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Abstract—Model-based controllers are appealing due to their
speed, transparency, and ability to adapt to new situations
without strong reliance on extensive previously compiled data.
However, online model-based control for dexterous manipulation
remains challenging due to the need to navigate a large number
of degrees of freedom through complex contact dynamics in real
time. In this paper, we show that a simple sampling-based online
model-predictive control (MPC) framework can be made to work
even for complex multi-step tasks such as picking up a stapler
from a table and reconfiguring it in-hand for use. We show
that three elements are key to making this approach work in
practice. First, a single reference motion is provided, which can
come from a source other than the robot. In our case, we provide
human motion capture data as reference for control of an Allegro
robot hand. Second, contact area information from the reference
motion is digested and made part of the loss function during
sampling. Third, samples for exploration are taken in PCA basis
directions derived from the reference motion. Ablation tests show
that all three of these elements are needed to obtain successful
results. In particular, sampling without contact information and
sampling in the default configuration space of the robot result in
uniformly low success rates for multiple tasks. We show examples
of the Allegro hand performing several contact-rich motions in
simulation, including twisting and pulling a doorknob, lifting an
apple, lifting and pouring from a water bottle, and lifting and
operating a stapler. We conclude with a discussion of implications
for dexterous robotic interaction in the real world.

I. INTRODUCTION

Dexterous manipulation remains among the most difficult
and long-standing grand challenges in robotics. Two chal-
lenges in particular contribute significantly to its complexity:
constant making, breaking, and intricate evolution of contacts,
and controlling the high degrees-of-freedom (DOFs) of dex-
terous hands performing the tasks.

Despite these complications, there have been impressive
demonstrations in recent years utilizing anthropomorphic [1}
17,144 18, 131 19} [14] and non-anthropomorphic [[18} 5] dexterous
hands. Simpler hand have also been shown performing increas-
ingly complex tasks by exploiting extrinsic dexterity [12, 28]]
and through reasoning about current and future contact states
[6, 29]. However, many of these works require extensive
offline computation, exploitation of task-specific assumptions
(e.g. up-facing palm, primarily power grasps, constant number
of maintained contacts, primitive objects, etc.), or significant
upfront engineering costs (e.g. tele-operation).

But what if we could build controllers cheaply from a single
arbitrarily sourced manipulation demonstration conducted with
a possibly different hand? In particular, demonstrations for

human hand manipulations are already publicly available in
high quality motion capture datasets [26, 9] and lower quality
video datasets [10l [7]; however, adapting such demonstrations
to robot hands is a well-known challenge due to the retargeting
gap. A common strategy is to first kinematically retarget the
human trajectory to the robot hand using fingertip keypoints
[22} 18], keyvectors [11}24], or direct joint angles [2], and then
solve for the control policy with the retargeted trajectory as
a baseline using imitation [22| 21]] or reinforcement [23, |§]]
learning. But a drawback is that these retargeting techniques
often result in significant artifacts such as non-trivial motion
misalignment or poor hand-object contact when applied to
previously collected data [16], and generating the controller
requires considerable compute time and resources. The result-
ing motion can also sometimes yield unexpected behaviors
when rolled out online (e.g. object throwing), which can be
challenging to foresee and triage due to the slow development
cycle and black-box nature of the learned policy.

We instead propose a sampling-based online MPC approach
that explicitly formulates the control policy as the solution
to an auto-regressive optimal control problem. Starting from
a single motion capture demonstration from the publicly
available GRAB dataset [26], we first retarget both the motion
trajectory and time-indexed contact distributions following an
existing standardized framework [16]. The generated kine-
matic baseline is then used as the policy seed. Our approach
then generates a physically simulated policy using local trajec-
tory improvement, which we demonstrate can be solved online
in real time on a single laptop without GPU support. To do
so, we propose and evaluate two specific contributions with
respect to the standard optimal control problem formulation:

o time-indexed expected corresponding contact distribu-
tions between the hand and object as a cost term

e a trajectory improvement exploration strategy over B-
Spline control points of the retargeted principal compo-
nents computed using the desired robot hand

We show the resulting control problem can be solved
over complex, contact-rich manipulation tasks with straight-
forward max-selection predictive sampling, even under limited
time horizons, exploration parameters, and state information
variables. We then conclude with a discussion of current
limitations and necessary steps to deploy such controllers on
real systems.
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Fig. 1: Overview of our proposed framework. Starting with a single motion capture sequence with corresponding dense contact
areas, we retarget both the motion and contact disbributions to obtain a baseline kinematic trajectory. Contact regions are then
downsampled to maintain realtime speeds, while the retargeted motion sequence is decomposed into PCs. The motion baseline
seeds the controller, while corresponding contact distributions are used to evaluate sampling costs.
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Fig. 2: Detailed overview of our sampling-based controller
overview. In our case, samples are used to adjust control points
of the B-Splines representing PC-curves. Final joint torques 7
are computed by re-assembling the PC values back into DOF
space and executing the desired joint angles via PD control.

II. METHODS

Figure [I] illustrates our processing pipeline, while Figure 2]
provides a more detailed look at our proposed controller.
Our goal is to generate an online control policy for a target
hand which can be used to execute a task sourced from a
single human motion capture sequence. Our framework can
be roughly divided into three stages:

o extract a set of demse corresponding contact regions
between the human hand and object over the motion
sequence

o retarget the contacts and generate a C2 differentiable
kinematic trajectory for the target hand

¢ solve an online optimal control problem to execute the
task in physical simulation using the kinematic trajectory
as an initial guess

We discuss the stages in the proceeding subsections, with a

larger focus on the third stage for this work.

A. Kinematic Contact and Motion Retargeting

The first two stages of the pipeline are executed using
existing techniques [16} [15]. Using object contacts sourced
from the GRAB dataset [26], we compute corresponding
human hand contacts using raycasting to guarantee a 1:1
correspondance.

Next, contacts areas are retargeted from the human hand to
the robot hand using non-isometric shape matching. Starting
from a set of one-time artist-annotated landmarks, we procedu-
rally transfer contacts across the entire time series in a manner
that guarantees a 1:1 correspondence while preserving seman-
tic relationships. To reduce the overhead of storing thousands
of contacts online, we additionally summarize contact areas by
first projecting all points onto the nearest hands links and then
taking the mean of the resulting projected distributions per link
per timestep. We subsequently obtain corresponding object
contact points by performing closest point queries between
the summarized link contacts and the object.

Then, using both the retargeted contacts and a set of one-
time artist-annotated virtual markers on the back of each hand,
we compute a retargeted kinematic trajectory for the target
hand. The final motion curves for each hand DOF are fit
using B-Splines to both guarantee C2 continuity and reduce
motion sequences, often comprised of hundreds or thousands
of frames, to a space of significantly fewer control points that
scale with motion complexity rather than duration. For more
details on the contact and motion retargeting process, please
see existing work [16].

Lastly, we compute the principal components of the result-
ing retargeted hand trajectory and decompose the original mo-
tion curves into a new set of time-indexed “PCA-curves”. We



then fit B-Splines to each PCA-curve using the same number
of control points as the original curves, which combined serve
as the initial guess to our online control problem.

B. Problem Formulation

We assume a standard policy function 7 which, assuming
system state x, agent controls u, and system dynamics f, is
defined as w(x¢, up—1) — ug st 2441 = f(2g,ur). In our
case, x; is comprised of the agent configuration g, (t), agent
spatial velocity ¢, (t), object configuration ¢,(t), and object
spatial velocity ¢,(t). The general online control problem can
thus be defined as:

T

argmin Z Wz, ug)

@17 LT g (1
stz = fa,ug), given xg

where [ is the loss function and 7" is a constant finite time

horizon. 7 is thus the running solution to Eq. [I] such that

evaluating 7 from ¢...T" results in minimal cumulative loss.
We define the loss function as:

Uz, ue) = Xolldo(t) — g0 (1) +
Aelle(@a(t)) — elgo(OI” + Aolldal®

where ¢,(t) is the expected object configuration at time ¢,
¢(gq(t)) and ¢(q,(t)) are corresponding time-indexed expected
contact distributions on the agent and object respectively, and
Aoy Ac, Ay are weighting coefficients.

One notable difference in our formulation is the control
signal u. Typically, u directly controls the agent actuators (e.g.
DC motors, servos, etc.); however, we instead define u as the
function:

2)

B (PCo)(t)
wp = PT BM(Pcl)(t) +p 3)
By (PCR)(1)

where By (PC;)(t) represents ith B-Spline PCA-curve eval-
uated at time ¢, P is the PC-projection matrix, p is the mean-
centering offset vector, and k is the total number of principal
components used, which by default is set to the total number of
agent DOFs. All B-Splines are cubic, uniform, and represented
using a fixed number of control points M pre-determined
during the kinematic retargeting process.

C. Online Evaluation

We use max-selection predictive sampling to solve Eq. [}
which is both trivial to implement and allows f to be non-
differentiable. For a given sample s taken at time ¢, we first
determine the control points impacted by domain [¢, ¢+ T for
each PCA-curve. We then perturb all impacted control point
with Gaussian noise and evaluate the perturbed trajectories
across all samples S. The sample of lowest cumulative cost
on domain [t, t+7 is selected and the corresponding perturbed

control points are committed to the nominal policy 7. The pro-
cess is repeated during every agent planning step throughout
the manipulation sequence.

Since B-Splines are entirely determined by control point
positions, we can run our simulation at arbitrarily small
time steps without escalating problem dimensionality; instead,
dimensionality scales with spline degree and time horizon
length. For a cubic spline, the entire curve shape of a knot
segment can be determined by 4 control points; therefore,
if T is sufficiently small, the typical problem dimensionality
is 4k. Our method is especially favorable in comparison to
the standard dimensionality of k - (Td;t), where dt must be
carefully selected with respect to the simulation time step.

Finally, the PC-curves from the nominal policy are con-
verted back to u; using Eq.[3|to compute the desired trajectory
in DOF space. We then use PD control to compute the final
signals ultimately deployed to the agent.

III. EXPERIMENTS AND EVALUATION

We select 4 tasks for evaluation: doorknob twisting and
pulling, apple pickup and hand off, water bottle lifting and
pouring, and stapler pickup and wielding. We select the Alle-
gro Hand as the target agent. To avoid workspace discrepencies
between human and robot arms, we allow the wrist to float
with three linear actuators controlling the position and three
motors controlling the orientation synchronized using attitude
control. We use 128 predictive samples, a 2.5 second time
horizon, and 1 and 10 millisecond timesteps for the simulation
and agent planning respectively. We slow down the original
human demonstration by a factor between 5 and 10x. We use
a standard Gaussian noise kernel N'(0,0%) with 0% = 0.2
for all PCs and o2 = 0 for root DOFs, effectively limiting
sampling only to hand poses. All experiments were run on a
single Apple M1 chip using 10 parallel threads, of which 7
are used for predictive sampling. All simulations are run using
the Mujoco Engine [27] and MujocoMPC framework [13].

A. Quantitative Evaluation

We consider the time-to-failure metric (TTF) [20] for eval-
uating policy performance, with longer TTFs indicating better
task performance. In our case, a task is considered failed when
the hand fails to maintain any contact with the object for 300
milliseconds despite more than six down-sampled expected
contacts existing during those timesteps. The assumption then
is that the hand has completely lost control of the object and
will be unable to recover. Each task was repeated 50 times.

Green boxplots in Figure [3| illustrate the results of our
method across all tasks. We also ablate our approach by
considering an alternate cost formulation which does not
include a contact correspondence term, as well as a more
typical sampling strategy over the original joint configuration
space with each DOF ¢2 = 60° Blue and red boxplots
in Figure |3| illustrate results for each ablation respectively.
Although we observed that ablations were competitive on
“simpler” tasks such as the environmentally constrained door-
knob, performance rapidly deteriorated with increasing task
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Fig. 3: Plots of time-to-failure metrics across all 4 tasks expressed as a percentage of time between the first and last expected
frames of contact per task. Tasks are ordered from left to right by relative complexity in relation to system dynamics, with the
doorknob being the simplest and the stapler being the most complex.

complexity. However, the inclusion of our contributions con-
sistently resulted in longer TTFs across the entire task suite.

B. Qualitative Evaluation

Despite plots in Figure [3| indicating non-zero TTFs for
ablations, these results are somewhat misleading since contact
between the hand and object does not necessarily indicate
meaningful task progress. We illustrate this discrepancy qual-
itatively in the supplementary video. Results in Figure [3| are
therefore overestimates of successful execution - in reality,
ablating our contact cost term and especially the PC sampling
strategy results in extremely poor performance. We also ob-
served and show in the supplementary video that the hand was
capable of performing all four tasks to completion under our
proposed formulation.

IV. DISCUSSION

We were pleasantly surprised to find that, despite its sim-
plicity, our proposed formulation was capable of executing
non-trivial tasks. The massive performance gain in comparison
to ablated baseline policies was especially encouraging to
observe and strongly validated the importance of our con-
tributions in relation to getting online MPC from a single
demonstration, and particularly from data sources that are
already publicly available, to actually work.

We also observed interesting emergent behaviors mid-
manipulation, such as spidering, sliding, and other non-trivial
finger movements that collectively adjusted objects into more
favorable configurations. We argue that expected correspond-
ing hand and object contact distributions are largely respon-
sible for encouraging such behavior since said distributions
implicitly inform agents how to achieve a desired configuration
from a deviant intermediate state. Additionally, we saw that
sampling over the PC space provides better quality samples
of meaningful synergies than the original DOF space, which,
combined with our B-Spline formulation, helps combat the
high dimensionality problem. However, it is currently unclear
why that is the case outside empirical observation.

But our method is not yet reliable. Although we observed
nearly perfect completion on the doorknob task, completion
rates for the remaining tasks were less compelling. These re-
sults were unsurprising given the substantially higher difficulty

of manipulating free-floating objects compared to those which
are environmentally constrained. The highly stochastic nature
and poor knowledge retention of rollouts from max-selection
predictive sampling over long sequences also severely impacts
the reliability of online evaluations.

Our method also has yet to be deployed in the real world.
There are two main hurdles to address for real-world de-
ployment: online hand-object state estimation, and the fidelity
of future state predictions based on real-world dynamics.
Fortunately, both problems are long-standing, widely studied,
and have rich existing literatures. Although mutual occlusion
problems are unavoidable in vision-based tracking approaches
for dexterous manipulation, one particularly exciting body of
work that has the ability to jointly assist in both of these chal-
lenges is tactile sensing, which has already lead to impressive
results in online state estimation [25]. Our method is especially
well poised to take advantage of such advancements especially
since our proposed cost function is fairly simple and does not
assume smooth dynamics, require known object mass-inertial
properties, or depend on higher order differential terms outside
hand velocity. Since our controller also operates fully online,
it is feasible to deploy on device immediately without the
need for pre-training in simulation and subsequently dealing
with Sim2Real headaches. Finally, our framework’s design of
dealing directly with previously collected data as input has the
potential to completely circumvent the need for tele-operation.

V. CONCLUSION AND FUTURE WORK

We have presented an online adaptive control framework
for complex, contact-rich dexterous manipulation tasks from
a single human hand motion. To do so, we introduced two
simple, but powerful contributions within the context of a
classical MPC framework: time-indexed corresponding hand-
object distributions as an explicit cost term, and a search
strategy over the B-Spline control points of hand pose principal
components. Our most important next step is to improve the
reliability of our method by considering alternative online
evaluation strategies and additional potential cost terms. We
are excited to see if such modifications will increase the
reliability of our results and ultimately provide a path towards
real-world deployment.
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