Towards Job-Transition-Tag Graph for a Better Job Title Representation
Learning

Anonymous ACL submission

Abstract

Works on learning job title representation are
mainly based on Job-Transition Graph, built
from the working history of talents. How-
ever, since the records are usually messy, this
graph is very sparse, which affects the qual-
ity of the learned representation and hinders
further analysis. To address this specific is-
sue, we propose to enrich the graph with addi-
tional nodes that improve the quality of job title
representation. Specifically, we construct Job-
Transition-Tag Graph, a heterogeneous graph
containing two types of nodes, i.e., job titles
and tags (i.e., words related to job responsibil-
ities or functions). Along this line, we refor-
mulate job title representation learning as the
task of learning node embedding on the Job-
Transition-Tag Graph. Experiments on a public
CareerBuilder12 dataset and a private Randstad
dataset show interest of our approach.

1 Introduction

The learning of job title representation has received
much attention in the recruitment field because the
learned representation is beneficial to various tasks,
such as job recommendation (Dave et al., 2018;
Liu et al., 2019b), job title benchmarking (Zhang
et al., 2019), and job mobility prediction (Zhang
et al., 2021). However, in practice, learning a good
representation is challenging for the following rea-
sons: (i) Noisy data: job title data is noisy due to
personal subjective reasons (i.e., spelling errors)
or objective reasons (i.e., the resume parser is not
perfect). (ii) Messy data: job titles are messy be-
cause people have different ways of thinking, and
naming conventions vary by company and indus-
try. For example, there are many alternative job
titles for the same position, e.g., “purchasing clerk”
and “buyer”. Another problem is that due to the
ambiguity of certain terms, they can refer to differ-
ent positions in different contexts, e.g., “registered
nurses sandwich rehab” and “sandwich maker”.

For these reasons, standard approaches that aggre-
gate (e.g., mean or sum) word representations to
get job title semantic representation may lead to
mismatches. Moreover, semantic-based methods
ignore hidden relationships between job titles, e.g.,
titles in the same resume may be similar. (Dave
et al., 2018; Zhang et al., 2019) learn representa-
tions from graphs. They create graphs from career
trajectories, where nodes represent job titles, edges
represent job transitions. Then they design differ-
ent loss functions to embed the nodes into a low-
dimensional space. However, the generated graphs
are usually sparse due to the above reasons, limit-
ing the performance of graph-based methods. Stan-
dardizing job titles before generating graphs can
alleviate the sparsity issue to a certain extent, but at
the cost of losing some information. To tackle these
challenges, we propose to enrich graphs with struc-
tured contextual information and learn job title rep-
resentations through network embedding methods.
Specifically, inspired by domain-specific Named
Entity tags (i.e., RESponsibility and FUNCction) pro-
posed in (Liu et al., 2019a), we treat the job title as
a combination of responsibilities, functionalities,
and other additional information. Words related to
responsibility and functionality are defined as tags.
We assume that job titles with the same tag describe
similar job functions or responsibilities, so they are
more likely to have similar representations. Along
this line, we construct Job-Transition-Tag Graph, a
heterogeneous graph containing two types of nodes,
i.e., job titles and tags, which carries more informa-
tion, thereby alleviating the sparsity problem. The
experimental results verify that the added nodes
can improve the quality of job title representation.

2 Methodology

2.1 Preliminaries

A graph/network is represented as G = (V, &),
with node set V and edge set £. Nodes and edges



can optionally have a type, so a graph can be ho-
mogeneous or heterogeneous. In the recruitment
field, the career trajectory of talents can be repre-
sented by graphs. Formally, consider a job seeker
set U and their working history set H = { H"},cu»
where the working history of each u is represented
as a sequence of n work records ordered by time
HY ={Jy,...,Jn}. The i-th record J; is denoted
by (Ji, pi, 0;), indicating that u is engaged in a po-
sition (titled j;) during the p; period. o; represents
other information related to this work record, like
company name and job content. The set of job
titles j; that occurred in H is denoted as 7. Based
on H, Job-Transition Graph (Figure la) can be
constructed, which is formally defined as follows:

Definition 1 (Job-Transition Graph) is defined
as a directed homogeneous graph G37 = (7, £77)
generated from H, where J is a set of job titles,
and the edge e% € £33 represents the job transi-
tion from the former job j, to the next job j,.

2.1.1 Learning from Job-Transition Graph:
An Overview

Job-Transition-Graph is often used for job title
representation learning tasks. The current proce-
dure is to first build a Job-Transition-Graph, and
then learn job title representation from it. More
specifically, (Dave et al., 2018) first build G/
and other two graphs. Then, the Bayesian per-
sonalized ranking and margin-based loss functions
are used to learn job title representations from
graphs. Job2Vec (Zhang et al., 2019) constructs
a GV, where the node denotes job title affiliated
with the specific company, and a multi-view rep-
resentation learning method is proposed. (Zhang
et al., 2021) add company nodes in G%7 to build a
heterogeneous graph. Then they use an attentive
graph neural network to represent the company and
job title nodes. As mentioned above, the job title
and job transition data are messy. Therefore, G/7
may be sparse (Zhang et al., 2019). To alleviate
this issue, a simple method is to standardize job
titles. For example, (Dave et al., 2018) normal-
izes titles by using Carotene (Javed et al., 2015),
(Zhang et al., 2019) aggregates titles by filtering
out low frequency words, and (Zhang et al., 2021)
unifies titles according to IPOD (Liu et al., 2019a).
Another method is to consider semantic informa-
tion in addition to the graph topology, e.g., (Zhang
et al., 2019) enforces job title representations to
be close to each other if they share similar words.
However, these methods either ignore the semantic

information contained in job titles or separate the
semantic information from the topology structure.

2.1.2 Job Title Composition

Generally speaking, a job title usually consists of
three parts (Liu et al., 2019a; Zhang et al., 2019): (1)
Responsibility: describes the role and responsibil-
ity of a position from different levels (e.g., director,
assistant, and engineer). (ii) Functionality: de-
scribes the business function of a position from var-
ious dimensions (e.g., sales, national and security).
(iii)) Additional Information: contains personal-
specific information. We denote the words related
to responsibility and functionality as tags, and they
form a tag set 7. These tags are the essence of the
job title and provide important information about
the position. For example, job titles with the same
tag are more likely to describe the same level of
ability/authority or belong to the same industry.
However, few works directly include this infor-
mation in the representation learning scheme. In
this paper, we consider these tags when generating
graphs from working history. These tags can alle-
viate the graph sparsity problem of Job-Transition-
Graph and provide additional information for the
task of job title representation learning.

2.2 Proposed Graphs

In order to address the sparsity issue of Job-
Transition Graph mentioned above, we consider
adding more information when generating graphs,
i.e., tags related to the job responsibility or function,
driven by the composition of job titles. Along this
line, we define various types of graphs as follows:

Definition 2 (Enhanced Job-Transition Graph)
is based on G with additional enhanced edges. It
is defined as ggj = (J, iy Eg), where Sijj isa
set of enhanced edges. More specifically, if j, and
Jy Share a word w, then we add a bi-directional
edge between them, i.e., e% and e{,@.

As shown in Figure 1b, red dashed line represent
additional enhanced edges, e.g., “purchasing man-
ager” shares the tag “purchasing” with “purchasing
clerk”, so we add edges between them.

Definition 3 (Job-Tag Graph) is defined as a het-
erogeneous graph Gt = (J U T, &), with job
titles and tags, two node types. E' is a set of
bi-directional edges between a job title and a tag,
representing the “has/in” relationship.

An example is given in Figure lc, the job ti-
tle “automotive technician” has a tag “automotive”,



automotive technician
purchase agent

staff account purchasing manager

staff accountant

i telemarketer
purchasing manager purchaggcl?>o

automotive shop manager customer service

(a) Job-Transition graph.

automotive technician staff account purchasing manager

purchase agent
staff

technician staff accountant

purchase h accountant
O purchasing ()

i telemarketer

purchasing‘managgr purchasing clerk

automotive

O manager

automotive shop manager customer service

(c) Job-Tag graph.

automotive technician staff account purchasing manager

purchase agent

staff accountant

automotive shop manager customer service

(b) Enhanced Job-Transition graph.

automotive technician staff account purchasing manager

purchase agent
staff

technician staff accountant

purchase accountant

purchasing

i telemarketer
purchasing‘\manager purchasing clerk

automotive

manager

automotive shop manager customer service

(d) Job-Transition-Tag graph.

Figure 1: Examples of four types of graphs, where small blue circles represent job titles, and green circles are tags.
The black lines represent job transitions, red dotted lines represent additional enhanced edges added when job titles
share a word, and green lines represent “has/in” relationships between a job title and a tag.

so the bi-directional edge e/ (i.e., the green line)
means that “automotive technician” has the tag
“automotive”, and “automotive” is in “automotive
technician”. In order to aggregate more informa-
tion, we further combine Job-Transition Graph and
Job-Tag Graph to build Job-Transition-Tag Graph:

Definition 4 (Job-Transition-Tag Graph) is de-
fined as a heterogeneous graph G'Y = (J U
T,E77 U EY), with job titles and tags, two node
types, and two edge types.

Inspired by the achievements of network embed-
ding models in the node representation learning
problem (Hamilton et al., 2017), we apply differ-
ent network embedding models to learn job title
representation from the graphs defined above.

3 Experiments

3.1 Datasets

Here, we provide details about our two datasets:
CareerBuilder12 (CB12): an open dataset from
a Kaggle competition'. It contains a collection of
working experiences represented by sequences of
job titles. For the node classification task, we use
AutoCoder * to assign a SOC 2018 to each job title.
The labeling details are given in Appendix A.1.
Randstad: a private French resume dataset pro-
vided by Randstad company, where each resume is

"https://www.kaggle.com/c/
job—-recommendation

http://www.onetsocautocoder.com/plus/
onetmatch

parsed into multiple sections, an example is given
in Figure 3 of Appendix. Graphs are built from
EmploymentHistory section.

For both datasets, we use the Top200 tokens that
appear most frequently in job titles as tags. The
details of tag generation are given in Appendix A.3.
We assign the one-hot encoding of the correspond-
ing title for each title node as the node feature. The
vocabulary set is obtained by filtering words with a
frequency of 1 from the tokenized job titles. The
statistics of datasets and graphs are summarized in
Table 1. We can observe that the generated Job-
Transition Graphs (i.e., |V| and |£77]) are sparse.

#C#W [T [e7] |&g] €]
CBI2 |16 1682 9206 20,640 6,475,850 22,108

Randstad| 18 2,303 12,864 36,722 6,663,267 22,897

Table 1: Statistics of datasets and corresponding graphs,
#C represents the number of categories, and #W repre-
sents the vocabulary size for node one-hot encoding.

3.2 Experimental Settings

We evaluate job title representations obtained
through the node classification task. The baselines
used are listed below, and the detailed description
is given in Appendix A.4.

* Homogeneous:  Node2Vec (Grover and
Leskovec, 2016), GCN (Kipf and Welling,
2016) and GAT (Velickovié et al., 2017).

* Heterogeneous: metapath2vec (Dong et al.,
2017), RGCN (Schlichtkrull et al., 2018) and
HAN (Wang et al., 2019b).


https://www.kaggle.com/c/job-recommendation
https://www.kaggle.com/c/job-recommendation
http://www.onetsocautocoder.com/plus/onetmatch
http://www.onetsocautocoder.com/plus/onetmatch

Node2Vec GCN GAT Mathpath2Vec RGCN HAN Word2Vec
o 97 0206/0.360 0.576/0.688 0.568/0.664 | 0.154/0.334  0.524/0.637 0.670/0.747

= 07 05990714 0.628/0.720 0.692/0.759 | 0.571/0.688  0.591/0.701  0.698/0.781 | ( 3550 454
o gt - - § 0.588/0.692  0.687/0.752  0.703/0.766
Gt - - - 0.588/0.692  0.703/0.766  0.742/0.797
g G777 0.201/0.304 0.520/0.616 0.529/0.593 | 0.166/0.282  0.388/0.536 0.592/0.665

2 G¥ 052300623 0484/0.621 0.607/0.677 | 0.469/0.585  0.452/0.580 0.607/0.689 | (270/0.391
g ¢ - - - 0.590/0.665  0.552/0.643  0.572/0.663
&l giti - - - 0.590/0.665  0.600/0.678  0.641/0.708

Table 2: Job title classification results (Macro-F1/Micro-F1). The score in bold is the best among all methods
applied to all graphs, and the scores underlined are the best in all graphs of each method.

e Semantic-based: Word2Vec (Le and Mikolov,
2014). The representation of a job title is ob-
tained by averaging word vectors in it.

Our implementation is based on the DGL package
(Wang et al., 2019a). The details of parameter
settings are given in Appendix A.5.

3.3 Results
3.3.1 Job Title Classification

Table 2 summarizes the best results of all methods
on different graphs. We have the following obser-
vations: (i) Among all graphs, all models usually
have the lowest scores on G/7 because this graph
is often sparse and can only provide limited in-
formation. (ii) All models perform better on %]
(except Macro-F1 of GCN) than G379, which shows
that the enhanced edges provide additional infor-
mation. One interpretation of enhanced edges is
to add semantic information, i.e., if two job titles
share the same word, they are more likely to be
similar, which is represented by edges from the
graph perspective. (iii) The heterogeneous models
perform well on our proposed G7%/, which indicates
that the added tag nodes can effectively improve
the quality of representation. Note that we did not
apply homogeneous methods to G/, but the re-
sults on G7/ prove that the information given by
tags is useful. For Metapath2Vec, we report the
best results obtained by the meta-path Job-Tag-Job.
(iv) The models with attention mechanisms outper-
form the models without attention, demonstrating
that the attention mechanism is good at capturing
important information from noisy graphs.

3.3.2 Visualization

For a more intuitive comparison, we visualize the
learned representations in Figure 2, and each color
corresponds to an occupation category. Overall, the
representations learned by HAN on all graphs are
clustered into groups. However, when considering

tags, representations are easier to be subdivided
further in each category. For example, as shown in
Figure 2d, the administrative occupation (orange)
can obviously be further divided into three sub-
clusters, which proves that adding tag nodes can
help capture more detailed information and make
the learned representation more informative. This
detailed information helps to classify the positions
further because we only classify job titles into the
root category (i.e., MajorGroup) in this work.

» |
ﬁ""‘: . ﬁ-,;; {
L "X
R T %
e o
(a) HAN (G77). (b) HAN (G7).

R -

:ﬁ;;"\ ., $e X ““.‘.' -#:..;.v" % 3 &
Ty R d LR A
L A
% "

(c) HAN (¢7"). (d) HAN (G7%).

Figure 2: Visualization of representations (CB12).
Healthcare support (green), Healthcare practitioners
and technical (blue), Architecture and engineering (pur-
ple), Office and administrative support (orange) and
Transportation and material handling (red).

4 Conclusion

In this paper, we first propose to enrich Job-
Transition Graph commonly used in job title rep-
resentation learning tasks by adding tag nodes and
then learn job title representations through network
embedding methods. This enhanced graph can al-
leviate the sparsity problem, thereby improving the
quality of learned representations. Then we proved
the advantages of the proposed graph through the
node classification task on two datasets. Future
research lines will focus on learning from weighted
graphs and improving the tag generation.



References

Vachik S Dave, Baichuan Zhang, Mohammad Al Hasan,
Khalifeh AlJadda, and Mohammed Korayem. 2018.
A combined representation learning approach for bet-
ter job and skill recommendation. In Proceedings of
the 27th ACM International Conference on Informa-
tion and Knowledge Management, pages 1997-2005.

Yuxiao Dong, Nitesh V Chawla, and Ananthram Swami.
2017. metapath2vec: Scalable representation learn-
ing for heterogeneous networks. In Proceedings of
the 23rd ACM SIGKDD international conference on
knowledge discovery and data mining, pages 135-
144.

Jean-Philippe Fauconnier. 2015. French word embed-
dings.

Aditya Grover and Jure Leskovec. 2016. node2vec:
Scalable feature learning for networks. In Proceed-
ings of the 22nd ACM SIGKDD international con-
ference on Knowledge discovery and data mining,
pages 855-864.

William L Hamilton, Rex Ying, and Jure Leskovec.
2017. Representation learning on graphs: Methods
and applications. arXiv preprint arXiv:1709.05584.

Faizan Javed, Qinlong Luo, Matt McNair, Ferosh Jacob,
Meng Zhao, and Tae Seung Kang. 2015. Carotene:
A job title classification system for the online re-
cruitment domain. In 2015 IEEE First International
Conference on Big Data Computing Service and Ap-
plications, pages 286-293. IEEE.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Thomas N Kipf and Max Welling. 2016. Semi-
supervised classification with graph convolutional
networks. arXiv preprint arXiv:1609.02907.

Quoc Le and Tomas Mikolov. 2014. Distributed repre-
sentations of sentences and documents. In Interna-

tional conference on machine learning, pages 1188—
1196. PMLR.

Junhua Liu, Yung Chuen Ng, Kristin L Wood, and
Kwan Hui Lim. 2019a. Ipod: An industrial and
professional occupations dataset and its applications
to occupational data mining and analysis. arXiv
preprint arXiv:1910.10495.

Mengshu Liu, Jingya Wang, Kareem Abdelfatah, and
Mohammed Korayem. 2019b. Tripartite vector rep-
resentations for better job recommendation. arXiv
preprint arXiv:1907.12379.

Michael Schlichtkrull, Thomas N Kipf, Peter Bloem,
Rianne Van Den Berg, Ivan Titov, and Max Welling.
2018. Modeling relational data with graph convolu-
tional networks. In European semantic web confer-
ence, pages 593-607. Springer.

Petar Velickovié, Guillem Cucurull, Arantxa Casanova,
Adriana Romero, Pietro Lio, and Yoshua Bengio.
2017. Graph attention networks. arXiv preprint
arXiv:1710.10903.

Minjie Wang, Da Zheng, Zihao Ye, Quan Gan, Mufei
Li, Xiang Song, Jinjing Zhou, Chao Ma, Ling-
fan Yu, Yu Gai, Tianjun Xiao, Tong He, George
Karypis, Jinyang Li, and Zheng Zhang. 2019a. Deep
graph library: A graph-centric, highly-performant
package for graph neural networks. arXiv preprint
arXiv:1909.01315.

Xiao Wang, Houye Ji, Chuan Shi, Bai Wang, Yanfang
Ye, Peng Cui, and Philip S Yu. 2019b. Heterogeneous
graph attention network. In The World Wide Web
Conference, pages 2022-2032.

Denghui Zhang, Junming Liu, Hengshu Zhu, Yanchi
Liu, Lichen Wang, Pengyang Wang, and Hui Xiong.
2019. Job2vec: Job title benchmarking with col-
lective multi-view representation learning. In Pro-
ceedings of the 28th ACM International Conference
on Information and Knowledge Management, pages
2763-2771.

Le Zhang, Ding Zhou, Hengshu Zhu, Tong Xu, Rui
Zha, Enhong Chen, and Hui Xiong. 2021. Attentive
heterogeneous graph embedding for job mobility pre-
diction. In Proceedings of the 27th ACM SIGKDD
Conference on Knowledge Discovery & Data Mining,
pages 2192-2201.


http://fauconnier.github.io
http://fauconnier.github.io
http://fauconnier.github.io

A Appendix
A.1 Job Title Label Assignment

In the original working experience dataset pro-
vided by CareerBuilder12, job titles are not pre-
labeled. Therefore, for the job title classification
task, we use an online third-party API O*Net-SOC
AutoCoder ? to assign a Standard Occupation Clas-
sification code (SOC) 2018 to each job title, as well
as a match score (i.e., scores above 70 means that
the correct code is accurately predicted at least 70%
of the time). SOC 2018 is a four-level taxonomy
structure, including MajorGroup (23), MinorGroup
(98), BroadGroup (459) and DetailedOccupation
(867). For example, O*Net-SOC AutoCoder as-
signs the code 11-2022 (Sales Managers) for the
title “sales director”, which belongs to the level
of DetailedOccupation. 11-2020 (Marketing and
Sales Managers) is BroadGroup level, 11-2000
(Advertising, Marketing, Promotions, Public Rela-
tions, and Sales Managers) is MinorGroup level,
and 11-0000 (Management Occupations) is Major-
Group level. In this work, we categorize job titles
into MajorGroup. We have annotated a total of
30,000 job titles. The developer guarantees that
the code assigned to the title plus description has
an accuracy rate of 85%. However, only the job
title is provided in our experiments, so the SOC
2018 code may be incorrectly assigned. For this
reason, we filtered out job titles with scores below
70. Therefore, 22,590 job titles remain.

A.2 Randstad Data Description

Figure 3 shows an example of parsed resume in
Randstad dataset. We build graphs from Employ-
mentHistory, which contains a JobTitle, and its cor-
responding occupation labels (i.e.,JobCode, Job-
Group and JobClass). The hierarchical taxonomy
structure used in the Randstad dataset has a three-
level hierarchy, where JobCodes are leaf classes,
and each internal (JobGroup)/root class (JobClass)
is the aggregation of all its descendant classes.
There are 25 JobClasss, 295 JobGroups and 4,443
JobCodes, respectively. In this work, we categorize
job titles into JobClass.

A.3 Tag Generation

For both datasets, we first tokenize titles into to-
kens and remove stopwords, numbers, and punc-
tuation. The word frequency distribution of words

*http://www.onetsocautocoder.com/plus/
onetmatch

P LG C L L L LT LR E L L L LR R L e e P e PR Lt L PP e e E R ]
i Personallnformation
i
Name
Address
! . .
 EducationHistory
i EducationItem
« EducationLevelCode: BAC2
* DegreeDirection: Technicien en maintenance industrielle
« StartDate: 2017-09-01
« EndDate: 2018-06-30
« InstituteName: AFP4 MEUDON 92

i
+ EmploymentHistory
EmploymentItem !

« Description: Controle des cartes électroniques et changes des composants électroniques ... |

« StartDate: 2014-01-01

« EndDate: 2015-12-31

« JobTitle: Technicien électronique

« EmployerName: EBO (Courneuve) 93

« JobCode: Technicien Elertruniqzle (hf)

« JobGroup: Ingénieurs, Projeteurs et Techniciens Electricité

« JobClass: Ingénierie

Figure 3: An example of parsed resume in Randstad.

in two datasets are shown respectively in Figure 4,
which are subject to the long-tail distribution, simi-
lar to the observation in (Zhang et al., 2019). Most
words appear only once, i.e., 53.55% of words only
appear one time in CB/2 dataset, and this ratio
is 56.55% in Randstad dataset. Figure 4 further
shows the top ten and last ten frequent words in
each dataset. Obviously, high-frequency words like
“manager” and “sales” describe the responsibility or
functionality of the job title, while low-frequency
words are usually noise or person-specific words.
Then, we select the Top-200 tokens with the highest
frequency as TOP tags for each dataset.

Frequency
Frequency

Word Word

(a) CB12. (b) Randstad.

Figure 4: Word frequency distribution, where the red
line represents the average value. Topl0O words are
sorted by frequency, and Last10 are randomly selected
from the words with a frequency of 2.

A.4 Baseline Description

We explore the following network embedding meth-
ods on our proposed graphs to learn job title rep-
resentation. According to the type of graph, the
network embedding methods are naturally divided
into Homogeneous and Heterogeneous . Then, we
further categorize each category into Unsupervised
and Semi-Supervised according to whether node
labels are provided for learning.
Homogeneous&Unsupervised

* Node2Vec (Grover and Leskovec, 2016): is an


http://www.onetsocautocoder.com/plus/onetmatch
http://www.onetsocautocoder.com/plus/onetmatch

extension of DeepWalk with a biased random
walk process for neighborhood exploration.

Homogeneous&Semi-supervised:

* GCN (Kipf and Welling, 2016): is a semi-
supervised GNN that generalizes the convo-
lutional operation to homogeneous graphs.

e GAT (Velickovié et al., 2017): uses a self-
attention strategy to learn the importance be-
tween a node and its neighbors.

Heterogeneous&Unsupervised:

* Metapath2Vec (Dong et al., 2017): performs
meta-path-guided random walk and utilizes
Skip-Gram to embed heterogeneous graphs.

Heterogeneous & Semi-supervised:

* RGCN (Schlichtkrull et al., 2018): is an exten-
sion of GCN on heterogeneous graphs, intro-
ducing relation-specific transformations based
on the type of edges.

* HAN (Wang et al., 2019b): proposes a hierar-
chical attention mechanism, i.e., node-level and
semantic-level for heterogeneous graphs.

In addition to the comparison between network
embedding methods, we will also compare the rep-
resentation learned through graphs with the repre-
sentation obtained by semantic-based methods.

¢ Semantic-based: Word2Vec (W2V) (Le and
Mikolov, 2014). The representation of a job
title is obtained by averaging word vectors in it.
We use word vectors trained on Google News *
for CB12, and a pre-trained French embedding
model (Fauconnier, 2015) for Randstad.

A.5 Parameter Settings

Our implementation is based on the PyTorch ver-
sion of the DGL package (Wang et al., 2019a).
For job title classification, we split the data
into training/validation/test sets with a ratio of
60%/20%/20%. To ensure fairness, we keep the
same data split for both methods. Each semi-
supervised model was trained on the training set,
and the parameters were optimized on the vali-
dation set. The final performance was evaluated
on the test set. Models are optimized with the
Adam (Kingma and Ba, 2014) with a learning rate
of 1e-3, and we apply Lo regularization with value
Se-4. We use an early stop with a patience of 100,

*https://code.google.com/archive/p/
word2vec/

i.e., if the validation loss does not decrease in 100
consecutive epochs, we stop training. For models
applying the attention mechanism, the dropout rate
of attention is set to 0.2. For a fair comparison, we
set the dimension of node embedding to 128 for all
the above methods, except for Word2Vec. For unsu-
pervised methods, node representations are learned
from the entire dataset. Then train the logistic
regression classifier simultaneously on the train-
ing set and validation set. For random-walk-based
methods include Node2Vec and methpath2vec, we
set the window size to 5, walk length to 10, walks
per node to 50, the number of negative samples to
5. For metapath2vec, we test all meta-paths and
report the best performance. We repeat each pre-
diction experiment ten times and report the average
performance in terms of Macro-F1 and Micro-F1
scores.


https://code.google.com/archive/p/word2vec/
https://code.google.com/archive/p/word2vec/

