3) 48.60 33.90 31.10 55.19 20.83 31.21
CA-DPO (3) 49.00 34.00 32.00 55.53 21.48 32.53

Table 3: Performance comparison between models trained with different preference data using DPO and CA-DPO.

Vizwiz(ua) VQAv2-IDK(filter)

LLaVA1.5-7b
original 9.00 2.80
IDK-IT 76.01 81.42

CA-DPO 69.97 70.63

LLaVA1.5-13b
original 9.60 2.60
IDK-IT 78.61 80.14

CA-DPO 73.27 72.40

Table 4: Refusal Rate on unanswerable VQA datasets.
VizWiz(ua) refers to the unanswerable subset of the
VizWiz dataset, while VQAv2-IDK(filter) represents the
filtered subset of VQAv2-IDK, where only questions
with more than one ’IDK’ annotation are retained.

VQAv2-IDK comprises questions from VQAv2466

annotated with ‘IDK’ keywords. However, we467

observe that some of these questions can still be468

answered based on image information, suggest-469

ing that they remain within the extrinsic informa-470

tion boundary. Consequently, we filter out ques-471

tions that contain only a single ‘IDK’ annotation.472

VizWiz is a VQA dataset that includes visual ques-473

tions posed by people who are blind. We select474

data labeled as ‘unanswerable’ to form its unan-475

swerable subset. As shown in Table 4, our models476

appropriately provides refusal responses on these477

out-of-domain datasets, demonstrating their clear478

awareness of the extrinsic boundary.479

5.4 Awareness of the Intrinsic Boundary480

Although our overall results demonstrate that the481

proposed training method significantly reduces mis-482

information by promoting refusals while maintain-483

ing performance, we aim to further investigate the484

model’s intrinsic awareness of its boundaries. To485

this end, we analyze changes in the refusal rates486

relative to the confidence levels of LLaVA1.5-7B487

on both the in-domain dataset and the AOKVQA488

(OOD) dataset, as illustrated in Figure 4(a). The re-489

sults indicate that the model exhibits an awareness490

of its own confidence, effectively refusing to an- 491

swer when appropriate. For high-confidence ques- 492

tions, the model typically provides direct answers, 493

while for lower-confidence questions, it demon- 494

strates a higher likelihood of refusal. This adaptive 495

refusal behavior reflects the model’s capacity to 496

distinguish between instances where it possesses 497

sufficient knowledge and those where it does not, 498

underscoring its intrinsic self-awareness. 499

Additionally, we calculate the accuracy of the 500

answered questions, defined as: Answered Acc = 501
Nc

N−Nr
, where Nc is the number of correct an- 502

swers and Nr is the number of refusals. Fig- 503

ure 4(b) shows the answered accuracy for the orig- 504

inal model, the IDK-IT model, and the CA-DPO 505

model. Notably, the accuracy curve for the original 506

model is lower than those of both the IDK-IT and 507

CA-DPO models. This indicates that training the 508

model to recognize its intrinsic information bound- 509

aries through the IDK-IT and CA-DPO methods 510

enhances its ability to more effectively utilize the 511

information it possesses, leading to improved over- 512

all accuracy. 513

6 Conclusion 514

In this paper, we introduce the InBoL Frame- 515

work to enhance the trustworthiness of MLLMs. 516

By defining information boundaries, we create a 517

data generation pipeline and apply novel training 518

methods—IDK-IT and CA-DPO—to improve mod- 519

els’ ability to avoid misinformation while main- 520

taining helpfulness. Our user-centric evaluation 521

approach also offers a simple way to assess trust- 522

worthiness. Experimental results show that our 523

method effectively reduces misinformation and en- 524

hances model reliability, paving a feasible path for 525

the future development of trustworthy MLLMs. 526
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Limitations527

In this work, we did not explore the generation528

of explanations for refusal responses, an impor-529

tant and underexamined area. From the model’s530

perspective, many questions require reasoning pro-531

cesses to determine whether sufficient information532

is available to provide an accurate answer. By in-533

corporating explanations for refusal responses, the534

model could better learn when to refuse appropri-535

ately, thereby enhancing its awareness of its own536

limitations and boundaries. From the user’s per-537

spective, unexplained refusals may lead to con-538

fusion or dissatisfaction. Providing clear and in-539

terpretable justifications for refusals could make540

the refusal mechanism more transparent and user-541

friendly, significantly improving the overall user542

experience.543

Actually, we found that our models not only can544

identify instances where sufficient information is545

lacking but also show potential in distinguishing546

between intrinsic and extrinsic information deficits.547

This suggests that it may be able to recognize the548

source of missing information and understand the549

reasoning behind refusal decisions. Detailed ex-550

perimental results supporting this observation are551

presented in Appendix F.4.552

Therefore, we plan to focus on enabling the553

model to generate well-reasoned and contextually554

appropriate refusal explanations for future work.555

This will involve developing methodologies for556

constructing relevant datasets and designing robust557

evaluation frameworks to assess the quality and rel-558

evance of the generated explanations. By making559

refusal responses more informative and transpar-560

ent, we aim to further enhance the trustworthiness561

of the model while ensuring a more positive and562

engaging user experience.563

References564

Alfonso Amayuelas, Kyle Wong, Liangming Pan,565
Wenhu Chen, and William Yang Wang. 2024. Knowl-566
edge of knowledge: Exploring known-unknowns un-567
certainty with large language models. In Findings of568
the Association for Computational Linguistics ACL569
2024, pages 6416–6432, Bangkok, Thailand and vir-570
tual meeting. Association for Computational Linguis-571
tics.572

Elmira Amirloo, Jean-Philippe Fauconnier, Christoph573
Roesmann, Christian Kerl, Rinu Boney, Yusu Qian,574
Zirui Wang, Afshin Dehghan, Yinfei Yang, Zhe575
Gan, et al. 2024. Understanding alignment in multi-576

modal llms: A comprehensive study. arXiv preprint 577
arXiv:2407.02477. 578

Stanislaw Antol, Aishwarya Agrawal, Jiasen Lu, Mar- 579
garet Mitchell, Dhruv Batra, C Lawrence Zitnick, and 580
Devi Parikh. 2015. Vqa: Visual question answering. 581
In Proceedings of the IEEE international conference 582
on computer vision, pages 2425–2433. 583

Jinze Bai, Shuai Bai, Shusheng Yang, Shijie Wang, 584
Sinan Tan, Peng Wang, Junyang Lin, Chang Zhou, 585
and Jingren Zhou. 2023. Qwen-vl: A versatile 586
vision-language model for understanding, localiza- 587
tion, text reading, and beyond. arXiv preprint 588
arXiv:2308.12966. 589

Zechen Bai, Pichao Wang, Tianjun Xiao, Tong He, 590
Zongbo Han, Zheng Zhang, and Mike Zheng Shou. 591
2024. Hallucination of multimodal large language 592
models: A survey. arXiv preprint arXiv:2404.18930. 593

Sungguk Cha, Jusung Lee, Younghyun Lee, and Che- 594
oljong Yang. 2024. Visually dehallucinative instruc- 595
tion generation. In ICASSP 2024-2024 IEEE Interna- 596
tional Conference on Acoustics, Speech and Signal 597
Processing (ICASSP), pages 5510–5514. IEEE. 598

Lida Chen, Zujie Liang, Xintao Wang, Jiaqing Liang, 599
Yanghua Xiao, Feng Wei, Jinglei Chen, Zhenghong 600
Hao, Bing Han, and Wei Wang. 2024. Teach- 601
ing large language models to express knowledge 602
boundary from their own signals. arXiv preprint 603
arXiv:2406.10881. 604

Qinyuan Cheng, Tianxiang Sun, Xiangyang Liu, Wen- 605
wei Zhang, Zhangyue Yin, Shimin Li, Linyang Li, 606
Kai Chen, and Xipeng Qiu. 2024. Can ai assis- 607
tants know what they don’t know? arXiv preprint 608
arXiv:2401.13275. 609

Yunhao Fang, Ligeng Zhu, Yao Lu, Yan Wang, Pavlo 610
Molchanov, Jang Hyun Cho, Marco Pavone, Song 611
Han, and Hongxu Yin. 2024. vila2: Vila augmented 612
vila. arXiv preprint arXiv:2407.17453. 613

Chaoyou Fu, Haojia Lin, Zuwei Long, Yunhang Shen, 614
Meng Zhao, Yifan Zhang, Xiong Wang, Di Yin, 615
Long Ma, Xiawu Zheng, et al. 2024. Vita: Towards 616
open-source interactive omni multimodal llm. arXiv 617
preprint arXiv:2408.05211. 618

Yash Goyal, Tejas Khot, Douglas Summers-Stay, Dhruv 619
Batra, and Devi Parikh. 2017. Making the v in vqa 620
matter: Elevating the role of image understanding 621
in visual question answering. In Proceedings of the 622
IEEE conference on computer vision and pattern 623
recognition, pages 6904–6913. 624

Danna Gurari, Qing Li, Abigale J Stangl, Anhong Guo, 625
Chi Lin, Kristen Grauman, Jiebo Luo, and Jeffrey P 626
Bigham. 2018. Vizwiz grand challenge: Answering 627
visual questions from blind people. In Proceedings of 628
the IEEE conference on computer vision and pattern 629
recognition, pages 3608–3617. 630

9

https://aclanthology.org/2024.findings-acl.383
https://aclanthology.org/2024.findings-acl.383
https://aclanthology.org/2024.findings-acl.383
https://aclanthology.org/2024.findings-acl.383
https://aclanthology.org/2024.findings-acl.383


Jiwoo Hong, Noah Lee, and James Thorne. 2024.631
Reference-free monolithic preference optimization632
with odds ratio. arXiv preprint arXiv:2403.07691.633

Hexiang Hu, Yi Luan, Yang Chen, Urvashi Khandel-634
wal, Mandar Joshi, Kenton Lee, Kristina Toutanova,635
and Ming-Wei Chang. 2023. Open-domain visual636
entity recognition: Towards recognizing millions of637
wikipedia entities. In Proceedings of the IEEE/CVF638
International Conference on Computer Vision, pages639
12065–12075.640

Drew A Hudson and Christopher D Manning. 2019.641
Gqa: A new dataset for real-world visual reasoning642
and compositional question answering. In Proceed-643
ings of the IEEE/CVF conference on computer vision644
and pattern recognition, pages 6700–6709.645

Bo Li, Yuanhan Zhang, Dong Guo, Renrui Zhang,646
Feng Li, Hao Zhang, Kaichen Zhang, Yanwei647
Li, Ziwei Liu, and Chunyuan Li. 2024. Llava-648
onevision: Easy visual task transfer. arXiv preprint649
arXiv:2408.03326.650

Yuxin Liang, Zhuoyang Song, Hao Wang, and Jiax-651
ing Zhang. 2024. Learning to trust your feelings:652
Leveraging self-awareness in llms for hallucination653
mitigation. arXiv preprint arXiv:2401.15449.654

Fuxiao Liu, Kevin Lin, Linjie Li, Jianfeng Wang, Yaser655
Yacoob, and Lijuan Wang. 2023a. Aligning large656
multi-modal model with robust instruction tuning.657
arXiv preprint arXiv:2306.14565.658

Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae659
Lee. 2023b. Improved baselines with visual instruc-660
tion tuning.661

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae662
Lee. 2023c. Visual instruction tuning.663

Yuan Liu, Haodong Duan, Yuanhan Zhang, Bo Li,664
Songyang Zhang, Wangbo Zhao, Yike Yuan, Jiaqi665
Wang, Conghui He, Ziwei Liu, et al. 2023d. Mm-666
bench: Is your multi-modal model an all-around667
player? arXiv preprint arXiv:2307.06281.668

Pan Lu, Swaroop Mishra, Tony Xia, Liang Qiu, Kai-669
Wei Chang, Song-Chun Zhu, Oyvind Tafjord, Peter670
Clark, and Ashwin Kalyan. 2022. Learn to explain:671
Multimodal reasoning via thought chains for science672
question answering. In The 36th Conference on Neu-673
ral Information Processing Systems (NeurIPS).674

Brandon McKinzie, Zhe Gan, Jean-Philippe Faucon-675
nier, Sam Dodge, Bowen Zhang, Philipp Dufter,676
Dhruti Shah, Xianzhi Du, Futang Peng, Floris Weers,677
et al. 2024. Mm1: Methods, analysis & insights678
from multimodal llm pre-training. arXiv preprint679
arXiv:2403.09611.680

Chen Qian, Jie Zhang, Wei Yao, Dongrui Liu, Zhenfei681
Yin, Yu Qiao, Yong Liu, and Jing Shao. 2024. To-682
wards tracing trustworthiness dynamics: Revisiting683
pre-training period of large language models. arXiv684
preprint arXiv:2402.19465.685

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christo- 686
pher D Manning, Stefano Ermon, and Chelsea Finn. 687
2024. Direct preference optimization: Your language 688
model is secretly a reward model. Advances in Neu- 689
ral Information Processing Systems, 36. 690

Dustin Schwenk, Apoorv Khandelwal, Christopher 691
Clark, Kenneth Marino, and Roozbeh Mottaghi. 2022. 692
A-okvqa: A benchmark for visual question answer- 693
ing using world knowledge. In European conference 694
on computer vision, pages 146–162. Springer. 695

Zhelun Shi, Zhipin Wang, Hongxing Fan, Zaibin Zhang, 696
Lijun Li, Yongting Zhang, Zhenfei Yin, Lu Sheng, 697
Yu Qiao, and Jing Shao. 2024. Assessment of mul- 698
timodal large language models in alignment with 699
human values. arXiv preprint arXiv:2403.17830. 700

Zhiqing Sun, Sheng Shen, Shengcao Cao, Haotian Liu, 701
Chunyuan Li, Yikang Shen, Chuang Gan, Liang- 702
Yan Gui, Yu-Xiong Wang, Yiming Yang, et al. 2023. 703
Aligning large multimodal models with factually aug- 704
mented rlhf. arXiv preprint arXiv:2309.14525. 705

Shengbang Tong, Ellis Brown, Penghao Wu, Sanghyun 706
Woo, Manoj Middepogu, Sai Charitha Akula, Jihan 707
Yang, Shusheng Yang, Adithya Iyer, Xichen Pan, 708
et al. 2024. Cambrian-1: A fully open, vision-centric 709
exploration of multimodal llms. arXiv preprint 710
arXiv:2406.16860. 711

Fei Wang, Wenxuan Zhou, James Y Huang, Nan Xu, 712
Sheng Zhang, Hoifung Poon, and Muhao Chen. 713
2024a. mdpo: Conditional preference optimiza- 714
tion for multimodal large language models. arXiv 715
preprint arXiv:2406.11839. 716

Yuhao Wang, Yusheng Liao, Heyang Liu, Hongcheng 717
Liu, Yu Wang, and Yanfeng Wang. 2024b. Mm- 718
sap: A comprehensive benchmark for assessing self- 719
awareness of multimodal large language models in 720
perception. arXiv preprint arXiv:2401.07529. 721

Hongshen Xu, Zichen Zhu, Da Ma, Situo Zhang, Shuai 722
Fan, Lu Chen, and Kai Yu. 2024. Rejection im- 723
proves reliability: Training llms to refuse unknown 724
questions using rl from knowledge feedback. arXiv 725
preprint arXiv:2403.18349. 726

Jing Xu, Andrew Lee, Sainbayar Sukhbaatar, and Jason 727
Weston. 2023. Some things are more cringe than 728
others: Preference optimization with the pairwise 729
cringe loss. arXiv preprint arXiv:2312.16682. 730

Yuqing Yang, Ethan Chern, Xipeng Qiu, Graham Neu- 731
big, and Pengfei Liu. 2023. Alignment for honesty. 732
arXiv preprint arXiv:2312.07000. 733

Jiabo Ye, Haiyang Xu, Haowei Liu, Anwen Hu, Ming 734
Yan, Qi Qian, Ji Zhang, Fei Huang, and Jingren Zhou. 735
2024. mplug-owl3: Towards long image-sequence 736
understanding in multi-modal large language models. 737
arXiv preprint arXiv:2408.04840. 738

10



Zhangyue Yin, Qiushi Sun, Qipeng Guo, Jiawen Wu,739
Xipeng Qiu, and Xuanjing Huang. 2023. Do large740
language models know what they don’t know? In741
Findings of the Association for Computational Lin-742
guistics: ACL 2023, pages 8653–8665, Toronto,743
Canada. Association for Computational Linguistics.744

Tianyu Yu, Yuan Yao, Haoye Zhang, Taiwen He, Yifeng745
Han, Ganqu Cui, Jinyi Hu, Zhiyuan Liu, Hai-Tao746
Zheng, Maosong Sun, et al. 2024a. Rlhf-v: Towards747
trustworthy mllms via behavior alignment from fine-748
grained correctional human feedback. In Proceed-749
ings of the IEEE/CVF Conference on Computer Vi-750
sion and Pattern Recognition, pages 13807–13816.751

Tianyu Yu, Haoye Zhang, Yuan Yao, Yunkai Dang,752
Da Chen, Xiaoman Lu, Ganqu Cui, Taiwen He,753
Zhiyuan Liu, Tat-Seng Chua, et al. 2024b. Rlaif-754
v: Aligning mllms through open-source ai feedback755
for super gpt-4v trustworthiness. arXiv preprint756
arXiv:2405.17220.757

Weizhe Yuan, Richard Yuanzhe Pang, Kyunghyun Cho,758
Sainbayar Sukhbaatar, Jing Xu, and Jason Weston.759
2024. Self-rewarding language models. arXiv760
preprint arXiv:2401.10020.761

Xiang Yue, Yuansheng Ni, Kai Zhang, Tianyu Zheng,762
Ruoqi Liu, Ge Zhang, Samuel Stevens, Dongfu763
Jiang, Weiming Ren, Yuxuan Sun, Cong Wei, Botao764
Yu, Ruibin Yuan, Renliang Sun, Ming Yin, Boyuan765
Zheng, Zhenzhu Yang, Yibo Liu, Wenhao Huang,766
Huan Sun, Yu Su, and Wenhu Chen. 2024. Mmmu:767
A massive multi-discipline multimodal understand-768
ing and reasoning benchmark for expert agi. In Pro-769
ceedings of CVPR.770

Hanning Zhang, Shizhe Diao, Yong Lin, Yi Fung, Qing771
Lian, Xingyao Wang, Yangyi Chen, Heng Ji, and772
Tong Zhang. 2024a. R-tuning: Instructing large lan-773
guage models to say ‘I don’t know’. In Proceedings774
of the 2024 Conference of the North American Chap-775
ter of the Association for Computational Linguistics:776
Human Language Technologies (Volume 1: Long777
Papers), pages 7113–7139, Mexico City, Mexico. As-778
sociation for Computational Linguistics.779

Pan Zhang, Xiaoyi Dong, Yuhang Zang, Yuhang Cao,780
Rui Qian, Lin Chen, Qipeng Guo, Haodong Duan,781
Bin Wang, Linke Ouyang, et al. 2024b. Internlm-782
xcomposer-2.5: A versatile large vision language783
model supporting long-contextual input and output.784
arXiv preprint arXiv:2407.03320.785

Peng Zhang, Yash Goyal, Douglas Summers-Stay,786
Dhruv Batra, and Devi Parikh. 2016. Yin and yang:787
Balancing and answering binary visual questions. In788
Proceedings of the IEEE conference on computer789
vision and pattern recognition, pages 5014–5022.790

Qinyu Zhao, Ming Xu, Kartik Gupta, Akshay Asthana,791
Liang Zheng, and Stephen Gould. 2025. The first to792
know: How token distributions reveal hidden knowl-793
edge in large vision-language models? In Euro-794
pean Conference on Computer Vision, pages 127–795
142. Springer.796

Weihong Zhong, Xiaocheng Feng, Liang Zhao, Qim- 797
ing Li, Lei Huang, Yuxuan Gu, Weitao Ma, Yuan 798
Xu, and Bing Qin. 2024. Investigating and miti- 799
gating the multimodal hallucination snowballing in 800
large vision-language models. In Proceedings of the 801
62nd Annual Meeting of the Association for Compu- 802
tational Linguistics (Volume 1: Long Papers), pages 803
11991–12011, Bangkok, Thailand. Association for 804
Computational Linguistics. 805

A Related work 806

A.1 MLLMs alignment 807

MLLM alignment seeks to reduce hallucinations 808

and generate responses that are more closely 809

aligned with human preferences through supervised 810

fine-tuning and preference optimization. Tong 811

et al. (2024); Li et al. (2024); Ye et al. (2024) en- 812

hance the perceptual and understanding capabili- 813

ties of MLLMs by curating higher-quality visual 814

instruction-tuning data. Fang et al. (2024) intro- 815

duces a self-augmenting process that generates its 816

own instructions to improve dataset quality. Re- 817

inforcement Learning and Direct Preference Opti- 818

mization (Rafailov et al., 2024) have emerged as 819

leading approaches for alignment, with recent ad- 820

vancements leveraging these methods to address vi- 821

sual hallucination issues. Sun et al. (2023) collects 822

human preferences and adapts RLHF for multi- 823

modal alignment, while Yu et al. (2024a) improves 824

MLLM performance by aligning model behavior 825

through fine-grained human feedback corrections. 826

Yu et al. (2024b) proposes a novel framework for 827

gathering high-quality feedback data and uses an 828

online feedback learning algorithm for model align- 829

ment. Additionally, Wang et al. (2024a) introduces 830

a multimodal DPO objective that optimizes both 831

image and language preferences, avoiding the over- 832

prioritization of language-only preferences. 833

A.2 Improving trustworthiness by Refusal 834

With the increasing capabilities of foundational 835

models and the growing prevalence of AI agents, 836

the trustworthiness of (multimodal) large language 837

models has garnered significant attention. For 838

LLMs, researchers primarily focus on the relia- 839

bility of the model’s knowledge, aiming for mod- 840

els to acknowledge their limitations and refuse to 841

answer when encountering unknown knowledge. 842

Yang et al. (2023) construct an honesty alignment 843

dataset based on models’ knowledge boundaries, 844

replacing incorrect or uncertain LLM responses 845

with “I don’t know,” and fine-tuning the model on 846
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Figure 5: Predefined refusal template

this data. Cheng et al. (2024) proposed the con-847

cept of “Knowledge Quadrants,” constructed the848

IDK dataset, and applied supervised fine-tuning849

(SFT) as well as preference-aware optimization to850

help models recognize their intrinsic knowledge851

boundaries. Zhang et al. (2024a) introduced R-852

tuning, which involves constructing and fine-tuning853

on a refusal-aware dataset, enhancing model’s ca-854

pabilities to refuse answering appropriately. Chen855

et al. (2024) directly judged whether the knowledge856

lies within the boundaries based on the model’s in-857

trinsic state and constructed training data to help858

the model express these boundaries. Liang et al.859

(2024) and Xu et al. (2024) employed Reinforce-860

ment Learning from Knowledge Feedback to teach861

models to refuse questions outside their knowledge862

boundaries, thus reducing hallucinations.863

In multimodal scenario, only few works have864

considered the issue of refusal to answer. Unlike865

unimodal models, which focus on intrinsic bound-866

aries, MLLMs mainly concentrate on the challenge867

of unanswerable questions. Liu et al. (2023a) pro-868

posed three types of negative instructions involv-869

ing misleading or false premises in images, which870

models must learn to refuse. Cha et al. (2024) intro-871

duce the VQAv2-IDK dataset, which also annotates872

questions with “I don’t know” answers to train mod-873

els to appropriately refuse to respond when faced874

with unanswerable or ambiguous questions. Addi-875

tionally, Shi et al. (2024) and Wang et al. (2024b)876

included subsets with unanswerable questions to877

evaluate the trustworthiness of MLLMs. Despite878

these advances, no prior work has systematically 879

considered both the intrinsic boundaries of mod- 880

els and the extrinsic information provided in the 881

input. Therefore, we propose the I-BaLF frame- 882

work, which holistically integrates both aspects to 883

guide MLLMs in refusing to answer when appro- 884

priate, thus significantly improving their overall 885

trustworthiness. 886

B Refusal Template 887

Figure 5 shows the refusal template mentioned in 888

Section 3.2. 889

C Detail of Data Construction 890

C.1 Hybrid Evaluator 891

We found that simple string matching—checking 892

if the correct answers appear in the generated re- 893

sponses—was insufficient, as the model sometimes 894

generates semantically similar answers that dif- 895

fer in wording. To address this issue, we pro- 896

pose to employ hybridized string matching and 897

LLM-based evaluation methods to evaluate the ac- 898

curacy of models. During our hybrid evaluation, 899

we first use string matching to filter the model out- 900

puts that contain the exact ground truth answer and 901

use Llama2-13B to check whether the remainder 902

contains phrases that express the same semantic 903

meaning. 904

To verify the effectiveness of our hybrid evalua- 905

tor, we randomly sample 200 MLLM outputs from 906

the our in-domain datasets for human annotators to 907
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Figure 6: LLM prompt for our hybrid evaluation, We use Llama2-13B for LLM evaluation.

Question：

which nation's flag is stitched on to the back 

pocket of the jeans?

Ground Truth Answer: England

MLLM Answer: The jeans have the flag of the 

United Kingdom stitched on to the back pocket.

Str Matching: False

Hybrid elevator: True
Example 1

Question：

what type of fruits are shown? Answer the 

question using a single word or phrase.

Ground Truth Answer: Citrus

MLLM Answer : Oranges

Str Matching: False

Hybrid elevator: True Example 2

Figure 7: Example 1 and Example 2 demonstrate the effectiveness of our hybrid evaluator. “England” and “the
United Kingdom” represent the same country, and citrus and oranges denote the same fruit. Using string matching
alone can not identify the correct answer from MLLM output, while our hybrid evaluator can effectively avoid false
negatives.

assess the consistency between our hybrid evalu-908

ator and human evaluation. In these 200 samples,909

the Cohen’s Kappa coefficient between our hybrid910

evaluator and human evaluator is 0.885, which is911

significantly higher than the coefficient of 0.749912

for string matching. This result demonstrates the913

strong alignment between our method and human914

judgment.915

The prompt used for our hybrid evaluation is916

shown in Figure 6.917

The two cases shown in Figure 7 further demon-918

strate that our hybrid evaluator can correctly iden-919

tify the sample with valid answers but ignores it920

when using only the string matching method.921

C.2 Unanswerable Questions Generation922

We define three criteria for determining whether a923

question is unanswerable and instruct GPT-4o to924

verify if the questions meet these criteria. First,925

questions may refer to subjects not present in the926

image, making it impossible to answer based on vi-927

sual information. Second, questions might include928

incorrect premises about the subjects in the image,929

leading to misleading or unanswerable scenarios.930

Third, some questions may require additional con-931

text or information that cannot be inferred from the932

image alone. Figure 8 shows our prompt for gpt-4o933

to generate the unanswerable questions. 934

Based on these three reasons, we design corre- 935

sponding questions to assess whether the generated 936

questions are indeed unanswerable. 937

1. Does this question inquire about subjects that 938

are not depicted in the image? 939

2. Does this question include an incorrect or mis- 940

leading premise? 941

3. Does this question ask for information that is 942

not available in the image? 943

Given the generated question and its corresponding 944

image, we prompt GPT-4 to verify whether the 945

question meets the specified criteria. Questions 946

that receive a ‘no’ for all three criteria are filtered 947

out. Additionally, we prompt the original model to 948

generate a response to the unanswerable questions. 949

If the model refuses to answer, those questions are 950

also excluded from our dataset. 951

Figure 9 illustrates examples of unanswerable 952

questions generated based on the proposed method. 953

These examples demonstrate the diversity of sce- 954

narios leading to unanswerable questions, such as 955

nonexistent objects or insufficient visual informa- 956

tion. 957
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Figure 8: Prompt for GPT-4o to Generate Unanswerable Questions

D Training Detail958

For our experiments, we utilize the 7B and 13B959

versions of LLaVA-v1.5 as base models. We set960

δk = 0.8 and δuk = 0.2. The instruction dataset961

consists of 11k samples, with approximately 25%962

of the responses labeled as ‘IDK.’ Additionally, we963

generate around 24k preference pairs, with the ratio964

of unknown, mixed, and known samples approxi-965

mately 1:1:2. For preference optimization, we first966

train the model on the IDK dataset and then con-967

duct CA-DPO. LoRA is used for model training,968

with the LoRA rank r and α set to 16 and 32, re-969

spectively. The batch size is 16, and the learning970

rate is 2e-4, with training conducted for one epoch.971

E Evaluation Detail972

We here describe the used datasets:973

1. VQAv2 (Antol et al., 2015) is a widely-used974

dataset containing open-ended questions re-975

lated to images, aimed at evaluating visual976

question answering.977

2. OVEN (Hu et al., 2023) contains open-978

domain visual entity questions based on979

Wikipedia entries, requiring the model to pos-980

sess extensive visual knowledge to provide981

accurate answers.982

3. ScienceQA (Lu et al., 2022) comprises mul-983

timodal, multiple-choice questions across a984

diverse array of scientific topics.985

4. AOKVQA (Schwenk et al., 2022) is a crowd- 986

sourced dataset featuring a wide range of ques- 987

tions that demand a broad understanding of 988

commonsense and world knowledge. 989

5. GQA (Hudson and Manning, 2019) is a 990

dataset for real-world visual reasoning and 991

compositional question answering. is a dataset 992

designed for real-world visual reasoning and 993

compositional question answering. 994

6. MMMU (Yue et al., 2024) is a benchmark 995

developed to assess multimodal models across 996

a variety of complex, multidisciplinary tasks 997

that require college-level subject knowledge 998

and advanced reasoning. 999

7. MMBench (Liu et al., 2023d) is a compre- 1000

hensive benchmark for evaluating the multi- 1001

modal capabilities of MLLMs, featuring ques- 1002

tions that challenge both reasoning and per- 1003

ception. 1004

8. BeyondVisQA (Wang et al., 2024b) is specif- 1005

ically designed to evaluate the self-awareness 1006

of MLLMs, particularly their ability to rec- 1007

ognize “known unknowns." The questions in 1008

this dataset require information beyond the 1009

information provided by the input images. 1010

To construct the in-domain evaluation dataset, 1011

we sample questions from the validation sets of 1012

VQAV2 and Oven, as well as the test set of Sci- 1013

enceQA. Importantly, we balance the confidence 1014

scores of these sampled questions to ensure that the 1015
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Figure 9: Examples of unanswerable questions.
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Figure 10: Impact of confidence thresholds on perfor-
mance. The heatmap displays the average trustworthi-
ness scores across in-domain and OOD datasets, with
scores normalized for comparison. The upper-right re-
gion, marked with a red box, demonstrates higher per-
formance compared to other areas.

accuracy of LLaVA1.5-7B is approximately 50%.1016

Additionally, we generate unanswerable questions1017

(UaVQA) and manually filter them for use in the1018

evaluation.1019

For both the MMMU and MMBench datasets,1020

we use the following prompt for evaluation: “An-1021

swer with the letter corresponding to the correct1022

option from the given choices." In contrast, for the1023

remaining open-ended datasets, we presented only1024

the questions, without any additional prompts. We1025

use the proposed hybrid evaluator to assess the ac-1026

cucary for in-domain dataset, and we directly use 1027

the string matching strategy for the OOD dataset 1028

for simplicity. 1029

F Supplementary experiments 1030

F.1 Confidence threshold 1031

We conducted experiments to analyze the impact 1032

of the confidence thresholds δk and δuk. Both 1033

thresholds were varied within the range δk, δuk ∈ 1034

{2, 3, 4, 5, 6, 7, 8}, ensuring that δk > δuk. Using 1035

different combinations of these values, we gen- 1036

erated an ’IDK’ instruction dataset to fine-tune 1037

LLaVA1.5-7B. The results are illustrated in Fig- 1038

ure 10, which displays average trustworthiness 1039

scores across in-domain and OOD datasets, with 1040

scores normalized for comparison. 1041

We can see that the performance in the upper- 1042

right region, highlighted by a red box, is notably 1043

higher than in other areas. Specifically, the com- 1044

bination of δk = 8 and δuk = 2 yields the best 1045

performance. This suggests that including data 1046

with intermediate confidence scores may not be 1047

beneficial for optimal model performance. 1048

F.2 Data Composition 1049

To achieve a balance between increasing the re- 1050

fusal rate and maintaining accuracy, we carefully 1051

adjust the proportions of “unknown," “mixed," and 1052
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Figure 11: Data Composition Analysis. (a) For IDK-IT, varying the ratio of "known" data shows that a proportion
of 0.75 yields the highest trustworthiness score across in-domain and out-of-domain datasets. (b) For CA-DPO,
adjusting the ratio of "unknown," "mixed," and "known" data to 1:1:2 achieves the optimal balance between accuracy
and refusal rate, as reflected in the trustworthiness score.

“known" data during training. All experiments in1053

this section were conducted using the LLaVA1.5-1054

7B model. For IDK-IT, we fixed the total training1055

data size at 11K samples and varied the proportion1056

of “known" data to balance accuracy and refusal1057

rate. As shown in Figure 11(a), the trustworthiness1058

score is highest when the proportion of “known"1059

data is 0.75. This balance is consistent across both1060

in-domain and out-of-domain (OOD) datasets. For1061

CA-DPO, the data consists of three components:1062

“unknown," “mixed," and “known." To simplify the1063

experiment and focus on balancing accuracy and1064

refusal rate, we fixed the ratio of “unknown" to1065

“mixed" data at 1:1 and adjusted only the propor-1066

tion of “known" data. As shown in Figure 11(b),1067

the optimal trustworthiness score is achieved when1068

the data ratio is 1:1:2, indicating a well-balanced1069

trade-off between accuracy and refusal rate.1070

F.3 Generalization of the Data Generation1071

Pipeline1072

In Section 3.2, we introduced our data construc-1073

tion pipeline, which leverages a closed-source1074

MLLM (GPT-4o) to generate and filter unanswer-1075

able questions. A natural concern arises regarding1076

the pipeline’s reliance on GPT-4o and whether sim-1077

ilar results can be achieved using other MLLMs,1078

particularly open-source ones. To evaluate the gen-1079

eralizability of our pipeline, we employed an open-1080

source MLLM (Qwen2-VL-72B) to generate unan-1081

swerable questions and used the resulting data to1082

train LLaVA1.5-7B. The results shown in Table 51083

and 6 demonstrate that the performance with data 1084

generated by Qwen2-VL-72B is comparable to that 1085

achieved with GPT-4o. This finding suggests that 1086

our pipeline is flexible and can operate effectively 1087

with open-source MLLMs, making it more accessi- 1088

ble and reproducible. 1089

F.4 Distinguishing Intrinsic and Extrinsic 1090

Information Deficits 1091

As mentioned in Section 3.1, we categorize un- 1092

known questions into two types based on whether 1093

the model fails to answer due to a lack of visual 1094

information or internal knowledge. A key ques- 1095

tion is whether the model can differentiate between 1096

these two cases—that is, whether it can identify the 1097

specific type of information it lacks. To investigate 1098

this question, we apply linear probing to explore 1099

whether the model’s internal representations en- 1100

code features that differentiate between these two 1101

types of unknown cases. 1102

Linear probing has been widely used in under- 1103

standing and extracting knowledge of LLMs and 1104

MLLMs (Zhao et al., 2025; Qian et al., 2024). We 1105

selected 2,000 unknown questions from the train- 1106

ing dataset with confidence score below 2, which 1107

are beyond extrinsic or intrinsic boundaries. For 1108

each question, we fed it into the MLLM and ex- 1109

tracted the first generated token from the final layer 1110

of the model. We then trained a three-layer lin- 1111

ear classifier to categorize these tokens into two 1112

classes. To evaluate the classifier, we used a set of 1113

200 unknown questions (confidence scores below 1114
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Method Model for AOKVQA GQA MMMU MMBench(en-dev)
data generation Acc RefR Strust Acc RefR Strust Acc RefR Strust Acc RefR Strust

IDK-IT GPT-4o 55.50 36.24 47.24 50.46 23.88 24.81 15.22 69.67 0.11 46.39 39.09 31.87
IDK-IT Qwen2-VL-72B 57.12 32.31 46.55 49.95 25.25 25.15 15.11 70.11 0.33 50.95 32.47 34.36
CA-DPO GPT-4o 72.23 17.64 62.10 60.41 12.95 33.77 19.67 56.67 -4.00 58.42 18.13 34.97
CA-DPO Qwen2-VL-72B 71.79 20.35 63.93 58.32 15.25 31.89 21.11 50.33 -7.44 58.08 21.74 37.89

Table 5: Performance on OOD datasets using GPT-4o and Qwen2-VL-72B for data generation.Bold values highlight
the highest trustworthiness scores for each dataset.

GPT-4o-generated data Qwen2-VL-generated data
IDK-IT CA-DPO IDK-IT CA-DPO

Vizwiz(ua) 76.01 69.97 74.49 71.39
VQAv2-IDK(filter) 81.42 70.63 79.25 75.22
BeyondVisQA 75.25 67.75 72.50 69.50

Table 6: Performance on unanswerable VQA datasets
using GPT-4o and Qwen2-VL-72B for data genera-
tion.Bold values highlight the highest refusal rate for
each dataset.

2) from the in-domain test set. The classification1115

accuracy of the linear probing is shown in Table 7.1116

The results demonstrate that a simple linear clas-1117

sifier achieves high accuracy in distinguishing be-1118

tween intrinsic and extrinsic deficits based on the1119

first generated token of MLLMs. This suggests1120

that the model’s internal representations encode1121

features that effectively differentiate between these1122

two types of unknown questions. This finding indi-1123

cates that the model has the potential to recognize1124

the source of missing information, even though its1125

explicit refusal responses do not currently articulate1126

this distinction. Incorporating this capability into1127

the model’s outputs could further enhance trust-1128

worthiness by providing more transparent refusals.1129

Future work could leverage this potential by intro-1130

ducing mechanisms for explanation behind refusals,1131

thereby aligning the model’s behavior more closely1132

with user expectations for trustworthy AI systems.1133

Model Classification Acc(%)
LLaVA1.5-7B + IDK-IT 87.01
LLaVA1.5-7B + CA-DPO 80.83

Table 7: Classification accuracy for distinguishing be-
tween intrinsic and extrinsic deficits. Tokens were ex-
tracted using LLaVA1.5-7B + IDK-IT or LLaVA1.5-7B
+ CA-DPO.

G Case Study1134

Figure 12 presents examples comparing the per-1135

formance of LLaVA1.5-7B with models trained1136

using our framework. Models trained with IDK-IT1137

and CA-DPO are capable of refusing to answer 1138

questions where the original model makes errors. 1139

Notably, the CA-DPO model occasionally provides 1140

correct answers. These results demonstrate that 1141

our framework effectively mitigates the generation 1142

of misinformation, thereby enhancing the model’s 1143

trustworthiness. 1144
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Figure 12: Examples illustrating the comparison between LLaVA1.5-7B and models trained with our framework
(IDK-IT and CA-DPO)
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