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Abstract
We study online learning in episodic finite-
horizon Markov decision processes (MDPs) with
convex objective functions, known as the concave
utility reinforcement learning (CURL) problem.
This setting generalizes RL from linear to convex
losses on the state-action distribution induced by
the agent’s policy. The non-linearity of CURL
invalidates classical Bellman equations and re-
quires new algorithmic approaches. We introduce
the first algorithm achieving near-optimal regret
bounds for online CURL without any prior knowl-
edge on the transition function. To achieve this,
we use an online mirror descent algorithm with
varying constraint sets and a carefully designed
exploration bonus. We then address for the first
time a bandit version of CURL, where the only
feedback is the value of the objective function on
the state-action distribution induced by the agent’s
policy. We achieve a sub-linear regret bound for
this more challenging problem by adapting tech-
niques from bandit convex optimization to the
MDP setting.

1. Introduction
Reinforcement learning (RL) studies the problem where an
agent interacts with an environment over time, adhering to
a probabilistic policy that maps states to actions and aiming
to minimize the cumulative expected losses. The environ-
ment’s dynamics are represented by a Markov decision pro-
cess (MDP), assumed here to be episodic, with episodes of
length N , a finite state space X , a finite action space A, and
a sequence of probability transition kernels p :“ ppnqnPrNs,
such that for each px, aq P X ˆA, pnp¨|x, aq P ∆X , the sim-
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plex over the state space. Formally, the RL problem involves
finding a policy π that, under a transition kernel p, induces
a state-action distribution sequence µπ,p P p∆XˆAqN mini-
mizing the inner product with a loss vector ℓ :“ pℓnqnPrNs,
with ℓn P RXˆA, i.e.: minπPp∆AqXˆN xℓ, µπ,py. A large
body of literature is devoted to solving the RL problem effi-
ciently and with theoretical guarantees in many challenging
environments (Bertsekas, 2019; Sutton & Barto, 2018).

However, numerous practical problems entail more intricate
objectives, such as those encountered within the Concave
Utility Reinforcement Learning (CURL) framework (Hazan
et al., 2019; Zahavy et al., 2021) (also known as convex
RL). The CURL problem consists in minimizing a convex
function (or maximizing a concave function) on the state-
action distributions induced by an agent’s policy:

minπPp∆AqXˆN F pµπ,pq. (1)

In addition to RL, other examples of machine learning
problems that can be written as CURL are pure explo-
ration (Hazan et al., 2019; Mutti et al., 2021; 2022b),
where F pµπ,pq “ xµπ,p, logpµπ,pqy; imitation learning
(Ghasemipour et al., 2020; Lavington et al., 2022) and
apprenticeship learning (Zahavy et al., 2019; Abbeel &
Ng, 2004), where F pµπ,pq “ Dgpµπ,p, µ˚q, with Dg rep-
resenting a Bregman divergence induced by a function g
and µ˚ being a behavior to be imitated; certain instances
of mean-field control (Bensoussan et al., 2013), where
F pµπ,pq “ xℓpµπ,pq, µπ,py; mean-field games with poten-
tial rewards (Lavigne & Pfeiffer, 2023); risk-averse RL
(Garcıa & Fernández, 2015; Pan et al., 2019; Greenberg
et al., 2022), among others. The non-linearity of CURL al-
ters the additive structure inherent in standard RL, invalidat-
ing the classical Bellman equations. Consequently, dynamic
programming approaches become infeasible, necessitating
the development of novel methodologies.

A natural extension of CURL is the online scenario, wherein
a sequence of policies pπtqtPrT s is computed over T
episodes, aimed at minimizing a cumulative loss LT :“
řT
t“1 F

tpµπ
t,pq, where the objective F t can change arbi-

trarily (known as the adversarial scenario (Even-Dar et al.,
2009)), and the MDP probability kernel p is unknown. Most
existing approaches to CURL fail to address the challenges
of the online setting (adversarial losses and unknown dynam-
ics). The few methods that attempt to tackle this problem
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rely on strong assumptions about the probability transition
kernel (Moreno et al., 2024), which can be overly restric-
tive in real-world scenarios. To overcome this, we need
an approach capable of optimizing the objective function
while simultaneously learning the environment, effectively
balancing the exploration-exploitation dilemma.

Motivations. The CURL framework presented in this paper
is motivated by a variety of application scenarios, some of
which we outline below. Energy grid optimization: To bal-
ance the energy production with the consumption, an energy
provider may want to control the average consumption of
electrical appliances (electric vehicles, water heaters, etc)
to better match a target consumption. The task involves
daily control, with the target consumption varying daily
due to fluctuations in energy production. To protect user
privacy, the energy provider has limited access to individual
trajectories, but receives the average consumption of the
whole population at the end of each day. The loss is usu-
ally quadratic on the state-action distribution. This problem
can be framed as our CURL formulation. See (Coffman
et al., 2023; Moreno et al., 2025). Mean-field games (MFG)
with potential reward: As shown by (Barakat et al., 2023),
a MFG with potential reward can be framed as a CURL
problem. Therefore, any sequential decision problem with
a large population of anonymous agents with symmetric
interests and potential rewards, such as epidemic spreading,
crowd motion control, etc, can be cast as CURL.

Contribution 1. In the full-information feedback setting,
where the objective function F t is fully revealed to the
learner at the end of episode t, we propose the first method
achieving sub-linear regret for online CURL with adversar-
ial losses and unknown transition kernels, without relying
on additional model assumptions. Our algorithm uses an
Online Mirror Descent (OMD) variant incorporating well-
designed exploration bonuses into the sub-gradient of the
objective function to handle the exploration-exploitation
trade-off. It achieves a regret of Õp

?
T q, matching the state-

of-the-art (SoTA) in more restricted settings (Moreno et al.,
2024), while obtaining a closed-form solution.

Contribution 2. We extend our approach to incorporate
bandit feedback on the objective function. We first consider
the RL case where F tpµq :“ xℓt, µy. Bandit feedback in
this setting means that the agent only observes the loss func-
tion in the state-action pairs they visit during each episode,
i.e. pℓtnpxtn, a

t
nqqnPrNs where pxtn, a

t
nqnPrNs is the agent’s

trajectory. We obtain the optimal regret of Õp
?
T q in this

setting. We then address for the first time the general CURL
problem under more strict bandit feedback. In this setting,
the learner only has access to the value of the objective
function evaluated on the state-action distribution sequence
induced by the agent’s policy, i.e., F tpµπ

t,pq. We propose
two algorithms for this setting and show that they achieve

sub-linear regret. One algorithm requires that the MDP
is known, while the other, under the assumption that the
probability transition kernel is lower bounded by a positive
constant, operates in the setting where the MDP is esti-
mated progressively from observed trajectories. We rely
on gradient estimation techniques from the bandit convex
optimization literature, even as the peculiar structure of our
constraint set and uncertainty regarding the true transition
kernel present some unique challenges.

1.1. Related Work

Offline CURL. An extensive line of work focus on the of-
fline version of CURL (Problem (1)), where the objective
function is known and fixed. The methodologies proposed
by (Zhang et al., 2020; 2021; Barakat et al., 2023) rely
on policy gradient techniques, requiring the estimation of
F ’s gradient concerning the policy π, a task often complex.
Taking a different approach, Zahavy et al. (2021) cast the
CURL problem as a min-max game using Fenchel dual-
ity, demonstrating that conventional RL algorithms can be
tailored to fit the CURL framework. Recently, Geist et al.
(2022) established that CURL is a specific instance of mean-
field games. Moreover, Moreno et al. (2024) undertake a
convexification of Problem (1) and propose a mirror de-
scent algorithm with a non-standard Bregman divergence.
Mutti et al. (2022a; 2023) study the gap between evaluating
agent performance over infinite realizations versus finite
trials and question the classic CURL formulation in Eq. (1).
However, they show that non-Markovian policies can be
necessary to optimize the finite trials objective, which en-
tails an increased computational burden. On the other hand,
the occupancy-measure-based formulation that we study
can be solved efficiently, and allows direct comparison with
methods from the CURL literature such as (Moreno et al.,
2024). Moreover, in application scenarios with many ho-
mogeneous agents, a mean-field approach can justify this
choice, as we discuss in Sec. 1.

Online CURL. To the best of our knowledge, Greedy MD-
CURL from (Moreno et al., 2024) is the only regret min-
imization algorithm designed for online CURL. However,
it only achieves sublinear regret when the system dynam-
ics follow the form xn`1 “ gnpxn, an, εnq, where gn
is a known deterministic function, and εn is an external
noise with an unknown distribution independent of pxn, anq,
which significantly limits its applicability, as we empirically
show in Sec. 5. This assumption simplifies the problem,
as the algorithm only needs to learn the noise distribution,
which can be done independently of the policy, eliminating
the need for exploration. In contrast, our approach does
not assume any specific form for the dynamics, which intro-
duces the challenge of developing a policy that minimizes
total loss while simultaneously enabling sufficient explo-
ration to improve estimates of the transition kernels. The
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Table 1. Comparisons of SoTA finite-horizon tabular MDPs methods. MD stands for Mirror Descent, KL for Kullback-Leibler divergence
and Γ is defined in Eq. (4). MD + p¨q indicates the regularization added to the MD iteration. MD on π indicates a policy optimization
approach in which MD iterations are performed on policies instead of state-action distributions (occupancy-measures).

Algorithm Optimal
regret in T

CURL Closed-
form

Explo-
ration

No model
assumption

Adversarial
Losses

Bandit
feedback

(Jin et al., 2020) MD + KL ✓ ✗ ✗ UCRL ✓ ✓ ✓
(Moreno et al., 2024) MD + Γ ✓ ✓ ✓ None ✗ ✓ ✗
(ours) MD + Γ ✓ ✓ ✓ Bonus ✓ ✓ ✓
(Luo et al., 2021) MD on π ✓ ✗ ✓ Bonus ✓ ✓ ✓

technical novelty we introduce to overcome this challenge
are well-designed exploration bonuses detailed in Sec. 3.

The work of (Rosenberg & Mansour, 2019b) also studies
convex performance criteria in adversarial MDPs, but under
a different setup. They use fixed, known convex functions
applied to linear losses, i.e., F pxµ, ℓtyq. In contrast, our
setting generalizes this by allowing the convex function F
itself to be adversarial and applied directly to the occupancy
measure, i.e., F tpµq.

RL approaches. Model-optimistic methods construct a set
of plausible MDPs by forming confidence bounds around
the empirical transition kernels, then select the policy that
maximizes the expected reward in the best feasible MDP. A
key example of this approach is UCRL (Upper Confidence
RL) methods (Jaksch et al., 2008; Zimin & Neu, 2013;
Rosenberg & Mansour, 2019b; Jin et al., 2020). While these
methods offer strong theoretical guarantees, they are often
difficult to implement due to the complexity of optimizing
over all plausible MDPs. While we believe these approaches
could be generalized to CURL, their computational com-
plexity has led us to propose an alternative method. Value-
optimistic methods are value-based approaches that compute
optimistic value functions, rather than optimistic models,
using dynamic programming. An example is UCB-VI (Azar
et al., 2017). However, these methods are limited to stochas-
tic losses. Policy-optimization (PO) methods directly op-
timize the policy and are widely used in RL due to their
faster performance and closed-form solutions. Recently,
Luo et al. (2021) achieved SoTA regret for PO methods
with adversarial losses and bandit feedback by introducing
dilated bonuses, which satisfy a dilated Bellman equation
and are added to the Q-function. However, their approach
cannot be applied here due to CURL’s non-linearity (the
expectation of the trajectory appears inside the objective
function) which invalidates the Bellman’s equations.

We achieve our results by computing local bonuses and
adding them to the (sub-)gradient of the objective func-
tion in each OMD instance as exploration bonuses. This
is more computationally efficient than model-optimistic ap-
proaches and addresses the exploration issues in previous

online CURL methods. We believe our analysis is of in-
dependent interest, as it also offers a new way to study
RL approaches over occupancy measures, while providing
closed-form solutions. See Table 1 for comparisons.

2. Problem Formulation
2.1. Setting

For a finite set S, |S| represents its cardinality, while ∆S
denotes the |S|-dimensional simplex. For all d P N we
denote rds :“ t1, . . . , du. We let } ¨ }1 be the L1 norm,
and for all v :“ pvnqnPrNs, such that vn P RXˆA we de-
fine }v}8,1 :“ sup1ďnďN }vn}1. We denote by } ¨ }1,8 its
dual. Let Π :“ p∆AqXˆN denote the set of policies. We
consider an episodic MDP as introduced in Sec. 1. We
assume that the initial state-action pair of an agent is sam-
pled from a fixed distribution µ0 P ∆XˆA at the beginning
of each episode. At time step n P rN s, the agent moves
to a state xn „ pnp¨|xn´1, an´1q, and chooses an action
an „ πnp¨|xnq by means of a policy πn : X Ñ ∆A. When
the agent follows a policy π :“ pπnqnPrNs for an episode
in an environment described by the MDP with a transition
kernel p, this induces a state-action distribution, which we
denote by µπ,p :“ pµπ,pn qnPrNs, that can be calculated re-
cursively for all pn, x, aq P rN s ˆ X ˆ A, by

µπ,p0 px, aq “ µ0px, aq

µπ,pn px, aq “
ÿ

px1,a1q

µπ,pn´1px1, a1qpnpx|x1, a1qπnpa|xq. (2)

We define the set of all state-action distribution sequences
satisfying the dynamics of the MDP as

Mp
µ0

:“

"

µ P p∆XˆAqN
ˇ

ˇ

ÿ

a1PA
µnpx1, a1q “ (3)

ÿ

xPX ,aPA
pnpx1|x, aqµn´1px, aq ,@x1 P X ,@n P rN s

*

.

For any µ P Mp
µ0

, there is a strategy π such that µπ,p “ µ.
It suffices to take πnpa|xq9µnpx, aq when the normal-
ization factor is non-zero, and arbitrarily defined other-
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wise. Let Mp,˚
µ0

be the subset of Mp
µ0

where the cor-
responding policies π satisfy πnpa|xq ‰ 0 for all px, aq.
For any two probability transition kernels p, q, we define
Γ : Mp

µ0
ˆ Mq,˚

µ0
Ñ R such that, for all µ, µ1 P Mp

µ0
ˆ

Mq,˚
µ0

with policies π, π1,

Γpµ, µ1q :“
řN
n“1 Epx,aq„µnp¨q

”

log
´

πnpa|xq

π1
npa|xq

¯ı

. (4)

In the online extension of CURL, the objective func-
tion for episode t is denoted as F t :“

řN
n“1 f

t
n, where

f tn : ∆XˆA Ñ R is convex and L-Lipschitz with respect to
the } ¨ }1 norm (hence F t is LF -Lipschitz with respect to
the norm } ¨ }8,1 with LF :“ LN ). The objective function
F t is unknown to the learner in the start of episode t. In
this paper, we examine three types of objective function
feedback: Full-information: In this case, F t is fully dis-
closed to the learner at the end of episode t, and is treated
in Sec. 3.2. Bandit in RL: Here, F tpµq :“ xℓt, µy, and the
learner observes the loss function only for the state-action
pairs visited, i.e., pℓtnpxtn, a

t
nqqnPrNs, which is covered in

Sec. 4.1. Bandit in CURL: In this scenario, the learner only
has access to the objective function evaluated on the state-
action distribution sequence induced by the agent’s policy,
i.e., F tpµπ

t,pq, and is treated in Sec. 4.2.

The learner’s goal is to compute a sequence of strategies
pπtqtPrT s, where T represents the total number of episodes,
that minimizes their total loss LT :“

řT
t“1 F

tpµπ
t,pq. The

learner’s performance is evaluated by comparing it to any
policy π P p∆AqXˆN using the static regret:

RT pπq :“
řT
t“1 F

tpµπ
t,pq ´ F tpµπ,pq. (5)

We assume the probability transition kernel p is unknown
to the learner. Hence, to minimize its total loss, the learner
must optimize the objective function while simultaneously
learn the environment dynamics, facing an exploration-
exploitation dilemma. The interaction between the learner
and the environment proceeds in episodes. At each episode
t, the learner selects a policy πt, sends it to the agent, and
observes its trajectory ot :“ pxt0, a

t
0, . . . , x

t
N , a

t
N q. The

learner uses this observation to compute an estimation of
the probability transition kernel ppt`1. At the end of episode
t, the learner receives one of the three feedbacks described
above for the objective function F t, and then calculates the
policy for the next episode, πt`1, based on πt, ppt`1, and
the feedback on F t.

2.2. Preliminary Results

The results in this section are either known or extensions of
existing results needed for the analysis.

Since the probability transition kernel is unknown, we pro-
pose an online mirror descent (OMD) instance that opti-
mizes over the state-action distributions induced by the esti-

mated MDP as if it was the true model. This approach dif-
fers from the model-optimistic methods for RL discussed in
Sec. 1.1 where each iteration is performed over the union of
all state-action distribution sets induced by MDPs within a
confidence set around the estimated model, which results in
a computationally expensive optimization problem per itera-
tion. Lemma 2.1 presents an auxiliary result concerning the
quality of the state-action distribution sequence pµtqtPrT s

when µt is the solution of Eq. (6), an OMD instance on
the set of state-action distributions induced by a transition
kernel qt. It extends the upper bound result from (Moreno
et al., 2024) for OMD with smoothly varying constraint
sets to any sequence of bounded vectors pztqtPrT s and any
sequence of smootlhy varying transitions pqtqtPrT s.

Lemma 2.1. Let pqtqtPrT s be a sequence of probability
transition kernels and pztqtPrT s a sequence of vectors in
RNˆ|X |ˆ|A|, such that maxtPrT s }zt}1,8 ď ζ. Initialize
π1
npa|xq :“ 1{|A|. For t P rT s, let π̃t :“ t

t`1π
t` 1

t`1 |A|´1

be a smoothed version of the policy and compute iteratively

µt`1 P argmin
µPMqt`1

µ0

τxzt, µy ` Γpµ, µπ̃
t,qtq. (6)

Then, there is a τ ą 0 such that, for any sequence pνtqtPrT s,
with νt :“ νπ,q

t

for a common policy π,
řT
t“1xzt, µt ´ νty ď O

`

ζN
a

VT |X | logp|A|qT logpT q
˘

,

where VT ě 1 ` max
pn,x,aq

T´1
ÿ

t“1

}qtnp¨|x, aq ´ qt`1
n p¨|x, aq}1.

This lemma is proved in App. C. It is known (Moreno et al.,
2024) that for the divergence Γ defined in Eq. (4), Eq. (6)
has a closed-form solution for the policy (see App. A.2).

Learning the model. Since the learner does not know
the probability transition kernel, it must estimate p from
the agents’ trajectories. Below we present the empirical
way for estimating the transition and a well-known re-
sult (Lem. 2.2) on its quality using Hoeffding’s inequal-
ity. Let N t

npx, aq “
řt´1
s“1 1txs

n“x,asn“au, M t
npx1|x, aq “

řt´1
s“1 1txs

n`1“x1,xs
n“x,asn“au. The learner’s estimate for the

transition kernel at the end of episode t ´ 1, to be used in
episode t, is as follows

pptn`1px1|x, aq :“
M t
npx1|x, aq

maxt1, N t
npx, aqu

. (7)

Lemma 2.2 (Lem. 17 of Jaksch et al., 2008). For any
0 ă δ ă 1, with a probability of at least 1 ´ δ,

}pnp¨|x, aq ´ pptnp¨|x, aq}1 ď

g

f

f

e

2|X | log
´

|X ||A|NT
δ

¯

max t1, N t
n´1px, aqu

holds simultaneously for all pt, n, x, aq P rT sˆrN sˆXˆA.
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These results suffice for analyzing CURL with full-
information feedback (Sec. 3). For bandit feedback, more
refined tools are needed. In bandit RL, we need Bernstein’s
inequality to bound the L1 distance (Lem. D.2). In bandit
CURL, we also need a bound on the Kullback-Leibler (KL)
divergence (Lem. E.3), which requires the Laplace (add-
one) estimator (Eq. (51)), as the KL of the empirical one
can be unbounded.

3. Exploration Bonus in CURL
We now present our novel approach for online CURL with
adversarial losses and unknown dynamics.

3.1. Limitations of previous approaches

The performance measure of a learner playing a sequence
of strategies pπtqtPrT s is given by the static regret defined
in Eq. (5). Using the estimate of the probability transition
kernel ppt computed by the learner, the static regret can be
further decomposed as follows

RT pπq “

T
ÿ

t“1

F tpµπ
t,pq ´ F tpµπ

t,pptq

`

T
ÿ

t“1

F tpµπ
t,pptq ´ F tpµπ,pq

ď

T
ÿ

t“1

x∇F tpµπ
t,pq, µπ

t,p ´ µπ
t,ppty

looooooooooooooooooomooooooooooooooooooon

RMDP
T

`

T
ÿ

t“1

x∇F tpµπ
t,pptq, µπ

t,ppt ´ µπ,py

looooooooooooooooooomooooooooooooooooooon

Rpolicy
T

,

(8)

where the inequality comes from the convexity of F t. Let
ξtnpx, aq :“ }pnp¨|x, aq ´ pptnp¨|x, aq}1. The term RMDP

T ,
accounts for the error in estimating the MDP, and satisfies
RMDP
T “ Õp

?
T q with high probability. This is a classic

result (see Neu et al., 2012). We first show that

RMDP
T ď L

T
ÿ

t“1

N
ÿ

n“1

n´1
ÿ

i“0

ÿ

x,a

µπ
t,p
i px, aqξti`1px, aq. (9)

Then, using Lem. 2.2 and that N t
npx, aq increases with the

empirical version of the state-action distribution µπ
t,p
n px, aq

we achieve the final bound (see App. B.2). The second term,
Rpolicy
T , depends on the algorithm used to derive the poli-

cies. As mentioned in Sec. 1.1, model-optimistic approaches
could be adapted to CURL, but they are computationally
expensive. To achieve low complexity, we explore poten-
tial problems that might arise from the absence of explicit

exploration. We decompose this regret term as follows:

Rpolicy
T “

T
ÿ

t“1

x∇F tpµπ
t,pptq, µπ

t,ppt ´ µπ,pp
t

y

loooooooooooooooooooomoooooooooooooooooooon

Rpolicy/MD
T

`

T
ÿ

t“1

x∇F tpµπ
t,pptq, µπ,pp

t

´ µπ,py

looooooooooooooooooomooooooooooooooooooon

Rpolicy/MDP
T

.

Assume the learner computes its policy sequence
pπtqtPrT s by solving Eq. (6) with qt`1 :“ ppt`1 and
zt :“ ∇F tpµπt,pptq. Hence, from Lem. 2.1, Rpolicy/MD

T “

Õp
?
T q (Lemmas A.3 and A.4 in the Appendix demonstrate

that
řT
t“1 }ppt`1p¨|x, aq ´ pptp¨|x, aq}1 ď e logpT q. By hy-

pothesis, }∇F tpµπt,pptq}1,8 ď LF . Hence, we meet all the
assumptions from Lem. 2.1). But the term Rpolicy/MDP

T poses
a challenge. It can be decomposed asRMDP

T in Eq. (9). How-
ever, the state-action distribution multiplying ξti`1px, aq

would either be µπ,pi px, aq or µπ,pp
t`1

i px, aq, and neither is
related to N t

i px, aq. Consequently, we do not have the same
convergence effect as RMDP

T . In fact, this term can become
prohibitively large. Without exploration, previous work us-
ing similar analysis (Moreno et al., 2024) only achieved
optimal regret under strong model assumptions, limiting its
applicability in realistic scenarios.

3.2. CURL with full-information feedback

We outline our idea to overcome previous limitations pre-
sented in Subsec. 3.1. Let bt :“ pbtnqnPrNs be a sequence of
vectors, to be properly defined later, such that btn P RXˆA.
We assume that πt is the policy inducing µt computed
as in Eq. (6) with qt :“ ppt, but instead of considering
zt “ ∇F tpµπt,pptq as the (sub-)gradient of MD to be used
in episode t` 1, we let zt :“ ∇F tpµπt,pptq ´ bt, i.e.,

µt`1 :“ argmin
µPM ppt`1

µ0

!

τx∇F tpµπ
t,pptq ´ bt, µy ` Γpµ, µ̃tq

)

.

If we assume that bt is such that, for all t P rT s and for
some ζ ą 0, }∇F tpµπt,pptq ´ bt}1,8 ď ζ , then by Lem. 2.1
and by adding and subtracting the bonus vector, we would
have that Rpolicy

T is bounded by

Õp
?
T q `

řT
t“1xbt, µπ

t,ppt ´ µπ,pp
t

y `Rpolicy/MDP
T . (10)

Let Cδ :“
a

2|X | logp|X ||A|NT {δq, and for all
n P t0, rN su, px, aq P X ˆ A, let

btnpx, aq :“ LpN ´ nq
Cδ

a

max t1, N t
npx, aqu

. (11)

Note that }btn}8 ď LNCδ, ensuring that the hypothesis of
Lem. 2.1 remains valid for this sequence. Decomposing
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Rpolicy/MDP
T as we do for RMDP

T in Eq. (9), and then applying
Lem. 2.2, we get that for any δ P p0, 1q, with probability at
least 1 ´ δ, Rpolicy/MDP

T is bounded by

LCδ

T
ÿ

t“1

N´1
ÿ

n“0

pN ´ nq
ÿ

x,a

µπ,pp
t

n px, aq
a

max t1, N t
npx, aqu

“

T
ÿ

t“1

xµπ,pp
t

, bty.

(12)

By replacing Eq. (12) in Eq. (10), the additive prop-
erty in the decomposition allows us to cancel out the
problematic regret term Rpolicy/MDP

T . As a result, we ob-
tain that Rpolicy

T ď Õp
?
T q `

řT
t“1xbt, µπ

t,ppty. All that re-
mains is to analyze the new term due to the added bonus,
řT
t“1xbt, µπ

t,ppty, which we do in Prop. 3.1.

Proposition 3.1. Let pbtqtPrT s be the bonus vector in
Eq. (11). For any δ1 P p0, 1q, with probability 1 ´ 3δ1,

řT
t“1xbt, µπ

t,ppty “ Õ
`

LN3|X |3{2
a

|A|T
˘

.

With all the ingredients in place, we introduce our new
method, Bonus O-MD-CURL, in Alg. 1. The main result
is in Thm. 3.2 and its proof is in App. B.2. In terms of T
and |A|, our result matches the optimal one in RL from (Jin
et al., 2020), but we have additional factors of N and

a

|X |

that are due to using bonuses and to our approach to deal
with adversarial convex RL.

Theorem 3.2. Running Alg. 1 for online CURL with un-
known transition kernel, full-information feedback, where
F t :“

řN
n“1 f

t
n is convex and each f tn is L-Lipschitz under

} ¨ }1, ensures that, with probability at least 1 ´ 6δ for any
δ P p0, 1q, the optimal choice of τ achieves, for any π P Π,

RT pπq “ Õ
`

LN3|X |3{2
a

|A|T
˘

.

4. Bandit Feedback
4.1. Bandit feedback with bonus in RL

We generalize Alg. 1 to handle the RL case with bandit
feedback. Our aim is not to improve the existing algorithms
for bandit RL; rather, we show that our new methodology
and analysis for CURL achieves comparable results to the
SoTA in bandit RL. In this case, an adversary selects a
sequence of loss functions pℓtqtPrT s, with ℓt :“ pℓtnqnPrNs,
where ℓtn : X ˆ A Ñ r0, 1s, and the objective function
is given by F tpµq :“ xℓt, µy “

řN
n“1xℓtn, µny. Note that

now the gradient of F t with respect to µ is always equal
to ℓt due to the linearity of the objective function. Bandit
feedback in this setting implies that the learner observes the
loss function only for the state-action pairs visited by the
agent during each episode, i.e., pℓtnpxtn, a

t
nqqnPrNs where

pxtn, a
t
nqnPrNs is the agent’s trajectory.

Algorithm 1 Bonus O-MD-CURL (Full-information)

1: Input: number of episodes T , initial policy π1 P Π,
initial state-action distribution µ0 and state-action distri-
bution sequence µ1 “ µ̃1 “ µπ

1,pp1 with pp1np¨|x, aq “

1{|X |, learning rate τ ą 0.
2: Init.: @pn, x, a, x1q, N1

npx, aq “ M1
npx1|x, aq “ 0

3: for t “ 1, . . . , T do
4: agent starts at pxt0, a

t
0q „ µ0p¨q

5: for n “ 1, . . . , N do
6: Env. draws new state xtn „ pnp¨|xtn´1, a

t
n´1q

7: Update counts

N t`1
n´1pxt

n´1, a
t
n´1q “ N t

n´1pxt
n´1, a

t
n´1q ` 1

M t`1
n´1pxt

n|xt
n´1, a

t
n´1q “ M t

n´1pxt
n|xt

n´1, a
t
n´1q ` 1

8: Agent chooses an action atn „ πtnp¨|xtnq

9: end for
10: Compute bonus sequence as in Eq. (11)
11: Observe objective function F t

12: Compute µπ
t,ppt as in Eq. (2)

13: Update transition estimate as in Eq. (7)
14: Compute the πt`1 associated to the solution of Eq. 6

with zt :“ ´∇F tpµπt,pptq ` bt and qt`1 “ ppt`1

15: Compute π̃t`1 (Lem. 2.1), and µ̃t`1 :“ µπ̃
t`1,ppt`1

16: end for

We define Alg. 2 in App. D, a version of Bonus O-MD-
CURL where for each OMD update we take zt :“ pℓt ´ bt,
with pℓt an importance-weighted estimator of ℓt defined
in Eq. (40) and bt the bonus vector defined in Eq. (11).
Thm. 4.1 states that Alg. 2 achieves the regret bound of
Õp

?
T q known to be the optimal for RL with bandit feed-

back (Jin et al., 2020). For the proof and for an overview of
approaches for bandit RL see App. D.

Theorem 4.1. Playing Alg. 2 for RL with adversarial losses
pℓtqtPrT s, unknown transition kernel, and bandit feedback,
obtains with high probability for any policy π P Π,

RT pπq “ Õ
`

N3|X |3{2
a

|A|T `N3{2|X |5{4|A|
?
T
˘

.

4.2. CURL with bandit feedback

Returning back to the CURL framework, we now assume
that F t : ∆XˆA Ñ r0, N s can be any convex, L-Lipschitz
function with respect to } ¨ }1. In contrast to Sec. 3, we
assume here that after executing a policy πt we observe
F tpµπ

t,pq instead of ∇F tpµπt,pq. We will consider both
the case when the MDP is known in advance and when it
needs (as in previous sections) to be estimated progressively
from observed trajectories.

Main challenges. This problem can be broadly catego-
rized as a bandit convex optimization (BCO) problem. This
places us in a more challenging domain compared to the

6
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bandit feedback setting in the standard RL problem, where
the gradient of the loss function is identical for any point
in p∆XˆAqN and is easier to estimate. Moreover, as a
BCO problem, the present setting still exhibits distinctive
challenges. One being the peculiar nature of our decision
set Mp

µ0
and how it impedes the efficacy of some stan-

dard gradient estimation techniques as we explain below.
Another issue arises when the MDP is not known as that in-
duces uncertainty over the true set of permissible occupancy
measures. This incomplete knowledge of the decision set
is atypical in the BCO literature and introduces multiple
sources of bias for any adopted method.

4.2.1. ENTROPIC REGULARIZATION METHOD

Our first approach is to extend our MD-based algorithm
from Sec. 3, supposing still that the MDP is not known.
Since the algorithm required knowledge of the gradient
∇F tpµπt,pq, we propose to estimate it by querying F t

at a random perturbation of µπ
t,p, a standard approach

in the convex bandit literature popularized by Flaxman
et al. (2005). This method yields T 3{4 regret under con-
vex and Lipschitz conditions, and is incapable of doing
better (Hu et al., 2016). Although more advanced algo-
rithms and analyses achieve

?
T regret (Hazan & Li, 2016;

Bubeck et al., 2021; Fokkema et al., 2024), they are ar-
guably less practical, more complicated, and have worse
dimension dependence. For d P Z`, we denote by Bd
and Sd the unit ball and sphere respectively in Rd, and
by 1d P Rd the vector with all entries equal to one. Let
k : S Ñ R be a convex function, where S Ď Rd is a con-
vex set satisfying Bd Ď S. Fix some δ P p0, 1q. The
approach of Flaxman et al. (2005) relies on the observation
that p1´δqd

δ EuPSdrkpp1 ´ δqx` δuqus « ∇kpxq. Hence,
p1´δqd
δ kpp1 ´ δqx` δuqu (for some u uniformly sampled

from Sd) can be used as a one-point stochastic surrogate for
the gradient. Applying this idea to our problem presents
several challenges. Mainly, Mp

µ0
has an empty interior in

RN |X ||A|. This can be addressed, assuming for the mo-
ment that the kernel p is known, by defining a bijection
Λp : pMp

µ0
q´ Ñ Mp

µ0
, where pMp

µ0
q´ Ď RN |X |p|A|´1q is

a representation of the constraint set in a lower-dimensional
space where it is possible for its interior to be non-empty,
see App. E.1 for more details. Next, we need to specify a
(hyper)sphere that is contained in pMp

µ0
q´, which would

allow us to use the aforementioned spherical estimation tech-
nique while remaining inside the feasible set of occupancy
measures. To guarantee the existence of such an object, we
rely on the following assumption (discussed further below).

Assumption 4.2. There exists a value ε ą 0 such that
pnpx1|x, aq ě ε for all x, x1 P X 2, a P A, and n P rN s.

Under this assumption, we show in App. E.2.1 that for
κ :“ ε{p|A|´1`

a

|A| ´ 1q, it holds that κ1N |X |p|A|´1q `

κBN |X |p|A|´1q Ď pMp
µ0

q´. For any v P BN |X |p|A|´1q,
define ζv,p :“ Λppκ1N |X |p|A|´1q ` κvq. Motivated by the
preceding discussion, we use (a simple transformation of)

1´δ
δκ N |X |p|A| ´ 1qF t

`

p1 ´ δqµt ` δζu
t,p

˘

ut

as a surrogate for ∇F tpµtq, where ut is sampled uniformly
from SN |X |p|A|´1q. What remains is to address the issue
that the true kernel p is unknown. Similarly to the full infor-
mation case, we compute an estimate ppt at each round to be
used in place of the true kernel, and we employ bonuses to
explore. One difference is that we rely on a slightly altered
transition kernel estimator (see App. E.2.2) to ensure that ppt

too satisfies the condition of Asm. 4.2. Another discrepancy
to be accounted for in the analysis is that although we com-
pute πt relying on ppt (in particular, πt is the policy induced
by p1´ δqµt ` δζu

t,ppt P Mppt

µ0
), we observe F tpµπ

t,pq, the
evaluation of πt in the true environment. This induces an
extra source of bias in the gradient estimator. We summa-
rize our approach in Alg. 3 in App. E.2.3, and prove the
following result in App. E.2.5:

Theorem 4.3. Under Asm. 4.2, Alg. 3 with a suitable tuning
of τ , δ, and pαtqtPrT s satisfies for any policy π P Π that

E rRT pπqs “ Õ
`

a

LpL` 1q{ε|X |
5{4|A|

5{4N3T
3{4
˘

.

The main shortcoming of this method is its reliance on the
restrictive Asm. 4.2, which also affects the regret guarantee
through its dependence on ε. This assumption is not neces-
sary to guarantee that pMp

µ0
q´ has a non-empty interior; it

suffices instead to assume that every state is reachable at ev-
ery step, as we do later. Enforcing Asm. 4.2 only serves as a
simple way to enable the construction of a sampling sphere
with a certain radius. One can construct a different sampling
sphere (or ellipsoid) without this assumption; nevertheless,
the magnitude of the gradient estimator (which is featured
in the current regret bound) would still scale with the re-
ciprocal of the radius of that sphere, the permissible values
for which depend on the structure of the MDP and can be
arbitrarily small. It seems then that the current approach
leads to an inevitable degradation of the bound subject to
the structure of the MDP.

4.2.2. SELF-CONCORDANT REGULARIZATION METHOD

Fortunately, we can adopt a more principled approach via
the use of self-concordant regularization, which is a com-
mon technique in bandit convex (and linear) optimization
(see, e.g., Abernethy et al., 2008; Saha & Tewari, 2011;
Hazan & Levy, 2014), and has been used for online learn-
ing in MDPs in different (linear) settings (Lee et al., 2020;
Cohen et al., 2021; Van der Hoeven et al., 2023). We
show in App. E.3 that pMp

µ0
q´ is a convex polytope speci-

fied as the intersection of N |X ||A| half-spaces. We define
ψlb : pMp

µ0
q´ Ñ R as the standard logarithmic barrier for

7
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pMp
µ0

q´ (see Nemirovski, 2004, Cor. 3.1.1) which is a ϑ-
self-concordant barrier (see Nemirovski, 2004, Def. 3.1.1)
for pMp

µ0
q´ with ϑ “ N |X ||A|. The second approach we

adopt here is to run mirror descent directly on pMp
µ0

q´

as the decision set and take ψlb as the regularizer in place
of the entropic regularizer that induces Γ. Let ξ belong to
the interior of pMp

µ0
q´, which we assume is not empty.

Property I in (Nemirovski, 2004, Sec. 2.2) implies that
ξ ` p∇2ψlbpξqq´1{2BNSpA´1q Ď pMp

µ0
q´ . Hence, we can

construct an ellipsoid—entirely contained in pMp
µ0

q´—
around any point in intpMp

µ0
q´. Let ξt be the output of

mirror descent at round t and Ut :“ p∇2ψlbpξtqq´1{2. We
can then use the following as a surrogate for the gradient of
F t ˝ Λp at ξt (see also Saha & Tewari, 2011):

p1´δq

δ N |X |p|A| ´ 1qF t
`

Λp
`

ξt ` δUtu
t
˘˘

U´1
t ut

with ut again sampled uniformly from SN |X |p|A|´1q. The
eigenvalues of Ut correspond to the lengths of the semi-axes
of the ellipsoid used at round t, which could be arbitrarily
small and lead again to the gradient surrogate having large
magnitude. However, thanks to the relationship between ξt

and Ut, a local norm analysis of mirror descent (see, e.g.,
Lem. 6.16 in Orabona, 2019) absolves the regret of any
dependence on the properties of Ut. Unfortunately, due
to technical barriers, this log-barrier-based approach is not
readily extendable to the setting where the decision set can
change over time (in particular, it is not clear whether an
analogue for Lem. 2.1 can hold in this case). Hence, we
restrict its application only to the case when the MDP is
known, see Alg. 4 in App. E.3. We state next a regret bound
for this algorithm (proved in App. E.3.2), which requires the
following less restrictive assumption in place of Asm. 4.2.

Assumption 4.4. For every state x P X and step n P rN s,
there exists a policy π such that

ř

aPA µ
π,p
n px, aq ą 0.

Note that this can be imposed without loss of generality
since the MDP is known; defining Xn Ď X as the subset
of states reachable at step n, one can represent occupancy
measures as sequences of distributions in p∆XnˆAqnPrNs.

Theorem 4.5. Under Asm. 4.4, Alg. 4 with a suitable tuning
of τ and δ satisfies for any policy π P Π that

E rRT pπqs “ Õ
`
?
LN 7{4 p|X ||A|T q

3{4
˘

.

Though holding only for the known MDP case, this bound
maintains the T 3{4 rate of Thm. 4.3 while eliminating its
reliance on Asm. 4.2 and its undesirable dependence on
the MDP’s structure. We leave extending this result to un-
known MDPs and designing practical approaches enjoying
the optimal

?
T rate for future work.

Figure 1. [left] Initial agent distribution; [middle] The three targets
from multi-objectives; [right] The constrained MDP (reward in
yellow, constraints in blue).

5. Experiments
We evaluate Bonus O-MD-CURL on the multi-objective
and constrained MDP tasks from (Geist et al., 2022), which
use fixed objective functions and fixed probability kernels
across time steps. Adversarial and bandit MDPs are harder
to implement due to challenges in finding optimal stationary
policies, and there is a a lack of experimental validation in
the literature. We focus on evaluating how well the additive
bonus helps the algorithm to learn the environment. We
also compare it to Greedy MD-CURL from (Moreno et al.,
2024). The state space is an 11 ˆ 11 four-room grid world,
with a single door connecting adjacent rooms. The agent can
choose to stay still or move right, left, up, or down, as long as
there are no walls blocking the path: xn`1 “ xn ` an ` εn.
The external noise εn is a perturbation that can move the
agent to a neighboring state with some probability. The
initial distribution is a Dirac delta at the upper left corner of
the grid, as in Fig. 1 [left]. We take N “ 40, τ “ 0.01, and
5 repetitions per experiment.1

Multi-objectives: The goal is to concentrate the distribu-
tion on three targets by the final step N , as in Fig. 1 [mid-
dle]. The objective function is defined as fnpµπ,pn q :“

´
ř3
k“1p1 ´ xµπ,pn , ekyq2, where ek P R|X | is a vec-

tor with a 1 at the target state and 0 elsewhere. Con-
strained MDPs: The goal is to concentrate the state dis-
tribution on the yellow target in Fig. 1 [right] while avoid-
ing the constraint states in blue. The objective function
is defined as fnpµπ,pn q :“ ´xr, µπ,pn y ` pxµπ,pn , cyq2, where
r, c P R|X |ˆ|A|

` . Here, r and c are zero everywhere except
at the target and constraint states respectively.

To compute the regret, we compare against the oracle op-
timal policy, which can be closely approximated when the
dynamics are known. For the Multi-objective task, Fig. 2
displays the state distribution at the final time step after 50
iterations for Bonus O-MD-CURL [up, left], and Greedy
MD-CURL [up,right], and plot the log-loss [down,left] and
regret [down,right] after 1000 iterations. We see that Bonus
O-MD-CURL reaches the targets much faster than Greedy
MD-CURL. As for the Constrained MDP task, Fig. 3 dis-

1The code to reproduce the empirical results are available at:
https://github.com/biancammoreno/Convex_RL
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Figure 2. Multi-objective: distribution at N “ 40 after 50 iters.
for Bonus O-MD-CURL [up,left], Greedy MD-CURL [up,right];
log-loss [down,left] and regret [down,right] for 103 iters.
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Figure 3. Constrained MDP after 103 iters.: sum distributions over
all time steps n P r40s at [up,left]; distribution at the last time step
N “ 40 for Bonus O-MD-CURL [up,center], and Greedy MD-
CURL [up,right]; the log-loss [down, left] and regret [down,right].

plays the log-sum of all state distributions for all time steps
n P r40s at iteration 1000 for Bonus O-MD-CURL [up,left];
the state distribution at the last time step n “ 40 after 1000
iterations for Bonus O-MD-CURL [up,center], and Greedy
MD-CURL [up,right]; and the log-loss [down,left] and re-
gret [down,right]. In this case, Greedy MD-CURL fails to
reach the target state even after 1000 iterations, while Bonus
O-MD-CURL successfully reaches the target state avoiding
constrained states to minimize cost thanks to the additive
bonuses. These examples empirically demonstrate the value
of the additive bonus in tasks requiring exploration.

Impact Statement
This work is of a theoretical nature, we do not foresee any
notable societal consequences.
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A. Auxiliary Results
A.1. Auxiliary lemmas

Lemma A.1. For 0 ă δ ă 1,

T
ÿ

t“1

N
ÿ

n“1

n´1
ÿ

i“0

ÿ

x,a

µπ
t,p
i px, aq}pi`1p¨|x, aq ´ ppti`1p¨|x, aq}1

ď 3|X |N2

d

2|A|T log

ˆ

|X ||A|NT

δ

˙

` 2|X |N2

c

2T log
´N

δ

¯

with probability at least 1 ´ 2δ.

Proof. Let ξtnpx, aq :“ }pnp¨|x, aq ´ pptnp¨|x, aq}1. We denote by ot :“ pxtn, a
t
nqnPrNs the trajectory of the agent at episode

t when playing policy πt. Let pµπ
t,p
n px, aq :“ 1tpxt

n,a
t
nq“px,aqu be the empirical state-action distribution computed from the

agent’s trajectory. We consider the following decomposition:

T
ÿ

t“1

N
ÿ

n“1

n´1
ÿ

i“0

ÿ

x,a

µπ
t,p
i px, aqξti`1px, aq “

T
ÿ

t“1

N
ÿ

n“1

n´1
ÿ

i“0

ÿ

x,a

pµπ
t,p
i px, aqξti`1px, aq

loooooooooooooooooooooomoooooooooooooooooooooon

p1q

`

T
ÿ

t“1

N
ÿ

n“1

n´1
ÿ

i“0

ÿ

x,a

`

µπ
t,p
n ´ pµπ

t,p
i px, aq

˘

ξti`1px, aq

looooooooooooooooooooooooooooomooooooooooooooooooooooooooooon

p2q

.

Term p1q analysis. We start by analysing the first term. Using Lem. 2.2, we have that for δ P p0, 1q, with probability 1´ δ,

p1q “

T
ÿ

t“1

N
ÿ

n“1

n´1
ÿ

i“0

ÿ

x,a

pµπ
t,p
i px, aqξti`1px, aq ď

d

2|X | log

ˆ

|X ||A|NT

δ

˙ T
ÿ

t“1

N
ÿ

n“1

n´1
ÿ

i“0

ÿ

x,a

µπ
t,p
i px, aq

a

maxt1, N t
i px, aqu

.

Using Lem. 19 from (Jaksch et al., 2008), we have that for all i P rN s and px, aq P X ˆ A,

T
ÿ

t“1

pµπ
t,p
i px, aq

a

maxt1, N t
i px, aqu

ď p
?
2 ` 1q

b

NT
i px, aq.

Therefore, using Jensen’s inequality and that
ř

px,aq N
T
i px, aq “ T for all i P rN s, we have that

T
ÿ

t“1

N
ÿ

n“1

n´1
ÿ

i“0

ÿ

x,a

pµπ
t,p
i px, aq

a

maxt1, N t
i px, aqu

ď 3
N
ÿ

n“1

n´1
ÿ

i“0

ÿ

x,a

b

NT
i px, aq

ď 3
N
ÿ

n“1

n´1
ÿ

i“0

a

|X ||A|T

ď 3N2
a

|X ||A|T .

(13)

Substituting this inequality into the upper bound for term p1q yields

p1q ď

d

2|X | log

ˆ

|X ||A|NT

δ

˙

3N2
a

|X ||A|T

“ 3|X |N2

d

2|A|T log

ˆ

|X ||A|NT

δ

˙

.

(14)
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Term p2q analysis. We now analyse the second term. Let F t :“ σpo1, . . . , ot´1q be the filtration generated by the
trajectories of the agent from the first episode, up to the end of episode t´ 1. Note that ξtn`1px, aq is F t measurable, as it
only depends on observations up to episode t´ 1. Therefore,

Erξtn`1px, aqpµπ
t,p
n px, aq|F t

ns “ ξtn`1px, aqErpµπ
t,p
n px, aq|F t

ns “ ξtn`1px, aqµπ
t,p
n px, aq.

For all n P rN s, let M0
n “ 0 and for all t P rT s,

M t
n :“

t
ÿ

s“1

ÿ

x,a

`

µπ
s,p
n px, aq ´ pµπ

s,p
n px, aq

˘

ξsn`1px, aq.

From the observation above, pM t
nqtPrT s is a martingale sequence with respect to the filtration F t. Furthermore, as by

definition |ξtn`1px, aq| ď 2,

|M t
n ´M t´1

n | ď
ÿ

xPX

ˇ

ˇ

ˇ

ˇ

ÿ

aPA

`

µπ
t,p
n px, aq ´ pµπ

t,p
n px, aq

˘

ξtn`1px, aq

ˇ

ˇ

ˇ

ˇ

ď 2|X |.

Therefore, by Azuma-Hoeffding, we have that for any ε ą 0,

P
`

MT
n ě ε

˘

ď exp

ˆ

´ε2

8|X |2T

˙

.

Applying the union bound on all n P rN s, we then have that for any δ P p0, 1q, with probability at least 1 ´ δ,

MT
n ď 2|X |

c

2T log
´N

δ

¯

holds simultaneously for all n P rN s.

Substituting this inequality into term p2q and summing over n P rN s and i P rn´ 1s, we obtain, with probability at least
1 ´ δ, that

p2q “

N
ÿ

n“1

n´1
ÿ

i“0

MT
i ď 2|X |N2

c

2T log
´N

δ

¯

. (15)

Final step. Combining the upper bounds for term p1q from Eq. (14) and term p2q from Eq. (15), we obtain, with probability
at least 1 ´ 2δ, that

T
ÿ

t“1

N
ÿ

n“1

n´1
ÿ

i“0

ÿ

x,a

µπ
t,p
i px, aqξti`1px, aq ď 3|X |N2

d

2|A|T log

ˆ

|X ||A|NT

δ

˙

` 2|X |N2

c

2T log
´N

δ

¯

,

concluding the proof.

Lemma A.2. For any 0 ă δ ă 1,

T
ÿ

t“1

N
ÿ

n“0

pN ´ nq
ÿ

x,a

µπ
t,p
n px, aq

a

maxt1, N t
npx, aqu

ď 3N2
a

|X ||A|T ` |X |N2

c

2T log
´N

δ

¯

,

holds with probability at least 1 ´ δ.

Proof. Recall that we denote by pxtn, a
t
nqnPt0,rNsu the trajectory of the agent during episode t, when playing policy πt, and

that we define by pµπ
t,ppx, aq :“ 1tpxt

n,a
t
nq“px,aqu as the empirical state-action distribution computed from the trajectory of

13
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the agent. We consider the following decomposition:

T
ÿ

t“1

N
ÿ

n“0

pN ´ nq
ÿ

x,a

µπ
t,p
n px, aq

a

maxt1, N t
npx, aqu

“

T
ÿ

t“1

N
ÿ

n“0

pN ´ nq
ÿ

x,a

pµπ
t,p
n px, aq

a

maxt1, N t
npx, aqu

looooooooooooooooooooooooomooooooooooooooooooooooooon

p1q

`

T
ÿ

t“1

N
ÿ

n“0

pN ´ nq
ÿ

x,a

`

µπ
t,p
n ´ pµπ

t,p
n px, aq

˘

a

maxt1, N t
npx, aqu

looooooooooooooooooooooooomooooooooooooooooooooooooon

p2q

(16)

Term p1q analysis. Using the same decomposition of term p1q of Lem. A.1 in Eq. (13) we have that

T
ÿ

t“1

N
ÿ

n“0

pN ´ nq
ÿ

x,a

pµπ
t,p
n px, aq

a

maxt1, N t
npx, aqu

ď 3N2
a

|X ||A|T . (17)

Term p2q analysis. The analysis of term p2q follows a similar approach to the analysis of term p2q in Lem. A.1, with the
key difference being that, instead of carrying the term related to the difference between the true probability transition and
the estimated one, we now have the term 1{

a

max t1, N t
npx, aqu.

Let F t :“ σpo1, . . . , ot´1q be the filtration generated by the trajectories of the agent from the first episode, up to the end of
episode t´ 1. Note that 1{

a

max t1, N t
npx, aqu is F t measurable, as it only depends from observations of time step n up

to episode t´ 1. Therefore,

Er1{
a

max t1, N t
npx, aqupµπ

t,p
n px, aq|F t

ns “ 1{
a

max t1, N t
npx, aquµπ

t,p
n px, aq.

For all n P rN s, let M0
n “ 0 and for all t P rT s,

M t
n :“

t
ÿ

s“1

pN ´ nq
ÿ

x,a

`

µπ
s,p
n px, aq ´ pµπ

s,p
n px, aq

˘

1{
a

max t1, N t
npx, aqu.

From the observation above, pM t
nqtPrT s is a martingale sequence with respect to the filtration F t. Furthermore, as by

definition |1{
a

max t1, N t
npx, aqu| ď 1,

|M t
n ´M t´1

n | ď pN ´ nq
ÿ

xPX

ˇ

ˇ

ˇ

ˇ

ÿ

aPA

`

µπ
t,p
n px, aq ´ pµπ

t,p
n px, aq

˘

ξtnpx, aq

ˇ

ˇ

ˇ

ˇ

ď pN ´ nq|X |.

Therefore, by Azuma-Hoeffding, we have that for any ε ą 0,

P
`

MT
n ě ε

˘

ď exp

ˆ

´ε2

2|X |2pN ´ nq2T

˙

.

Applying the union bound on all n P rN s, we then have that for any δ P p0, 1q, with probability at least 1 ´ δ,

MT
n ď |X |N

c

2T log
´N

δ

¯

.

Summing over n P rN s, we have that with probability at least 1 ´ δ,

p2q “

N
ÿ

n“0

MT
n ď |X |N2

c

2T log
´N

δ

¯

. (18)
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Joining terms p1q and p2q. To conclude, we replace the final upper bounds of the terms p1q and p2q of Eq. (17) and (18)
respectively in the decomposition of Eq. (16), and we obtain that, for any δ P p0, 1q, with probability at least 1 ´ δ,

T
ÿ

t“1

N
ÿ

n“0

pN ´ nq
ÿ

x,a

µπ
t,p
n px, aq

a

maxt1, N t
npx, aqu

ď 3N2
a

|X ||A|T ` |X |N2

c

2T log
´N

δ

¯

,

concluding the proof.

Lemma A.3. For all n P rN s, px, a, x1q P X ˆ A ˆ X , and t P rT s, let pptn`1px1|x, aq be defined as in Eq. (7). Hence,

}ppt`1
n`1p¨|x, aq ´ pptn`1p¨|x, aq}1 ď

1txt
n“x,atn“au

maxt1, N t`1
n px, aqu

.

Proof. From the definition of the estimator ppt, we have that

ppt`1
n`1px1|x, aq “

1

maxt1, N t`1
n px, aqu

`

N t
npx, aqpptn`1px1|x, aq ` 1txt

n`1“x1,xt
n“x,atn“au

˘

.

Therefore,

|ppt`1
n`1px1|x, aq ´ pptn`1px1|x, aq| “

1

maxt1, N t`1
n px, aqu

ˇ

ˇ

ˇ
1txt

n`1“x1,xt
n“x,atn“au ´ pptn`1px1|x, aq

`

N t`1
n px, aq ´N t

npx, aq
˘

ˇ

ˇ

ˇ

“
1

maxt1, N t`1
n px, aqu

ˇ

ˇ

ˇ
1txt

n`1“x1,xt
n“x,atn“au ´ pptn`1px1|x, aq1txt

n“x,atn“au

ˇ

ˇ

ˇ
.

Summing over x1 P X we then have that

}ppt`1
n`1p¨|x, aq ´ pptn`1p¨|x, aq}1 ď

1txt
n“x,atn“au

maxt1, N t`1
n px, aqu

,

concluding the proof.

Lemma A.4. For pn, x, aq P rN sˆX ˆA, let pqtqtPrT s be a sequence of probability transition kernels with qt :“ pqtnqnPrNs

such that

}qt`1
n p¨|x, aq ´ qtnp¨|x, aq}1 ď

c1txt
n´1“x,atn´1“au

max t1, N t`1
n´1px, aqu

for some constant c ą 0. Then,
T
ÿ

t“1

}qt`1
n p¨|x, aq ´ qtnp¨|x, aq}1 ď ec logpT q .

Proof. We have that

T
ÿ

t“1

}qt`1
n p¨|x, aq ´ qtnp¨|x, aq}1 ď c

T
ÿ

t“1

1txt
n´1“x,atn´1“au

max t1, N t`1
n´1px, aqu

“ c

NT`1
n´1 px,aq
ÿ

t“1

1

t
ď c

T
ÿ

t“1

1

t
ď c logpeT q

Tě2
ď ec logpT q .

Lemma A.5. Let pqtqtPrT s be a sequence of probability transition kernels, i.e., qt :“ pqtnqnPrNs such that for any state-action
pair px, aq and any step n P rN s,

řT
t“1 }qt`1

n p¨|x, aq ´ qtnp¨|x, aq}1 ď c logpT q for some constant c ą 0. Then, for any
sequence of policies pπtqtPrT s,

T
ÿ

t“1

}µπ
t,qt`1

´ µπ
t,qt}8,1 ď c|X ||A|N logpT q .

While for a fixed policy π,
T
ÿ

t“1

}µπ,q
t`1

´ µπ,q
t

}8,1 ď c|X |N logpT q .
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Proof. Using Lem. B.1 we obtain that

T
ÿ

t“1

}µπ
t,qt`1

´ µπ
t,qt}8,1 ď

T
ÿ

t“1

sup
nPrNs

n´1
ÿ

i“0

ÿ

x,a

µπ
t,qt

i px, aq}qt`1
i`1p¨|x, aq ´ qti`1p¨|x, aq}1

“

T
ÿ

t“1

N´1
ÿ

n“0

ÿ

x,a

µπ
t,qt

n px, aq}qt`1
n`1p¨|x, aq ´ qtn`1p¨|x, aq}1

ď

N´1
ÿ

n“0

ÿ

x,a

T
ÿ

t“1

}qt`1
n`1p¨|x, aq ´ qtn`1p¨|x, aq}1 ď c|X ||A|N logpT q .

While for a fixed policy π,

T
ÿ

t“1

}µπ,q
t`1

´ µπ,q
t

}8,1 ď

T
ÿ

t“1

N´1
ÿ

n“0

ÿ

x,a

µπ,q
t

n px, aq}qt`1
n`1p¨|x, aq ´ qtn`1p¨|x, aq}1

ď

T
ÿ

t“1

N´1
ÿ

n“0

ÿ

x,a

πnpa|xq}qt`1
n`1p¨|x, aq ´ qtn`1p¨|x, aq}1

ď c
N´1
ÿ

n“0

ÿ

x,a

πnpa|xq logpT q “ c|X |N logpT q .

Lemma A.6. Consider a sequence of policies pπtqtPrT s, and define a smoothed version of each policy π̃t for all t P rT s as
π̃t :“ p1 ´ αtqπ

t ` αt

|A|
, where αt P p0, 1q. Let p and q be two probability transition kernels, denoted as p :“ ppnqnPrNs

and q :“ pqnqnPrNs, respectively. Therefore, for all t P rT s,

}µπ
t,p ´ µπ̃

t,q}8,1 ď

N´1
ÿ

i“0

ÿ

x,a

µπ
t,p
i px, aq}pi`1p¨|x, aq ´ qi`1p¨|x, aq}1 ` 2Nαt.

Proof. See Lem. D.4 from (Moreno et al., 2024).

A.2. Building a closed-form solution for each OMD iteration

In this subsection we argue that the MD optimization problem solved at each iteration in Lem. 2.1 has a closed-form solution.
Define the convex function Gtpµq :“ τxzt, µy ` Γpµ, µ̃tq, for τ ą 0.

Optimizing a convex objective function over policies is equivalent to optimizing it over state-action distributions in Mp
µ0

.
Therefore, the optimization problem solved in Lem. 2.1 over the state-action distributions induced by qt`1 is equivalent to
minimizing the same function over the space of policies:

min
µPMqt`1

µ0

Gtpµq

looooooomooooooon

piq: state-action problem

” min
πPp∆AqXˆN

Gtpµπ,q
t`1

q

looooooooooooomooooooooooooon

piiq: policy problem

. (19)

In Thm. 4.1 of (Moreno et al., 2024), it is shown that for each episode t P rT s, an optimal policy for the problem

min
πPp∆AqXˆN

Gtpµπ,q
t`1

q :“ τxzt, µy ` Γpµ, µ̃tq, (20)

defined in Eq. (19), denoted by πt`1, can be computed using an auxiliary sequence of functions pQ̃tnqnPrNs, where
Q̃tn : X ˆ A Ñ R. The sequence starts with QtN px, aq “ ´ztN px, aq, and for n P tN, . . . , 1u, the following recursion is
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used:

πt`1
n`1pa|xq “

π̃tn`1pa|xq exp
`

τQ̃tn`1px, aq
˘

ř

a1 π̃tn`1pa1|xq exp
`

τQ̃tn`1px, a1q
˘ ,

Q̃tnpx, aq “ ´ztnpx, aq `
ÿ

x1

qt`1
n`1px1|x, aq

ÿ

a1

πt`1
n`1pa1|x1q

„

´
1

τ
log

´πt`1
n`1pa1|x1q

π̃tn`1pa1|x1q

¯

` Q̃tn`1px1, a1q

ȷ

.

The core idea of the proof is to show that, due to the specific divergence used (defined in Eq. (4)), Eq. (20) can be solved
using dynamic programming. For further details, the reader is referred to Appendix B of (Moreno et al., 2024). A similar
result was also obtained by (Cammardella et al., 2023), though they approached the optimization problem using Lagrangian
multipliers instead of dynamic programming.

Problem piq of Eq. (19) is convex, and the theoretical analysis are given in Lem. 2.1. Thanks to the equivalence between
problems piq and piiq in Eq. (19), we can use the analysis of problem piq to provide theoretical guarantees for the closed-form
solution policy of problem piiq.

B. Missing Results and Proofs
Lemma B.1. For any strategy π P p∆AqXˆN , for any two probability kernels p “ ppnqnPrNs and q “ pqnqnPrNs such that
pn, qn : X ˆ A ˆ X Ñ r0, 1s, and n P rN s,

}µπ,pn ´ µπ,qn }1 ď

n´1
ÿ

i“0

ÿ

x,a

µπ,pi px, aq}pi`1p¨|x, aq ´ qi`1p¨|x, aq}1.

Proof. From the definition of a state-action distribution sequence induced by a policy π in a probability kernel p in Eq. (2),
we have that for all px, aq P X ˆ A and n P rN s,

µπ,pn px, aq “
ÿ

x1,a1

µπ,pn´1px1, a1qpnpx|x1, a1qπnpa|xq.

Thus,

}µπ,pn ´ µπ,qn }1 “
ÿ

x,a

ˇ

ˇµπ,pn px, aq ´ µπ,qn px, aq
ˇ

ˇ

“
ÿ

x,a

ÿ

x1,a1

ˇ

ˇµπ,pn´1px1, a1qpnpx|x1, a1q ´ µπ,qn´1px1, a1qqnpx|x1, a1q
ˇ

ˇπnpa|xq

“
ÿ

x

ÿ

x1,a1

ˇ

ˇµπ,pn´1px1, a1qpnpx|x1, a1q ´ µπ,qn´1px1, a1qqnpx|x1, a1q
ˇ

ˇ

“
ÿ

x

ÿ

x1,a1

ˇ

ˇµπ,pn´1px1, a1qpnpx|x1, a1q ´ µπ,pn´1px1, a1qqnpx|x1, a1q

` µπ,pn´1px1, a1qqnpx|x1, a1q ´ µπ,qn´1px1, a1qqnpx|x1, a1q
ˇ

ˇ

ď
ÿ

x1,a1

µπ,pn´1px1, a1q}pnp¨|x1, a1q ´ qnp¨|x1, a1q}1 `
ÿ

x1,a1

ˇ

ˇµπ,pn´1px1, a1q ´ µπ,qn´1px1, a1q
ˇ

ˇ

“
ÿ

x1,a1

µπ,pn´1px1, a1q}pnp¨|x1, a1q ´ qnp¨|x1, a1q}1 ` }µπ,pn´1 ´ µπ,qn´1}1.

Since for n “ 0, }µπ,p0 ´ µπ,q0 }1 “ 0, by induction we get that

}µπ,pn ´ µπ,qn }1 ď

n´1
ÿ

i“0

ÿ

x1,a1

µπ,pi px1, a1q}pi`1p¨|x1, a1q ´ qi`1p¨|x1, a1q}1.
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B.1. Proof of Prop. 3.1

Proof. In the analysis, we explicitly write the term n “ 0 separately from the other n P rN s. We begin with the following
decomposition:

T
ÿ

t“1

xbt, µπ
t,ppty `

T
ÿ

t“1

xbt0, µ0y “

T
ÿ

t“1

xbt, µπ
t,ppt ´ µπ

t,py

loooooooooooomoooooooooooon

p1q

`

T
ÿ

t“1

xbt, µπ
t,py `

T
ÿ

t“1

xbt0, µ0y

loooooooooooooooomoooooooooooooooon

p2q

.

Term p1q analysis. Using Holder’s inequality, we have that

p1q ď

T
ÿ

t“1

N
ÿ

n“1

}btn}8}µπ
t,ppt

n ´ µπ
t,p
n }1.

From the definition of the bonus sequence, we have that for all n P rN s, }btn}8 ď LpN ´ nqCδ . Hence,

p1q ď LCδ

T
ÿ

t“1

N
ÿ

n“1

pN ´ nq

n´1
ÿ

i“0

ÿ

x,a

µπ
t,p
i px, aq}pi`1p¨|x, aq ´ ppti`1p¨|x, aq}1

ď LCδ|X |N3

„

3

d

2|A|T log

ˆ

|X ||A|NT

δ

˙

` 2

c

2T log
´N

δ

¯

ȷ

where the first inequality comes from Lem. B.1, and the second inequality is achieved for any δ P p0, 1q, with probability at
least 1 ´ 2δ, using Lem. A.1.

Term p2q analysis. Using the definition of the bonus sequence in equation (11), and recalling that the initial state-action
distribution µ0 is always the same, we have that, for any δ P p0, 1q, with probability at least 1 ´ δ,

p2q “ LCδ

T
ÿ

t“1

N
ÿ

n“0

pN ´ nq
ÿ

x,a

µπ
t,p
n px, aq

a

maxt1, N t
npx, aqu

ď LCδN
2

„

3
a

|X ||A|T ` |X |

c

2T log
´N

δ

¯

ȷ

,

where the inequality comes from Lem. A.2.

Joining the upper bounds in term p1q and p2q. Putting both upper bounds together we get that for any δ P p0, 1q, with
probability at least 1 ´ 3δ, and from the definition of Cδ ,

T
ÿ

t“1

xbt, µπ
t,ppty `

T
ÿ

t“1

xbt0, µ0y ď LCδ|X |N3

„

3

d

2|A|T log

ˆ

|X ||A|NT

δ

˙

` 2

c

2T log
´N

δ

¯

ȷ

` LCδN
2

„

3
a

|X ||A|T ` |X |

c

2T log
´N

δ

¯

ȷ

“ O

ˆ

LN3|X |3{2
a

|A|T log

ˆ

|X ||A|NT

δ

˙˙

.

B.2. Proof of Thm. 3.2 (Main result)

For proving the main result we join together all the pieces we presented in the main paper and the appendix.
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Proof. We start by decomposing the regret and using the convexity of the objective function obtaining that

RT pπq “

T
ÿ

t“1

F tpµπ
t,pq ´ F tpµπ

t,pptq `

T
ÿ

t“1

F tpµπ
t,pptq ´ F tpµπ,pq

ď

T
ÿ

t“1

x∇F tpµπ
t,pq, µπ

t,p ´ µπ
t,ppty

looooooooooooooooooomooooooooooooooooooon

RMDP
T

`

T
ÿ

t“1

x∇F tpµπ
t,pptq, µπ

t,ppt ´ µπ,py

looooooooooooooooooomooooooooooooooooooon

Rpolicy
T

.

We analyse each term separately:

Analysis of RMDP
T . We begin by analyzing the term RMDP

T , which represents the cost incurred due to not knowing the true
probability kernel. First, we apply Hoeffding’s inequality, and the fact that f tn is L-Lipschitz with respect to the norm } ¨ }1.
Following, we apply Lem. B.1, obtaining that

RMDP
T ď

T
ÿ

t“1

N
ÿ

n“1

}∇f tnpµπ
t,pq}8}µπ

t,p
n ´ µπ

t,ppt

n }1

ď L
T
ÿ

t“1

N
ÿ

n“1

n´1
ÿ

i“0

ÿ

x,a

µπ
t,p
i px, aq}pi`1p¨|x, aq ´ ppti`1p¨|x, aq}1.

We can now apply Lem. A.1 to obtain that for any δ P p0, 1q, with probability at least 1 ´ 2δ,

RMDP
T ď L3|X |N2

d

2|A|T log

ˆ

|X ||A|NT

δ

˙

` L2|X |N2

c

2T log
´N

δ

¯

. (21)

Analysis of Rpolicy
T . To analyse Rpolicy

T we further decompose it as

Rpolicy
T “

T
ÿ

t“1

x∇F tpµπ
t,pptq ´ bt, µπ

t,ppt ´ µπ,pp
t

y

looooooooooooooooooooooomooooooooooooooooooooooon

Rpolicy/MD
T

`

T
ÿ

t“1

xbt, µπ
t,ppt ´ µπ,pp

t

y `

T
ÿ

t“1

x∇F tpµπ
t,pptq, µπ,pp

t

´ µπ,py

loooooooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooooooon

Rpolicy/bonus
T

,

where recall that bt :“ pbtnqnPrNs is the bonus vector defined in Eq. (11).

Analysis of Rpolicy/MD
T . We begin by addressing the term that accounts for the regret incurred by using online Mirror

Descent with changing constraint sets.

From Lemmas A.3 and A.4, we know that the probability sequence ppptqtPrT s satisfies the condition that
řT
t“1 }ppt`1

n ´pptn}1 ď

c logpT q for c “ e. Additionally, at each time step t, since F t is LF -Lipschitz with respect to the norm } ¨ }8,1, we have
}∇F tpµq}1,8 ď LF “ LN for any state-action distribution µ. From the definition of the bonus vector, we also have that
}bt}1,8 ď LN2Cδ . Consequently, }∇F tpµq ´ bt}1,8 ď 2LN2Cδ . Therefore, as we compute µt`1 by solving

µt`1 :“ argmin
µPM ppt`1

µ0

!

τx∇F tpµπ
t,pptq ´ bt, µy ` Γpµ, µ̃tq

)

,

by applying Lem. 2.1 with νt :“ µπ,pp
t

, ζ “ 2LN2Cδ, and the sequence of probability transition kernels ppptqtPrT s, we

obtain that for the optimal parameter τ “

b

b
ζ2T , where

b :“ N

ˆ

logpT q

´

e|X ||A| ` 4
¯

` logp|A|q ` 2Ne|X | logpT q2 logp|A|q

˙

,
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and recalling that Cδ :“
b

2|X | log
`

|X ||A|NT {δq,

Rpolicy/MD
T ď 2ζ

?
bT ` ζNe|X | logpT q

ď 2LN2

d

2|X | log

ˆ

|X ||A|TN

δ

˙

`

2
?
bT `N logpT qe|X |

˘

“ O

ˆ

LN2|X |

d

T log

ˆ

|X ||A|NT

δ

˙

´

a

N |A| logpT q `N
a

logp|A|q logpT q

¯

˙

.

(22)

Analysis of Rpolicy/bonus
T . We start by analysing the second term of the sum in Rpolicy/bonus

T . For any δ P p0, 1q, with
probability at least 1 ´ δ, we have that

T
ÿ

t“1

x∇F tpµπ
t,pptq, µπ,pp

t

´ µπ,py ď

T
ÿ

t“1

N
ÿ

n“1

}∇f tnpµπ,pq}8}µπ,pn ´ µπ,pp
t

n }1

ď L
T
ÿ

t“1

N
ÿ

n“1

n´1
ÿ

i“0

ÿ

x,a

µπ,pp
t

i px, aq}pi`1p¨|x, aq ´ ppti`1p¨|x, aq}1

ď L
T
ÿ

t“1

N
ÿ

n“1

n´1
ÿ

i“0

ÿ

x,a

µπ,pp
t

i px, aq
Cδ

a

maxt1, N t
i px, aqu

“ L
T
ÿ

t“1

N´1
ÿ

n“0

pN ´ nq
ÿ

x,a

µπ,pp
t

n px, aq
Cδ

a

maxt1, N t
npx, aqu

“

T
ÿ

t“1

xbt, µπ,pp
t

y `

T
ÿ

t“1

xbt0, µ0y

where the first inequality follows from Holder’s inequality, the second from the fact that f tn is L-Lipschitz with
respect to the norm } ¨ }1 and Lem. B.1, the third from the concentration bound in Lem. 2.2 where we define

Cδ :“
b

2|X | log
`

|X ||A|NT {δq, and the last equality comes from the definition of the bonus vector in Eq. (11).

Replacing it at the Rpolicy/bonus
T term we have that

Rpolicy/bonus
T “

T
ÿ

t“1

xbt, µπ
t,ppt ´ µπ,pp

t

y `

T
ÿ

t“1

x∇F tpµπ
t,pptq, µπ,pp

t

´ µπ,py

ď

T
ÿ

t“1

xbt, µπ
t,ppt ´ µπ,pp

t

y `

T
ÿ

t“1

xbt, µπ,pp
t

y `

T
ÿ

t“1

xbt0, µ0y

ď

T
ÿ

t“1

xbt, µπ
t,ppty `

T
ÿ

t“1

xbt0, µ0y.

Lastly, we apply Prop. 3.1 to achieve that, for any δ P p0, 1q, with probability at least 1 ´ 4δ,

Rpolicy/bonus
T ď

T
ÿ

t“1

xbt, µπ
t,ppty `

T
ÿ

t“1

xbt0, µ0y “ O

ˆ

LN3|X |3{2
a

|A|T log

ˆ

|X ||A|NT

δ

˙˙

. (23)

Final upper bound onRpolicy
T . Joining the upper bounds onRpolicy/MD

T andRpolicy/bonus
T from Eq.s (22) and (23) respectively,

we achieve that for any δ P p0, 1q, with probability at least 1 ´ 4δ, ignoring logarithmic terms,

Rpolicy
T ď Õ

`

LN3|X |3{2
a

|A|T
˘

. (24)
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Joining the upper bounds on RMDP
T and on Rpolicy

T . Note that the terms in the upper bound on Rpolicy
T from Eq. (24)

dominate those in the upper bound on RMDP
T from Eq. (21). Therefore, when combining both terms to complete the upper

bound on the regret, we obtain that, with probability 1 ´ 6δ,

RT pπq ď Õ
`

LN3|X |3{2
a

|A|T
˘

,

concluding the proof.

C. Proof of Lem. 2.1: Online Mirror Descent with Varying Constraint Sets
Before stating the proof we recall a few results from Bregman divergences and in particular the divergence Γ defined in
Eq. (4) that are used throughout the proof.

To simplify notation, for any probability measure η P ∆E , where E is any finite space, we define the neg-entropy function,
using the convention that 0 logp0q “ 0, as ϕpηq :“

ř

xPE ηpxq log ηpxq. For any µ :“ pµnqnPrNs P p∆XˆAqN , we define
ρnpxq :“

ř

aPA µnpx, aq for all n P rN s and x P X , representing the marginal distribution over the state space. The
function inducing the divergence Γ, defined in Eq. (4), is given by

ψpµq :“
N
ÿ

n“1

ϕpµnq ´

N
ÿ

n“1

ϕpρnq. (25)

By definition of a Bregman divergence, for any two probability transition kernels p, q, for all µ P Mp
µ0

and µ1 P Mq,˚
µ0

,
where Mq,˚

µ0
is the subset of Mq

µ0
where the corresponding policies π satisfy πnpa|xq ‰ 0, we then have that

Γpµ, µ1q :“ ψpµq ´ ψpµ1q ´ x∇ψpµ1q, µ´ µ1y. (26)

Additionally, for any probability transition kernel p, the function ψ is 1-strongly convex with respect to } ¨ }8,1 within Mp
µ0

(see Thm. 4.1 from (Moreno et al., 2024)). Consequently, a consequence from a known property of Bregman divergences
(Shalev-Shwartz, 2012) is that, for any µ P Mp

µ0
and µ1 P Mp,˚

µ0
,

Γpµ, µ1q ě
1

2
}µ´ µ1}28,1. (27)

Lemma. Let pqtqtPrT s be a sequence of probability transition kernels, and pztqtPrT s a sequence of vectors in RNˆ|X |ˆ|A|,
such that }zt}1,8 ď ζ for all t P rT s. Initialize π1

npa|xq :“ 1{|A| as the uniform policy. For every t P rT s, let
π̃t :“ p1 ´ αtqπ

t ` αt|A|´1 be a smoothed version of the policy with αt :“ 1{pt` 1q and µ̃t :“ µπ̃
t,qt . For each t P rT s,

compute iteratively
µt`1 P argmin

µPMqt`1
µ0

τxzt, µy ` Γpµ, µ̃tq. (28)

Hence, there is a τ ą 0 such that, for any sequence pνtqtPrT s, with νt :“ νπ,q
t

for a common policy π,

řT
t“1xzt, µt ´ νty ď O

`

ζN
a

VT |X | logp|A|qT logpT q
˘

,

where VT ě 1 ` maxpn,x,aq

řT´1
t“1 }qtnp¨|x, aq ´ qt`1

n p¨|x, aq}1.

Proof. Throughout this proof, for all t P rT s we denote by πt the policy inducing µt, meaning that µt :“ µπ
t,qt and

µ̃t :“ µπ̃
t,qt . We assume here that maxpn,x,aq

řT´1
t“1 }qtnp¨|x, aq ´ qt`1

n p¨|x, aq}1 ď c logpT q for c a constant, as this is the
case for all the transition estimators we use to obtain the main results of the article.

As Mqt`1

µ0
is a convex set (only linear constraints), the optimality conditions and the definition of a Bregman divergence in

Eq. (26) imply that for all νt`1 P Mqt`1

µ0
,

xτzt ` ∇ψpµt`1q ´ ∇ψpµ̃tq, νt`1 ´ µt`1y ě 0.
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Re-arranging the terms and using the three points inequality for Bregman divergences (Bubeck, 2015) we get that,

τxzt, µt`1 ´ νt`1y ď x∇ψpµt`1q ´ ∇ψpµ̃tq, νt`1 ´ µt`1y “ Γpνt`1, µ̃tq ´ Γpνt`1, µt`1q ´ Γpµt`1, µ̃tq.

Therefore, by adding and subtracting τxzt, µt ´ νty on the left-hand side,

τxzt, µt`1 ´ νt`1y ` τxzt, µt ´ νty ´ τxzt, µt ´ νty ď Γpνt`1, µ̃tq ´ Γpνt`1, µt`1q ´ Γpµt`1, µ̃tq

ñ τxzt, µt ´ νty ď τxzt, νt`1 ´ νty ` τxzt, µt ´ µt`1y ` Γpνt`1, µ̃tq ´ Γpνt`1, µt`1q ´ Γpµt`1, µ̃tq.

Then, by summing over t P rT s, we obtain that

T
ÿ

t“1

xzt, µt ´ νty ď
1

τ

T
ÿ

t“1

“

τxzt, µt ´ µt`1y ´ Γpµt`1, µ̃tq
‰

loooooooooooooooooooooooomoooooooooooooooooooooooon

A

`
1

τ

T
ÿ

t“1

“

Γpνt`1, µ̃tq ´ Γpνt`1, µt`1q
‰

loooooooooooooooooooooomoooooooooooooooooooooon

B

`

T
ÿ

t“1

xzt, νt`1 ´ νty

loooooooooomoooooooooon

C

.

(29)

The term A arises due to our lack of knowledge of zt at the beginning of episode t for all episodes (adversarial losses
hypothesis). To address this, we employ Young’s inequality and the strong convexity of Γ. For the term B, in the classic
Online Mirror Descent proof (Shalev-Shwartz, 2012), where the set of constraints is fixed, the sum of the differences
between the Bregman divergences telescopes (as would be the case with a fixed ν). However, because we are dealing with
time-varying constraint sets, this telescoping effect does not occur in our situation. We will now proceed to derive an upper
bound for each term, starting with term C that is straightforward.

Step 0: upper bound on C. Applying Holder’s inequality, Lem. A.5 with a fixed policy π, and the hypothesis that
}zt}1,8 ď ζ,

C “

T
ÿ

t“1

xzt, νt`1 ´ νty ď

T
ÿ

t“1

}zt}1,8}νt`1 ´ νt}8,1 ď ζc|X |N logpT q. (30)

Step 1: upper bound on B. We now analyse the second term of the sum in Eq. (29). To make the Bregman divergence
terms telescope we add and subtract Γpνt, µtq ´ Γpνt, µ̃tq, obtaining

T
ÿ

t“1

Γpνt`1, µ̃tq ´ Γpνt`1, µt`1q “

T
ÿ

t“1

Γpνt`1, µ̃tq ´ Γpνt, µ̃tq

loooooooooooooooomoooooooooooooooon

piq

`

T
ÿ

t“1

Γpνt, µ̃tq ´ Γpνt, µtq

loooooooooooooomoooooooooooooon

piiq

`

T
ÿ

t“1

Γpνt, µtq ´ Γpνt`1, µt`1q

looooooooooooooooomooooooooooooooooon

piiiq

.

(31)

We analyze each term. Using the definition of a Bregman divergence induced by ψ in Eq. (26) we get that

piq “

T
ÿ

t“1

ψpνt`1q ´ ψpµ̃tq ´ x∇ψpµ̃tq, νt`1 ´ µ̃ty ´ ψpνtq ` ψpµ̃tq ` x∇ψpµ̃tq, νt ´ µ̃ty

“

T
ÿ

t“1

ψpνt`1q ´ ψpνtq `

T
ÿ

t“1

x∇ψpµ̃tq, νt ´ νt`1y

ď ´ψpν1q `

T
ÿ

t“1

}∇ψpµ̃tq}1,8}νt ´ νt`1}8,1,
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where in the last inequality we use the telescoping nature of the first term and applied Hölder’s inequality to the second
term. Recall that for v :“ pvnqnPrNs such that vn P RXˆA, we defined }v}8,1 :“ supnPrNs }vn}1. We now also define
}ω}1,8 :“ supvt|xω, vy|, }v}8,1 ď 1u “

řN
n“1 supx,a |ωnpx, aq| as the respective dual norm.

With our choice of Bregman divergence, and given that

π̃t :“ p1 ´ αtqπ
t ` αt

1

|A|
,

for each n P rN s, px, aq P X ˆ A, |∇ψpµ̃tqpn, x, aq| “ | logpπ̃tnpa|xqq| ď logp|A|{αtq.

From the Lemma hypothesis, there is a common policy π such that for all t P rT s, νt :“ νπ,q
t

. Hence, from the result
above,

piq ď ´ψpν1q `

T
ÿ

t“1

N log

ˆ

|A|

αt

˙

}νπ,q
t

´ νπ,q
t`1

}8,1

ď ´ψpν1q `N log

ˆ

|A|

mintPrT s αt

˙

c|X |N logpT q,

where the last inequality comes from Lem. A.5 with a fixed π.

As for the second term, using our definition of Γ, we obtain that

piiq “

T
ÿ

t“1

ÿ

n,x,a

νπ,q
t

n px, aq log

ˆ

πnpa|xq

π̃tnpa|xq

˙

´
ÿ

n,x,a

νπ,q
t

n px, aq log

ˆ

πnpa|xq

πtnpa|xq

˙

“

T
ÿ

t“1

ÿ

n,x,a

νπ,q
t

n px, aq log

ˆ

πtnpa|xq

π̃tnpa|xq

˙

“

T
ÿ

t“1

ÿ

n,x,a

νπ,q
t

n px, aq log

ˆ

πtnpa|xq

p1 ´ αtqπtnpa|xq ` αt{|A|

˙

ď N
T
ÿ

t“1

p´ logp1 ´ αtqq ď 2N
T
ÿ

t“1

αt,

where the last inequality is valid if 0 ď αt ď 0.5.

The third term telescopes, hence, since ´ΓpνT`1, µT`1q ď 0 because a Bregman divergence is always non-negative,

piiiq ď Γpν1, µ1q.

Before adding back the three terms, note that, for π1
npa|xq “ 1{|A|, we have Γpν1, µ1q ´ ψpν1q “ ´ψpµ1q. Furthermore,

´ψpµ1q ď N logp|A|q. Therefore,
Γpν1, µ1q ´ ψpν1q ď N logp|A|q. (32)

Summing over our bounds and using the Inequality (32), we get that B is upper bounded as

1

τ

T
ÿ

t“1

“

Γpνt`1, µ̃tq ´ Γpνt`1, µt`1q
‰

ď
1

τ

“

piq ` piiq ` piiiq
‰

ď
N

τ
logp|A|q `

N2c|X |

τ
log

ˆ

|A|

mintPrT s αt

˙

logpT q `
2N

τ

T
ÿ

t“1

αt.

(33)

Step 2: Upper bound on A. It remains to upper bound term A from Eq. (29),

A “
1

τ

„ T
ÿ

t“1

τxzt, µt ´ µt`1y ´ Γpµt`1, µ̃tq

ȷ

, (34)
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representing what we pay for not knowing the loss function in advance. For that we use Young’s inequality (Beck &
Teboulle, 2003): for any σ ą 0 to be optimized later, and for each episode t P rT s,

τxzt, µt ´ µt`1y ´ Γpµt`1, µ̃tq ď
τ2}zt}21,8

2σ
`
σ

2
}µt ´ µt`1}28,1 ´ Γpµt`1, µ̃tq. (35)

From the definition of Γ in Eq. (4), we have that

Γpµt`1, µ̃tq “

N
ÿ

n“1

ÿ

px,aq

µt`1
n px, aq log

ˆ

πt`1
n pa|xq

π̃tpa|xq

˙

“ Γpµt`1, µπ̃
t,qt`1

q.

From the strong convexity of ψ, as µt`1 P Mqt`1

µ0
and µπ̃

t,qt`1

P Mqt`1,˚
µ0

, we then have from Eq. (27) that

Γpµt`1, µ̃tq “ Γpµt`1, µπ̃
t,qt`1

q ě
1

2
}µt`1 ´ µπ̃

t,qt`1

}28,1. (36)

Using the fact that for any vectors a, b, c P Rd and for any norm } ¨ }, the inequality }a ´ b}2 ď 2p}a ´ c}2 ` }b ´ c}2q

holds, we then have by Eq. (36)

1

4
}µt ´ µt`1}28,1 ´ Γpµt`1, µ̃tq ď

1

4
}µt ´ µt`1}28,1 ´

1

2
}µπ̃

t,qt`1

´ µt`1}28,1

ď
1

2

`

}µt ´ µπ̃
t,qt`1

}28,1 ` }µπ̃
t,qt`1

´ µt`1}28,1

˘

´
1

2
}µπ̃

t,qt`1

´ µt`1}28,1

“
1

2
}µt ´ µπ̃

t,qt`1

}28,1.

(37)

For any n P rN s, we have }µtn ´ µπ̃
t,qt`1

n }1 ď 2. Using this result along with Lem. A.6 for p “ ppt and q “ ppt`1, we derive
the first inequality below. To obtain the second inequality, we apply Lem. A.5 with the sequence of policies pπtqtPrT s.

T
ÿ

t“1

}µt ´ µπ̃
t,qt`1

}28,1 ď 2
T
ÿ

t“1

sup
nPrNs

n´1
ÿ

i“0

ÿ

x,a

µtipx, aq}qti`1p¨|x, aq ´ qt`1
i`1p¨|x, aq}1 ` 4N

T
ÿ

t“1

αt

ď 2c|X ||A|N logpT q ` 4N
T
ÿ

t“1

αt.

(38)

Therefore, summing Eq. (35) over t P rT s with σ “ 1{2, and plugging the inequality above, yields

T
ÿ

t“1

τxzt, µt ´ µt`1y ´ Γpµt`1, µ̃tq ď τ2
T
ÿ

t“1

}zt}21,8 ` c|X ||A|N logpT q ` 2N
T
ÿ

t“1

αt.

Using that }zt}1,8 ď ζ and dividing by τ entails:

A ď τζ2T `
N

τ

ˆ

c|X ||A| logpT q ` 2
T
ÿ

t“1

αt

˙

. (39)

Conclusion. Finally, by replacing the final bounds of Eqs. (33), (39), and (30), we obtain

T
ÿ

t“1

xzt, µt ´ νty ď A`B ` C

ď τTζ2 `
N

τ

ˆ

c|X ||A| logpT q ` 2
T
ÿ

t“1

αt

˙

`
N

τ
logp|A|q

`
N2c|X |

τ
log

ˆ

|A|

mintPrT s αt

˙

logpT q `
2N

τ

T
ÿ

t“1

αt ` ζNc|X | logpT q.
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In particular, for αt “ 1{pt` 1q,

T
ÿ

t“1

xzt, µt ´ νty ď τTζ2 `
1

τ
N

„

logpT q

´

c|X ||A| ` 4
¯

` logp|A|q ` 2Nc|X | logpT q2 logp|A|q

ȷ

loooooooooooooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooooooooooooon

“:b

`ζNc|X | logpT q.

Optimising over τ “

b

b
ζ2T ,

T
ÿ

t“1

xzt, µt´νty ď 2ζ
?
bT`ζNc|X | logpT q “ O

`

ζ
a

cN |X ||A|T logpT q`ζN
a

c|X | logp|A|qT logpT q`ζNc|X | logpT q
˘

,

concluding the proof.

D. Bandit Feedback with Bonus in RL
Notations. Throughout App. D, we define the trajectory observed by the learner in episode t as
ot :“ pxtn, a

t
n, ℓ

t
npxtn, a

t
nqqnPrNs. Let F t denote the σ-algebra generated by the observations up to episode t, i.e.,

F t :“ σpo1, . . . , ot´1q. We use Et to represent the conditional expectation with respect to the observations up to episode t,
i.e., Etr¨s :“ Er¨|F ts.

Overview of existing approaches. To adapt Alg. 1 to the bandit case, we need to estimate the loss function for each MD
update. A classic choice using importance sampling is:

pℓtnpx, aq “
ℓtnpx, aq

µπ
t,p
n px, aq

1txt
n“x,atn“au.

This update is unbiased, as Er1txt
n“x,atn“aus “ ErEr1txt

n“x,atn“au|F tss “ µπ
t,p
n px, aq. However, since we do not know

the true transition probability p, we cannot use this estimate directly. In (Rosenberg & Mansour, 2019a), they use µπ
t,ppt

with UC-O-REPS and achieve a regret of OpT 3{4q.

Consider the following confidence set, that is further detailed in Eq. (41),

Ωt :“ tq | |qnpx1|x, aq ´ pptnpx1|x, aq| ď εtnpx1|x, aq,@px, a, x1q P X ˆ A ˆ X , n P rN su.

In (Jin et al., 2020), the authors incorporate a parameter γ for implicit exploration, an idea from multi-armed bandits (Neu,
2015), and use the following estimate:

pℓtnpx, aq “
ℓtnpx, aq

µ̄tnpx, aq ` γ
1txt

n“x,atn“au, (40)

where µ̄tnpx, aq :“ maxqPΩt µπ
t,q. Although this is a biased estimate (µπ

t,p
n px, aq ď µ̄npx, aq), Ωt is constructed to

ensure that the bias introduced is reasonably small. They also argue that µ̄ can be computed efficiently through dynamic
programming. They demonstrate that running UC-O-REPS from (Rosenberg & Mansour, 2019b) with this estimate achieves
Õp

?
T q regret, improving upon previous results.

In Alg. 2 we detail our method for solving the RL problem with adversarial losses, unknown probability transitions and
bandit feedback. We proceed to the regret analysis.

D.1. Auxiliary lemmas

Lemma D.1 (Lem. A.2 of (Luo et al., 2021), adapted from Lem. 1 of (Neu, 2015)). Let pztnpx, aqqtPrT s be a sequence of
functions Ft-measurable, such that ztnpx, aq P r0, Rs for each px, aq P X ˆ A, and n P rN s. Let Ztnpx, aq P r0, Rs be a
random variable such that EtrZtnpx, aqs “ ztnpx, aq. Then with probability 1 ´ δ,

T
ÿ

t“1

N
ÿ

n“1

ÿ

x,a

ˆ

1txt
n“x,atn“auZ

t
npx, aq

µ̄tnpx, aq ` γ
´
µπ

t,p
n px, aqztnpx, aq

µ̄tnpx, aq

˙

ď
RN

2γ
log

ˆ

N

δ

˙

.
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Algorithm 2 MD-CURL with Additive Bonus for Bandit feedback RL

1: Input: number of episodes T , initial policy π1 P Π, initial state-action distribution µ0, initial state-action distribution
sequence µ1 “ µ̃1 “ µπ

1,pp1 with pp1np¨|x, aq “ 1{|X | for all pn, x, aq, learning rate τ ą 0, exploration parameter γ “ τ
(tuned in the proof of Thm. 4.1), sequence of parameters pαtqtPrT s with αt “ 1{pt` 1q.

2: Init.: @pn, x, a, x1q, N1
npx, aq “ M1

npx1|x, aq “ 0
3: for t “ 1, . . . , T do
4: Agent starts at pxt0, a

t
0q „ µ0p¨q

5: for n “ 1, . . . , N do
6: Env. draws new state xtn „ pnp¨|xtn´1, a

t
n´1q

7: Update counts

N t`1
n´1pxtn´1, a

t
n´1q Ð N t

n´1pxtn´1, a
t
n´1q ` 1

M t`1
n´1pxtn|xtn´1, a

t
n´1q Ð M t

n´1pxtn|xtn´1, a
t
n´1q ` 1

8: Agent chooses an action atn „ πtnp¨|xtnq

9: Observe local loss ℓtnpxtn, a
t
nq

10: end for
11: Update transition estimate for all pn, x, a, x1q: ppt`1

n px1|x, aq :“
Mt`1

n px1
|x,aq

maxt1,Nt
npx,aqu

12: Compute bonus sequence for all pn, x, aq: btnpx, aq :“ pN´nqCδ?
max t1,Nt`1

n px,aqu

13: Compute optimistic state-action distribution for all pn, x, aq: µ̄tnpx, aq :“ maxqPΩt µπ
t,q, where Ωt is defined as in

Eq. (41)
14: Compute loss estimate for all pn, x, aq: pℓtnpx, aq “

ℓtnpx,aq

µ̄t
npx,aq`γ1txt

n“x,atn“au

15: Compute policy πt`1
n px, aq by solving

µt`1 P argmin
µPM ppt`1

µ0

␣

τxpℓt ´ bt, µy ` Γpµ, µ̃tq
(

,

which has a closed-form solution for πt`1 (see Sec. A.2)
16: Compute π̃t`1, the smooth version of πt`1:

π̃t`1 “ p1 ´ αtqπ
t`1 ` αt{|A|

and the associated state-action distribution µ̃t`1 :“ µπ̃
t`1,ppt`1

17: end for
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We define the confidence interval used in Alg. 2 as

Ωt :“ tq
ˇ

ˇ|qnpx1|x, aq ´ pptnpx1|x, aq| ď εtnpx1|x, aq, for all px, a, x1q P X ˆ A ˆ X , n P rN su, (41)

with

εtnpx1|x, aq :“ 2

g

f

f

e

pptnpx1|x, aq log
´

TN |X ||A|

δ

¯

maxt1, N t
n´1px, aqu

`

14 log
´

TN |X ||A|

δ

¯

3maxt1, N t
n´1px, aqu

.

We present two results regarding this confidence set. The first result, based on the empirical Bernstein inequality, shows
that the true probability kernel p belongs to this confidence set with high probability. The second is a key lemma from (Jin
et al., 2020), which explains how the confidence set shrinks over time. For the proofs, the reader is referred to the original
references.

Lemma D.2 (Empirical Bernstein inequality, Thm. 4 (Maurer & Pontil, 2009)/Lem. 2 (Jin et al., 2020)). With probability at
least 1 ´ 4δ, we have that p P Ωt for all t P rT s.

Lemma D.3 (Lem. 4 (Jin et al., 2020)). With probability at least 1 ´ 6δ, for any collection of transition functions ppx,tqxPX
such that px,t P Ωt for all x, we have

T
ÿ

t“1

N
ÿ

n“1

ÿ

x,a

|µπ
t,px,t

n px, aq ´ µπ
t,p
n px, aq| “ O

ˆ

N2|X |

c

AT log
´TN |X ||A|

δ

¯

˙

.

D.2. Proof of Thm. 4.1

Proof. We start by decomposing the static regret with respect to any policy π P p∆AqXˆN as follows

RT pπq “

T
ÿ

t“1

xℓt, µπ
t,p ´ µπ

t,ppty

loooooooooooomoooooooooooon

1,RMDP
T

`

T
ÿ

t“1

xℓt ´ bt, µπ
t,ppt ´ µπ,pp

t

y

loooooooooooooooomoooooooooooooooon

2,Rpolicy/MD
T

`

T
ÿ

t“1

xℓt, µπ,pp
t

´ µπ,py ´

T
ÿ

t“1

xbt, µπ,pp
t

y

loooooooooooooooooooooomoooooooooooooooooooooon

3,Rpolicy/MD
T

`

T
ÿ

t“1

xbt, µπ
t,ppty

looooooomooooooon

4, Bonus term

.

(42)

D.2.1. TERM 1: RMDP
T

The analysis of this term is already provided in App. B.2. Here, we can further leverage the fact that the objective function is
linear and that, by definition, ℓtn P r0, 1s. Therefore, with probability at least 1 ´ 2δ, we have:

RMDP
T ď 3|X |N2

d

2|A|T log

ˆ

|X ||A|NT

δ

˙

` 2|X |N2

c

2T log
´N

δ

¯

. (43)

D.2.2. TERM 2: RPOLICY/MD
T

In practice, the learner plays using the estimated loss function minus the bonus. Hence, Rpolicy/MD
T accounts for both the bias

introduced by the loss estimation and the standard mirror descent regret bound. We start with the following decomposition:

Rpolicy/MD
T “

T
ÿ

t“1

xℓt ´ bt, µπ
t,ppt ´ µπ,pp

t

y

“

T
ÿ

t“1

xℓt ´ pℓt, µπ
t,ppt ´ µπ,pp

t

y

loooooooooooooooomoooooooooooooooon

Bias terms

`

T
ÿ

t“1

xpℓt ´ bt, µπ
t,ppt ´ µπ,pp

t

y

loooooooooooooooomoooooooooooooooon

MD term
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Mirror Descent term in Rpolicy/MD
T . We begin by analyzing the error term from applying Mirror Descent with varying

constraint sets, which is similar to that of Lem. 2.1 with zt “ pℓt ´ bt, and ppptqtPrT s as the probability kernel sequence
defining the varying constraint sets. However, special attention is needed for the sup norm of the subgradient term since
it now involves an estimate of the loss function. Additionally, the optimal learning rate τ now also depends on both the
exploration parameter γ and the analysis of the bias terms, we provide a detailed explanation of how the entire analysis is
affected below.

In proving Lem. 2.1 in App. C, the regret term for Mirror Descent is split into three terms: term A in Eq. (34), term B in
Eq. (31), and term C in Eq. (30). The analysis of term B remains unchanged since this term is independent of the chosen
loss function. We focus on what changes for terms A and C.

As in the proof of Lem. 2.1, we use again the notation µt :“ µπ
t,ppt for all t P rT s. From Eq. (34) term A is defined as

A “
1

τ

T
ÿ

t“1

“

τxpℓt ´ bt, µt ´ µt`1y ´ Γpµt`1, µ̃tq
‰

.

For a fixed t, from Young’s inequality we have that

N
ÿ

n“1

τxpℓtn ´ btn, µ
t
n ´ µt`1

n y ď

N
ÿ

n“1

τ2
}pℓtn ´ btn}28

2σ
`
σ

2
}µtn ´ µt`1

n }21.

Following the analysis of term A in App. C, in special Eqs. (36), (37), and (38), we obtain that for σ “ 1{2,

A ď

T
ÿ

t“1

N
ÿ

n“1

τ}pℓtn ´ btn}28 `
eN |X ||A| logpT q

τ
`

2N

τ

T
ÿ

t“1

αt. (44)

From Eq. (30), with the notation νt :“ νπ,pp
t

, term C is defined as C “ 1
τ

řT
t“1 τxpℓt ´ bt, νt`1 ´ νty. From Young’s

inequality with σ “ 1{2 we obtain that

C ď
1

τ

T
ÿ

t“1

τ2}pℓt ´ bt}21,8
2σ

`
1

τ

σ

2

T
ÿ

t“1

}νt`1 ´ νt}28,1

ď

T
ÿ

t“1

N
ÿ

n“1

τ}pℓtn ´ btn}28 `
eN |X | logpT q

2τ
.

(45)

Bounding the sup norm of the estimated loss function. Recall from the definition of the bonus function in Eq. (11),
with L “ 1, that }btn}8 ď NCδ “: b for all n P rN s and t P rT s. As }pℓtn ´ btn}28 ď }pℓtn}28 ` }btn}28, we can focus on the
term involving the sup norm of the estimated loss function.

We apply Lem. D.1 with Ztnpx, aq “
1txt

n“x,at
n“auℓ

t
npx,aq

2

µ̄t
npx,aq`γ and ztnpx, aq “

µπt,p
n px,aqℓtnpx,aq

2

µ̄t
npx,aq`γ . Note that Ztnpx, aq, ztnpx, aq ď

1
γ , that ztnpx, aq is F t-measurable, and that EtrZtnpx, aqs “ ztnpx, aq. Therefore, with probability 1 ´ δ,

τ
T
ÿ

t“1

N
ÿ

n“1

}pℓtn}28 ď τ
T
ÿ

t“1

N
ÿ

n“1

ÿ

x,a

pℓtnpx, aq2

“ τ
T
ÿ

t“1

N
ÿ

n“1

ÿ

x,a

1txt
n“x,atn“auℓ

t
npx, aq

µ̄tnpx, aq ` γ

1txt
n“x,atn“auℓ

t
npx, aq

µ̄tnpx, aq ` γ

“ τ
T
ÿ

t“1

N
ÿ

n“1

ÿ

x,a

1txt
n“x,atn“auZ

t
npx, aq

µ̄tnpx, aq ` γ

ď
loomoon

Lem. D.1

τ
T
ÿ

t“1

N
ÿ

n“1

ÿ

x,a

µπ
t,p
n px, aq

µ̄tnpx, aq

µπ
t,p
n px, aqℓtnpx, aq2

µ̄tnpx, aq ` γ
` τ

1

γ

N

2γ
log

ˆ

N

δ

˙

.
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Lem. D.2 states that the true probability transition p P Ωt with probability 1 ´ 4δ for all t P rT s. Hence, with probability
1 ´ 4δ, µ̄tnpx, aq ě µπ

t,p
n px, aq. Consequently, by replacing it in the previous inequality, we obtain that with probability

1 ´ 5δ,

τ
T
ÿ

t“1

N
ÿ

n“1

}pℓtn}28 ď τ
T
ÿ

t“1

N
ÿ

n“1

ÿ

x,a

ℓtnpx, aq2 `
Nτ

2γ2
log

ˆ

N

δ

˙

ď τTN |X ||A| `
Nτ

2γ2
log

ˆ

N

δ

˙

,

where for the last inequality we use that ℓtn P r0, 1s.

Therefore, by replacing it in the upper bound of the terms A and C in Eqs. (44) and (45) respectively, we obtain that

A` C ď τ4bTN |X ||A| `
Nτ

γ2
log

ˆ

N

δ

˙

`
3eN |X ||A| logpT q

2τ
`

2N

τ

T
ÿ

t“1

αt.

The upper bound on term B from Eq. (33) in App. C remains the same:

B ď
N

τ
logp|A|q `

eN2|X |

τ
log

ˆ

|A|

mintPrT s αt

˙

logpT q `
2N

τ

T
ÿ

t“1

αt.

Thus, setting αt “ 1{pt` 1q, the final upper bound on the Mirror Descent term is, with high probability, given by

T
ÿ

t“1

xpℓt ´ bt, µπ
t,ppt ´ µπ,pp

t

y ď A`B ` C

ď τ4bTN |X ||A| `
Nτ

γ2
log

ˆ

N

δ

˙

` 6
eN |X ||A| logpT q

τ
`
N

τ
logp|A|q `

eN2|X |

τ
logp|A|T q logpT q.

(46)

Before tuning the optimal parameter τ , we must first analyze the bias terms.

Bias terms. We now proceed to analyze the bias terms. Our approach is similar to the one used in (Jin et al., 2020), with a
key difference: they utilize confidence sets in their Mirror Descent iterations, whereas we perform iterations over the set
induced by ppt. We start by dividing the bias term in two:

T
ÿ

t“1

xℓt ´ pℓt, µπ
t,ppt ´ µπ,pp

t

y “

T
ÿ

t“1

xℓt ´ pℓt, µπ
t,ppty

loooooooooomoooooooooon

Bias 1

`

T
ÿ

t“1

xpℓt ´ ℓt, µπ,pp
t

y

loooooooooomoooooooooon

Bias 2

.

Bias 1. Since µπ
t,ppt is F t-measurable, we have that Etrxℓt ´ pℓt, µπ

t,pptys “ xEtrℓt ´ pℓts, µπ
t,ppty. For any couple px, aq,

and for any time step n P rN s,

Etrℓtnpx, aq ´ pℓtnpx, aqs “ ℓtnpx, aq ´
ℓtnpx, aqµπ

t,p
n px, aq

µ̄tnpx, aq ` γ
“ ℓtnpx, aq

ˆ

µ̄tnpx, aq ` γ ´ µπ
t,p
n px, aq

µ̄tnpx, aq ` γ

˙

.

Hence,

EtrBias 1s “

T
ÿ

t“1

N
ÿ

n“1

ÿ

x,a

µπ
t,ppt

n px, aqℓtnpx, aq

ˆ

µ̄tnpx, aq ` γ ´ µπ
t,p
n px, aq

µ̄tnpx, aq ` γ

˙

.

From Lem. D.2, and from the definition of µ̄, we have that with high probability, µ̄tnpx, aq ě µπ
t,ppt

n px, aq, therefore,

EtrBias 1s ď

T
ÿ

t“1

N
ÿ

n“1

ÿ

x,a

|µ̄tnpx, aq ` γ ´ µπ
t,p
n px, aq| ď

T
ÿ

t“1

N
ÿ

n“1

ÿ

x,a

|µ̄tnpx, aq ´ µπ
t,p
n px, aq| ` γ|X ||A|NT.
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Note that µ̄tnpx, aq “ maxpPΩt µπ
t,p
n px, aq “ πtnpa|xqmaxpPΩt ρπ

t,p
n pxq, where ρπ

t,p
n pxq :“

ř

aPA µ
πt,p
n px, aq. Therefore,

for each x P X , there is a px,t P Ωt such that µ̄tnpx, aq “ µπ
t,px,t

n px, aq.

From Lem. D.3 we obtain that
T
ÿ

t“1

N
ÿ

n“1

ÿ

x,a

|µπ
t,px,t

n px, aq ´ µπ
t,p
n px, aq| “ O

ˆ

N2|X |

c

|A|T log
´

|X ||A|NT

δ

¯

˙

.

Therefore,

EtrBias 1s “ O

ˆ

N2|X |

c

|A|T log
´

|X ||A|NT

δ

¯

˙

` γ|X ||A|NT.

As we have that Bias 1 “ EtrBias 1s `
řT
t“1xEtrpℓts ´ pℓt, µπ

t,ppty, all that remains is to treat the second term of the sum.
With high probability, µ̄tnpx, aq ě µπ

t,ppt

n px, aq, therefore

N
ÿ

n“1

ÿ

x,a

pℓtnpx, aqµπ
t,ppt

n px, aq ď

N
ÿ

n“1

ÿ

x,a

ℓtnpx, aq1txt
n“x,atn“au ď N.

Thus, Azuma’s inequality gives us that

T
ÿ

t“1

xEtrpℓts ´ pℓt, µπ
t,ppty ď N

c

2T log
´1

δ

¯

,

which is of a smaller order than the terms previously appearing in the bias bound. Hence,

Bias 1 “ O

ˆ

N2|X |

c

|A|T log
´

|X ||A|NT

δ

¯

˙

` γ|X ||A|NT.

Bias 2. The result follows directly from Lem. 14 of (Jin et al., 2020) using µπ,pp
t

instead of µπ,p:

Bias 2 “

T
ÿ

t“1

xpℓt ´ ℓt, µπ,pp
t

y “ O

ˆ

N logp
|X ||A|N

δ q

γ

˙

.

Optimizing the learning and exploration parameters τ and γ. By joinning the Mirror Descent term from Eq. (46)
along with the bounds on Bias 1 and Bias 2 terms, and setting γ “ τ , we obtain that

Rpolicy/MD
T “ O

ˆ

τbN |X ||A|T `
N

τ

”

log
´N

δ

¯

` |X ||A| logpT q ` logp|A|q `N |X | logp|A|T q logpT q

ı

`N2|X |

c

|A|T log
´

|X ||A|NT

δ

¯

` τ |X ||A|NT `
N logp

|X ||A|N
δ q

τ

˙

.

Let φ1 :“ pb` 1qN |X ||A|, and

φ2 :“ N

„

log
´N

δ

¯

` |X ||A| logpT q ` logp|A|q `N |X | logp|A|T q logpT q ` log

ˆ

|X ||A|N

δ

˙ȷ

.

For τ9
a

φ2{φ1T , recalling that b :“ NCδ , and thatCδ :“
a

2|X | logp|X ||A|NT {δq, we obtain that, with high probability,

Rpolicy/MD
T “ 2

a

φ1φ2T “ Õ
`

N3{2|X |5{4|A|
?
T `N2|X |5{4

a

|A|T
˘

. (47)

D.2.3. TERM 3: RPOLICY/MDP
T

The upper bound for this term directly follows from the analysis of adding the bonus term to compensate for insufficient
exploration, as discussed in Subsec. 3.2 of the main paper, and is detailed in App. B.2. Thus, we have that with high
probability, Rpolicy/MDP

T ď 0.
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D.2.4. TERM 4: BONUS TERM

The analysis of this term follows directly from Prop. 3.1 from the main paper: for any δ P p0, 1q, with probability at least
1 ´ 3δ, we have that

T
ÿ

t“1

xbt, µπ
t,ppty “ Õ

`

N3|X |3{2
a

|A|T
˘

. (48)

D.3. Final bound

Replacing the upper bound on all four terms from Eq.s (43), (47), (48), and thatRpolicy/MDP
T ď 0 into the regret decomposition

in Eq. (42), we obtain that playing Alg. 2 for the RL problem with bandit feedback on adversarial loss functions has, with
high probability, a static regret of order

RT pπq “ Õ
`

N3|X |3{2
a

|A|T `N3{2|X |5{4|A|
?
T
˘

.

E. Curl with Bandit Feedback
Notation Let S and A be two positive integers. For convenience and brevity, we suppose in what follows that X “ rSs

and A “ rAs. Accordingly, we will often use S and A in place of |X | and |A| respectively. Let 9A P tA,A ´ 1u. For
a vector ξ P RNS 9A and pn, x, aq P rN s ˆ rSs ˆ r 9As, we use ξnpx, aq as a shorthand for ξppn ´ 1qS 9A ` px ´ 1q 9A ` aq.
Similarly, let :A P tA,A´ 1u. Then, for an NS 9AˆNS :A matrix M , we use Mpn, x, a, n1, x1, a1q to denote the item in row
pn ´ 1qS 9A ` px ´ 1q 9A ` a and column pn1 ´ 1qS :A ` px1 ´ 1q :A ` a1 of M . For any d P Z`, let 1d P Rd be the vector
with all entries equal to one and Id the dˆ d identity matrix.

E.1. An alternative representation for the decision sets

In the following, we will fix an arbitrary transition kernel p :“ ppnqnPrNs. We recall the notation that for ζ P Mp
µ0

,
ρζnpxq :“

ř

aPA ζnpx, aq for pn, xq P rN s ˆ X , which satisfies ρζnpxq “
ř

x1,a1PXˆA ζn´1px1, a1qpnpx|x1, a1q for n ě 2.
At the first step, we define ρp1pxq :“

ř

x1,a1PXˆA µ0px1, a1qp1px|x1, a1q, which satisfies ρp1pxq “ ρζ1pxq for every ζ P Mp
µ0

and x P X since the initial state distribution is the same for all occupancy measures in Mp
µ0

.

We describe here the mapping alluded to in Sec. 4.2.1 of Mp
µ0

to a lower-dimensional space where it could have a
non-empty interior. This is analogous to how one can define a bijective map between the simplex ∆d and the set
tx P Rd´1 : 1⊺

d´1x ď 1 and xi ě 0 @i P rd´ 1su, which is the intersection of the positive orthant of Rd´1 with the L1 unit
ball, see (Jézéquel et al., 2022, Section 2). This can be done since any coordinate xi˚ of a vector x P ∆d can be recovered
from the rest of the coordinates: xi˚ “ 1´

ř

i‰i˚ xi. In our case, denoting by a˚ the last action in A (i.e., a˚ “ A, recalling
that A “ rAs), we will represent the occupancy measures as vectors in RNSpA´1q by omitting all coordinates that correspond
to this action. We can afford to do so, since for any µ P Mp

µ0
, we have that µnpx, a˚q “ ρµnpxq ´

ř

a‰a˚ µnpx, aq where
ρµn is recoverable from µn´1 and given in the first step by the initial state distribution ρp1pxq, which does not depend on µ. In
the following, we use this idea to define the sought mapping.

Define the Aˆ pA´ 1q matrix

G :“

„

IA´1

´1
⊺
A´1

ȷ

and let H be the NSAˆNSpA´ 1q matrix obtained via taking the direct sum of NS copies of G: H :“
ÀNS

i“1G.2 Define
wp,1 P RNSA such that

wp,1
n px, aq :“ ρp1pxqItn “ 1, a “ a˚u .

Next, for every 2 ď m ď N , we define W p,m as the NSAˆNSA matrix where

W p,mpn, x, a, n1, x1, a1q :“ Itn “ m,n1 “ m´ 1, a “ a˚upmpx|x1, a1q .

2For an n ˆ m matrix M and an n1
ˆ m1 matrix M 1, M

À

M 1 is the pn ` n1
q ˆ pm ` m1

q block matrix
„

M 0
0 M 1

ȷ

.
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Then, we define the NSAˆNSpA´ 1q matrix

Bp :“ pINSA `W p,N q . . . pINSA `W p,3qpINSA `W p,2qH

and the vector
βp :“ pINSA `W p,N q . . . pINSA `W p,3qpINSA `W p,2qwp,1 .

Finally, define the function Ξp : RNSpA´1q Ñ RNSA where

Ξppξq :“ Bpξ ` βp

for ξ P RNSpA´1q.

To explain the semantics of Ξp, let µ P Mp
µ0

and µ̃ P RNSpA´1q be such that µ̃npx, aq :“ µnpx, aq for all pn, x, aq P rN s ˆ

X ˆ Aza˚. It then holds that Ξppµ̃q “ µ. To see this, note that Hµ̃ expands µ̃ setting pHµ̃qnpx, a˚q “ ´
ř

a‰a˚ µnpx, aq.
To fully recover µnpx, a˚q, what remains is to add ρµnpxq. This is achieved at n “ 1 by adding wp,1 to Hµ̃ since
wp,1
n px, a˚q “ ρp1pxq “ ρµ1 pxq and wp,1

n px, aq “ 0 for a ‰ a˚. Next, at n “ 2, the matrix W p,2 extracts the values ρµ2 pxq

when operated on Hµ̃ ` wp,1 such that µ2px, a˚q is recovered at coordinate p2, x, a˚q of pINSA ` W p,2qpHµ̃ ` wp,1q.
Iterating this procedure until step N allows us to fully recover µ from µ̃. While for a generic ξ P RNSpA´1q, Ξppξq is
the unique vector in RNSA satisfying pΞppξqqnpx, aq “ ξnpx, aq for all n, x, and a ‰ a˚; pΞppξqq1px, a˚q “ ρp1pxq ´
ř

a‰a˚ pΞppξqq1px, aq for all x; and pΞppξqqnpx, a˚q “
ř

x1,a1 pΞppξqqn´1px1, a1qpnpx|x1, a1q ´
ř

a‰a˚ pΞppξqqnpx, aq for
all x and n ě 2.

Note that Bp has full column rank since for any ξ P RNSpA´1q, Bpξ is only an expansion of ξ; hence, we can define its
left pseudo-inverse pBpq` :“ ppBpq⊺Bpq´1pBpq⊺, which satisfies pBpq`Bp “ INSpA´1q. On the other hand, the matrix
BppBpq` projects vectors in RNSA onto the column space of Bp, which is given by

"

µ P RNSA :
ÿ

a

µnpx, aq “
ÿ

x1,a1

µn´1px1, a1qpnpx|x1, a1q @x P X , 2 ď n ď N and
ÿ

a

µ1px, aq “ 0 @x P X
*

. (49)

It is easy to verify that for any µ, µ1 P Mp
µ0

, µ´µ1 lies in the column space ofBp (recall that
ř

a µ1px, aq “
ř

a µ
1
1px, aq “

ρp1pxq). Moreover, βp P Mp
µ0

as it corresponds to a policy π where πnpa˚|xq “ 1 for all n and x. Therefore, for any
µ P Mp

µ0
, µ´ βp belongs to the column space of Bp, and we consequently have that

Ξp
`

pBpq`pµ´ βpq
˘

“ BppBpq`pµ´ βpq ` βp “ µ .

Hence, by the definition of Ξp, pBpq`pµ´ βpq coincides with µ on all coordinates pn, x, aq P rN s ˆ X ˆ Azta˚u (since
the map Ξp only expands the input vector adding the coordinates corresponding to action a˚), and is then the only point in
RNSpA´1q that Ξp maps to µ. In light of this, we define

pMp
µ0

q´ :“ tξ P RNSpA´1q | Ξppξq P Mp
µ0

u ,

the pre-image of Mp
µ0

under Ξp. Accordingly, we define Λp : pMp
µ0

q´ Ñ Mp
µ0

as the restriction of Ξp to pMp
µ0

q´; that is,

Λp :“ Ξp|pMp
µ0

q´ .

This then is a bijective function, with Λ´1
p pµq “ pBpq`pµ´ βpq.

Still, pMp
µ0

q´ is not guaranteed to have a non-empty interior. Suppose that some state x˚ is not reachable at a certain step
n˚; that is, for every state x and action a, pn˚ px˚|x, aq “ 0 if n˚ ě 2, or just that ρp1px˚q “ 0 if n˚ “ 1. Then, for any
µ P Mp

µ0
, µn˚ px˚, aq “ 0 for every action a. This implies that for every ξ P pMp

µ0
q´, ξn˚ px˚, aq “ 0 for all a ‰ a˚

(since these coordinates are preserved under Λp), and hence, pMp
µ0

q´ has an empty interior. To remedy this, we rely on
Asm. 4.4, which is equivalent to imposing that for every state x, ρp1pxq ą 0 and there exists for every step n a state-action
pair px1, a1q such that pn`1px|x1, a1q ą 0. We show next that this condition is sufficient for pMp

µ0
q´ to have a non-empty

interior. We first present an alternative characterization of pMp
µ0

q´.

Lemma E.1. It holds that
pMp

µ0
q´ “

␣

ξ P RNSpA´1q : Bpξ ě ´βp
(

.
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Hence, pMp
µ0

q´ is a polyhedral set formed by NSA constraints; namely that for n, x, a P rN s ˆ X ˆ A,
Bppn, x, a, ¨, ¨, ¨q⊺ξ ` βpnpx, aq ě 0.

Proof. Any ξ P pMp
µ0

q´ clearly satisfies Bpξ ě ´βp since Bpξ ` βp “ Λppξq P Mp
µ0

, whose coordinates are non-
negative. Conversely, assume that Bpξ ě ´βp for some ξ P RNSpA´1q, and let µ :“ Ξppξq “ Bpξ ` βp. Showing that
ξ P pMp

µ0
q´ is equivalent, by definition, to showing that Ξppξq P Mp

µ0
. Since βp P Mp

µ0
and Bpξ belongs to the column

space of Bp specified in (49), it holds that
ÿ

a

µnpx, aq “
ÿ

x1,a1

µn´1px1, a1qpnpx|x1, a1q

for every n ě 2, and that
ř

a µ1px, aq “
ř

a β
p
1px, aq “ ρβ

p

1 pxq “ ρp1pxq. Then, to show that µ P Mp
µ0

, it remains to
show that µ P p∆XˆAqN . By assumption, µ only has non-negative coordinates; therefore, we only have to show that
ř

x,a µnpx, aq “ 1 at every n. This easily done via induction:
ř

x,a µ1px, aq “
ř

x ρ
p
1pxq “ 1, and for n ě 2,

ÿ

x,a

µnpx, aq “
ÿ

x

ÿ

x1,a1

µn´1px1, a1qpnpx|x1, a1q “
ÿ

x1,a1

µn´1px1, a1q .

Lemma E.2. pMp
µ0

q´ has a non-empty interior if and only if Asm. 4.4 holds.

Proof. Necessity is immediate as argued before. We prove sufficiency utilizing an argument from the proof of Proposition
2.3 in (Wolsey & Nemhauser, 1999). For every step-state-action triple pn, x, aq, it is easy to verify that Asm. 4.4 implies the
existence of some µ P Mp

µ0
such that µnpx, aq ą 0. Taking a convex combination with full support of one such occupancy

measure for every pn, x, aq results, via the convexity of Mp
µ0

, in an occupancy measure µ˚ P Mp
µ0

whose entries are all
strictly positive. Hence, ξ˚ :“ Λ´1

p pµ˚q is an interior point of the polyhedral set pMp
µ0

q´ as it satisfies with strict inequality
all the constraints defining it.

E.2. Entropic Regularization Approach

E.2.1. FITTING A EUCLIDEAN BALL IN THE CONSTRAINT SET

For the following, fix ε P p0, 1{Sq. From Sec. 4.2.1, recall the definition κ :“ ε{pA ´ 1 `
?
A´ 1q. We now show that

κ1NSpA´1q ` κv P pMp
µ0

q´ for any v P BNSpA´1q assuming the transition kernel p :“ ppnqnPrNs satisfies the condition
of Asm. 4.2; that is, pnpx1|x, aq ě ε for all pn, x, x1, aq P rN s ˆ X 2 ˆ A. Take ζv,p :“ Ξppκ1NSpA´1q ` κvq. Note that
showing that κ1NSpA´1q ` κv P pMp

µ0
q´ is equivalent to showing that ζv,p P Mp

µ0
. In the following, we proceed with the

latter.

Note that via Lem. E.1, it suffices to show that ζv,p is non-negative. We use induction in the following to show more
particularly that ζv,p P p∆XˆAqN . By the definition of ζv,pn , we have that for pn, xq P rN s ˆ X ,

ζv,pn px, aq “
ε

A´ 1 `
?
A´ 1

p1 ` vnpx, aqq @a P Aza˚ and ζv,pn px, a˚q “ ρζ
v,p

n pxq ´
ÿ

a‰a˚

ζv,pn px, aq , (50)

where ρζ
v,p

n pxq “
ř

a1,x1PAˆX ζ
v,p
n´1px1, a1qpnpx|x1, a1q for n ě 2 and ρζ

v,p

1 pxq “
ř

a1,x1PAˆX µ0px1, a1qp1px|x1, a1q “

ρp1pxq. For a ‰ a˚, clearly ζv,pn px, aq ě 0 as vnpx, aq ě ´1. Note that at any step n and state x, the Cauchy-Schwarz
inequality and the fact that v P BNSpA´1q yield that

ÿ

a‰a˚

vnpx, aq ď
?
A´ 1

d

ÿ

a‰a˚

|vnpx, aq|2 ď
?
A´ 1 .

Hence,
ÿ

a‰a˚

ζv,pn px, aq “
ÿ

a‰a˚

ε

A´ 1 `
?
A´ 1

p1 ` vnpx, aqq ď ε .
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On the other hand, Asm. 4.2 implies that ρζ
v,p

1 pxq ě ε for every x. Hence, (50) gives that ζv,p1 px, a˚q ě 0 at every x.
Moreover, (50) also implies that

ř

x,a ζ
v,p
1 px, aq “

ř

x ρ
p
1pxq “ 1, yielding that ζv,p1 P ∆XˆA. For n ě 2, assuming

that ζv,pn´1 P ∆XˆA, Asm. 4.2 implies again that ρζ
v,p

n pxq ě ε for every x. We then get via (50) that ζv,pn px, a˚q ě 0

and that ζv,pn P ∆XˆA since
ř

x,a ζ
v,p
n px, aq “

ř

x ρ
ζv,p

n pxq “ 1, which holds again via (50) and the assumption that
ζv,pn´1 P ∆XˆA. Induction then establishes that ζv,p P p∆XˆAqN as sought. As mentioned above, this implies via Lem. E.1
that ζv,p P Mp

µ0
, or equivalently, that κ1NSpA´1q ` κv P pMp

µ0
q´ and ζv,p “ Λppκ1NSpA´1q ` κvq.

E.2.2. ESTIMATING THE TRANSITION KERNEL

In this section, we define and analyze an alternative transition kernel estimator to the one given in Eq. (7). What we seek in
this new estimator is (1) that it estimates well the true transition kernel, with a guarantee similar to that of Lem. 2.2; (2) that
it drifts across rounds in a controlled manner, satisfying the bound of Lem. A.3 up to a constant; and (3) that, at the same
time, it satisfies the condition of Asm. 4.2 almost surely, supposing, naturally, that it is satisfied by the true kernel.

To recall the notation, for each round t P rT s, ot denotes a random trajectory obtained by executing the policy πt in the
environment; that is, ot :“ pxt1, a

t
1, . . . , x

t
N , a

t
N q where atn „ πtp¨|xtnq and xtn „ pnp¨|xtn´1, a

t
n´1q.3 We also recall the

definitions

N t
npx, aq :“

t´1
ÿ

s“1

1txs
n“x,asn“au and M t

npx1|x, aq :“
t´1
ÿ

s“1

1txs
n`1“x1,xs

n“x,asn“au .

Fix n, x, a P rN s ˆ X ˆ A. As an intermediate step, we compute at the beginning of each round t the Laplace (add-one)
estimator for ptnp¨|x, aq; that is, for x1 P X ,

p̃tnpx1|x, aq :“
M t
n´1px1|x, aq ` 1

N t
n´1px, aq ` S

. (51)

To obtain a guarantee on the accuracy of this estimator, we firstly describe a slightly different setting. Let p 9xsnqTs“1 be an
i.i.d. sequence of states such that 9xsn „ pnp¨|x, aq. Then, for k P rT s, we define the Laplace estimator

9pknpx1|x, aq :“
1 `

řk
s“1 1t 9xs

n“x1u

k ` S
.

Notice that in our setting, the distribution p̃tnp¨|x, aq is equivalent to 9p
Nt

n´1px,aq
n p¨|x, aq, keeping in mind that the number of

samples N t
n´1px, aq is random and dependent on the observed samples. Let DKLpp } qq denote the KL-divergence between

distributions (probability mass functions) p and q. We derive the following result concerning the divergence between p̃t and
p using known properties of the Laplace estimator and a union bound argument.

Lemma E.3. For fixed t, n, x, a P rT s ˆ rN s ˆ X ˆ A, it holds with probability at least 1 ´ δ that

DKL

`

pnp¨|x, aq
›

› p̃tnp¨|x, aq
˘

ď
161S ` 6

?
S log5{2 ST

4δ ` 310

maxt1, N t
n´1px, aqu

.

Proof. For a fixed k P rT s, Thm. 2 in (Canonne et al., 2023) and Prop. 1 in (Mourtada & Gaı̈ffas, 2022) imply that

P

ˆ

DKL

`

pnp¨|x, aq
›

› 9pknp¨|x, aq
˘

ą
161S ` 6

?
S log5{2 S

4δ ` 310

k

˙

ď δ .

Via a union bound, we obtain that4

P

ˆ

DKL

`

pnp¨|x, aq
›

› p̃tnp¨|x, aq
˘

ą
161S ` 6

?
S log5{2 S

4δ ` 310

maxt1, N t
n´1px, aqu

˙

3Recall that pxt
0, a

t
0q „ µ0p¨, ¨q.

4Note that if N t
n´1px, aq “ 0, then p̃tnp¨|x, aq is the uniform distribution and DKL

`

pnp¨|x, aq
›

› p̃tnp¨|x, aq
˘

ď logS; hence, the
bound trivially holds.
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ď P

ˆ

Dk P rT s : DKL

`

pnp¨|x, aq
›

› 9pknp¨|x, aq
˘

ą
161S ` 6

?
S log5{2 S

4δ ` 310

k

˙

ď δT .

The lemma then follows after rescaling δ.

Note that the distribution p̃tnp¨|x, aq does not necessarily satisfy the conditions of Asm. 4.2 uniformly. Next, we define for a
given ε P r0, 1{Ss the set

∆ε
X :“ tx P Rd : 1⊺

dx “ 1 and xi ě ε @i P rdsu Ď ∆X ,

which is the set of state distribution assigning probability at least ε to every state. We then define pptnp¨|x, aq as the information
projection of p̃tnp¨|x, aq onto ∆ε

X ; that is,

pptnp¨|x, aq :“ argmin
qP∆ε

X

DKL

`

q
›

› p̃tnp¨|x, aq
˘

, (52)

which exists and is unique since ∆ε
X is compact and DKL

`

¨
›

› p̃tnp¨|x, aq
˘

is continuous and strictly convex where it is finite
(note that p̃tnp¨|x, aq never assigns zero probability to any state; hence, DKL

`

q
›

› p̃tnp¨|x, aq
˘

is finite for any q P ∆ε
X ). If

p̃tnp¨|x, aq is not already in ∆ε
X , this projection can only bring us closer to pnp¨|x, aq in the KL-divergence sense as the

following inequality (Cover & Thomas, 2012, Thm. 11.6.1) states:

DKLppnp¨|x, aq } pptnp¨|x, aqq ď DKLppnp¨|x, aq } p̃tnp¨|x, aqq ´DKLppptnp¨|x, aq } p̃tnp¨|x, aqq . (53)

With this fact in mind, we can arrive at the following result, a parallel of Lem. 2.2.

Lemma E.4. With probability at least 1 ´ δ, it holds for all t, n, x, a P rT s ˆ rN s ˆ X ˆ A simultaneously that

}pnp¨|x, aq ´ pptnp¨|x, aq}1 ď

d

322S ` 12
?
S log5{2 S2ANT 2

4δ ` 620

maxt1, N t
n´1px, aqu

.

Proof. The statement is a consequence of (53), Lem. E.3, and Pinsker’s inequality; followed by an application of a union
bound over all rounds, steps, and state-action pairs.

What remains now is to show that there exists a constant c ą 0 such that

}ppt`1
n`1p¨|x, aq ´ pptn`1p¨|x, aq}1 ď c

1txt
n“x,ast“au

maxt1, N t`1
n px, aqu

.

This can be easily shown to hold for p̃t, i.e., before the projection step, as states the following lemma.

Lemma E.5. For all n P rN ´ 1s, px, a, x1q P X ˆ A ˆ X , and t P rT s; p̃tn`1px1|x, aq as defined in (51) satisfies

}p̃t`1
n`1p¨|x, aq ´ p̃tn`1p¨|x, aq}1 ď

21txt
n“x,atn“au

N t`1
n px, aq ` S

.

Proof. The derivation follows along the same lines as the proof of Lem. A.3. We have that

p̃t`1
n`1px1|x, aq “

1txt
n`1“x1,xt

n“x,atn“au `M t
npx1|x, aq ` 1

N t`1
n px, aq ` S

“
1txt

n`1“x1,xt
n“x,atn“au

N t`1
n px, aq ` S

`
N t
npx, aq ` S

N t`1
n px, aq ` S

p̃tn`1px1|x, aq .

Hence,

p̃t`1
n`1px1|x, aq ´ p̃tn`1px1|x, aq “

1txt
n`1“x1,xt

n“x,atn“au

N t`1
n px, aq ` S

` p̃tn`1px1|x, aq
N t
npx, aq ´N t`1

n px, aq

N t`1
n px, aq ` S

“
1txt

n“x,atn“au

N t`1
n px, aq ` S

`

1txt
n`1“x1u ´ p̃tn`1px1|x, aq

˘

.
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Finally, we conclude that

}p̃t`1
n`1p¨|x, aq ´ p̃tn`1p¨|x, aq}1 “ 2

ÿ

x1:p̃t`1
n`1px1|x,aqěp̃tn`1px1|x,aq

`

p̃t`1
n`1px1|x, aq ´ p̃tn`1px1|x, aq

˘

“
21txt

n“x,atn“au

N t`1
n px, aq ` S

`

1 ´ p̃tn`1pxtn`1|x, aq
˘

ď
21txt

n“x,atn“au

N t`1
n px, aq ` S

.

To derive a similar bound for the projected estimator ppt, we firstly derive a more explicit characterization of the information
projection onto ∆ε

X . For a fixed ε P p0, 1{Sq, define the function gε : R ˆ ∆X Ñ R as

gεpr; pq :“
ÿ

xPX
maxtrε, ppxqu .

Lemma E.6. For any given p P ∆X , the map r ÞÑ gεpr; pq is εS-Lipschitz and has a unique fixed point. Moreover, denoting
this fixed point by r˚, it holds that r˚ P r1,maxx ppxq{εq, and that gεpr; pq ą r for r ă r˚ and gεpr; pq ă r for r ą r˚.

Proof. We firstly note that gεp¨; pq can be easily verified to be convex. For any r P R and any subgradient h of gεp¨; pq at r,
it holds that |h| ď εS. Hence, the convexity of gεp¨; pq implies that |gεpr; pq ´ gεpr

1; pq| ď εS|r ´ r1| for any r, r1 P R, or
that gεp¨; pq is εS-Lipschitz. This implies, since εS ă 1 by assumption, that gεp¨; pq is a contraction mapping; hence, via
Banach’s fixed point theorem, it admits a unique fixed point r˚ P R. For r ă 1, it holds that gεpr; pq ě

ř

x ppxq “ 1 ą r.
While for r ě maxx ppxq{ε, gεpr; pq “ rεS ă r. Therefore, r˚ P r1,maxx ppxq{εq. Moreover, for any r ă r˚ (r ą r˚),
it must hold that gεpr; pq ą r (gεpr; pq ă r); as otherwise, the intermediate value theorem, applied to gεpr; pq ´ r, would
imply the existence of another fixed point, a contradiction.

Next, we define rε : ∆X Ñ R as the function that maps a distribution p P ∆X to the fixed point of gεp¨; pq. This function is
well-defined as implied by Lem. E.6. We now show that the solution of the information projection problem onto ∆ε

X can be
expressed in terms of the function rε. For p P ∆X , we define pε P ∆ε

X as

pεpxq :“
maxtrεppqε, ppxqu

ř

x1PX maxtrεppqε, ppx1qu
“ maxtε, ppxq{rεppqu .

Lemma E.7. For p P ∆X , it holds that pε “ argminqP∆ε
X
DKLpq } pq.

Proof. We assume without loss of generality that ppxq ą 0 for all x P X ; as otherwise, we can cast the problem into a
lower dimensional one considering only the elements x P X for which ppxq ą 0. Since the constraint set is compact and
the objective is continuous and strictly convex, this minimization problem admits a unique optimal solution. We start by
rewriting the problem as

min
qPRS

ÿ

xPX
qpxq log

qpxq

ppxq

subject to ε´ qpxq ď 0 @x P X
ÿ

xPX
qpxq ´ 1 “ 0

Define the Lagrangian

Lpq, u, vq :“
ÿ

xPX
qpxq log

qpxq

ppxq
`

ÿ

xPX
upxqpε´ qpxqq ` v

˜

ÿ

xPX
qpxq ´ 1

¸

for v P R and u P RSě0. We have that

BL

Bqpxq
pq, u, vq “ log

qpxq

ppxq
` 1 ´ upxq ` v .
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We now show that we can satisfy the KKT conditions by choosing a solution pair q˚ and u˚, v˚ where

q˚pxq :“ pεpxq “ maxtε, ppxq{rεppqu , u˚pxq :“ log
maxtε, ppxq{rεppqu

ppxq{rεppq
, and v˚ :“ ´1 ` log rεppq .

Firstly, q˚ indeed belongs to ∆ε
X by the definition of pε, and u˚ is non-negative. Moreover, whenever q˚pxq ą ε, we get

that u˚pxq “ 0; hence, complementary slackness holds. Finally,

BL

Bqpxq
pq˚, u˚, v˚q “ log

maxtε, ppxq{rεppqu

ppxq
` 1 ´ log

maxtε, ppxq{rεppqu

ppxq{rεppq
´ 1 ` log rεppq “ 0 .

Therefore, we conclude that pε is the optimal solution.

Computing pε, or the information projection of p onto ∆ε
X , can be performed efficiently. In particular, the following

characterization implies that rεppq can be computed exactly in a finite number of steps by iterating over the set of states.

Lemma E.8. Let X`
p :“ tx P X : gεpppxq{ε; pq ă ppxq{εu and X´

p :“ X zX`
p . Then,

rεppq “

ř

xPX` ppxq

1 ´ ε|X´
p |

.

Proof. As stated in the proof of Lem. E.6, for r ě maxxPX ppxq{ε, gεpr; pq “ rεS ă r; hence X`
p is non-empty as

it at least includes argmaxxPX ppxq. Moreover, from the same lemma, we have that rεppq ă minxPX`
p
ppxq{ε and

rεppq ě maxxPX´
p
ppxq{ε (if X´

p is non-empty). Therefore,

rεppq “ gεprεppq; pq “
ÿ

xPX
maxtrεppqε, ppxqu “ rεppqε|X´

p | `
ÿ

xPX`

ppxq .

The previous lemma also implies that rεppq ď p1 ´ εSq´1. Returning back to our original objective, we show next that
}pε ´ qε}1 is no larger than a constant multiple of }p ´ q}1 for any two distributions p and q. Towards that end, we first
show that rε is Lipschitz continuous.

Lemma E.9. For ε ď 1
2S , the function rε is 1-Lipschitz with respect to the } ¨ }1 norm; that is,

|rεppq ´ rεpqq| ď }p´ q}1

for any p, q P ∆X .

Proof. Note that, for any fixed r P R, gεpr; ¨q is convex; and that for any p P ∆X and subgradient k of gεpr; ¨q at p, it holds
that k is non-negative and satisfies }k}8 ď 1. Hence, for any p, q P ∆X ,

|gεpr; pq ´ gεpr; qq| ď
ÿ

x : ppxqąqpxq

pppxq ´ qpxqq “
ÿ

x : qpxqąppxq

pqpxq ´ ppxqq “
1

2
}p´ q}1 . (54)

Then, we obtain that

|rεppq ´ rεpqq| “ |gεprεppq; pq ´ gεprεpqq; qq|

ď |gεprεppq; pq ´ gεprεpqq; pq| ` |gεprεpqq; pq ´ gεprεpqq; qq|

ď εS|rεppq ´ rεpqq| `
1

2
}p´ q}1 ď

1

2
|rεppq ´ rεpqq| `

1

2
}p´ q}1 ,

where the second inequality follows from (54) and Lem. E.6, and the last inequality holds since ε ď 1
2S . The lemma then

follows after rearranging the last result.

Lemma E.10. Assuming ε ď 1
2S , it holds for any p, q P ∆X that }pε ´ qε}1 ď 5

2}p´ q}1.
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Proof. We have that

qεpxq “
maxtrεpqqε, qpxqu

rεpqq

“
maxtrεpqqε, qpxqu ´ maxtrεppqε, ppxqu ` maxtrεppqε, ppxqu

rεpqq

“
maxtrεpqqε, qpxqu ´ maxtrεppqε, ppxqu

rεpqq
`
rεppq

rεpqq
pεpxq .

Then,

qεpxq ´ pεpxq “
1

rεpqq

`

maxtrεpqqε, qpxqu ´ maxtrεppqε, ppxqu `
`

rεppq ´ rεpqq
˘

pεpxq
˘

.

Using Lem. E.9 and the fact that

|maxtrεpqqε, qpxqu ´ maxtrεppqε, ppxqu| ď max
␣

ε|rεpqq ´ rεppq|, |qpxq ´ ppxq|
(

ď ε|rεpqq ´ rεppq| ` |qpxq ´ ppxq| ,

we obtain that

}pε ´ qε}1 “
ÿ

x

|qεpxq ´ pεpxq|

ď
1

rεpqq

ÿ

x

`

ε|rεpqq ´ rεppq| ` |qpxq ´ ppxq| ` pεpxq|rεppq ´ rεpqq|
˘

ď
}p´ q}1

rεpqq

`

2 ` εS
˘

ď
5

2
}p´ q}1 ,

where the last step uses that εS ď 1{2 and rεpqq ě 1.

Finally, we arrive at the sought result, a parallel of Lem. A.3.

Lemma E.11. For all n P rN ´ 1s, px, a, x1q P X ˆ A ˆ X , and t P rT s; pptn`1px1|x, aq as defined in (52) with ε ď 1
2S

satisfies

}ppt`1
n`1p¨|x, aq ´ pptn`1p¨|x, aq}1 ď

51txt
n“x,atn“au

N t`1
n px, aq ` S

.

Proof. This is a direct consequence of the definition in (52) and Lems. E.5, E.7 and E.10.

E.2.3. THE ALGORITHM

For δ P p0, 1q, define

C 1
δ :“

c

322S ` 12
?
S log5{2 S

2ANT 2

4δ
` 620 , (55)

which is the leading factor in the confidence bound of Lem. E.4. For the purpose of exploration, much like the full
information case, we will utilize at each round t a bonus reward vector bt P RNSA to be subtracted from the estimated
gradient, where

btnpx, aq :“ LpN ´ nq
C 1

1{T
a

maxt1, N t
npx, aqu

(56)

for pt, n, x, aq P rT s ˆ pt0u
Ť

rN sq ˆ X ˆ A.

Finally, with all its components detailed, we present Alg. 3, our first approach for CURL with bandit feedback. As mentioned
in Sec. 4.2.1, the main changes compared to Alg. 1 are the use of spherical estimation to obtain a surrogate for the gradient
and the use of a suitably altered transition kernel estimator.
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Algorithm 3 Bonus O-MD-CURL (bandit feedback)

input: learning rate τ ą 0, perturbation rate δ P p0, 1s, sequence of exploration parameters pαtqtPrT s P p0, 1qT

initialization: pp1npx1|x, aq Ð 1{S @pn, x, x1, aq, µ1 P argmin
µPM pp1

µ0

ψpµq

for t “ 1, . . . , T do
draw ut P SNSpA´1q uniformly at random

ζt Ð ζu
t,ppt “ Λ

pptpκ1NSpA´1q ` κutq

pµt Ð p1 ´ δqµt ` δζt

πtnpa|xq Ð pµtpx, aq{
ř

aPA pµtpx, aq

execute πt and observe F tpµπ
t,pq and a sampled trajectory ot :“ pxt1, a

t
1, . . . , x

t
N , a

t
N q

gt Ð 1´δ
δκ NSpA´ 1qF tpµπ

t,pqut

construct g̊t P RNSA as g̊tnpx, aq Ð gtnpx, aq for a ‰ a˚ and g̊tnpx, a˚q Ð 0

construct bonus vector bt as in (56)

π̃tnpa|xq Ð p1 ´ αtqµ
tpx, aq{

ř

aPA µ
tpx, aq ` αt{A

construct the new estimated kernel ppt`1 via (51) and (52)

set µt`1 P argmin
µPM ppt`1

µ0

τ x̊gt ´ bt, µy ` Γpµ, µπ̃
t,pptq

end for

E.2.4. AUXILIARY LEMMAS

Lemma E.12. For 0 ă δ ă 1 and ppt as defined in (52), it holds that

T
ÿ

t“1

N
ÿ

n“1

n´1
ÿ

i“0

ÿ

x,a

µπ
t,p
i px, aq}pi`1p¨|x, aq ´ ppti`1p¨|x, aq}1 ď 3C 1

δN
2
?
SAT ` 2SN2

c

2T log
´N

δ

¯

with probability at least 1 ´ 2δ.

Proof. This lemma can be proved in the same manner as its full information version Lem. A.1 with only two small
changes; we use the bound of Lem. E.4 instead of Lem. B.1 and we modify the definition of the filtration to be Ft :“
σpu1, o1, . . . ,ut´1, ot´1,utq.

Lemma E.13. For any 0 ă δ ă 1,

T
ÿ

t“1

N
ÿ

n“0

pN ´ nq
ÿ

x,a

µπ
t,p
n px, aq

a

maxt1, N t
npx, aqu

ď 3N2
?
SAT ` SN2

c

2T log
´N

δ

¯

,

holds with probability at least 1 ´ δ.

Proof. The proof is the same as for Lem. A.2 (the version proved in the full information case), except that, again, the
filtration used in the proof would be defined as Ft :“ σpu1, o1, . . . ,ut´1, ot´1,utq.

Proposition E.14. Let bt and ppt be as defined in (56) and (52) respectively. Then, for any δ P p0, 1q, with probability at
least 1 ´ 3δ,

T
ÿ

t“1

@

µπ
t,ppt , bt

D

`

T
ÿ

t“1

@

µ0, b
t
0

D

ď LC 1
1{TN

3

ˆ

3C 1
δ

?
SAT ` 2S

c

2T log
´N

δ

¯

˙

` LC 1
1{TN

2

ˆ

3
?
SAT ` S

c

2T log
´N

δ

¯

˙

.

Proof. The proof is the same as that of Prop. 3.1 except that we would rely on Lems. E.12 and E.13 in place of Lems. A.1
and A.2, and use the definition of bt in (56) instead of (11).

39



Online Episodic Convex Reinforcement Learning

Lemma E.15. Let X be a random variable taking values in R, z1, z2 ě 0 be two constants, and δ1 P p0, 1q. If X ď z2
uniformly and P pX ą z1q ď δ1, then ErXs ď z1 ` δ1z2 .

Proof. Simply, ErXs “ ErItX ď z1uXs ` ErItX ą z1uXs ď z1 ` z2P px ą z1q ď z1 ` δ1z2.

E.2.5. REGRET ANALYSIS

The following theorem, a restatement of Thm. 4.3, provides a regret bound for Alg. 3. Recall that we have adopted in this
section the shorthand notation S “ |X | and A “ |A|.

Theorem E.16. Under Asm. 4.2, Alg. 3 with a suitable tuning of τ , δ, and pαtqtPrT s satisfies for any policy π P p∆AqXˆN

that

E rRT pπqs À

c

LpL` 1q

ε
S5{4A5{4N3T 3{4 `

L` 1

ε
S2A5{2N4

?
T ,

where À signifies that the inequality holds up to factors logarithmic in T , N , S, and A.

Proof. Fixing π P p∆AqXˆN , we have that

E rRT pπqs “ E
T
ÿ

t“1

`

F tpµπ
t,pq ´ F tpµπ,pq

˘

“ E
T
ÿ

t“1

`

F tpµπ
t,pq ´ F tpµπ

t,pptq
˘

looooooooooooooooomooooooooooooooooon

1

`E
T
ÿ

t“1

`

F tpµπ
t,pptq ´ F tpµπ,pp

t

q
˘

looooooooooooooooomooooooooooooooooon

2

`E
T
ÿ

t“1

`

F tpµπ,pp
t

q ´ F tpµπ,pq
˘

loooooooooooooooomoooooooooooooooon

3

.

It holds with probability at least 1 ´ 2
T that

1 ď L
T
ÿ

t“1

∥∥µπt,p ´ µπ
t,ppt

∥∥
1

“ L
T
ÿ

t“1

N
ÿ

n“1

∥∥µπt,p
n ´ µπ

t,ppt

n

∥∥
1

ď L
T
ÿ

t“1

N
ÿ

n“1

n´1
ÿ

i“0

ÿ

x,a

µπ
t,p
i px, aq

∥∥pi`1p¨|x, aq ´ ppti`1p¨|x, aq
∥∥
1

ď 3LN2
?
SATC 1

1{T ` 2LSN2
a

2T logpNT q ,

where the first inequality uses the Lipschitz continuity of F t, the second inequality follows from Lem. B.1, and the last
inequality follows from Lem. E.12. Hence, since L

řT
t“1

∥∥µπt,p ´ µπ
t,ppt

∥∥
1

ď 2NLT , it holds via Lem. E.15 (with δ1 “ 2
T )

that

E
“

1
‰

ď 3LN2
?
SATC 1

1{T ` 2LSN2
a

2T logpNT q ` 4LN . (57)

For the third sum, we use again the Lipschitz continuity of F t, Lem. B.1, and Lem. E.4 to get that with probability at least
1 ´ 1

T ,

3 ď L
T
ÿ

t“1

∥∥µπ,ppt ´ µπ,p
∥∥
1

ď L
T
ÿ

t“1

N
ÿ

n“1

∥∥µπ,pptn ´ µπ,pn
∥∥
1

ď L
T
ÿ

t“1

N
ÿ

n“1

n´1
ÿ

i“0

ÿ

x,a

µπ,pp
t

i px, aq
∥∥pi`1p¨|x, aq ´ ppti`1p¨|x, aq

∥∥
1

ď L
T
ÿ

t“1

N
ÿ

n“1

n´1
ÿ

i“0

ÿ

x,a

µπ,pp
t

i px, aq
C 1

1{T
a

maxt1, N t
i px, aqu

“ L
T
ÿ

t“1

N
ÿ

n“0

pN ´ nq
ÿ

x,a

µπ,pp
t

n px, aq
C 1

1{T
a

maxt1, N t
npx, aqu
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“

T
ÿ

t“1

@

µπ,pp
t

, bt
D

`

T
ÿ

t“1

@

µ0, b
t
0

D

“

T
ÿ

t“1

@

µπ
t,ppt , bt

D

`

T
ÿ

t“1

@

µ0, b
t
0

D

`

T
ÿ

t“1

@

µπ,pp
t

´ µπ
t,ppt , bt

D

.

Via Prop. E.14, it holds with probability 1 ´ 3
T that

T
ÿ

t“1

@

µπ
t,ppt , bt

D

`

T
ÿ

t“1

@

µ0, b
t
0

D

ď LC 1
1{TN

3
“

3C 1
1{T

?
SAT ` 2S

a

2T logpNT q
‰

` LC 1
1{TN

2
“

3
?
SAT ` S

a

2T logpNT q
‰

.

Hence, chaining these last two results and using a union bound, we get via Lem. E.15 (with δ1 “ 4
T ) that

E

«

3 ´

T
ÿ

t“1

@

µπ,pp
t

´ µπ
t,ppt , bt

D

ff

ď LC 1
1{TN

3
“

3C 1
1{T

?
SAT ` 2S

a

2T logpNT q
‰

` LC 1
1{TN

2
“

3
?
SAT ` S

a

2T logpNT q
‰

` 8LNp1 ` C 1
1{TNq , (58)

where we have used that

3 ´

T
ÿ

t“1

@

µπ,pp
t

´ µπ
t,ppt , bt

D

ď L
T
ÿ

t“1

∥∥µπ,ppt ´ µπ,p
∥∥
1

`

T
ÿ

t“1

}bt}8}µπ,pp
t

´ µπ
t,ppt}1 ď 2LNT p1 ` C 1

1{TNq .

Define pF t : p∆XˆAqN Ñ R as

pF tpµq “ EvPBNSpA´1q

”

F t
`

p1 ´ δqµ` δζv,pp
t˘
ı

.

As ppt satisfies the condition of Asm. 4.2 by design, ζv,pp
t

P Mppt

µ0
Ă p∆XˆAqN as argued in App. E.2.1; thus, pF t is

well-defined. Similarly, since ut P SNSpA´1q Ă BNSpA´1q and ζt “ ζu
t,ppt , it holds that ζt P Mppt

µ0
. Via the convexity of

Mppt

µ0
, the fact that µt P Mppt

µ0
, and the definition of pµt; it holds that pµt P Mppt

µ0
. This yields that pµt “ µπ

t,ppt , recalling the
definition of πt in Alg. 3. Using the Lipschitz smoothness of F t, we have that

F tpµπ
t,pptq ´ pF tpµtq “ F tppµtq ´ pF tpµtq “ F tpp1 ´ δqµt ` δζtq ´ EvPBNSpA´1q

”

F t
`

p1 ´ δqµt ` δζv,pp
t˘
ı

ď δLEvPBNSpA´1q }ζt ´ ζv,pp
t

}1 ď 2δLN

and that

pF tpµπ,pp
t

q ´ F tpµπ,pp
t

q “ EvPBNSpA´1q

”

F tpp1 ´ δqµπ,pp
t

` δζv,pp
t

q

ı

´ F tpµπ,pp
t

q

ď δLEvPBNSpA´1q }ζv,pp
t

´ µπ,pp
t

}1 ď 2δLN .

Hence,

2 “

T
ÿ

t“1

`

F tpµπ
t,pptq ´ pF tpµtq ` pF tpµtq ´ pF tpµπ,pp

t

q ` pF tpµπ,pp
t

q ´ F tpµπ,pp
t

q
˘

ď

T
ÿ

t“1

@

∇ pF tpµtq, µt ´ µπ,pp
tD

` 4δLNT

“

T
ÿ

t“1

@

∇ pF tpµtq ´ bt, µt ´ µπ,pp
tD

` 4δLNT `

T
ÿ

t“1

@

bt, µπ
t,ppt ´ µπ,pp

tD

`

T
ÿ

t“1

@

bt, µt ´ µπ
t,ppt

D

.
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The last term is easily bounded as follows:

T
ÿ

t“1

@

bt, µt ´ µπ
t,ppt

D

“

T
ÿ

t“1

@

bt, µt ´ pµt
D

“ δ
T
ÿ

t“1

@

bt, µt ´ ζt
D

ď δ
T
ÿ

t“1

}bt}8}µt ´ ζt}1 ď 2δC 1
1{TLN

2T .

We then conclude that

E

«

2 `

T
ÿ

t“1

@

bt, µπ,pp
t

´ µπ
t,ppt

D

ff

ď E
T
ÿ

t“1

@

∇ pF tpµtq ´ bt, µt ´ µπ,pp
tD

` 4δLNT ` 2δC 1
1{TLN

2T . (59)

Then, combining (57), (58), and (59) yields that

E rRT pπqs ď E
T
ÿ

t“1

@

∇ pF tpµtq ´ bt, µt ´ µπ,pp
tD

` 2δLp2 ` C 1
1{TNqNT

` 3LC 1
1{TN

3
“

3C 1
1{T

?
SAT ` 2S

a

2T logpNT q
‰

` 4LNp3 ` 2C 1
1{TNq . (60)

Define Ft, pFt :
`

Mppt

µ0

˘´
Ñ R as Ftpξq :“ F t

`

Λ
pptpξq

˘

and pFtpξq :“ pF t
`

Λ
pptpξq

˘

. Then, recalling that κ :“ ε
A´1`

?
A´1

,

pFt
`

Λ´1
ppt pµtq

˘

“ pF tpµtq “ EvPBNSpA´1q

”

F t
`

p1 ´ δqµt ` δζv,pp
t˘
ı

“ EvPBNSpA´1q

”

Ft
`

Λ´1
ppt

`

p1 ´ δqµt ` δζv,pp
t˘˘

ı

“ EvPBNSpA´1q

”

Ft
``

B ppt
˘``

p1 ´ δqµt ` δζv,pp
t

´ βppt
˘˘

ı

“ EvPBNSpA´1q

”

Ft
`

p1 ´ δq
`

B ppt
˘``

µt ´ βppt
˘

` δ
`

B ppt
˘``

ζv,pp
t

´ βppt
˘˘

ı

“ EvPBNSpA´1q

”

Ft
`

p1 ´ δqΛ´1
ppt pµtq ` δΛ´1

ppt pζv,pp
t

q
˘

ı

“ EvPBNSpA´1q

”

Ftpp1 ´ δqΛ´1
ppt pµtq ` δκ1NSpA´1q ` δκvq

ı

,

where the fourth equality follows form the fact that Λ´1
ppt pµq “

`

B ppt
˘``

µ ´ βppt
˘

, and the last equality follows since

ζv,pp
t

“ Λ
pptpκ1NSpA´1q ` κvq. Lem. 1 in (Flaxman et al., 2005) and the chain rule imply that

∇pFt
`

Λ´1
ppt pµtq

˘

“
1 ´ δ

δκ
NSpA´ 1qEuPSNSpA´1q

”

Ftpp1 ´ δqΛ´1
ppt pµtq ` δκ1NSpA´1q ` δκuqu

ı

“
1 ´ δ

δκ
NSpA´ 1qEuPSNSpA´1q

”

Ft
`

p1 ´ δqΛ´1
ppt pµtq ` δΛ´1

ppt

`

ζu,pp
t˘˘

u
ı

“
1 ´ δ

δκ
NSpA´ 1qEuPSNSpA´1q

”

F tpp1 ´ δqµt ` δζu,pp
t

qu
ı

“
1 ´ δ

δκ
NSpA´ 1qEutPSNSpA´1q

“

F tpp1 ´ δqµt ` δζtqut
‰

,

where the last equality uses that ζt “ ζu
t,ppt and that both µt and ppt are independent with respect to ut. And since

∇pFt
`

Λ´1
ppt pµtq

˘

“
`

B ppt
˘⊺∇ pF tpµtq, we obtain that

`

B ppt
`

B ppt
˘`˘⊺∇ pF tpµtq “

1 ´ δ

δκ
NSpA´ 1qEutPSNSpA´1q

”

F tpp1 ´ δqµt ` δζtq
``

B ppt
˘`˘⊺

ut
ı

“ EutPSNSpA´1q

“``

B ppt
˘`˘⊺

pgt
‰

, (61)

where

pgt :“
1 ´ δ

δκ
NSpA´ 1qF tpp1 ´ δqµt ` δζtqut “

1 ´ δ

δκ
NSpA´ 1qF tppµtqut .
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The vector pgt differs from gt (which is employed in Alg. 3) in that it is defined using F tppµtq instead of F tpµπ
t,pq. For

round t P rT s, let Ft :“ σpu1, o1, . . . ,ut, otq denote the σ-algebra generated by the random events up to the end of round
t; and let Etr¨s :“ Er¨ | Ft´1s with F0 being the trivial σ-algebra. We then have that

E
T
ÿ

t“1

@

∇ pF tpµtq, µt ´ µπ,pp
tD

“ E
T
ÿ

t“1

@`

B ppt
`

B ppt
˘`˘⊺∇ pF tpµtq, µt ´ µπ,pp

tD

“ E
T
ÿ

t“1

@

Et
“``

B ppt
˘`˘⊺

pgt
‰

, µt ´ µπ,pp
tD

“ E
T
ÿ

t“1

@``

B ppt
˘`˘⊺

pgt, µt ´ µπ,pp
tD

,

where the first equality holds via the fact that B ppt
`

B ppt
˘`

pµt ´ µπ,pp
t

q “ µt ´ µπ,pp
t

since µt ´ µπ,pp
t

belongs to the
column space of B ppt (see App. E.1), the second equality uses (61) and the fact that conditioned on Ft´1, the only source
of randomness in

``

B ppt
˘`˘⊺

pgt is ut, which is sampled independently in each round; and the last equality uses the
tower rule, linearity of expectation, and the fact that µt ´ µπ,pp

t

is measurable with respect to Ft´1. Since µt ´ µπ,pp
t

“

B ppt
`

Λ´1
ppt pµtq ´ Λ´1

ppt

`

µπ,pp
t˘˘

, we have that

ppgtqT
`

B ppt
˘``

µt ´ µπ,pp
t˘

“ ppgtqT
`

B ppt
˘`
B ppt

`

Λ´1
ppt pµtq ´ Λ´1

ppt

`

µπ,pp
t˘˘

“ ppgtqT
`

Λ´1
ppt pµtq ´ Λ´1

ppt

`

µπ,pp
t˘˘

since
`

B ppt
˘`
B ppt “ INSpA´1q, see App. E.1. Therefore,

E
T
ÿ

t“1

@

∇ pF tpµtq, µt ´ µπ,pp
tD

“ E
T
ÿ

t“1

@

pgt,Λ´1
ppt pµtq ´ Λ´1

ppt

`

µπ,pp
t˘D

“ E
T
ÿ

t“1

@

gt,Λ´1
ppt pµtq ´ Λ´1

ppt

`

µπ,pp
t˘D

` E
T
ÿ

t“1

@

pgt ´ gt,Λ´1
ppt pµtq ´ Λ´1

ppt

`

µπ,pp
t˘D

“ E
T
ÿ

t“1

@

g̊t, µt ´ µπ,pp
tD

` E
T
ÿ

t“1

@

pgt ´ gt,Λ´1
ppt pµtq ´ Λ´1

ppt

`

µπ,pp
t˘D

,

where the last equality follows from the definition of g̊t (see Alg. 3) and the fact that µt and µπ,pp
t

are expansions of Λ´1
ppt pµtq

and Λ´1
ppt

`

µπ,pp
t˘

respectively, augmented with the entries corresponding to action a˚. Focusing on the second sum, we have
that

T
ÿ

t“1

@

pgt ´ gt,Λ´1
ppt pµtq ´ Λ´1

ppt

`

µπ,pp
t˘D

ď

T
ÿ

t“1

}pgt ´ gt}8

∥∥Λ´1
ppt pµtq ´ Λ´1

ppt

`

µπ,pp
t˘∥∥

1

ď

T
ÿ

t“1

}pgt ´ gt}8

∥∥µt ´ µπ,pp
t∥∥

1

ď 2N
T
ÿ

t“1

}pgt ´ gt}8

“ 2
1 ´ δ

δκ
N2SpA´ 1q

T
ÿ

t“1

}ut}8|F tppµtq ´ F tpµπ
t,pq|

ď
4

εδ
N2SA2

T
ÿ

t“1

|F tppµtq ´ F tpµπ
t,pq|

“
4

εδ
N2SA2

T
ÿ

t“1

|F tpµπ
t,pptq ´ F tpµπ

t,pq|

ď
4

εδ
LN2SA2

T
ÿ

t“1

∥∥µπt,ppt ´ µπ
t,p

∥∥
1
,
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where the fourth inequality uses that κ ě ε
2A and that ut P SNSpA´1q, and the last inequality uses the Lipschitz continuity

of F t. As shown in (57), we have that

E
T
ÿ

t“1

∥∥µπt,ppt ´ µπ
t,p

∥∥
1

ď 3N2
?
SATC 1

1{T ` 2SN2
a

2T logpNT q ` 4N .

Hence,

E
T
ÿ

t“1

@

∇ pF tpµtq, µt ´ µπ,pp
tD

ď E
T
ÿ

t“1

@

g̊t, µt ´ µπ,pp
tD

`
4

εδ
LN3SA2

`

3N
?
SATC 1

1{T ` 2SN
a

2T logpNT q ` 4
˘

.

Combining this result with (60) yields that

E rRT pπqs ď E
T
ÿ

t“1

@

g̊t ´ bt, µt ´ µπ,pp
tD

`
4

εδ
LN3SA2

`

3N
?
SATC 1

1{T ` 2SN
a

2T logpNT q ` 4
˘

` 2δLp2 ` C 1
1{TNqNT ` 3LC 1

1{TN
3
“

3C 1
1{T

?
SAT ` 2S

a

2T logpNT q
‰

` 4LNp3 ` 2C 1
1{TNq

ď E
T
ÿ

t“1

@

g̊t ´ bt, µt ´ µπ,pp
tD

` δ 2Lp2 ` C 1
1{TNqNT

looooooooooomooooooooooon

“:Ξ1

`4LNp3 ` 2C 1
1{TNq

`
1

δ

7

ε
LC 1

1{TN
3SA2

`

3N
?
ATC 1

1{T ` 2N
a

2ST logpNT q ` 4
˘

loooooooooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooooooooon

“:Ξ2

, (62)

where the last inequality uses that C 1
1{T ě

?
S. Note that

}̊gt}1,8 “

N
ÿ

n“1

}gtn}8

“
1 ´ δ

εδ
NSpA´ 1qpA´ 1 `

?
A´ 1qF tpµπ

t,pq

N
ÿ

n“1

}utn}8

ď
2

εδ
N2SA2

N
ÿ

n“1

}utn}8

ď
2

εδ
N2SA2

?
N

g

f

f

e

N
ÿ

n“1

}utn}28 ď
2

εδ
N5{2SA2

g

f

f

e

N
ÿ

n“1

ÿ

x,a

|utnpx, aq|2 ď
2

εδ
N5{2SA2 ,

where the second inequality uses Cauchy-Schwarz and the last inequality uses that ut P SNSpA´1q. Moreover, we have that
}bt}1,8 “

řN
n“1 }btn}8 ď

řN
n“1 LpN ´ nqC 1

1{T ď LN2C 1
1{T . Hence, using that C 1

1{T ě
?
S,

}̊gt ´ bt}1,8 ď
2

εδ
N5{2SA2 ` LN2C 1

1{T ď
2

εδ
pL` 1qC 1

1{T

?
SA2N5{2 .

Via Lems. A.4 and E.11,5 we can invoke Lem. 2.1 with c “ 5e, ζ “ 2
εδ pL` 1qC 1

1{T

?
SA2N5{2, and αt “ 1{pt` 1q to get

that (from the proof of Lem. 2.1)

T
ÿ

t“1

@

g̊t ´ bt, µt ´ µπ,pp
tD

ď τ
´ 2

εδ
pL` 1qC 1

1{T

?
SA2N5{2

¯2

T `
20e2SN logpAT q2pN `Aq

τ

`
10e2

εδ
pL` 1qC 1

1{TS
3{2A2N7{2 logpT q .

5To invoke Lem. E.11, we assume without loss of generality that the constant ε specified in Asm. 4.2 satisfies ε ď 1
2S

.
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Tuning τ optimally yields that

T
ÿ

t“1

@

g̊t ´ bt, µt ´ µπ,pp
tD

ď
4

εδ
pL` 1qC 1

1{TSA
2N5{2

a

20e2NpN `AqT logpAT q2

`
10e2

εδ
pL` 1qC 1

1{TS
3{2A2N7{2 logpT q

ď
1

δ

10e2

ε
pL` 1qC 1

1{TSA
2N3 logpAT q

`

a

pN `AqT `
?
SN

˘

loooooooooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooooooooon

“:Ξ3

.

Hence, plugging back into (62) yields that

E rRT pπqs ď δΞ1 `
1

δ
pΞ2 ` Ξ3q ` 4LNp3 ` 2C 1

1{TNq .

Setting δ :“ min
!

1,
b

Ξ2`Ξ3

Ξ1

)

, we get that

E rRT pπqs ď max
!

2
a

Ξ1pΞ2 ` Ξ3q, 2pΞ2 ` Ξ3q

)

` 4LNp3 ` 2C 1
1{TNq .

Consequently, the theorem follows after using the definition of C 1
1{T from Eq. (55) and ignoring log factors.

E.3. Self-Concordant Regularization Approach

We have used the set pMp
µ0

q´, the preimage of Mp
µ0

under the map Ξp (or Λp), to represent in RNSpA´1q the set of valid
occupancy measures. A more concise characterization, given by Lem. E.1, is that

pMp
µ0

q´ “
␣

ξ P RNSpA´1q : Bpξ ě ´βp
(

;

in other words, pMp
µ0

q´ is a convex polytope formed by the constraints Bppn, x, a, ¨, ¨, ¨q⊺ξ ` βpnpx, aq ě 0 for n, x, a P

rN s ˆ X ˆ A. Moreover, Lem. E.2 asserts that int pMp
µ0

q´, the interior of pMp
µ0

q´, is not empty under Asm. 4.4.

We consider then the function ψlb : int pMp
µ0

q´ Ñ R defined as

ψlbpξq :“ ´
ÿ

n,x,a

log
`

Bpn, x, a, ¨, ¨, ¨q⊺ξ ` βnpx, aq
˘

.

As mentioned in Sec. 4.2.2, Corollary 3.1.1 in (Nemirovski, 2004) yields that ψlb is a ϑ-self-concordant barrier (see
Definition 3.1.1 in Nemirovski, 2004) for pMp

µ0
q´ with ϑ “ N ¨ S ¨A. The approach we analyze here is to perform OMD

directly on the set pMp
µ0

q´ with ψlb as the regularizer.

For ξ P int pMp
µ0

q´ and y P RNSpA´1q, define the local norm }y}ξ :“
a

y⊺∇2ψlbpξqy. This is indeed a norm since the fact
that pMp

µ0
q´ is bounded implies via Property II in (Nemirovski, 2004, Section 2.2) that the Hessian of ψlb is non-singular

everywhere. Its dual norm is denoted as }y}ξ,˚ :“
a

y⊺p∇2ψlbpξqq´1y. The Dikin ellipsoid of radius r at ξ P int pMp
µ0

q´

is given by
Erpξq :“ ty P RNSpA´1q : }y ´ ξ}ξ ď ru “ ξ ` rp∇2ψlbpξqq´1{2BNSpA´1q .

Via Property I in (Nemirovski, 2004, Section 2.2), E1pξq Ď pMp
µ0

q´ for any ξ P int pMp
µ0

q´.

For ξ, y P int pMp
µ0

q´, we denote by Dψlb py, ξq :“ ψlbpyq ´ ψlbpξq ´ xy ´ ξ,∇ψlbpξqy the Bregman divergence between y
and ξ with respect to ψlb. From the proof of Thm. E.16, we recall the definition Ft :“ F t ˝ Λp. As alluded to above, our
OMD updates will take the form

ξt`1 Ð argmin
ξPpMp

µ0
q´

τ
@

gt, ξ
D

`Dψlb pξ, ξtq ,

where gt will be chosen as a surrogate for ∇Ftpξtq. Differently from the proof of Thm. E.16, we redefine the smoothed
approximation pFt : pMp

µ0
q´ Ñ R such that

pFtpξq :“ EvPBNSpA´1q

“

Ft
`

p1 ´ δqξ ` δ
`

ξt ` p∇2ψlbpξtqq´1{2v
˘˘‰

.
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Figure 4. This figure provides a graphical comparison between the sampling approach used in Alg. 3, represented on the left, and that
used in Alg. 4, represented on the right. The simplified domain here is tx P r0, 1s

2 : }x}1 ď 1u. Both approaches are illustrated at three
points: a, b, and c. In the first approach, with some δ P p0, 1q and δ̄ :“ 1 ´ δ, we sample from a circle of radius δ{p2 `

?
2q centered at a

convex combination between the point of interest and o :“
`

1{p2 `
?
2q, 1{p2 `

?
2q
˘

. In the second approach, we consider the barrier
´ logp1 ´ x1 ´ x2q ´

ř

i“1,2 logpxiq and sample from the Dikin ellipsoid (of a certain common radius) induced by this function at each
point.

This is well-defined since we are evaluating Ft on a convex combination of the argument ξ and a point inside the ellipsoid
E1pξtq, which is a subset of pMp

µ0
q´ as cited before. Via Corollary 6.8 in (Hazan et al., 2016) and the chain rule, we have

that

∇pFtpξq “
p1 ´ δq

δ
NSpA´ 1qEuPSNSpA´1q

“

Ft
`

p1 ´ δqξ ` δ
`

ξt ` p∇2ψlbpξtqq´1{2u
˘˘

p∇2ψlbpξtqq
1{2u

‰

. (63)

Hence, with ut sampled uniformly from SNSpA´1q, we pick (as mentioned in Sec. 4.2.2)

gt :“
p1 ´ δq

δ
NSpA´ 1qFt

`

ξt ` δp∇2ψlbpξtqq´1{2ut
˘

p∇2ψlbpξtqq
1{2ut (64)

such that Eut

“

gt
‰

“ ∇pFtpξtq, see also (Saha & Tewari, 2011) for a similar estimator in another BCO setting. We summarize
this approach in Alg. 4, and provide in Fig. 4 a graphical comparison with the sampling approach of Alg. 3 on a simple
decision set. Before proving the regret bound of Thm. 4.5, we collect a few standard properties and auxiliary results
concerning self-concordant barriers and their use as regularizers.

E.3.1. AUXILIARY LEMMAS

For x, y P int pMp
µ0

q´, it holds via Property I in (Nemirovski, 2004, Section 2.2) that

p1 ´ }y ´ x}xq2∇2ψlbpxq ď ∇2ψlbpyq ď
1

p1 ´ }y ´ x}xq2
∇2ψlbpxq (65)

whenever }y ´ x}x ă 1. We state the following auxiliary lemma, which will be used to assert the proximity between ξt and
ξt`1 for our algorithm. Establishing this ‘stability’ is a crucial step in the local norm analysis.
Lemma E.17. Let x P int pMp

µ0
q´ and ℓ P RNSpA´1q be such that }ℓ}x,˚ ď 1

16 , and define

y :“ argmin
ξPint pMp

µ0
q´

xℓ, ξy `Dψlb pξ, xq .

Then, y P E1{2pxq.
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Algorithm 4 Bandit O-MD-CURL with logarithmic barrier regularization

input: domain pMp
µ0

q´ with non-empty interior, learning rate τ ą 0, exploration parameter δ P p0, 1s

initialization: ξ1 Ð argminξPint pMp
µ0

q´ ψlbpξq

for t “ 1, . . . , T do
draw ut P SNSpA´1q uniformly at random
pξt Ð ξt ` δp∇2ψlbpξtqq´1{2ut

pµt Ð Λpppξtq

πtnpa|xq Ð pµtpx, aq{
ř

aPA pµtpx, aq

output πt and observe F tppµtq

gt Ð
p1´δq

δ NSpA´ 1qF tppµtqp∇2ψlbpξtqq
1{2ut

ξt`1 Ð argminξPint pMp
µ0

q´ τ xgt, ξy `Dψlb pξ, ξtq

end for

Proof. For ξ P int pMp
µ0

q´, let

gpξq :“ xℓ, ξy `Dψlb pξ, xq “ xℓ, ξy ` ψlbpξq ´ ψlbpxq ´ xξ ´ x,∇ψlbpxqy .

Note that g is a self-concordant function on int pMp
µ0

q´ (Item (ii) in Nemirovski, 2004, Proposition 2.1.1), whose Hessian
(hence, local norms and Dikin ellipsoids) coincides with that of ψlb everywhere. Moreover, g is below bounded thanks to
pMp

µ0
q´ being a bounded set, which implies that g attains its minimum on int pMp

µ0
q´ (Property VI in Nemirovski, 2004,

Section 2.2). This minimum is also unique via strict convexity. Hence, y is well-defined.

The rest of the proof is similar to the proof of Lem. 13 in (Wei & Luo, 2018) and Lem. 9 in (Van der Hoeven et al.,
2023). Thanks to the strict convexity of g, to show that y P E1{2pxq it suffices to show that for any ξ on the boundary of
E1{2pxq, gpxq ď gpξq; this is because x P E1{2pxq and y “ argminξPpMp

µ0
q´ gpξq. For any such ξ on the boundary of E1{2pxq,

Taylor’s theorem implies that there exists some z on the line segment between x and ξ such that

gpξq ´ gpxq “ xξ ´ x,∇gpxqy `
1

2
pξ ´ xq⊺∇2gpzqpξ ´ xq

“ xξ ´ x, ℓy `
1

2
pξ ´ xq⊺∇2ψlbpzqpξ ´ xq

ě xξ ´ x, ℓy `
1

8
pξ ´ xq⊺∇2ψlbpxqpξ ´ xq

“ xξ ´ x, ℓy `
1

8
}ξ ´ x}2x

ě ´}ξ ´ x}x}ℓ}x,˚ `
1

8
}ξ ´ x}2x

“ ´
1

2
}ℓ}x,˚ `

1

32
ě 0 ,

where the second equality holds since ∇2g “ ∇2ψlb and ∇gpxq “ ℓ` ∇ψlbpxq ´ ∇ψlbpxq “ ℓ, the first inequality holds
via (65) and the fact that z P E1{2pxq, the second inequality holds via the definition of a dual norm, the last equality holds
since ξ is on the boundary of E1{2pxq, and the last inequality holds via the assumption that }ℓ}x,˚ ď 1

16 .

For x P int pMp
µ0

q´, the Minkowski function of pMp
µ0

q´ with the pole at x is defined as (Nemirovski, 2004, Section 3.2)

πxpyq :“ inf
␣

t ą 0: x` t´1py ´ xq P pMp
µ0

q´
(

for y P pMp
µ0

q´. The following lemma readily follows from the properties of the Minkowski function. It is used in
the analysis to handle the bias term of the standard OMD regret guarantee, which is slightly more involved in this case
considering that the comparator need not belong to the interior of pMp

µ0
q´, where ψlb is defined (and finite).
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Lemma E.18. Let x P int pMp
µ0

q´, y P pMp
µ0

q´, δ P p0, 1q, and z :“ p1 ´ δqy ` δx. Then,

ψlbpzq ď ψlbpxq `NSA log δ´1 .

Further, let 9x :“ argminxPint pMp
µ0

q´ ψlbpxq and 9z :“ p1 ´ δqy ` δ 9x. Then,

Dψlb p 9z, 9xq ď NSA log δ´1 .

Proof. Since ψlb is an NSA-self-concordant barrier for Mp
µ0

, Property II in (Nemirovski, 2004, Section 3.2) implies that

ψlbpzq ď ψlbpxq `NSA log
1

1 ´ πxpzq
.

On the other hand,

x` p1 ´ δq´1pz ´ xq “ x` p1 ´ δq´1pp1 ´ δqy ` δx´ xq “ x` y ´ x “ y P pMp
µ0

q´ ,

implying that πxpzq ď 1 ´ δ. Hence, ψlbpzq ď ψlbpxq `NSA log δ´1.

Next, we note that the optimality of 9x implies that

Dψlb p 9z, 9xq “ ψlbp 9zq ´ ψlbp 9xq ´ x 9z ´ 9x,∇ψlbp 9xqy ď ψlbp 9zq ´ ψlbp 9xq ,

which concludes the proof when combined with the first part.

E.3.2. REGRET ANALYSIS

We are now ready to prove the regret bound of Thm. 4.5, which is stated more explicitly in the following theorem.

Theorem E.19. Under Asm. 4.4, Alg. 4 with τ “ δ
16

b

log T
N3SAT and δ “ min

"

b

17
4L

N3{4S3{4A3{4
plog T q

1{4

T 1{4 , 1

*

satisfies for

any policy π P Π that

E rRT pπqs ď max
!

4
?
17LN7{4 pSAT q

3{4
plog T q1{4, 34

a

N5S3A3T log T
)

` 2LN .

Proof. Firstly, we assert that the iterates ξt are well defined; similar to what was argued in the proof of Lem. E.17, the
functions ψlbp¨q and τ xgt, ¨y `Dψlb p¨, ξtq are self-concordant on int pMp

µ0
q´ (Item (ii) in Nemirovski, 2004, Proposition

2.1.1) and bounded from below thanks to pMp
µ0

q´ being a bounded set, implying via Property VI in (Nemirovski, 2004,
Section 2.2) that each of these functions attains its minimum on int pMp

µ0
q´, which is also unique via strict convexity. Also

note that indeed pµt P Mp
µ0

since pξt P pMp
µ0

q´ as we argued before presenting the algorithm.

Let µ˚ P argminµPMp
µ0

řT
t“1 F

tpµq and R̄T :“ E
řT
t“1

`

F tpµπ
t,pq´F tpµ˚q

˘

, which satisfies R̄T “ maxπPΠ E rRT pπqs.

Define ξ˚ :“ p1 ´ 9δqΛ´1
p pµ˚q ` 9δξ1, where 9δ P p0, 1q is a constant to be specified later. To start with, we have that

R̄T “ E
T
ÿ

t“1

`

F tpµπ
t,pq ´ F tpµ˚q

˘

“ E
T
ÿ

t“1

`

F tppµtq ´ F tpµ˚q
˘

“ E
T
ÿ

t“1

`

Ftppξtq ´ Ft
`

Λ´1
p pµ˚q

˘˘

.

Next, we derive that

Ftppξtq ´ pFtpξtq

“ Ft
`

ξt ` δp∇2ψlbpξtqq´1{2ut
˘

´ EvPBNSpA´1q

”

Ft
`

ξt ` δp∇2ψlbpξtqq´1{2v
˘

ı

ď LEvPBNSpA´1q

∥∥Λp`ξt ` δp∇2ψlbpξtqq´1{2ut
˘

´ Λp
`

ξt ` δp∇2ψlbpξtqq´1{2v
˘
∥∥
1

“ δLEvPBNSpA´1q

∥∥Λp`p∇2ψlbpξtqq´1{2ut
˘

´ Λp
`

p∇2ψlbpξtqq´1{2v
˘
∥∥
1

“ δLEvPBNSpA´1q

∥∥Λp`ξt ` p∇2ψlbpξtqq´1{2ut
˘

´ Λp
`

ξt ` p∇2ψlbpξtqq´1{2v
˘
∥∥
1
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ď δLEvPBNSpA´1q

”∥∥Λp`ξt ` p∇2ψlbpξtqq´1{2ut
˘∥∥

1
`
∥∥Λp`ξt ` p∇2ψlbpξtqq´1{2v

˘∥∥
1

ı

ď 2δLN ,

where the first inequality uses the Lipschitz smoothness of F t and the fact that Ft “ F t ˝ Λp; the second and third
equalities use the fact that Λp is an affine function; and the last inequality holds since both ξt ` p∇2ψlbpξtqq´1{2ut, ξt `

p∇2ψlbpξtqq´1{2v P E1pξtq Ă pMp
µ0

q´, and that for any ξ P pMp
µ0

q´, Λppξq P Mp
µ0

and therefore satisfies }Λppξq}1 ď N .
We similarly derive that

pFtpξ˚q ´ Ft
`

Λ´1
p pµ˚q

˘

“ EvPBNSpA´1q

“

Ft
`

p1 ´ δqξ˚ ` δ
`

ξt ` p∇2ψlbpξtqq´1{2v
˘˘‰

´ Ft
`

Λ´1
p pµ˚q

˘

“ EvPBNSpA´1q

“

Ft
`

p1 ´ δqp1 ´ 9δqΛ´1
p pµ˚q ` p1 ´ δq 9δξ1 ` δ

`

ξt ` p∇2ψlbpξtqq´1{2v
˘˘‰

´ Ft
`

Λ´1
p pµ˚q

˘

ď LEvPBNSpA´1q

∥∥p1 ´ δqp1 ´ 9δqµ˚ ` p1 ´ δq 9δΛppξ1q ` δΛp
`

ξt ` p∇2ψlbpξtqq´1{2v
˘

´ µ˚
∥∥
1

ď LEvPBNSpA´1q

”

|δ 9δ ´ δ ´ 9δ|}µ˚}1 ` p1 ´ δq 9δ
∥∥Λppξ1q

∥∥
1

` δ
∥∥Λp`ξt ` p∇2ψlbpξtqq´1{2v

˘
∥∥
1

ı

ď LEvPBNSpA´1q

”

pδ ` 9δq}µ˚}1 ` 9δ
∥∥Λppξ1q

∥∥
1

` δ
∥∥Λp`ξt ` p∇2ψlbpξtqq´1{2v

˘
∥∥
1

ı

ď 2δLN ` 2 9δLN .

Hence, using also the convexity of pFt, we obtain that

R̄T ď E
T
ÿ

t“1

`

pFtpξtq ´ pFtpξ˚q
˘

` 4δLNT ` 2 9δLNT

ď E
T
ÿ

t“1

@

∇pFtpξtq, ξt ´ ξ˚
D

` 4δLNT ` 2 9δLNT . (66)

In this proof, let Ft :“ σpu1, . . . , utq denote the σ-algebra generated by u1, . . . , ut; and let Etr¨s :“ Er¨ | Ft´1s with F0

being the trivial σ-algebra. We then have that

pFtpξtq “ Eut

“

gt
‰

“ Et
“

gt
‰

,

where the first equality follows from (63) and the the second equality holds since conditioned on Ft´1, ut is the only source
of randomness in gt and is sampled identically and independently in every round. Using that ξt ´ ξ˚ is measurable with
respect to Ft´1, we then obtain that

R̄T ď E
T
ÿ

t“1

@

Etgt, ξt ´ ξ˚
D

` 4δLNT ` 2 9δLNT “ E
T
ÿ

t“1

@

gt, ξt ´ ξ˚
D

` 4δLNT ` 2 9δLNT .

Via the definition of ξt and the fact that ξ˚ P int pMp
µ0

q´, Lem. 6.16 in (Orabona, 2019) implies that

T
ÿ

t“1

@

gt, ξt ´ ξ˚
D

ď
Dψlb pξ˚, ξ1q

τ
`

T
ÿ

t“1

τ

2
}gt}

2
ζt,˚ ,

where ζt lies on the line segment between ξt and ξt`1. We firstly observe that

}gt}
2
ξt,˚ “

ˆ

p1 ´ δq

δ
NSpA´ 1qF tppµtq

˙2

¨ putq⊺p∇2ψlbpξtqq1{2
`

∇2ψlbpξtq
˘´1

p∇2ψlbpξtqq1{2ut

“

ˆ

p1 ´ δq

δ
NSpA´ 1qF tppµtq

˙2

ď
1

δ2
N4S2A2 ,

where we have used that F tppµtq ď N . Hence, if

τ ď
δ

16N2SA
, (67)
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then τ}gt}ξt,˚ ď 1{16. Consequently, Lem. E.17 (with x “ ξt, y “ ξt`1, and ℓ “ τgt) would assert that ξt`1 P E1{2pξtq;
and hence, ζt P E1{2pξtq. It would then hold via (65) that

}gt}
2
ζt,˚ ď

1

p1 ´ }ζt ´ ξt}ξtq2
}gt}

2
ξt,˚ ď 4}gt}

2
ξt,˚ ,

On the other hand, via Lem. E.18 and the definitions of ξ1 and ξ˚, we have that

Dψlb pξ˚, ξ1q ď NSA log 9δ´1 .

Hence, conditioned on (67), we obtain the following regret bound

R̄T ď
NSA log 9δ´1

τ
`

2τ

δ2
N4S2A2T ` 4δLNT ` 2 9δLNT . (68)

Setting

9δ “
1

T
, τ “

δ

16

c

log T

N3SAT
, and δ “ min

"

c

17

4L

N3{4S3{4A3{4plog T q1{4

T 1{4
, 1

*

;

we obtain that

R̄T ď
NSA log T

τ
`

2τ

δ2
N4S2A2T ` 4δLNT ` 2LN

ď
17

δ

a

N5S3A3T log T ` 4δLNT ` 2LN

ď max
!

4
?
17LN7{4 pSAT q

3{4
plog T q1{4, 34

a

N5S3A3T log T
)

` 2LN . (69)

If T ě NSA logpT q, then our choice of τ indeed satisfies (67):

τ “
δ

16

c

log T

N3SAT
ď

δ

16N2SA
.

Otherwise, we can fall back to the trivial regret bound

R̄T ď NT ď N2SA logpT q ,

which is dominated by the bound in (69); hence, the theorem follows.
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